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Abstract

Learning meaningful representations of data that can address challenges such as1

batch effect correction, data integration and counterfactual inference is a central2

problem in many domains including computational biology. Adopting a Condi-3

tional VAE framework, we identify the mathematical principle that unites these4

challenges: learning a representation that is marginally independent of a condition5

variable. We therefore propose the Contrastive Mixture of Posteriors (CoMP)6

method that uses a novel misalignment penalty to enforce this independence. This7

penalty is defined in terms of mixtures of the variational posteriors themselves,8

unlike prior work which uses external discrepancy measures such as MMD to9

ensure independence in latent space. We show that CoMP has attractive theoretical10

properties compared to previous approaches, especially when there is complex11

global structure in latent space. We further demonstrate state of the art performance12

on a number of real-world problems, including the challenging tasks of aligning13

human tumour samples with cancer cell-lines and performing counterfactual in-14

ference on single-cell RNA sequencing data. Incidentally, we find parallels with15

the fair representation learning literature, and demonstrate CoMP has competitive16

performance in learning fair yet expressive latent representations.17

1 Introduction18

Large scale datasets describing the molecular properties of cells, tissues and organs in a state of health19

and disease are commonplace in computational biology. Referred to collectively as ‘omics data,20

thousands of features are measured per sample and, as single-cell methodologies have developed, it21

is now typical to measure such features across 105–106 samples [1, 2]. Given these two properties of22

‘omics data, the need for scalable algorithms to learn meaningful low-dimensional representations23

that capture the variability of the data has grown. As such, Variational Autoencoders (VAEs) [3, 4]24

have become an important tool for solving a range of modelling problems in the biological sciences25

[5, 6, 7, 8, 9, 10]. One such problem is utilising representations for counterfactual inference,26

e.g. predicting how a certain cell or cell-type, observed only in the control, would have behaved when27

exposed to a drug [9, 10, 11]. Another key problem is removing batch effects—spurious shifts in28

observations due to differing experimental conditions—from data in order to integrate or compare29

multiple datasets [5, 12, 13, 14, 15].30

We present a formal account of these challenges and show that, to a great extent, they can be seen31

as different aspects of a the same underlying problem, namely, that of learning a representation32

that is marginally independent of a condition variable (e.g. experimental batch, stimulated vs.33

control). Figure 1 [CoMP] illustrates what this looks like in practice: the complete overlap of the cell34

populations from different conditions in the latent space. This directly addresses batch correction, and35

in the case where we also have a generative model that maps from latent space back to the original36
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Figure 1: Latent representations of a single-cell gene expression dataset under two conditions (see
Section 6.2). From fully disjointed (VAE) to a well-mixed pair of distributions (CoMP).

data space, methods that solve this problem can also be applied to counterfactual inference [10].37

This same mathematical requirement for independence also occurs in the fair representation learning38

literature, in which we seek a representation that removes a sensitive attribute, e.g. gender.39

Neither the VAE nor the conditional VAE (CVAE) [16] are typically successful at learning repre-40

sentations that achieve this desired independence, as shown in Figure 1. Despite the CVAE being41

theoretically able to remove batch effects, there is no constraint that prevents it from from separating42

different conditions in latent space. Existing methods use a penalty to encourage the CVAE to learn43

representations that overlap correctly in latent space, with Maximum Mean Discrepancy (MMD) [17]44

being the most common penalty, applied in the VFAE [18] and the more recent trVAE [10]. These45

methods, however, suffer from a number of drawbacks: conceptually, they introduce an extraneous46

discrepancy measure that is not a part of the variational inference framework; practically, they re-47

quire the choice of, and hyperparameter tuning for, an MMD kernel; empirically, whilst trVAE is a48

significant improvement over an unconstrained CVAE, Figure 1 [trVAE] shows that it can still fail to49

exactly align different conditions in latent space.50

To overcome these difficulties, we introduce Contrastive Mixture of Posteriors (CoMP), a new51

method for learning aligned representations in a CVAE framework. Our method features the novel52

CoMP misalignment penalty that forces the CVAE to remove batch effects. Inspired by contrastive53

learning [19, 20], the penalty encourages representations from different conditions to be close, whilst54

representations from the same condition should be spread out. To achieve this, we approximate the55

requisite marginal distributions using mixtures of the variational posteriors themselves, leading to a56

penalty that does not require an extraneous discrepancy measure or a separately tuned kernel. We57

prove that the CoMP penalty is a stochastic upper bound on a weighted sum of KL divergences, so58

minimising the penalty minimises a well-established statistical divergence measure. We analyse the59

training gradients of the CoMP and MMD penalties, finding key differences that help explain why60

CoMP gradients are generally more stable and better suited to datasets with complex global structure.61

As shown in Figure 1 [CoMP], our method can achieve visually perfect alignment on a number of62

real-world biological datasets. We apply CoMP to two challenging biological problems: 1) aligning63

gene expression profiles between tumours and their corresponding cell-lines, as tackled in [21] and64

2) estimating the gene expression profile of an unperturbed cell as if it had been treated with a65

chemical perturbation (counterfactual inference) [9]. We show that CoMP outperforms existing66

methods, achieving state-of-the-art performance on both tasks. Finally, given the connections to fair67

representation learning, we apply CoMP to the problem of learning a representation that is independent68

of gender in the UCI Adult Income dataset [22], showing that we can learn a representation that is69

fully independent of the protected attribute whilst maintaining useful information for other prediction70

tasks. CoMP represents a conceptually simple and empirically powerful method for learning aligned71

representation, opening the door to answering high-value questions in biology and beyond.72

2 Background73

2.1 Variational Autoencoders and extensions74

We begin by assuming that we have n observations x1, . . . ,xn of an underlying data distribution.75

Variational autoencoders (VAEs) [3, 4] explain the high-dimensional observations xi using low76

dimensional representations zi. The standard VAE places a standard normal prior z ∼ p(z) on77
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Figure 2: Structural Equation Model for observation x under known condition c with unobserved
latent variable z. In this model, z and c are independent in the prior.

the latent variable, and learns a generative model pθ(x|z) that reconstructs x using z, alongside78

an inference network qφ(z|x) that encodes x to z. Both θ and φ are trained jointly by maximising79

the ELBO, a lower bound on marginal likelihood given by log pθ(x) ≥ Eqφ(z|x) [log pθ(x|z)] −80

KL [qφ(z|x)‖p(z)]. This can be maximised using stochastic optimisers [23, 3]. Various extensions81

of the VAE have been proposed, such as the β-VAE [24], which scales the KL term of the ELBO82

by a hyperparameter β. Because the isotropic normal prior may limit the expressivity of the model83

[25], various authors have considered alternative priors. For example, [26] proposed the Variational84

Mixture of Posteriors (VaMP) prior, that replaces the isotropic Gaussian with a mixture of posteriors85

from the encoder network itself, evaluated at a number of learned pseudo-inputs.86

So far, we have assumed that the only data available are the observations x1, . . . ,xn, but in many87

practical applications we may have additional information such as a condition label for each ob-88

servation. For example, in gene knock-out studies, we have information about which gene was89

targeted for deletion in each cell; in multi-batch experiments we have information about which exper-90

imental batch each samples was collected in. Thus, we augment our data by considering data pairs91

(x1, c1), . . . , (xn, cn) where x is the same high-dimensional observation, and c is a label indicating92

the condition or experimental batch that x was collected under.93

Whilst VAEs are theoretically able to model the pairs (xi, ci), it makes sense to build a model that94

explicitly distinguishes between the x and c. The simplest model is the Conditional VAE (CVAE)95

[16]. In this model, a conditional generative model pθ(x|z, c) and a conditional inference network96

qφ(z|x, c) are trained using a modified ELBO. A key observation for our work is that the CVAE has97

many different ways to model the data. For example, it can completely ignore the condition c in pθ98

and qφ, reducing to the original VAE. Assuming that x is not independent of c, this failure mode of99

the CVAE would be apparent on a visualization of the representations. For example, different values100

of c might be visible as separate latent clusters, as shown in Figure 1 [CVAE].101

2.2 Counterfactual inference102

If (xi, ci) represents an RNA transcript and the gene knock-out applied to the cell, a natural question103

to ask is “How would the transcript have differed if a different knock-out c′ had been applied?” In104

general, counterfactual inference attempts to answer questions of the form “How would the data have105

changed if ci had been replaced by c′?” Answering counterfactual questions is a notoriously difficult106

task, because they naturally refer to unobservable data [27]. A principled approach to such questions107

is to adopt the framework of Structural Equation Models [28, 27]. For example, we could assume that108

the data generating process is given as in Figure 2. If this model is correct, counterfactual inference109

in the Pearl framework [27] can then be performed by: 1. abduction: inferring the latent z from x110

and c using p(z|x, c), 2. action: swap c for c′, 3. prediction: use p(x|z, c′) to obtain a predictive111

distribution for the counterfactual. Thus, the counterfactual distribution of xi observed with condition112

ci but predicted for condition c′ is given by113

p (xc=c′ |xi, ci) =

∫
p(z|xi, ci)p(x|z, c′) dz. (1)

In order to make use of this relationship, we must fit a latent variable model [29] such as a CVAE that114

will estimate the encoding distribution p(z|xi, ci) and the generative distribution p(x|z, c′).115

3 Unifying counterfactual inference, data integration and fairness116

We have seen that batch effect correction, data integration and counterfactual inference are central117

problems of interest for the application of latent variable models in computational biology.118
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For counterfactual inference, latent variable models such as the CVAE are increasingly popular119

choices [29]. The failure mode in which different values of c form separate latent clusters, however,120

can be catastrophic for this application. When this happens, simply switching ci to c′ is not correct,121

we have to account for the shift between clusters [9]. Mathematically, the latent space clustering122

phenomenon violates the assumption z ⊥⊥ c that is required by the model in Figure 2. Thus, whilst it123

is not always possible to know when we have found the right causal model [30], we can immediately124

say that a model in which z and c are dependent is not correct.125

Another key challenge for computational biology is data integration. Suppose our data126

(x1, c1), . . . , (xn, cn) in which ci indicates the experimental batch, exhibits batch effects—these are127

changes in the observation xi due to the experimental conditions rather than true changes in the128

underlying biology. One approach to dataset integration is to create a representation z = z(x, c)129

that ‘subtracts’ the batch effects. Downstream tasks can then work with z in place of x without130

learning signal based on misleading batch effects. To know when we have successfully subtracted131

batch effects, we might assume that there are no population-level differences between batches. In132

other words, the marginal distribution of z should be the same for each value of the condition c.133

Thirdly, this same notion of building a representation that cannot be used to recover c has been studied134

widely in recent literature on fairness [31, 18, 32, 33]. In particular, if we wish to make a predictive135

rule based on x that does not discriminate between individuals in different conditions c, we can use136

a fair representation z, one which cannot be used to recover c, as an intermediate feature and train137

our model using z. Such a representation clearly needs to contain information from x, but without138

containing any information that could be used to recover c.139

To connect these three notions of ‘alignment in representation space’ we recall the key components140

of the CVAE—the encoder qφ(z|x, c) and decoder pθ(x|z, c)—and we now drop the θ, φ subscripts141

for conciseness. The marginal distribution of representations within condition c ∈ C is q(z|c) =142

Ep(x|c) [q(z|x, c)], and the marginal distribution of over all conditions not equal to c is denoted143

q(z|¬ c) =

∑
c′∈C,c′ 6=c p(c

′)q(z|c′)∑
c′∈C,c′ 6=c p(c

′)
. (2)

The following Theorem brings together key notions in counterfactual inference, data integration and144

fair representation learning. See Appendix B for the proof.145

Theorem 1. The following are equivalent: 1) z ⊥⊥ c under distribution q, 2) for every c, c′ ∈ C,146

q(z|c) = q(z|c′), 3) for every c ∈ C, q(z|c) = q(z|¬ c), 4) the mutual information I(z, c) = 0 under147

distribution q, 5) z cannot predict c better than random guessing.148

4 Contrastive Mixture of Posteriors149

We have seen that counterfactual inference, data integration and fair representation learning can be150

understood through the unified concept of learning a representation such that the latent variable z is151

independent of the condition c under the distribution q, so that the latent clusters with different values152

of c are perfectly aligned. Building off the CVAE, which rarely achieves this in practice, a number of153

authors have attempted to use a penalty term to reduce the dependence of z upon c during training.154

The most successful methods, such as trVAE [10], are based on a Maximum Mean Discrepancy155

(MMD) [17]. We discuss this and other common methods in Section 5. Whilst trVAE and related156

methods can work well, they require an MMD kernel, not a part of the original model, to be specified157

and its parameters to be carefully tuned. Experimentally, we observe that MMD-based methods158

can often struggle when there is complex global structure in the latent space. We also analyse the159

gradients of MMD penalties, showing that they have several undesirable properties.160

We propose a novel method to ensure the conditions of Theorem 1 do hold in a CVAE model. Our161

penalty is based on posterior distributions obtained from the model encoder itself. That is, we do not162

introduce any external discrepancy measure, rather we propose a penalty term that arises naturally163

from the model itself. Taking our inspiration from contrastive learning [19, 20] and the VaMP prior164

[26], we suggest a novel penalty to enforce equation condition 3) of Theorem 1. This equation165

requires the equality of the marginal distribution q(z|c) and q(z|¬ c) for each c ∈ C. In practice,166

these marginal distributions can be approximated by finite mixtures. To encourage greater overlap167

between q(z|c) and q(z|¬ c), we can encourage points with the condition c to be in areas of high168

density under the representation distribution for other conditions, i.e. areas in which q(z|¬ c) is also169
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high. To encourage this, we can add the penalty term P0(zi, ci) = − log q(zi|¬ ci) to the objective170

for the data pair (xi, ci). When we minimise P0, this brings the representations of samples under171

condition ci towards regions of high density under q(z|¬ c). Since the density q(z|¬ c) is not known172

in closed form, we approximate q(z|¬ c) using other points in the same training batch as (xi, ci).173

Indeed, suppose we have a batch (x1, c1), ..., (xB , cB). We let Ic denote the subset of indices for174

which cj = c and I¬c denote its complement. We use the approximation175

log q(zi|¬ ci) ≈ log

(
1

|I¬ci |
∑
j∈I¬ci

q(zi|xj , cj)
)

(3)

and we will show in Theorem 2, this approximation in fact leads to a valid stochastic bound.176

It may happen that the penalty P0 causes points to become too tightly clustered. Indeed, the177

penalty encourages latent variables to gravitate towards high density regions of q(z|¬ci). Inspired178

by contrastive learning, we include a second term which promotes higher entropy of the marginal,179

thereby avoiding tight clusters of points. Combined with P0, this leads us to a second penalty180

P1(zi, ci) = log q(zi|ci) − log q(zi|¬ ci). Again, the density q(z|c) is not known in closed form,181

but we can approximate it using points within the same training batch in a similar fashion to (3).182

Combining both approximations and taking the mean over the batch gives our Contrastive Mixture of183

Posteriors (CoMP) misalignment penalty184

CoMP penalty =
1

B

B∑
i=1

log

(
1

|Ici |
∑
j∈Ici

q(zi|xj , ci)
)
− log

(
1

|I¬ci |
∑
j∈I¬ci

q(zi|xj , cj)
)
. (4)

where x1:B , c1:B , z1:B ∼
∏B
i=1 p(xi, ci)q(zi|xi, ci) is a random training batch of size B, Ic denotes185

the subset of {1, . . . , B} with condition c and I¬c = {1, . . . , B} \ Ic. Our method therefore utilises186

a training penalty for CVAE-type models that encourages the conditions of Theorem 1 to hold by187

using mixtures of the variational posteriors themselves to approximate q(z|c) and q(z|¬ c). We do188

not introduce an additional kernel or hyperparameter-heavy discrepancy measures.189

As hinted at by the definition of P1, CoMP can be seen as approximating a symmetrised KL-190

divergence between the distributions q(z|c) and q(z|¬ c). In fact, the following theorem shows that191

the CoMP misalignment penalty is a stochastic upper bound on a weighted sum of KL-divergences.192

Theorem 2. The CoMP misalignment penalty satisfies193

E∏B
i=1 p(xi,ci)q(zi|xi,ci)

[
1

B

B∑
i=1

log

(
1

|Ici |
∑
j∈Ici

q(zi|xj , ci)
)
− log

(
1

|I¬ci |
∑
j∈I¬ci

q(zi|xj , cj)
)]

≥
∑
c∈C

p(c) KL [q(z|c)||q(z|¬ c)]

and the bound becomes tight as B →∞.194

The proof is presented in Appendix B. Our result reveals that our new penalty directly enforces195

condition 3) of Theorem 1 by reducing the KL divergence between each pair q(z|c), q(z|¬ c) weighted196

by p(c). As with standard contrastive learning, our method benefits from larger batch sizes. We197

add the CoMP misalignment penalty to the familiar β-VAE objective to give our complete training198

objective for a batch of size B as199

LCoMP
B =

1

B

B∑
i=1

[
log p(xi|zi, ci) + β log

p(zi)

q(zi|xi, ci)
− γ log

(
1
|Ic|
∑
j∈Ic q(zi|xj , ci)

1
|I¬c|

∑
j∈I¬c q(zi|xj , cj)

)]
(5)

with one new hyperparameter γ that controls the strength of the regularisation we apply to enforce200

the requirements z ⊥⊥ c. Theorem 2 shows that, if LβB is the standard β-VAE objective, then we are201

maximising E
[
LCoMP
B

]
≤ E

[
LβB
]
− γ

∑
c∈C p(c) KL [q(z|c)||q(z|¬ c)] .202

4.1 Analysing CoMP gradients203

Before presenting empirical results on the performance of CoMP, we attempt to understand how it204

differs from existing penalties in the literature. Specifically, we compare CoMP with a Gaussian205
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posterior family with MMD using a Radial Basis Kernel [34]. In Appendix C, we show that both206

methods can be interpreted as applying a penalty to each element zi, ci of the training batch. We207

show further that, under certain conditions, the gradient of the MMD penalty for zi, ci takes the form208

∇ziPMMD(zi, ci) =
2

|Ici |
2

∑
j∈Ici

e−‖zi−zj‖
2

(zj−zi)−
4

|I¬ci | |Ici |
∑
j∈I¬ci

e−‖zi−zj‖
2

(zj−zi), (6)

whilst the CoMP penalty gradient takes the form209

∇ziPCoMP(zi, ci) =
2
∑
j∈Ici

e−‖zi−µzj
|2(µzj − zi)

B
∑
j∈Ici

e−‖zi−µzj
|2 −

2
∑
j∈I¬ci

e−‖zi−µzj
‖2(µzj − zi)

B
∑
j∈I¬ci

e−‖zi−µzj
‖2 (7)

where µzj is the variational mean for zj . One important feature of the MMD gradients is that, if210

‖zi − zj‖2 is large for all j 6= i, for instance when the point zi is part of an isolated cluster, then211

the gradient to update the representation zi will be small. So if zi is already very isolated from the212

distribution q(z|¬ ci), then the gradients bringing it closer to points with condition ¬ ci will be small.213

In comparison to the MMD gradient, it can be seen that gradients for CoMP are self-normalised. This214

means that the gradient through zi will be large, even when zi is very far away from any points with215

condition ¬ ci. This, in turn, suggests that that CoMP is likely to be preferable to MMD when we have216

a number of isolated clusters or interesting global structure in latent space, something which often217

occurs with biological data. The CoMP approach also bears a relationship with nearest-neighbour218

approaches [35]. Indeed, for a Gaussian posterior as σ → 0, the ¬ ci term of the gradient places all219

its weight on the nearest element of the batch under condition ¬ ci.220

5 Related Work221

The problem of batch correction in data integration has been addressed using linear [12, 13] and222

nonlinear methods [14, 15] that perform transformations of the original feature space. In both cases,223

the goal is to transform the feature space so that information related to the scientific question of224

interest is retained while dependence on the batch (or nuisance covariate) is reduced. Methods based225

on representation learning learn a low-dimensional representation, z = q(x), which is independent226

of nuisance factors while also being a faithful representation of the original data [18, 5, 36, 10, 37].227

Of these, the work that is most similar to ours are the VFAE [18], in which the authors introduce an228

MMD [17] penalty to encourage the marginal distributions of z under different values of c to be close,229

and the trVAE [10], where the MMD penalty is applied to the output of the first layer of the decoder,230

rather than to z directly. Representation learning algorithms for counterfactual inference have been231

shown to benefit from a penalty enforcing distributional similarity between the representations of the232

treated and untreated samples [12]. Elsewhere, authors have applied the variational autoencoder to233

inference on causal graphs [38, 39, 40].234

6 Experiments235

We perform experiments on three datasets; 1) Tumour / Cell Line: bulk expression profiles of236

tumours and cancer cell-lines across 39 different cancer types; 2) Single-cell PBMCs: single-cell237

gene expression (scRNA-seq) profiles of interferon (IFN)-β stimulated and untreated peripheral blood238

mononuclear cells (PBMCs) [41]; 3) UCI Adult Income: personal information relating to education,239

marriage status, ethnicity, self-reported gender of census participants and a binary high / low income240

label ($50,000 threshold) [22]. All experiments used a 90/10 training/validation split.241

The two broad objectives across our experiments are 1) to demonstrate the extent to which the two242

random variables zi and ci are independent, and 2) to quantify useful information retained in zi. To243

benchmark CoMP on the first objective, we use the following pair of k nearest-neighbor metrics:244

kBETk,α [42], the metric used to evaluate batch correction methods in biology, and a local Silhouette245

Coefficient [43] sk,c. In both cases a low value close to zero would indicate good local mixing of246

sample representations. As for the second objective, if we assume the existence of an additional247

discrete label di that represents information one wishes to preserve – in the Tumour / Cell Line248

case, di is the cancer type, while for the PBMC experiment, it refers to cell type – then we calculate249

kBET and s separately for every fixed-di subpopulation and take the mean. We refer to these as the250

mean Silhouette Coefficient s̃k,c and the mean kBET metric m-kBET respectively. Full details of the251

datasets and metrics are given in Appendix D.252
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Table 1: Tumour / Cell Line experiment results, with k = 100, c = Cell Line, and α = 0.01. sk,c
and s̃k,c are the two Silhouette Coefficient variants (see Section 6). The top scores are in bold.

Accuracy sk,c kBETk,α s̃k,c m-kBETk,α
VAE 0.209 0.658 0.974 0.803 0.581

CVAE 0.328 0.554 0.931 0.684 0.571
VFAE 0.585 0.168 0.258 0.198 0.188
trVAE 0.585 0.096 0.163 0.138 0.123

Celligner 0.578 0.082 0.525 0.568 0.226
CoMP (ours) 0.579 0.023 0.160 0.094 0.101

Figure 3: 2D UMAP projection of posterior means of zi from Tumour / Cell Line data. Tumours
(blue) and cell lines (orange).

6.1 Alignment of tumour and cell-line samples253

Despite their widespread use in pre-clinical cancer studies, cancer cell-lines are known to have254

significantly different gene expression profiles compared to their corresponding tumour samples.255

Here we evaluate the ability of CoMP to factorise out the tumour / cell line condition from its latent256

representations. This can be seen as both a dataset integration and batch effect correction task. In257

addition to the set of k nearest neighbor-based mixing evaluations, we train a Random Forest model258

on the representations of the tumour samples and their cancer-type labels and assess the prediction259

accuracy on held-out cell lines. To match the results from [21], the evaluations are performed on the260

2D UMAP projections, The results are presented in Table 1.261

As expected, both the VAE and CVAE baselines fail at the mixing task; the three explicitly penalised262

VAE models and, to a lesser extent, the Cellinger method have good mixing performances, with263

CoMP outperforming the benchmark models by a significant margin on the silhouette coefficient264

and kBET metric, while successfully maintaining a high accuracy in the cancer-type prediction265

task. We also see from Figure 3 that CoMP representations have the fewest instances of isolated266

tumour-only clusters. Finally, from our evaluation on the s̃ and m-kBET metrics, we can deduce that267

the occurrence of cell lines of one cancer type erroneously clustering around tumours of a different268

type is less frequent for CoMP compared to the other models. In Appendix D we qualitatively validate269

this for several example clusters.270

6.2 Interventions271

Obtaining molecular measurements from biological tissues typically requires destructive sampling.272

For example, to obtain scRNA-seq data, each cell is lysed so that the RNA molecules contained273

within it can be extracted and sequenced. This process destroys each cell, meaning that we are274

unable to study the gene expression profile of the same cell over time or under multiple experimental275

conditions. As we discussed in Section 2.2, counterfactual inference can be used to predict how the276

molecular status of a destroyed biological sample would have differed if it were measured under277

different experimental conditions, such as applications of different drugs.278

To assess CoMP’s utility in counterfactual inference, we trained it on scRNA-seq data from PBMCs279

that were either stimulated with IFN-β or left untreated (control) [41]. It is clear from Figure 4 that280

IFN-β stimulation causes clear shifts in the latent space between stimulated and control cells from the281

same cell type. Noticeably, the CD14 and CD16 monocyte and dendritic cell (DC) populations see282

greater shifts in their gene expression after stimulation. CVAE fails to align these particular cell types283

in the latent space, while trVAE, VFAE and CoMP perform better. However, stimulated and control284
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Figure 4: 2D UMAP projections of posterior means of zi derived from stimulated and control PBMC
scRNA-seq data. Top row: colours indicate immune cell types, bottom row: colours indicate condition
(IFN-β stimulation or control).

Figure 5: The difference in gene expression values for the top 50 differentially expressed genes
(up-regulated: red, down-regulated: blue) between IFN-β stimulated cells and counterfactually
stimulated control cells for CD14 monocytes, dendritic cells (DC) and natural killer (NK) cells. See
Appendix D for further details.

cells are better mixed in the latent space derived from CoMP than those from the other models (see285

metrics presented in Appendix D).286

Next we perform a counterfactual prediction task under a IFN-β control-to-stimulation variable287

swap, i.e. the gene expression profiles for control cells were reconstructed through the decoder with288

the condition, c→ stimulated. This means we utilise equation (1) with our encoder qφ(z|x, c) and289

decoder pθ(x|z, c′) in place of p(z|x, c) and p(x|z, c′). The degree to which the models respect the290

requirement z ⊥⊥ c will influence the quality of predictions. Figure 5 shows how the profiles of291

(actual) stimulated cells differ from the counterfactual predictions for a selection of cell types (see292

Appendix D for the complete set of results). We see that baseline models tend to systematically293

underestimate the expression of genes up-regulated by stimulation and overestimate those down-294

regulated. CoMP outperforms all other models by accurately predicting the expression alterations295

brought about by stimulation.296

6.3 Fair Classification297

The goal for this fair classification task is to learn a representation on the Adult Income dataset that is298

not predictive of an individual’s gender whilst still being predictive of their income. We compute a299

baseline by predicting gender and income labels directly from the input data and compare our method300

to the published results for the VFAE [18] and the trVAE. We also include results for a standard301

VAE and CVAE. Unlike in [18], where the representations z are sampled from the posterior before302

classification, our experiments used the posterior means to avoid the noise from sampling acting to303

mask the inclusion of predictive information about gender in the encodings.304

CoMP achieves a gender accuracy that is close to random (67.5%), tying with the VFAE results from305

[18] whilst also remaining competitive with the other methods on income accuracy (Table 2). CoMP306
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Table 2: UCI Adult Income experiment results with k = 1000, c = Male for sk,c, and k = 100,
α = 0.01 for kBETk,α. A lower gender prediction accuracy is better; 0.675 is the lowest achievable.

Gender Acc. Income Acc. sk,c kBETk,α
Original data 0.796 0.849 0.067 0.786

VAE 0.764 0.812 0.054 0.748
CVAE 0.778 0.819 0.054 0.724

VFAE (sampled) [18] 0.680 0.815 - -
VFAE (mean) 0.789 0.805 0.046 0.571

trVAE 0.698 0.808 0.066 0.731
CoMP (ours) 0.679 0.805 0.011 0.451

Figure 6: UMAP projections for the UCI Adult Income dataset, coloured by gender. Showing the
original data and latents for trVAE, VFAE and CoMP. Male (blue) and female (yellow).

also outperforms all methods on the nearest neighbour and silhouette metrics (Table 2). Latent space307

mixing between males and females can be seen qualitatively in the 2D UMAP projection (Figure 6).308

7 Conclusion309

Limitations We presented Contrastive Mixture of Posteriors (CoMP) as an effective means to310

perform batch correction, data integration, counterfactual inference and fair representation learning311

in a CVAE framework. Whilst CoMP covers the majority of common use-cases for these tasks, there312

are several limitations that are avenues of future research. For example, in scRNA-seq analysis, there313

is often the need to integrate more than two datasets together, or to adjust for continuous condition314

variables. Mathematically, CoMP is applicable to any number of discrete conditions, and it would be315

interesting to apply it to a setting with > 2 conditions. Extensions of CoMP could tackle the case316

of a continuous condition variable. Additionally, CoMP requires the condition variable c to be fully317

observed: future work might attempt to generalise to the partially observed case.318

Summary We identified marginal independence between the representation z and condition c as319

the mathematical thread linking data integration, counterfactual inference and fairness. We proposed320

CoMP, a novel method to enforce this independence requirement in practice. We saw that CoMP321

has several attractive theoretic properties. First, CoMP only uses the variational posteriors, requiring322

no additional discrepancy measures such as MMD. Second, we proved that the CoMP penalty can323

be interpreted as an upper-bound on a weighted sum of KL divergences, connecting it to a well-324

founded divergence measure. Third, we demonstrated that, unlike MMD, CoMP gradients have a325

self-normalising property, allowing one to obtain strong gradients for distant points in a latent space326

with complex global structure. Empirically, we demonstrated CoMP’s performance when applied to327

two biological and one fair representation learning dataset. These biological datasets are of critical328

importance in drug discovery, for example matching cell-lines to tumours for effective pre-clinical329

assay development of anti-cancer compounds. Overall, CoMP has the best in class performance on330

all tasks across a range of metrics that measure either latent space mixing or fairness.331
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