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Abstract
Diffusion models have demonstrated remarkable
performance in generating unimodal data across
various tasks, including image, video, and text
generation. On the contrary, the joint generation
of multimodal data through diffusion models is
still in the early stages of exploration. Existing
approaches heavily rely on external preprocess-
ing protocols, such as tokenizers and variational
autoencoders, to harmonize varied data represen-
tations into a unified, unimodal format. This
process heavily demands the high accuracy of
encoders and decoders, which can be problem-
atic for applications with limited data. To lift
this restriction, we propose a novel framework
for building multimodal diffusion models on arbi-
trary state spaces, enabling native generation of
coupled data across different modalities. By in-
troducing an innovative decoupled noise schedule
for each modality, we enable both unconditional
and modality-conditioned generation within a sin-
gle model simultaneously. We empirically vali-
date our approach for text-image generation and
mixed-type tabular data synthesis, demonstrating
that it achieves competitive performance.

1. Introduction
Recent years have witnessed the tremendous success of
diffusion generative models in various applications. The
seminal works of continuous diffusion models on Euclidean
spaces (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho
et al., 2020) have led to state-of-the-art methods for tasks
such as image generation (Dhariwal & Nichol, 2021; Bao
et al., 2023a; Karras et al., 2022; 2024b), video generation
(Ho et al., 2022; Jin et al., 2025), time series forecasting
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(Chen et al., 2024b; Rojas et al., 2025) and in domains
such as robotics (Chi et al., 2023) and genomics (Luo et al.,
2024; Zhu et al., 2025a). Pioneering works have shown
that diffusion models can also be extended to curved spaces
(De Bortoli et al., 2022; Huang et al., 2022; Cheng et al.,
2025; Chen & Lipman, 2024; Zhu et al., 2025b), enabling
a high-fidelity generation of structured data on manifolds,
such as material configurations (Sriram et al., 2024) and
protein backbones (Watson et al., 2023; Yim et al., 2023).
Recently, discrete diffusion models have emerged as the
cornerstone for modeling categorical data with inherent
discrete structures (Campbell et al., 2022; Lou et al., 2024;
Campbell et al., 2024; Gat et al., 2024). Discrete diffusion
models have imposed great impacts on protein sciences
(Wang et al., 2024b), graph generation (Xu et al., 2024; Li
et al., 2025), and text generation (Nie et al., 2025a;b). In
general, diffusion models have shown top performance in
most scenarios with unimodal data.

Generative models also demonstrated successes in multi-
modal data lately. For example, conditional diffusion mod-
els showed remarkable capabilities in tasks such as text-to-
image generation by accurately synthesizing pictures follow-
ing given instruction prompts (Ramesh et al., 2022; Chen
et al., 2023; Esser et al., 2024). It’s worth noting that such
models still generate single-modality outputs (such as im-
ages). Therefore, to jointly generate multimodal data, lever-
aging only single-task-performing conditional models is
extremely computationally inefficient, as it requires combin-
ing multiple independently trained models by sequentially
applying them.

An alternative approach is to use a single multi-modal model
that captures the joint distribution of multiple modalities.
Such an approach often leads to strong performances as it al-
lows information to mix across modalities (Li et al., 2024a;
Meta, 2024). Existing approaches of this type are mainly
based on autoregressive models (AR), such as Chameleon
(Meta, 2024) and Unified-IO (Lu et al., 2024), where data
of different modalities are represented uniformly as tokens
and generated autoregressively from left to right. Apart
from these, attempts have also been made to realize this
idea using diffusion/flow-based methods, such as UniDif-
fuser (Bao et al., 2023b), MM-Diffusion (Ruan et al., 2023),
AVDiT (Kim et al., 2024), UniDisc (Swerdlow et al., 2025),
OmniFlow (Li et al., 2024a), etc. These methods generate
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Figure 1. By injecting noise into different modalities in a decoupled fashion, we enable the unconditional and modality-conditioned
generation in a single model. (a) Joint generation of image and text. (b) Image generation given text captions as conditions. (c) Text
generation given images as conditions.

multimodal data simultaneously through iterative denoising
of a randomly sampled initial noise.

A commonality among the aforementioned methods de-
signed for joint multimodal generation is that they typically
rely heavily on preprocessing techniques to harmonize
the varied data representations into a unified format,
thereby creating a single modality. One approach (taken
by Chameleon (Meta, 2024), UniDisc (Swerdlow et al.,
2025), etc) is to cast multimodal inputs all into discrete to-
kens with modality-dependent tokenizers built with discrete
or vector-quantized variational encoders (VQVAE) (Van
Den Oord et al., 2017; Esser et al., 2021). An alternative
route (considered by UniDiffuser (Bao et al., 2023b), Omni-
Flow (Li et al., 2024a), etc) is to preprocess the multimodal
data by embedding them into continuous-valued latent vec-
tors with encoders trained with variational encoders (VAE)
(Kingma, 2013) or representation alignment (e.g., CLIP
(Radford et al., 2021)).

For these approaches, regardless of whether discrete tokens
or continuous latents are used, generation is performed in
a unimodal space, and the original data modality must be
recovered through decoding. Therefore, these pipelines may
suffer from generation artifacts due to the limited accuracy
of the decoders (Hoogeboom et al., 2024). Additionally, the
requirement for high-performance encoder-decoder pairs
can be problematic to satisfy for applications that lack abun-
dant high-quality data (Zhang et al., 2023). Due to the
requirement for task-specific algorithm designs, these meth-
ods also cannot be conveniently extended to generate data
composed of arbitrary modalities. Therefore, a natural ques-
tion to ask is the following:

Can we design a principled framework to enable joint
modeling of multi-modal data in their native spaces without

a unified representation?

Diffusion models serve as a powerful backbone for build-

ing such a framework. Theorists have shown that diffusion
models can be extended to a more general idea called de-
noising Markov models (Benton et al., 2024; Ren et al.,
2025b), providing a solid theoretical foundation for a multi-
modal extension. In addition to this, existing works such as
MultiFlow (Campbell et al., 2024) and Generator Matching
(Holderrieth et al., 2024) have verified the effectiveness of
multimodal models in native state spaces in protein de-
sign. Motivated by these successes, we propose a general
framework for building multimodal diffusion models on ar-
bitrary state spaces without the need for data format unifiers.
Our contributions are three-fold:

1. We propose a novel framework for building multimodal
diffusion models by combining the native diffusion
models designed for each data modality, and derive a
unified learning objective. Under our design, learning
multimodal diffusion models is as straightforward as
performing a joint optimization on a sum of unimodal
learning losses, despite requiring a non-trivial proof.

2. We introduce decoupled noise schedules for each data
modality and theoretically justify the validity of score
learning under the presence of multiple time variables.
We demonstrate that this design enables us to simul-
taneously handle both unconditional and conditional
multimodal generation in one single model. We also
propose a novel guidance mechanism effective in both
use cases for enhancing generation quality.

3. We experiment with text-image generation and mixed-
type tabular data synthesis, achieving competitive per-
formance on both tasks with more parameter-efficient
models, without relying on pre-trained models or pow-
erful extra encoders. More importantly, we devise a set
of training strategies for the task of text-image, which
is crucial for achieving success.
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Figure 2. Network backbone for text-image generation, motivated by MMDiT (Esser et al., 2024) and DiT (Peebles & Xie, 2023).

2. Preliminaries
In this section, we review basic concepts and formulations
of common diffusion models in different state spaces.

2.1. Continuous Space Diffusion Models

For continuous diffusion models (Song et al., 2020; Ho et al.,
2020), one considers a continuous time stochastic differen-
tial equation (SDE) {Xt}0≤t≤T on the Euclidean space Rd

as the forward process. The process is characterized by the
following dynamic,

dXt = f(Xt, t)dt+ g(t)dWt,

where f : Rd × R→ Rd is the drift and g : R→ R is the
diffusion coefficient. We denote pt = Law(Xt). f and g
are often chosen that pT is an easy-to-sample distribution. A
popular pick is the time re-parametrized Ornstein Uhlenbeck
process, which corresponds to the selection of f(Xt, t) =
− 1

2βtXt and g(t) =
√
βt, for some positive noise schedule

βt. In such case, pT ≈ N (0, I) for reasonably large T . It
can be shown that the backward process is another SDE
with a different drift (Anderson, 1982),

dXt = f(Xt, t)dt− g2(t)∇x log pt(Xt)dt+ g(t)dWt

The common practice in training is to define the score vector
s(Xt, t) = ∇x log pt(Xt) and we approximate it with a
neural network sθ, estimated by minimizing a variant of the
following score matching loss (Vincent, 2011),

min
θ

∫ T

0

EXt∼pt

[∥∥sθ(Xt, t)− s(Xt, t)
∥∥2]dt. (1)

2.2. Discrete Space Diffusion Models

For discrete diffusion models (Campbell et al., 2022; Lou
et al., 2024; Ou et al., 2025; Sahoo et al., 2024; Shi et al.,

2024), one considers a continuous time markov chain
(CTMC) {Xt}0≤t≤T on a finite state space X as the for-
ward process. The distribution of Xt is represented by a
vector pt in the probability simplex on R|X|. The dynamic
of Xt can be characterized by the following equation,

dpt
dt

= Qtpt, where Qt = (Qt(x, y))x,y∈X

is a transition matrix satisfying that for any x ∈ X,
Qt(x, x) = −

∑
y ̸=x Qt(y, x), and for any x ̸= y ∈ X,

Qt(x, y) ≥ 0. We will also denote the dynamic of Xt using
the following notation,

Xt ∼ CTMC(Qt)

Qt is often chosen such that pT is a simple distribution,
such as uniform on X or Dirac on a masked state. Common
choices include uniform or masked transition matrix (Lou
et al., 2024). It is known that the backward process is an-
other process of the same form but with a different transition
rate matrix (Kelly, 2011), which can be described as

Xt ∼ CTMC(Qt)

where the rate matrix Qt = (Qt(x, y))x,y∈X is defined as,

Qt(y, x) =

{
pT−t(y)
pT−t(x)

QT−t(x, y), x ̸= y ∈ X,
−
∑

y′ ̸=x Qt(y
′, x), x = y ∈ X.

In discrete diffusion model training, one usually defines
the concrete score vector s(Xt, t) =

( pt(y)
pt(Xt)

)
y∈X, and we

approximate it with a neural network sθ(Xt, t), estimated
by minimizing the following a variant of the following score
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entropy loss (Benton et al., 2024; Lou et al., 2024),

min
θ

∫ T

0
E

Xt∼pt

[ ∑
y ̸=Xt

Qt(Xt, y)
(
st(Xt, t)y log

s(Xt,t)y
sθ(Xt,t)y

− s(Xt, t)y + sθ(Xt, t)y

)]
dt. (2)

2.3. Riemannian Diffusion Models

For Riemannian diffusion models, e.g. (De Bortoli et al.,
2022; Huang et al., 2022), one considers a continuous time
SDE {Xt}0≤t≤T on the manifoldM as the forward process,
characterized by the following dynamic,

dXt = f(Xt, t)dt+ dWMt ,

where f : M × R → TxM is the drift, and dWMt is
the manifold Brownian motion. For a compact manifold
M, one can pick f = 0, and the corresponding pT ≈
Uniform(M) is the uniform distribution on the manifold
for large T . It’s proved that the backward process is another
SDE on the manifold (De Bortoli et al., 2022),

dXt = f(Xt, t)dt−∇ log pt(Xt)dt+ dWMt ,

where ∇ is the Riemannian gradient onM. For Rieman-
nian diffusion model training, similar to the continuous case,
one defines the score s(Xt, t) = ∇ log pt(Xt) and approxi-
mates it with a neural network sθ, which typically requires
special design to meet the requirement sθ(Xt, t) ∈ TXtM.
Learning is performed through a variant of Riemannian
score matching (De Bortoli et al., 2022; Huang et al., 2022),

min
θ

∫ T

0

EXt∼pt

[∥∥sθ(Xt, t)− s(Xt, t)
∥∥2
M

]
dt. (3)

3. Methodology
In this section, we present the framework for constructing
multimodal diffusion models on general state spaces in their
native forms. We first discuss a unified perspective on dif-
fusion models and then present a learning algorithm for
diffusion generative modeling of multiple data modalities,
where each modality has an independent time variable. Such
a framework allows any-to-any modality generation by
one single model, which simultaneously includes the joint
unconditional generation of all modalities and the condi-
tional generation of a subset of modalities given the rest.
Finally, we discuss the Continuous-Discrete Multimodal
Diffusion as an application of this framework to illustrate
its importance and flexibility.

3.1. Unified Perspective on Unimodal Diffusion Models

While common unimodal diffusion models (continuous, dis-
crete, Riemannian, etc) have distinct forward/backward pro-
cesses, learning objectives, and score parameterizations,

they are essentially the realization of denoising Markov
models (Benton et al., 2024; Ren et al., 2025b) in different
situations. At a high level, diffusion models consist of a
Markovian forward process that gradually injects ‘noise’ to
transform the target data distribution into a simple distri-
bution, and a backward generative process that inverts it
using information learned from the marginals of the forward
process. This abstract view is formally summarized below.

Consider a Markov process {Xt}0≤t≤T with X0 ∼ pdata,
defined on a state space X . A Markov process can be con-
veniently characterized using the notion of infinitesimal
generators. Since Xt is not necessarily time-homogeneous,
we instead consider the augmented process X̄ = (Xt, t)
defined on the augmented space X∗ = X × [0,+∞). Under
mild regularity assumptions, X̄ is a Feller process, and its
generator L can be defined as,

Lf(x) = lim
t→0

E[f(Xt)|X0 = x]− f(x)

t
,

and f : X∗ → R is a class of test function. We can under-
stand the generator through its decomposition L = ∂t + L̂,
where L̂ is an operator that acts on functions defined on the
original space X . We can also unify the characterization
of the evolution of marginals p(·, t) = Law(Xt) as well as
the score learning objectives in terms of L. Under weak
technical assumptions, p(·, t) satisfies the following general
form of Fokker-Planck equation,

∂tp(x, t) = L̂∗p(x, t), p(x, 0) = pdata(x).

where L̂∗ is the adjoint operator of L̂. Moreover, we can
define a generalized explicit score matching objective (Lyu,
2012; Benton et al., 2024),

JESM(β) = E
t,pt

[
Φ

(
p

β

)
(Xt, t)

]
(4)

where Φ(f) = f−1Lf − L log f , and β : X × [0,+∞)→
R+ . Note that this is an extension of the common score
matching objectives, and we could interpret JESM as a loss
function that compares the ‘gradient log’ of p(x, t) to that
of β(x, t), through which we learn the information of the
forward marginal pt. For example, in continuous diffusion
with g(t) = 1, L = ∂t+f ·∇+ 1

2∆, we recover the explicit
score matching objective on Euclidean space (Hyvärinen
& Dayan, 2005), with Φ(p/β) = 1

2∥∇ log p − ∇ log β∥2.
Note that the explicit score matching objectives are not
tractable for training purposes; we will later introduce their
equivalent, trainable variants.

3.2. Versatile Multimodal Diffusion Models with
Decoupled Times

Building on this unified description of unimodal diffusion
models, we extend the denoising Markov model framework
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(a) Image conditioned on text. Sample
generated using the caption: “The image
features a sailboat sailing on a large body
of water, with a city skyline in the back-
ground.”

(b) Text conditioned on Image. We gen-
erate the following caption: “The image
features a cityscape with a large build-
ing, a bridge, and a city skyline in the
background. The city is situated near the
water. ”

(c) Joint generation of text and image.
The caption corresponding to this image
was: “The image features a large white
boat with a blue roof, which allows peo-
ple to look out. The boat is traveling
through a body of water.”

Figure 3. Visualization of samples generated by our approach. Captions are truncated for brevity.

to a multimodal scenario. This enables us to perform genera-
tive modeling of data distributions consisting of mixed-type
data without requiring complicated preprocessing pipelines.

We begin by formally defining the forward process in terms
of generators of Markov processes. Assume that we have
a data distribution pdata defined on the product state spaces
X 1 × · · · × Xn. For 1 ≤ i ≤ n, we have a Markov process
{Xi

ti}1≤ti≤T on X i, which is regular enough with a unique,
easy-to-sample stationary distribution πi. We pick T so that
Law(Xi

T ) ≈ πi for each 1 ≤ i ≤ n. Now we can introduce
the following joint forward process,

Xt = (X1
t1 , . . . , X

i
ti , . . . , X

n
tn), 0 ≤ t1, . . . , tn ≤ T

(X1
0 , . . . , X

i
0, . . . , X

n
0 ) ∼ pdata(x) (5)

where t = (t1, . . . , tn), x = (x1, . . . , xn). We consider
the i-th augmented process Xi = (Xi

ti , ti) ∈ X
i
∗ = X i ×

[0,+∞) and we denote its generator as LXi . We slightly
abuse the notation and define the application of LXi to a
multivariable test function as the following,

LXif(x) = lim
ti→0

E[f(x1, . . .Xi
ti , . . ., x

n)|Xi
0 = xi]− f(x)

ti

We assume that Xi
ti are independent Markov processes

when conditioned on initial conditions. We want to em-
phasize that the design of this forward process (5) is not
only for injecting probabilistically independent ‘noises’ into
each modality. More importantly, it allows each modality to
be noised in an asynchronous way.

To fully characterize and understand this forward process
as a whole, we need to learn the full joint marginal of Xt,
which we denote as p(x, t) and should be understood as
the joint distribution of X1, . . . , Xn at time t1, . . . , tn. To
visualize this idea, we demonstrate the forward process with
two independent time variables in Fig. 1.

To ‘invert’ this forward process for generative modeling pur-
poses, we will need to learn information from the forward

process, similar to the case of unimodal diffusion models
where one performs score matching. Extending the frame-
work of (Benton et al., 2024), we introduce the following
generalized explicit score matching loss (GESM) for learn-
ing the full marginal p(x, t).

IGESM =

E
t,xt∼p(·,t)

[
n∑

i=0

LXi(p/βθ)(xt, t)

(p/βθ)(xt, t)
− LXi log(p/βθ)(xt, t)

]

here βθ : X 1
∗ × · · · × Xn

∗ → R+ is our parameterized
unnormalized distribution. We have the following important
properties that characterize the optimizer of IGESM

Theorem 1. IGESM ≥ 0, with equality reached when
βθ(x, t) ∝ p(x, t).

Thm. 1 states that the minimizer of IGESM is p(x, t) up to
a multiplicative constant. In practice, we often do not di-
rectly model βθ, but instead parameterize its score functions,
which are invariant to multiplicative constants. For example,
in continuous diffusion, one often parameterizes ∇ log βθ.
This makes the optimization of IGESM a well-defined prob-
lem with a unique minimizer in terms of score learning. In
practice, one can’t evaluate IGESM as it’s intractable due to
the true marginals p being unavailable a priori. Luckily, one
can efficiently compute the following denoising and implicit
variants of IGESM for learning purposes.

Theorem 2. IGESM, IGDSM and IGISM are equivalent up
to constants, where

IGDSM =

E
t,p0,
pt|0

[
n∑

i=1

LXi(pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LXi log(pt|0/βθ)(xt, t)

]

IGISM = E
t,pt

[
n∑

i=1

L∗Xiβθ(xt, t)

βθ(xt, t)
− L∗Xi log(βθ)(xt, t)

]
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3.3. Continuous-Discrete Multimodal Diffusion

We consider a distribution pdata(x, y) where x ∈ Rd, y ∈ X,
where X is a finite space. Important applications include
text-image joint generation, mixed-type tabular data synthe-
sis, etc. In this case, the natural choices on each state space
would be continuous diffusion on Rd and discrete diffusion
on X. This results in the following forward process,{

dXt = f(Xt, t)dt+ g(t)dBt

Ys ∼ CTMC(Qs), (X0, Y0) ∼ pdata(x, y)
(6)

Let’s denote the joint marginal of (Xt, Ys) as pt,s(Xt, Ys).
with these choices of Markov processes, LX = ∂t+ f ·∇+
1
2g

2(t)∆, and LY = ∂s +Qs. Therefore, we can compute
the generalized denoising score matching objective as,
Proposition 1. For forward process (6), IGDSM is equiva-
lent to the following objective,

E
t,s,x0,y0∼p0
xt,ys∼pt,s|0

[1
2
g2(t)∥sXθ −∇ log pt(xt|x0)∥2+

∑
y ̸=ys

Qs(ys, y)
(
(sYθ )y −

ps(y|y0)
ps(ys|y0)

log(sYθ )y

)]
where sXθ ,sYθ is the learned continuous/discrete score.

Importantly, Prop. 1 shows an amazing result that score
functions of multimodal joint marginal p(·, ·, t, s) can
be learned through score matching with unimodal condi-
tional score for each modality. This is a non-trivial result
as IGDSM suggests that, to perform multimodal generation,
we need to match the score network with conditional scores
of the joint distribution such as ∇ log pt,s(xt, ys|x0, y0) in-
stead of ∇ log pt(xt|x0). However, thanks to Bayes’ rule
and the design of independent noise injection per modal-
ity, the two conditional scores are identical. Thus, while
learning multimodal diffusion models may seem as simple
as jointly optimizing a sum of unimodal diffusion model
training objectives, the theoretical support for such a naive
approach is grounded much deeper.

With the learned score functions, we can ‘invert’ the forward
process for generative purposes, which is stated in Prop. 2.
Proposition 2. The following process (Xt, Ys) has
marginal distribution equals to p(x, y, T − t, T − s),
dXt = −f(Xt, T − t) + g2(T − t)∇ log←−p t,s(Xt, Ys)dt

+ g(T − t)dBt

Ys ∼ CTMC
(←−
Q(Xt, t, s)

)
, (X0, Y0) ∼ p(x, y, T, T )

where←−p t,s = pT−t,T−s,
←−
Q(Xt, t, s) is a rate matrix with

y′, y entry being
←−p t,s(Xt,y

′)
←−p t,s(Xt,y)

(QT−s)yy′ when y′ ̸= y.

We note that this ‘backward process’ is not the time reversal
of the forward process in a strict sense, as it involves intro-
ducing multiple time variables into the system. However,
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Figure 4. Performance of noisy guidance on MS-COCO FID-10K.
We note that using partially noised conditions results in a better
performance. A guidance interval of t ∈ [0.3, 0.8] was used.
this enables us to design versatile conditional and uncondi-
tional generative sampling algorithms by choosing different
value combinations of times (t, s). We defer the detailed
discussion of design choices and sampling algorithms for
continuous-discrete multimodal diffusion to App. B.

Multimodal unconditional generation. To jointly gener-
ate clean data distributed as pdata(x, y), we introduce a sim-
ulation time variable u ∈ [0, T ], and pick a time parameteri-
zation t = α1(u), s = α2(u) such as αi : [0, T ]→ [0, T ] is
continuous, non-decreasing with αi(0) = 0, αi(T ) = T for
i = 1, 2. With this time-reparameterization for both time
variables, we make the backward process a valid, ready-to-
simulate process. This enables us to start from pure noise
and generate samples from the data distribution uncondi-
tionally for both modalities. We can also choose a singular
time re-parameterization so that the simulation amounts to
a 2-stage approach for multimodal generation, where we
first generate one modality and sample the rest conditionally
based on the generated sample.

Unimodal conditional generation. This framework
with decoupled time also enables conditional generation
of modalties by simulating the associated backward process.
We have the following simple but important observations,

• Given a partially noisy text Ys and its noise level s, sim-
ulating the X backward dynamics generates a sample
XT ∼ pdata(x|Ys, s)

• Given a partially noisy image Xt and its noise level
t, simulating the Y backward dynamics generates a
sample YT ∼ pdata(y|Xt, t).

Note that the choices of t or s in the conditioning are not
restricted. When picking t or s as T , this is equivalent to
single-modality unconditional generation, as XT or YT are
pure noise. When picking t or s as 0, this is equivalent
to conditional generation, as X0 or Y0 are clean data sam-
ples. More interestingly, when picking 0 < s, t < T as
conditions, we generate samples based on partially noised
conditions. This gives rise to the following new guidance
mechanism for enhancing generation quality.
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Table 1. Results on the text to image conditional generation on MS-COCO. We mark the extra encoders leveraged by each model with
the corresponding sizes and types. SR: super resolution, TE: text encoder, VAE: variational autoencoder, VE: visual encoder, VQ-GAN:
Vector Quantized GAN, VQ-VAE: vector-quantized variational autoencoder.

Model FID Number of Images #Params Extra Encoders

Models for Text-to-Image generation only

DALL-E 2 (Ramesh et al., 2022) 10.39 650M 6.5B 123M (TE) + 700M (SR)
Imagen (Saharia et al., 2022) 7.27 860M 3B 4.6B (TE) + 600M (SR)
Stable Diffusion (Rombach et al., 2022) 12.63 400M 1.45B 123M (TE) + 83M (VAE)
PixArt-α XL/2 (Chen et al., 2023) 7.32 25M 600M 123M (TE) + 83M (VAE)
MMDiT-improved (Ifriqi et al., 2024) 6.79 12M 600M 123M (TE) + 83M (VAE)

Models for multimodal generation and understanding

Show-o (Xie et al., 2024) 9.24 35M 1.3B 115M (VE) + 307M (VQ-VAE)
Transfusion (Zhou et al., 2024) 6.78 692M 7B 86M (VAE)
Chameleon (Meta, 2024) 26.7 600M 7B 307M (VQ-GAN)
JetFormer (Tschannen et al., 2024) 20.86 1B 2.75B —

Models for multimodal generation only

Versatile Diffusion (Xu et al., 2023) 11.10 400M 1.45B 123M (TE) + 83M (VAE) + 110M (TE)
UniD3 (Hu et al., 2022) 25.11 592K 600M 123M (TE) + 307M (VQ-GAN)

Our model 16.16 12M 481M 83M (VAE)

3.4. Noisy Guidance

Guidance techniques have been a core component in mod-
ern diffusion models for improving generation quality
(e.g., Dhariwal & Nichol, 2021; Ho & Salimans, 2021;
Kynkäänniemi et al., 2024; Li et al., 2024b). For contin-
uous diffusion models, with strength ω, the classifier-free
guidance is obtained by interpolating the unconditional and
conditional score functions,

ωsθ(xt, t, c) + (1− ω)sθ(xt, t, ∅) (7)

One perspective to understand the effectiveness of guidance
methods is to view the unconditional score function as a
conditional model with a fully-noised condition input, and
the interpolation effectively serves as a correction of the
conditional scores. However, the unconditional score might
not be the best choice of correctors, as it causes an excessive
trade-off between fidelity and diversity, resulting in a signif-
icant loss in the latter (Karras et al., 2024a). This raises an
interesting question about whether CFG can be improved
by finding a better alternative to the unconditional score in
(7). In fact, within our framework, we notice that

sXθ (xt, ys, t, s) ≈ ∇x log pt,s(xt, ys) = ∇x log p(xt, t|ys, s)

The last equality results from Bayes’ theorem, and it shows
that our model in fact learns conditional scores at all noise
levels. Leveraging this fact, we propose a new form of
guidance named noisy guidance, where the unconditional
score in (7) is replaced with a class of conditional models
with conditions noised to different levels:

ωsθ(xt, ys, t, s) + (1− ω)sθ(xt, yσ, t, σ) σ > s (8)

We note that the noisy guidance framework is a more gen-
eral one, as it recovers the vanilla setting of CFG when

s = 0 and σ = T . The scenario of conditional generation
corresponds to s = 0 (a clean condition y0 is given), and
we choose T > σ > 0 to improve generation quality with a
partially conditioned guiding model. More interestingly,
noisy guidance can even be applied to unconditional gen-
eration in an unsupervised way where s > 0. In this case,
while s is changing (since we are also generating ys), we
can still apply guidance in this process by adaptively picking
σ as long as σ > s. These observations indicate the power
and robustness of noisy guidance as a by-product of our
proposed multimodal diffusion model learning framework.

To showcase the performance of noisy guidance, we evalu-
ate FID-10K on MS-COCO (Lin et al., 2014) using different
values of σ ∈ [0, 1]. We find that partially denoising the
caption results in an improved FID, as shown in Fig. 4. The
superior performance of noisy guidance is possibly due to us-
ing a partially corrupted version of the conditional model
as the guiding model. This aligns closely with the idea of
Autoguidance proposed in Karras et al. (2024a), which uti-
lizes an under-trained, smaller model as the guiding model
instead of the unconditional ones. Similar to Autoguidance,
noisy guidance seeks to identify and reduce the errors made
by the conditional score model by measuring its difference
to the partially conditioned one, boosting the generation
performance. Finally, we remark that (8) is only a special
case applied to continuous diffusion, and a similar idea can
be adapted to other modalities, such as discrete diffusion
guidance (Nisonoff et al., 2024; Schiff et al., 2024).

4. Experiments
To demonstrate the effectiveness and relevance of our frame-
work for training multimodal diffusion models, we con-
sider two tasks: text-image generation and mixed-type tab-
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Table 2. Performance on the Trend metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News

GOGGLE (Liu et al., 2023) ∼ 5.6M 54.71 78.06 76.10 90.53 54.06 76.81
STaSy (Kim et al., 2022) ∼ 10.3M 85.49±0.25 94.04±0.26 91.51±0.15 93.39±0.53 92.00±0.10 96.93±0.04

CoDi (Lee et al., 2023) ∼ 25.0M 77.51±0.08 31.59±0.05 82.22±0.11 93.47±0.25 92.93±0.15 88.90±0.01

TabDDPM (Kotelnikov et al., 2023) ∼ 11.7M 96.99±0.25 95.11±0.10 93.39±0.16 98.30±0.22 97.20±0.09 86.84±0.11

TABSYN (Zhang et al., 2023) ∼ 10.7M 98.46±0.27 97.95±0.12 97.93±0.21 98.94±0.31 97.76±0.28 98.56±0.03

TABSYN (reproduced) ∼ 10.7M 98.29±0.22 95.25 ±0.51 97.82±0.14 99.16±0.16 94.86±0.34 98.52±0.09

Our model ∼ 64K 98.75±0.09 96.00±1.23 98.24±0.13 98.85±0.42 97.42±0.11 98.57±0.16

Table 3. Performance on the MLE metric. Higher values in AUC and lower values in RMSE indicate better testing performance. Best
performance in bold. Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News
(AUC↑) (AUC↑) (AUC↑) (AUC↑) (RMSE↓) (RMSE↓)

GOGGLE (Liu et al., 2023) ∼ 5.6M .778±0.012 .584±0.005 .658±0.052 .654±0.024 1.090±0.025 .877±0.002

STaSy (Kim et al., 2022) ∼ 10.3M .906±0.001 .752±0.006 .914±0.005 .934±0.003 .656±0.014 .871±0.002

CoDi (Lee et al., 2023) ∼ 25.0M .871±0.006 .525±0.006 .865±0.006 .932±0.003 .818±0.021 1.21±0.005

TabDDPM (Kotelnikov et al., 2023) ∼ 11.7M .907±0.001 .758±0.004 .918±0.005 .935±0.003 .592±0.011 4.86±3.04

TABSYN (Zhang et al., 2023) ∼ 10.7M .915 ±0.002 .764±0.004 .920±0.005 .938±0.002 .582±0.008 .861±0.027

TABSYN (reproduced) ∼ 10.7M .910±0.001 .755±0.004 .916±0.004 .939±0.003 .655±0.012 .851±0.024

Our model ∼ 64K .915±0.001 .764±0.002 .924±0.003 .941±0.002 .543±0.012 .864±0.021

ular data synthesis, both of which are accomplished using
the continuous-discrete Multimodal diffusion discussed in
Sec. 3.3. The results for text-image generation are presented
in Sec. 4.1 and the results for tabular data synthesis are
presented in Sec. 4.2. e also include results for combining
Riemannian and discrete diffusion in App. E to demonstrate
the generality of the framework.

4.1. Text-Image Generation

Architecture We design a new score network backbone
for this task based on the celebrated success of Diffusion
Transformer (DiT) (Peebles & Xie, 2023) and Multimodal
Diffusion Transformer (MMDiT) (Esser et al., 2024). We
first process the inputted (noisy) images and texts by passing
them through an MMDiT with a per-modality unique time
conditioning. MMDiT’s remarkable strength in modeling
cross-modal interaction, as well as allowing independent
conditioning for each modality, makes it ideal for the back-
bone. The tokens then undergo unimodal DiTs for a more
refined learning process. We present a comprehensive di-
agram of the backbone in Fig. 2 and refer the reader to
App. C for further details.

Datasets We train on the SAM-LLaVA dataset introduced
by Chen et al. (2023). This dataset is constructed by adding
captions to the Segment Anything (SAM) (Kirillov et al.,
2023) using LLaVA (Liu et al., 2024), which results in rich
and diverse captions. However, it suffers from hallucinations
of LLava. For example, many colored images are described
as being black and white. Following (Chen et al., 2023), we
tokenize each caption with a length of 120 tokens.

Training & Evaluation We train our model using a multi-
stage training strategy. We kindly refer readers to App. C
for more details. We evaluate FID-30K on MS-COCO (Lin
et al., 2014). Compared with SAM-LLaVA, MS-COCO
comes with much shorter captions. To address this distribu-
tion shift in caption length between training and inference
time, we draw inspiration from (Ifriqi et al., 2024) and repli-
cate the text to increase the caption size. We also limit the
number of tokens to 40 during this evaluation. We compare
our results to other methods in Tab. 1. In terms of text-
to-image (T2I), our methods produce similar performance
compared to many other industrial-level models with larger
model sizes. Notably, our model is trained on fewer sam-
ples, features a significantly smaller backbone, and does
not utilize extra foundation models to aid multimodal rep-
resentation learning. This reflects both the efficiency and
the effectiveness of our proposed approach. We also present
qualitative samples in Fig. 3. For evaluation of image-to-text
(I2T) and joint generation, please kindly see App. F.

4.2. Mixed-type Tabular Data Synthesis

Architecture We devise a score network based on DiT for
this task, where both discrete and continuous tabular data
are fed into the transformer after simple dimension rescaling.
Our design aims at achieving early fusion of both modalities
for more efficient learning. See App. D.3 for details.

Datasets We experiment on 6 real-world tabular datasets
acquired from UCI Machine Learning Repository1. Ev-
ery dataset contains columns of numerical or categorical

1https://archive.ics.uci.edu/
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features, associated with binary classification tasks or regres-
sion tasks. Detailed descriptions of datasets are in App. D.2.

Training & Evaluation We describe the score model archi-
tecture and training settings in App. D.3. For evaluation, we
follow the same setting as Zhang et al. (2023). We evaluate
the Trend, Machine Learning Efficiency (MLE), Shape, Pre-
cision, and Recall of the generated data. We present results
on Trend in Tab. 2 and MLE in Tab. 3. For more results
on other metrics, please see App. D.4. All experiments are
repeated 20 times for robustness.

As evident from Tab. 2 and Tab. 3, our model performs either
the best or second-best, with a negligible gap, among most
datasets. Notably, our model has only ∼ 64K parameters,
which is 100 to 200 times smaller than models used in other
methods. The significant reduction in model size stems from
the fact that our method operates natively on the state space
of mixed-type tabular data, eliminating parameter-heavy
encoders like VAE. Our newly designed transformer-based
score network leverages the concept of early fusion (Meta,
2024), which also enhances parameter efficiency. This net-
work learns a joint embedding between modalities starting
from the first attention layer and is more parameter-efficient.
These results again showcase the efficiency and advantage
of our proposed multimodal diffusion model framework.

5. More Information on Related Works
Multimodal Generative Models. Various works in the lit-
erature have attempted joint generation of multimodal data.
Many existing methods approach the task by leveraging au-
toregressive models by first tokenizing multimodal data into
discrete tokens and then generating them sequentially (Meta,
2024; Xie et al., 2024; Zhou et al., 2024; Tschannen et al.,
2024; Lu et al., 2024; Ge et al., 2024; Wu et al., 2024; Wang
et al., 2024a). Another portion of the algorithms is built
on the versatile capability of diffusion/flow-based methods
to generate latent representations of multimodal data (Lee
et al., 2023; Bao et al., 2023b; Ruan et al., 2023; Hu et al.,
2022; Zhang et al., 2023; Kim et al., 2024; Chen et al.,
2024a; Li et al., 2024a; Swerdlow et al., 2025; Hayes et al.,
2025). One thing in common among the aforementioned
approaches is that they all extensively utilize tokenizers or
encoders to produce a unimodal latent space for multimodal
data, which are not modular and heavily tailored to specific
applications with little theoretical support. In contrast to
these works in the literature, we propose a general multi-
modal diffusion learning framework in this paper, which is
flexible for generating data on arbitrary state spaces. This
is achieved by minimizing the need for external, modality-
specific tokenizers and encoders, while keeping the genera-
tion in the native spaces of the targeted data.

Decoupled Time Variables. It’s worth noting that the de-
coupled time design, essential to our proposed framework,

has in fact been explored by many application-driven works
in the literature, such as UniDiffuser (Bao et al., 2023a),
MultiFlow (Campbell et al., 2024), AVDiT (Kim et al.,
2024), and OmniFlow (Li et al., 2024a). While these meth-
ods all leverage the multiple time variable design to achieve
any-to-any generation, they mostly consider this design as a
trick and do not investigate it from an algorithmic perspec-
tive. Our work contributes to this literature by deriving the
unified training objective and backward generative process
in the presence of multiple time variables, providing theoret-
ical justification for the validity of this design. To the best
of our knowledge, our work is the first to formalize this idea
and generalize it to an arbitrary number of modalities.

A highly relevant work worth discussing in more detail is
UniDiffuser (Bao et al., 2023b), which addresses the same
text-image joint generation task considered in this paper
while also utilizing decoupled time variables. A fundamen-
tal difference in algorithm design is that UniDiffuser purely
relies on continuous diffusion models in the CLIP latent
space, which is shared by both text and images, whereas our
proposed continuous-discrete diffusion operates natively on
the product space of Euclidean and finite-state spaces.

Diffusion Models in General State Spaces. Theoretical
results have demonstrated that diffusion models can be gen-
eralized to denoising Markov models, a class of generative
models constructed based on the notion of Markov processes
(Benton et al., 2024; Ren et al., 2025b). These works con-
sidered unimodal diffusions on general state spaces with a
single time variable. Our work extends the framework of de-
noising Markov models by incorporating multimodal diffu-
sion models on the product of different state spaces, as well
as multiple time variables. In the literature, there are also
MultiFlow (Campbell et al., 2024) and Generator Matching
(Holderrieth et al., 2024), which are multimodal extensions
of flow-based methods in native state spaces. Their algo-
rithm construction specifically focused on the task of protein
sequence-structure co-generation. In contrast, we present
a general recipe for multimodal diffusion models that does
not initially target specific tasks, despite empirically validat-
ing the proposed framework on two examples: text-image
generation and mix-type tabular data synthesis, leveraging
our newly proposed Continuous-Discrete Diffusion.

6. Conclusions, Limitations and Future Works
We propose a novel framework for constructing multimodal
diffusion models on general state spaces. We experiment
on text-image and tabular data generation, and our ap-
proach achieves competitive performances with a signif-
icantly smaller model size. One limitation of this work is
that we didn’t explore the possibility of utilizing pretrained
unimodal diffusion models as initialization of multimodal
diffusion training, which could further boost training effi-
ciency. We leave this as a future direction for investigation.
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A. Proofs
A.1. Proof of Theorem 1

The following proof follows a similar idea as is presented Benton et al. (2024):

Proof. By Jensen’s inequality, we have:

log
(
E[f(x1, . . . , Xi

ti , . . . , x
n)
∣∣ Xi

0 = xi]
)
≤ E[log(f)(x1, . . . , Xi

ti , . . . , x
n)
∣∣ Xi

0 = xi]

This implies the following inequality:

log
(
E[f(x1, . . . , Xi

ti , . . . , x
n)
∣∣ Xi

0 = xi]
)
− log f(x)

ti︸ ︷︷ ︸
LHS

≤ E[log(f)(x1, . . . , Xi
ti , . . . x

n)
∣∣ Xi

0 = xi]− log f(x)

ti︸ ︷︷ ︸
RHS

where we denote x = (x1, . . . , xn). Taking the limit as ti → 0, we notice that the limit of RHS equals LXi(log f)(x). On
the other hand, if we consider the following function g:

g(h) = E[f(x1, . . . , Xi
h, . . . , x

n)
∣∣ Xi

0 = xi], g(0) = f(x)

We can calculate the limit of LHS as ti → 0,

lim
ti→0

LHS = lim
ti→0

log(g(ti))− log g(0))

ti
= (log(g))′(0) =

1

g(0)
g′(0) =

LXif(x)

f(x)

Combining them, we have that

LXif(x)

f(x)
≥ L(log f)(x)

Applying this result by choosing f = p/βθ, we have that

LXi(p/βθ)(xt, t)

(p/βθ)(xt, t)
− LXi log(p/βθ)(xt, t) ≥ 0 (9)

This finishes the proof of IGESM ≥ 0. To see that IGESM is minimized when βθ(x, t) ∝ p(x, t), note that Jensen’s
inequality holds the equality sign when the test function is constant. Therefore, (9) holds the equality sign for each LXi

whenever p/βθ is identically constant, therefore IGESM is optimized when βθ is equivalent to p up to a multiplicative
constant.

A.2. Proof of Theorem 2

Proof. We will start by showing the equivalence between IGDSM and IGISM, and then we will demonstrate the equivalence
between IGISM and IGESM to finish the proof. We start with the definition of IGDSM,

IGDSM = E
t,p0,pt|0

[
n∑

i=1

LXi(pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LXi log(pt|0/βθ)(xt, t)

]

= E
t,p0

∫
X
pt|0(xt, t)

[
n∑

i=1

LXi(pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LXi log(pt|0/βθ)(xt, t)

]
dxt

= E
t,p0

∫
X

[
n∑

i=1

βθ(xt, t)LXi(pt|0/βθ)(xt, t)− pt|0(xt, t)LXi log(pt|0/βθ)(xt, t)

]
dxt
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Then, using the properties of the adjoint L∗Xi , we can continue to simplify the objective as,

IGDSM = E
t,p0

∫
X

[
n∑

i=1

L∗Xiβθ(xt, t) · pt|0(xt, t)/βθ(x, t)− pt|0(xt, t)LXi log(pt|0/βθ)(xt, t)

]
dxt

= E
t,p0

∫
X
pt|0(xt, t)

[
n∑

i=1

L∗Xiβθ(xt, t)

β(xt, t)
+ LXi log βθ(xt, t)− LXi log pt|0(xt, t)

]
dxt

= E
t,p0

E
pt|0

[
n∑

i=1

L∗Xiβθ(xt, t)

βθ(xt, t)
+ LXi log βθ(xt, t)

]
+ const

= E
t,pt

[
n∑

i=1

L∗Xiβθ(xt, t)

βθ(xt, t)
+ LXi log βθ(xt, t)

]
+ const

= IGISM + const

This finishes the proof of equivalence between IGDSM and IGISM. To show the equivalence between IGISM and IGESM,
we start with the definition of IGESM,

IGESM = E
t,xt∼p(·,t)

[
n∑

i=0

LXi(p/βθ)(xt, t)

(p/βθ)(xt, t)
− LXi log(p/βθ)(xt, t)

]

= E
t

∫
X
p(xt, t)

[
n∑

i=0

LXi(p/βθ)(xt, t)

(p/βθ)(xt, t)
− LXi log(p/βθ)(xt, t)

]
dxt

= E
t

∫
X

[
n∑

i=0

βθ(xt, t)LXi(p/βθ)(xt, t)− p(xt, t)LXi log(p/βθ)(xt, t)

]
dxt

Using again the properties of ajoint L∗Xi , we have

IGESM = E
t

∫
X

[
n∑

i=0

L∗Xiβθ(xt, t)(p/βθ)(xt, t)− p(xt, t)LXi log(p/βθ)(xt, t)

]
dxt

= E
t

∫
X
p(xt, t)

[
n∑

i=0

L∗Xiβθ(xt, t)

βθ(xt, t)
− LXi log(p/βθ)(xt, t)

]
dxt

= E
t,xt∼pt

[
n∑

i=0

L∗Xiβθ(xt, t)

βθ(xt, t)
− LXi log p(xt, t) + LXi log βθ(xt, t)

]

= E
t,xt∼pt

[
n∑

i=0

L∗Xiβθ(xt, t)

βθ(xt, t)
+ LXi log βθ(xt, t)

]
+ const

= IGISM + const

This finishes the proof of equivalence of IGDSM, IGISM, IGESM up to an additive, θ-independent constant.

A.3. Proof of Proposition 1

Proof. In the following, we derive IGDSM when choosing the forward process as in (6). Recall that IGDSM is given as,

IGDSM = E
t,p0,pt|0

[
LX(pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LX log(pt|0/βθ)(xt, t)︸ ︷︷ ︸
JX

+
LY (pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LY log(pt|0/βθ)(xt, t)︸ ︷︷ ︸
JY

]

where t = (t, s), xt = (Xt, Ys), pt|0(xt, t) = p(Xt, Ys | X0 = x0, Y0 = y0), LX and LY are generator of the following
dynamics. {

dXt = f(Xt, t)dt+ g(t)dBt

Ys ∼ CTMC(Qs), (X0, Y0) ∼ pdata(x, y)
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See Lem. 1 for a detailed proof. We start by computing the score matching operators ΦX and ΦY for X and Y respectively.
Note that LX and LY are given by the following expressions for a test function h = h(xt, ys, t, s),

LXh = f · ∇h+
1

2
g(t)2∆h, LY h =

∑
y∈X

h(xt, y, t, s)Qs(y, ys)

Therefore, for the score matching operator associated with LX , it can be expressed as

ΦX(h) =
LXh

h
− LX log h

=
f · ∇h

h
+

1

2
g(t)2

∆h

h
− f · ∇ log h− 1

2
∆ log h

=
1

2
g(t)2 · ∇ · (h∇ log h)

h
− 1

2
g(t)2∆ log h

=
1

2
g(t)2∇ log h · ∇h

h
+

1

2
g(t)2∇ · ∇ log h− 1

2
g(t)2∆ log h

Note that ∇h
h = ∇ log h, ∇ · ∇ log h = ∆ log h, therefore we derive that

ΦX(h) =
1

2
g(t)2∥∇ log h∥2

For the score matching operator associated with LY , it can be expressed as,

ΦY (h) =
LY h

h
− LY log h

=
∑
y∈X

Qs(y, ys)
( h(xt, y, t, s)

h(xt, ys, t, s)
− log h(xt, y, t, s)

)
=
∑
y∈X

Qs(y, ys)
( h(xt, y, t, s)

h(xt, ys, t, s)
− log

h(xt, y, t, s)

h(xt, ys, t, s)

)
where the last line follows since

∑
y∈X Qs(y, ys) = 0.

In this case, the LX related term JX in IGDSM can be simplified as,

JX =
LX(pt|0/βθ)(xt, t)

(pt|0/βθ)(xt, t)
− LX log(pt|0/βθ)(xt, t)

= E
t,p0,pt|0

[
ΦX

(pt|0
βθ

)]

= E
t,p0,pt|0

[
1

2
g(t)2

∥∥∥∥∇ log p(xt, ys, t, s | x0, y0)−∇ log βθ(xt, ys, t, s)

∥∥∥∥2
]

Moreover, since (Xt, Ys) are conditionally independent given (X0, Y0), we have that

∇ log p(xt, ys, t, s | x0, y0) = ∇ log
(
p(xt, t | x0, y0) · p(ys, s | x0, Y0)

)
= ∇ log p(xt, t | x0, y0) +∇ log p(ys, s | x0, y0)

= ∇ log p(xt, t | x0)

which suggests that under our framework, the multimodal conditional score is identical to the unimodal conditional score.
Using this, and set sXθ (xt, ys, t, s) = ∇ log βθ(xt, ys, t, s), we have

JX = E
t,s,x0,y0∼p0
xt,ys∼pt,s|0

[
1

2
g2(t)

∥∥∥∥sXθ −∇ log pt(xt|x0)

∥∥∥∥2
]
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Similarly, the LY related term JY in IGDSM can be simplified as,

JY = E
t,p0,pt|0

[
ΦY

(pt|0
βθ

)]

= E
t,p0,pt|0

[∑
y∈X

Qs(y, ys)
( p(xt, y, t, s | x0, y0)

p(xt, ys, t, s | x0, y0)
· βθ(xt, ys, t, s)

βθ(xt, y, t, s)
− log

p(xt, y, t, s | x0, y0)

p(xt, ys, t, s | x0, y0)
+ log

βθ(xt, y, t, s)

βθ(xt, ys, t, s)

)]

= E
t,p0

[∫
Rd

( ∑
y,ys∈X

Qs(y, ys)
(
p(xt, y, t, s | x0, y0) ·

βθ(xt, ys, t, s)

βθ(xt, y, t, s)
+ p(xt, ys, t, s | x0, y0) · log

βθ(xt, y, t, s)

βθ(xt, ys, t, s)

)
dxt

]
+ const

= E
t,p0

[ ∑
ys∈X

∫
Rd

(
E

y∼p(xt,·,t,s|x0,y0)
Qs(y, ys)

(
βθ(xt, ys, t, s)

βθ(xt, y, t, s)
+

p(xt, ys, t, s | x0, y0)

p(xt, y, t, s | x0, y0)
· log βθ(xt, y, t, s)

βθ(xt, ys, t, s)

))
dxt

]
+ const

Now, we exchange variable ys and y, and thus the expression is rewritten to,

JY = E
t,p0

[∑
y∈X

∫
Rd

(
E

ys∼p(xt,·,t,s|x0,y0)
Qs(ys, y)

(
βθ(xt, y, t, s)

βθ(xt, ys, t, s)
− p(xt, y, t, s | x0, y0)

p(xt, ys, t, s | x0, y0)
· log βθ(xt, y, t, s)

βθ(xt, ys, t, s)

))
dxt

]
+ const

= E
t,p0,pt|0

[∑
y∈X

Qs(ys, y)

(
βθ(xt, y, t, s)

βθ(xt, ys, t, s)
− p(xt, y, t, s | x0, y0)

p(xt, ys, t, s | x0, y0)
· log βθ(xt, y, t, s)

βθ(xt, ys, t, s)

)]
+ const

Using again the conditional independence of (Xt, Ys) given (X0, Y0), we have that

p(xt, y, t, s | x0, y0)

p(xt, ys, t, s | x0, y0)
=

p(xt, t | x0, y0)p(y, s | x0, y0)

p(xt, t | x0, y0)p(ys, s | x0, y0)

=
p(y, s | x0, y0)

p(ys, s | x0, y0)
=

p(y, s | y0)
p(ys, s | y0)

which indicates again that the multimodal conditional score is identical to the unimodal conditional score. Set
sYθ (xt, ys, t, s)y = βθ(xt, y, t, s)/βθ(xt, ys, t, s), we finally arrive at that

JY = E
t,s,x0,y0∼p0
xt,ys∼pt,s|0

[∑
y∈X

Qs(ys, y)

(
sYθ (xt, ys, t, s)y −

p(y, s | y0)
p(ys, s | y0)

· log sYθ (xt, ys, t, s)y

)]
+ const

Note that while the sum in JY is over y ∈ X, in fact when y = ys, the corresponding term is constant and has no contribution
to the gradient of θ, therefore we can instead only summing over y ∈ X and y ̸= ys, recovering the presented expressions in
Prop. 1. This concludes the proof.

A.4. Proof of Proposition 2

We start by considering the function u(x, y, t, s) = E[h(Xt, Ys)
∣∣X0 = x, Y0 = y] as test functions. We start by computing

the generator of the forward process. For notational convenience, we use LX and LY to denote the generators of Xt and Ys,
respectively.

Lemma 1 (Generator of the forward process). Given (Xt, Ys) following dynamic (6), and a test function u : Rd × X, we
have that:

LXu = ⟨∇xu(x, y), f(x, t)⟩+
1

2
g2(t) · ⟨∇2

xu(x, y), I⟩ = f · ∇u+
1

2
g2(t)∆u (10)

LY u =
∑
ŷ∈X

u(x, ŷ)Qs(ŷ, y) = Q⊤s u(x, ·) (11)
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Proof. We start by computing the generator of Ys:

LY u = lim
∆s→0

1

∆s
· E
[
u(Xt, Ys+∆s)− u(Xt, Ys)

∣∣ Xt = x, Ys = y
]

= lim
∆s→0

1

∆s
·
∑
ŷ∈X

u(x, ŷ)
(
P(Ys+∆s = ŷ

∣∣ Ys = y)− P(Ys = ŷ
∣∣ Ys = y)

)
=
∑
ŷ∈X

u(x, ŷ) lim
∆s→0

1

∆s

(
P(Ys+∆s = ŷ

∣∣ Ys = y)− P(Ys = ŷ
∣∣ Ys = y)

)
=
∑
ŷ∈X

u(x, ŷ)Qs(ŷ, y) = Q⊤s u(x, ·)

Similarly, for the generator of Xt,

LXu = lim
∆t→0

1

∆t
E
[
u(Xt+∆t, Ys)− u(Xt, Ys)

∣∣ Xt = x, Ys = y
]

= lim
∆t→0

1

∆t
· E
[ ∫ t+∆t

t

⟨f(Xτ , Ys),∇xu(Xτ , , Ys)⟩+
1

2
⟨g2(τ)I,∇2

xu(Xτ , Ys)⟩dτ
∣∣ Xt = x, Ys = y

]
= E

[
⟨f(Xt, Ys),∇xu(Xt, , Ys)⟩+

1

2
⟨g2(t),∇2u(Xt, Ys)⟩

∣∣ Xt = x, Ys = y
]

= (f · ∇u)(x, y) + 1

2
g2(t)∆u(x, y)

where we uses Ito’s lemma and the fact that the martingale vanishes under the expectation.

We now compute the generator for the backward process:
d
←−
X t = −f(

←−
X t, T − t) + g2(T − t)∇x log

←−p t,s(
←−
X t,
←−
Y s)dt+ g(t)d

←−
W t←−

Y s ∼ CTMC
(←−
Q(
←−
X t, t, s)

)
(
←−
X 0,
←−
Y 0) ∼ p(x, y, T, T )

(12)

where←−p t,s = pT−t,T−s,
←−
Q(Xt, t, s) is a rate matrix with y′, y entry being

←−p t,s(Xt,y
′)

←−p t,s(Xt,y)
(QT−s)yy′ . We denote LX

← and LY
←

as the generator of backward process
←−
X t,
←−
Y s in (12) respectively.

Lemma 2 (Generator of the backward process). Given Xt, Ys following (12) and a test function u : Rd × X, we have that:

LX
←u = −⟨∇xu(x, y), f(x, T − t)⟩+ 1

2
g2(T − t)⟨∇2

xu(x, y), I⟩ − ⟨∇xu(x, y), g
2(T − t)∇x log

←−p t,s(x, y)⟩

LY
←u =

←−
Q(x, t, s)⊤u =

∑
ŷ∈X

u(x, ŷ) ·
←−
Q(x, t, s)(ŷ, y)

The proof is highly similar to that of Lem. 2, and thus we omit it here to avoid being repetitive. With LX , LY , LX
← and

LY
← being computed, we can now derive the Fokker Planck equation for both the forward process (Xt, Ys) and backward

process (
←−
X t,
←−
Y s), as is given in Lem. 3 and Lem. 4.

Lemma 3 (Fokker Planck Equation of Forward Process). For Xt, Ys following (6), let p(x, y, t, s) denotes the density of
Xt, Ys) at Xt = x, Ys = y, we have that:

∂tp(x, y, t, s) = LX,∗p(x, y, t, s), ∂sp(x, y, t, s) = LY,∗p(x, y, t, s) (13)

Where LX,∗,LY,∗ represent the adjoint of LX ,LY and:

LX,∗p(x, y, t, s) = −∇ · (f(x, t)p(x, y, t, s)) + 1

2
g2(t)∆p(x, y, t, s)

LY,∗p(x, ·, t, s) = Qsp(x, ·, t, s) =
∑
ŷ∈X

Qs(y, ŷ) · p(x, ŷ, t, s)
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Lemma 4 (Fokker Planck Equation of Backward Process). For
←−
X t,
←−
Y s following (6), let p(x, y, t, s) denotes the density of

←−
X t,
←−
Y s) at

←−
X t = x,

←−
Y s = y, we have that:

∂tp(x, y, t, s) = LX,∗
← p(x, y, t, s), ∂sp(x, y, t, s) = LY,∗

← p(x, y, t, s) (14)

where LX,∗
← ,LY,∗

← represent the adjoint of LX
←,LY

← and:

LX,∗
← p(x, y, t, s) = ∇ · (f(x, T − t)p(x, y, t, s)) +

1

2
g2(T − t)∆p(x, y, t, s)− g2(T − t)∇ ·

(
p(x, y, t, s)∇x log

←−p t,s(x, y)
)

LY,∗
← p(x, ·, t, s) =

←−
Q(x, t, s)p(x, ·, t, s) =

∑
ŷ∈X

←−
Q(x, t, s)(y, ŷ)p(x, ŷ, t, s)

The computation central to the proof of Lem. 3 and Lem. 4 is the calculation of the adjoint operator, which can be done
with standard techniques, such as integration by parts. The derivation of the Fokker Planck equations directly follows from
definitions. Therefore, we also omit the proof here. With these results, we are now ready to show that (Xt, Ys) and

←−
X t,
←−
Y s

are time reversals of each other.

Lemma 5 (Time Reversal). p(x, y, t, s) =←−p t,s(x, y) = p(x, y, T − t, T − s), where p is the solution to the Fokker Planck
equation of the forward process in (13), p is the solution to the Fokker Planck equation of the backward process in (14).

Proof. We will prove the result by showing that p(x, y, t, s) = p(x, y, T − t, T − s) satisfies the Fokker Planck equations
given in (14). We start by showing the

←−
X t related equation. Substituting in p(x, y, T − t, T − s), we have that

∂tp(x, y, t, s) = ∂t(p(x, y, T − t, T − s)) = −∂tp(x, y, T − t, T − s) = −LX,∗p(x, y, T − t, T − s)

where the last equality holds due to (13). On the right side of the equation, the expression can be simplified to:

LX,∗
← p(x, y, t, s) = LX,∗

← p(x, y, T − t, T − s)

= ∇ · (f(x, T − t)p(x, y, T − t, T − s) +
1

2
g2(T − t)∆p(x, y, T − t, T − s)

− g2(T − t)∇ · (p(x, y, T − t, T − s)∇ log p(x, y, T − t, T − s))

= ∇ · (f(x, T − t)p(x, y, T − t, T − s) +
1

2
g2(T − t)∆p(x, y, T − t, T − s)

− g2(T − t)∇ · ∇p(x, y, T − t, T − s)

= ∇ · (f(x, T − t)p(x, y, T − t, T − s)− 1

2
g2(T − t)∆p(x, y, T − t, T − s)

= −LX,∗p(x, y, T − t, T − s)

Therefore, we show that ∂tp(x, y, t, s) = LX,∗
← p(x, y, t, s) when p(x, y, t, s) = p(x, y, T − t, T − s). For the

←−
Y s related

equation, we have that

∂sp(x, y, t, s) = ∂s(p(x, y, T − t, T − s)) = −∂sp(x, y, T − t, T − s) = −LY,∗p(x, y, T − t, T − s)

Similarly, on the right size of the equation, we have,

LY,∗
← p(x, y, t, s) = LY,∗

← p(x, y, T − t, T − s)

=
∑
ŷ∈X

←−
Q(x, t, s)(y, ŷ)p(x, ŷ, T − t, T − s)

=
∑

ŷ∈X,ŷ ̸=y

←−
Q(x, t, s)(y, ŷ)p(x, ŷ, T − t, T − s) +

←−
Q(x, t, s)(y, y)p(x, y, T − t, T − s)

=
∑

ŷ∈X,ŷ ̸=y

←−
Q(x, t, s)(y, ŷ)p(x, ŷ, T − t, T − s)−

∑
ŷ∈X,ŷ ̸=y

←−
Q(x, t, s)(ŷ, y)p(x, y, T − t, T − s)
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where in the last step, we use that
←−
Q(x, t, s)(y, y) = −

∑
ŷ∈X,ŷ ̸=y

←−
Q(x, t, s)(ŷ, y). We perform such a simplification since

we can only relate
←−
Q(x, t, s) and QT−s on non-diagonal entries. Then, it holds that

LY,∗
← p(x, y, t, s) =

∑
ŷ∈X,ŷ ̸=y

QT−s(ŷ, y) ·
p(x, y, T − t, T − s)

p(x, ŷ, T − t, T − s)
p(x, ŷ, T − t, T − s)

−QT−s(y, ŷ) ·
p(x, ŷ, T − t, T − s)

p(x, y, T − t, T − s)
p(x, y, T − t, T − s)∑

ŷ∈X,ŷ ̸=y

QT−s(ŷ, y)p(x, y, T − t, T − s)−QT−s(y, ŷ)p(x, ŷ, T − t, T − s)

=
∑
ŷ∈X

QT−s(ŷ, y)p(x, y, T − t, T − s)−QT−s(y, ŷ)p(x, ŷ, T − t, T − s)

= p(x, y, T − t, T − s) ·
(∑
ŷ∈X

QT−s(ŷ, y)
)
−
∑
ŷ∈X

QT−s(y, ŷ)p(x, ŷ, T − t, T − s)

= −
∑
ŷ∈X

QT−s(y, ŷ)p(x, ŷ, T − t, T − s)

= −LY,∗p(x, y, T − t, T − s)

where in the derivation, we use the definition of
←−
Q(x, t, s) and the fact that

∑
ŷ∈X QT−s(ŷ, y) = 0. Therefore, we have

also shown that ∂tp(x, y, t, s) = LY,∗
← p(x, y, t, s) when p(x, y, t, s) = p(x, y, T − t, T − s). Together with the fact that the

initial conditions are matched by construction, i.e.,

p(x, y, 0, 0) = p(x, y, T, T )

we conclude the proof of the time-reversal argument, as well as Prop. 2.

B. Design choice for Continuous-Discrete Multimodal Diffusion Models
In this section, we go deeper into the design choices of the newly proposed continuous-discrete multimodal diffusion models,
including the choice for forward process, score parameterization, and sampling algorithms for such diffusion models.

B.1. Choice of Forward Process

We consider the following specific choice of forward process for the Continuous-Discrete Diffusion Model, where we choose
Xt to be subjected to a time-rescaled Ornstein–Uhlenbeck process (Song et al., 2020) and Ys to be subjected to a masked
discrete diffusion model (Ou et al., 2025; Sahoo et al., 2024; Shi et al., 2024). Both choices are effective when modeling
unimodal distributions, prompting us to combine them for the design of multimodal diffusion models on their product space.

dXt = −βtXtdt+
√
2βtdBt

Ys ∼ CTMC(σsQ
mask)

(X0, Y0) ∼ pdata(x, y)

(15)

To define masked discrete diffusion models, we need to introduce an additional mask token M into the state space X.
Therefore, the transition rate matrix Qmask is a transition matrix defined on the extended state space X̃ = X ∪ {M}, given
by

Qmask =


−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
1 1 . . . 1 0


where the last row corresponds to M.
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Consider now the practical case, where Xt ∈ Rd, and Ys consists of a sequence of tokens, i.e., Ys ∈ Xn. We represent Ys as
Ys = y1 . . . yi . . . yn.

For pure masked discrete diffusion, it has been shown that its score has a special factorization (Ou et al., 2025). This
enables users to parameterize only the probability of the clean data distribution conditioned on unmasked tokens, thereby
representing the score. In the following, we demonstrate that this special structure is inherited in the continuous-discrete
diffusion model when the discrete part is a masked discrete diffusion, which enables a more effective score parameterization,
as well as a variance-reduced version of the training objective.

Now, consider y = y1 . . . yi . . . yn, and ŷ = y1 . . . ŷi . . . yn, where y differs from ŷ only at the i-th position, ŷi = M while
yi ̸= M

Proposition 3. Let p(x,y, t, s) be the density of (15) at Xt = x, Ys = ys, then the discrete score has the following form

p(Xt = xt, Ys = y, t, s)

p(Xt = xt, Ys = ŷ, t, s)
=

e−σs

1− e−σs
P(Y i

0 = yi | yUM, Xt, t) (16)

where σs =
∫ s

0
σ(τ)dτ , yUM contains the unmasked tokens of y.

Proof. We begin by noting that, given the forward process defined in (15). We can solve the forward process analytically as
follows:

P(Y i
s = y | A) =

{
e−σs · P(Y i

0 = y | A), y ̸= M

1− e−σs , y = M
(17)

For any event A. We will use this fact several times in our proof. This is true since when y ̸= M,

P(Y i
s = y | A) = P(Y i

s = y | Y i
0 = y,A) · P(Y i

0 = y | A)

Our proof consists of two steps. First, we demonstrate that the diffusion process can be factored into a conditional probability
and a time-dependent term. Secondly, we demonstrate that we can further simplify this conditional probability to contain
only probabilities in terms of the clean data distribution.

Step 1: The discrete score in (16) is given by:

P(Xt = xt, Y
1
s = y1, . . . , Y

i
s = yi, . . . , Y

n
s = yn)

P(Xt = xt, Y 1
s = y1, . . . , Y i

s = M, . . . , Y n
s = yn)

To simplify the notation, we define the following notation Ai = {Y k
s = yk : k ̸= i} ∩ {Xt = xt}. Then, using Bayes’ rule,

we can rewrite the discrete score as:

P(Y i
s = yi | Ai)P(Ai)

P(Y i
s = M | Ai)P(Ai)

=
P(Y i

s = yi | Ai)

P(Y i
s = M | Ai)

=
e−σs

1− e−σs
· P(Y i

0 = yi | Ai)

Step 2: We now show that we can simplify Ai by removing the conditioning on tokens that are masked. But firstly we do a
simple calculation that will come in handy, given events A,B,C one has that:

P(A | B ∩ C) =
P(A ∩B ∩ C)

P(B ∩ C)
=

P(A ∩B|C)P(C)

P(B ∩ C)
=

P(C|A ∩B)P(A ∩B)P(C)

P(C)P(B ∩ C)

=
P(A ∩B)P(C|A ∩B)

P(B))P(C|B)
=

P(A|B)P(C|A ∩B)

P(C|B)

Now, assume that l is a position such that yl = M. We denote Al
i = {Y k

s = yk : k ̸= i, l} ∩ {Xt = xt} the event given by
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the remaining tokens. We can then use the calculation above to write:

P(Y i
0 = yi | Ai) = P(Y i

0 = yi | Al
i, Y

l
s = M)

=
P({Y i

0 = yi} ∩Al
i ∩ {Y l

s = M})
P(Al

i ∩ {Y l
s = M}

)

= P(Y i
0 = yi | Al

i) ·
P(Y l

s = M | {Y i
0 = yi} ∩Al

i)

P(Y l
s = M | Al

i)

= P(Y i
0 = yi | Al

i)

where in the last step, we used (17). The computation above shows that we can remove any events relevant to masked
tokens, and repeating this process yields the result that the event being conditioned on only contains the unmasked part. This
finishes the proof.

With Prop. 3, the score entropy in the training objective described in Prop. 1 can be further simplified to cross-entropy loss,
as is widely discussed in the literature of masked discrete diffusion model training (Ou et al., 2025; Sahoo et al., 2024; Shi
et al., 2024). Prop. 3 also implies that when designing the score network backbone, the discrete score does not need the
input of time s. However, it’s still dependent on the time t of the continuous modality. This is a notable difference from the
pure masked discrete diffusion models considered in the literature (Ou et al., 2025; Nie et al., 2025a).

B.2. Noisy Guidance

In Alg. 1, we present the detailed algorithm for using Noisy guidance for continuous score. In Alg. 2, we present the detailed
algorithm for using Noisy guidance for discrete score, whose computation is not mentioned in the main text. Note that
in Alg. 2, instead of directly doing geometric average of suncond,y

θ and scond,y
θ as is suggested in Nisonoff et al. (2024), we

compute a arthimetic average of the corresponding logits, then use softmax to calculate the actual guided score. Such a
practice is considered in Chang et al. (2022), and recently it has been shown to have theoretical advantages.

Algorithm 1 Noisy Guidance for continuous score

Require: xt, t : noisy image with noise level, model: sθ(xt, ys, t, s, ω), y0 : clean text, ω : Guidance Strength, σ :
Conditioning Noise Level

Ensure: sxθ : Guided continuous score
1: ynoisy

σ ∼ pσ|0(y|y0)
2: suncond,x

θ ← sθ(x, y
noisy
σ , t, σ, ωt), s

cond,x
θ ← sθ(xt, y0, t, 0, ωt)

3: sxθ ← ω · scond,x
θ + (1− ω) · suncond,x

θ

4: return sxθ

Algorithm 2 Noisy Guidance for discrete score

Require: ys, s : noisy text with noise level, model: sθ(xt, ys, t, s, ω), x0 : clean image, ω : Guidance Strength, σ :
Conditioning Noise Level

Ensure: syθ : Guided discrete score
1: xnoisy

σ ∼ pσ|0(x|x0)

2: suncond,y
θ ← sθ(x

noisy
σ , ys, σ, s, ωs), s

cond,y
θ ← sθ(x0, ys, 0, s, ωs)

3: suncond,y
θ = softmax(ℓuncond), scond,y

θ = softmax(ℓcond)
4: syθ ← softmax

(
ω · ℓcond + (1− ω) · ℓuncond

)
5: return syθ

B.3. Samplers

For inference of continuous-discrete multimodal diffusion models, we consider the following samplers. For conditional
generation of discrete or continuous modality, see Alg. 3 and Alg. 4. Among all the pseudo code, we set times =
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(N − i)/N , i = 0, 1, . . . , N as the inference times and dt = −1/N as the time steps, where N is the number of total
inference/discretization steps. We use τ -leaping for discrete modality sampling and Heun’s method for continuous modality
sampling. All the inference algorithms are written with the presence of guidance and guidance intervals.

Algorithm 3 Discrete Sampler with τ -leaping

Require: N : Number of steps, ω : Guidance Strength
1: [a, b] : Guidance Interval, model : sθ(xt, ys, t, s, ω)
2: x : a clean image condition

Ensure: y0 ∼ pdata(·|x)
3: yt ← [M, . . . ,M]
4: for t in times do
5: ωt = ω if t ∈ [a, b] else 1.
6: sxθ , s

y
θ ← sθ(x, yt, 0, t, ωt)

7: yt ← τ -leaping(syθ , yt, t, |dt|)
8: end for
9: return y0

Algorithm 4 Continuous Sampler with Heun’s method

Require: N : Number of steps, ω : Guidance Strength
1: [a, b] : Guidance Interval, model : sθ(xt, ys, t, s, ω)
2: y : A clean text condition

Ensure: x0 ∼ pdata(·|y)
3: xt ← N (0, I)
4: for t in times do
5: ωt = ω if t ∈ [a, b] else 1.
6: sxθ , s

y
θ ← sθ(xt, y, t, 0, ωt)

7: vold = f(xt, t)− 1
2g

2(t)sxθ
8: x̂← xt+ volddt, ŝxθ , ŝ

y
θ ← sθ(x̂, y, t+dt, 0, ωt)

9: vnew = f(x̂t, t)− 1
2g

2(t)ŝxθ
10: xt ← xt +

1
2 · (vold + vnew)dt

11: end for
12: return x0

We describe one multimodal sampler for the joint generation with a continuous-discrete multimodal diffusion model in
Alg. 5. Essentially, Alg. 5 combines τ -leaping for discrete modality and Heun’s method for continuous modality, each
depicted in Alg. 3 and Alg. 4. However, these choices are selected without being heavily optimized to tailor to this case, and
potentially, there exist much more effective and efficient samplers. For example, note that Heun’s method is a second-order
ODE sampler, while τ -leaping is usually considered to be a first-order CTMC sampling algorithm (Ren et al., 2024). This
means that the discrete score obtained at the mid-point x̂ during the inference step of Heun’s method is not being used, which
causes a waste of computation. A potential way to improve is to replace the first-order discrete sampler with a second-order
variant, such as the θ-Trap algorithm introduced in Ren et al. (2025a). We leave this direction for future investigation.

Algorithm 5 Multimodal Sampler with τ -leaping and Heun’s Method

Require: N : Number of steps, ω : Guidance Strength, [a, b] : Guidance Interval, model : sθ(xt, ys, t, s, ω)
Ensure: x0, y0 ∼ pdata

1: xt ← N (0, I), yt ← [M, . . . ,M]
2: for t in times do
3: ωt = ω if t ∈ [a, b] else 1.
4: sxθ , s

y
θ ← sθ(xt, yt, t, t, ωt), vold = f(xt, t)− 1

2g
2(t)sxθ

5: x̂← xt + volddt
6: ŝxθ , ŝ

y
θ ← sθ(x̂, yt, t+ dt, t, ωt), vnew = f(x̂t, t)− 1

2g
2(t)ŝxθ

7: xt ← xt +
1
2 · (vold + vnew)dt, yt ← τ -leaping(syθ , yt, t, |dt|)

8: end for
9: return x0, y0

C. Experimental Details on Text-Image Generation
C.1. Choice of Forward Process

We consider the same forward process discussed in App. B.1, with βt and σs given as

βt = 500 · (
√
βstart(1− t) + t

√
βend)

2

σs =
1− δ

1− (1− δ)s

βstart = 0.00085, βend = 0.0120, δ = 10−5
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Table 4. Hyperparameters for inference of different tasks

Parameter text to image image to text joint

Number of Steps 50 50 50

Guidance Scale 5.0 1.0 5.0

Guidance Interval [0.3, 0.8] - [0.3, 0.8]

Condition Noise Level 0.77 - 1.0

Early Stopping 10−5 10−5 10−5

Table 5. Model hyperparameters

parameter value

patch size 2
joint depth 8
text depth 6
image depth 6
dim text 1024
dim image 1024
dim joint attention 1024
QK RMSnorm true
dimension per head 64
number of heads 8

Table 6. Training Hyperparameters

Parameter Stage 1 Stage 2 Stage 3

Num Itr 600K 200K 140K
EMA-β .99999 .9999 .9999
Batch Size 256 512 512
Optimizer AdamW AdamW AdamW
Learning Rate 2e-4 2e-4 2e-4
Adam-β’s [.9, .9] [.9, .9] [.9, .9]
Weight Decay 0.03 0.03 0.03

C.2. Training Strategy

We divide our training into several stages. This is a standard practice for training vision-language models. In text-to-image
diffusion models, a pretrained text encoder is used to achieve alignment between the text semantics and the image features.
Popular choices in the literature are using CLIP or T5 as text encoders (Esser et al., 2024). However, in our use case, we
require training on masked text, for which the availability of pretrained encoders is limited. For this reason, we decided
not to use a pretrained text encoder. This has the advantage that we don’t rely on any pretraining, which reduces the
computational requirements of our model.

Stage 1: Text-image Alignment During this stage, we train both the joint embedding and the continuous decoder. We allow
noisy text to be received as input to our model, meaning that we train on all possible combinations of s and t, but without
worrying about the text prediction task. We present all training hyperparameters across all stages below.

Stage 2: Text prediction and Image Improvement In this second stage, we freeze the joint embedding. We found that by
doing so, we can simplify the training. The joint embedding is now capable of generating meaningful latent representations,
which can then be used to predict clean text from masked tokens and a latent image representation.

Stage 3: Multimodal Generation Finally, we train both the image and text decoders. This is useful because the image
decoder hasn’t been trained specifically to predict from the frozen joint embeddings. Training the text decoder is not
necessary, but we can get some extra training time by doing so. After this stage, our model is now capable of performing all
tasks.

Optional - Stage 4: Fine-tuning on downstream Tasks When necessary, our models can be fine-tuned on downstream
tasks to improve the performance.

C.3. Sampling

For sampling, we use the samplers described in Alg. 3, Alg. 4, and Alg. 5, where we do not use guidance for the discrete
component. Our default values for sampling are presented in Table 4.
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C.4. Hyperparamters

We include the network and training hyperparameters in table 5 and 6 respectively. The total model contains 578M
parameters and the joint embedding plus a single modality is about 481M.

D. Experimental Details on Mixed-type Tabular Data Synthesis
D.1. Choice of Forward Process

We consider the same forward process discussed in App. B.1, with βt and σs given as

βt = βstart(1− t) + tβend

σs =
1− δ

1− (1− δ)s

βstart = 0.1, βend = 20 δ = 10−5

D.2. Detailed description of datasets

We evaluate our model on six tabular datasets (https://archive.ics.uci.edu/datasets): Adult, Default,
Shoppers, Magic, Beijing, and News. Beijing and News datasets are designed for regression task while the other four
datasets are for the classification task.

Table 7. Statistics for the tabular datasets.
Dataset #Rows #Numerical #Categorical #Training #Test Task

Adult 48,842 6 9 32,561 16,281 Classification
Default 30,000 14 11 27,000 3,000 Classification

Shoppers 12,330 10 8 11,097 1,233 Classification
Magic 19,019 10 1 17,117 1,902 Classification
Beijing 41,757 7 5 37,581 4,176 Regression
News 39,644 46 2 35,679 3,965 Regression

D.3. Model architecture and training details

The embedding for every numerical feature in the data is a summation of its type embedding and scale embedding. All
numerical values share the same type embedding, which is a look-up table of size number of numerical features by the
hidden dimension. Each numerical value is passed through a 3-layer MLP that expands a single numerical value to an
embedding vector with the size of the hidden dimension. Categorical features in the data are individually embedded through
a list of look-up embedding tables. The look-up embedding table has the size of the number of categories + 1 (with one extra
mask token) by the hidden dimension. Then all the categorical look-up embedding tables are concatenated and treated as the
categorical embedding for this dataset. The building block of our model is adopted from DiT (Peebles & Xie, 2023). The
sinusoidal timestep is passed through a 2-layer MLP before input into the DiT blocks. After adding the integer positional
embedding to the embedding, numerical embeddings and categorical embeddings are concatenated and input into DiT
blocks. We used 4 DiT blocks with hidden dimension = 24 and number of heads = 4. The final layer splits the output into
the numerical latent and a list of individual categorical latent. The latent vectors are passed into 3-layer MLPs to obtain the
corresponding scores.

The noise perturbation is the variance preserving (VP) SDE. The training loss a weighted summation of the score matching
loss for numerical features and score entropy loss for categorical features. The weighting parameter is chosen to balance the
numerical and discrete loss. The optimizer is AdamW with learning rate = 10−3, weight decay = 0.03, β = (0.9, 0.9). A
linear rate warm-up scheduler is used with warmup steps = 200. The training batch size is 2048. We used EMA model
for final evaluation. During sampling, we use Euler method for the continuous diffusion and tau-leaping for the discrete
diffusion.
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D.4. Evaluation

We compare our model with five most recent generative models that are specifically designed to operate on tabular data:
GOOGLE (Liu et al., 2023), StaSy (Kim et al., 2022), TabDDPM (Kotelnikov et al., 2023), CoDi (Lee et al., 2023), and
TABSYN (Zhang et al., 2023). GOOGLE is a VAE-based method while the other four are all diffusion-based methods.

• Shape is a metric computed via the Kolmogorov-Smirnov Test between continuous distributions and Total Variation
Distance between the probabilities for categorical values, measures, and compares the column-wise density between
real and synthetic data.

• Trend is a metric that captures pair-wise column correlation by computing Pearson correlation for numerical columns,
contingency similarity for categorical columns, and contingency similarity between bucketed numerical values and
categorical values.

• MLE is the testing accuracy of the classification or regression task on real data after training an XGBoost Classifier or
an XGBoost Regressor on the synthetic tabular data. For detailed training and optimization pipelines of MLE metric,
please refer to the standardized pipeline proposed in Zhang et al. (2023).

• α-precision evaluates if the synthetic data are from the same distribution as real-world data.

• β-recall quantifies whether the synthetic data can cover the entire distribution of the real data.

Table 8. Performance on the Shape metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News

GOOGLE ∼ 5.6M 83.03 82.98 77.67 98.10 83.07 74.68
STaSy ∼ 10.3M 88.71±0.06 94.23±0.06 90.63±0.09 93.71±0.13 93.29±0.03 93.11±0.03

CoDi ∼ 25.0M 78.62 ±0.06 84.23±0.07 68.16±0.05 88.44±0.26 83.06±0.02 67.73±0.04

TabDDPM ∼ 11.7M 98.25 ±0.03 98.43±0.08 97.28±0.13 98.99±0.09 98.70±0.03 21.25±0.01

TABSYN ∼ 10.7M 99.42 ±0.06 99.15±0.04 98.57±0.24 99.12±0.09 98.88±0.05 98.36±0.04

TABSYN (reproduced) ∼ 10.7M 99.29±0.06 97.12 ±0.09 98.36±0.10 99.02±0.10 96.35±0.10 98.09±0.03

Our model ∼ 64K 99.47±0.04 99.36±0.09 98.50±0.07 98.96±0.16 97.94±0.06 96.80±0.05

Table 9. Performance on the α-precision metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News

GOOGLE ∼ 5.6M 50.68 68.89 86.95 90.88 88.81 86.41
STaSy ∼ 10.3M 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33

CoDi ∼ 25.0M 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12

TabDDPM ∼ 11.7M 96.36±0.20 97.59±0.36 88.55±0.68 98.59±0.17 97.93±0.30 0.00±0.00

TABSYN ∼ 10.7M 99.52±0.10 99.26±0.27 99.16±0.22 99.38±0.27 98.47±0.10 96.80±0.25

TABSYN (reproduced) ∼ 10.7M 99.32±0.22 95.57±0.33 99.22±0.31 99.21±0.27 98.87±0.15 96.30±0.28

Our model ∼ 64K 99.47±0.17 99.47±0.21 98.78±0.42 98.75±0.36 98.49±0.24 97.47±0.27

Table 10. Performance on the β-recall metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News

GOOGLE ∼ 5.6M 8.80 14.38 9.79 9.88 19.87 2.03
STaSy ∼ 10.3M 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32

CoDi ∼ 25.0M 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.30

TabDDPM ∼ 11.7M 47.05±0.25 47.83±0.35 47.79±0.25 48.46±0.42 56.92±0.13 0.00±0.00

TABSYN ∼ 10.7M 47.56±0.22 48.00±0.35 48.95±0.28 48.03±0.23 55.84±0.19 45.04±0.34

TABSYN (reproduced) ∼ 10.7M 47.75±0.21 42.95±0.30 47.57±0.44 47.92±0.28 49.72±0.27 44.37±0.22

Our model ∼ 64K 49.65±0.26 48.29±0.32 51.25±0.50 47.66±0.38 57.44±0.20 44.58±0.27
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Figure 5. Visual representation of ground truth labeled Riemannian data.

Figure 6. Peformance of inferring discrete label based on SO(3) data.

E. Additional Experiment on Riemannian-Discrete Multimodal Diffusion Model
In this section, we demonstrate another application of our proposed multimodal diffusion model framework by focusing
on the combination of Riemannian and discrete diffusion models on the state spaceM× X, whereM is a Riemannian
manifold and X is a finite state space. We will introduce the method and validate it on a toy example consisting of synthetic
data on SO(3)× X.

E.1. Riemannian-Discrete Multimodal Diffusion Model

We consider the setting where the target data distribution pdata(x, y) is defined on SO(3)× X, where x ∈ SO(3) and y is a
discrete label in X. Since SO(3) is a compact manifold, we choose the following as the forward process,

dXt = dBMt
Ys ∼ CTMC(Qs)

(X0, Y0) ∼ pdata(x, y)

(18)

where Qs = σsQ
mask is the same design choice as in (15), dBMt is a Brownian Motion on SO(3). Note that the stationary

distribution of (18) is Haar(SO(3)) × δM, where Haar(SO(3)) is the Haar measure on SO(3), a generalized notion of
uniform distribution. Following a similar derivation as is presented in the paper, we can derive its backward process,
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{
dXt = ∇ log p(Xt, Ys, T − t, T − s) + dBMt
Ys ∼ CTMC(Q(Xt, t, s)

(19)

where the gradient∇ is the Riemannian gradient, and Q(Xt, T − t, T − s) is defined for y ̸= ŷ,

Q(x, t, s)(ŷ, y) =
p(x, ŷ, T − t, T − s)

p(x, y, T − t, T − s)
QT−s(y, ŷ)

Axis-angle parametrization. We represent elements of SO(3) using the axis-angle parametrization. We introduce it
briefly here. One can show that any element of SSO(3) can be written as exp(θK) where:

K = a

0 0 0
0 0 −1
0 1 0

+ b

 0 0 1
0 0 0
−1 0 0

+ c

0 −1 0
1 0 0
0 0 0


and (a, b, c) ∈ S2 is a vector on the sphere, θ ∈ R+. The representation ((a, b, c), θ) is called the axis-angle representation.

Dataset of the toy problem We consider a simple toy example of labeled data on SO(3), consisting of Gaussian mixtures,
where each mode corresponds to a unique label. To create the problem, we write elements (a, b, c) ∈ S2 in spherical
coordinates; in this way, only two angles need to be parameterized. We then generate a Gaussian mixture on the space of
these angles. Additionally, we use a von Mises random variable for θ. We present the Python code used to generate the
dataset in Listing E.1 and a visualization of the axis and angles in Figure 5.

As observed in Fig. 5, we have assigned labels to different geographical locations and assigned them to distinct modes on
the map.

Training strategy. We train a simple MLP using a similar strategy as the text-image model. We first train a label to
SO(3) model and add the discrete capabilities in a second phase. To achieve this, we utilize the generalized denoising score
matching loss IGDSM, as described in the main paper, which is derived from the generator computed based on the chosen
forward process. We find that this training strategy is generally robust.

Results. We present samples generated by our method using guidance w = 4 in Figure 6, we see that our method can
properly recover the data distribution. We also show the unconditional generation in Figure 7. We demonstrate that our
method and training strategy can generalize to other data modalities.

Figure 7. Performance of joint generation of the labeled Riemannian data.
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1 def sample_continental_so3(n_samples, magnitude_kappa=9):
2 continents = {
3 'North_America': {'lat': 45, 'lon': -100, 'weight': 0.2},
4 'South_America': {'lat': -20, 'lon': -60, 'weight': 0.15},
5 'Europe': {'lat': 50, 'lon': 10, 'weight': 0.2},
6 'Africa': {'lat': 0, 'lon': 20, 'weight': 0.15},
7 'Asia': {'lat': 45, 'lon': 90, 'weight': 0.2},
8 'Australia': {'lat': -25, 'lon': 135, 'weight': 0.1}
9 }

10

11 weights = np.array([cont['weight'] for cont in continents.values()])
12 continent_choices = np.random.choice(len(continents), size=n_samples, p=weights)
13 rotation_vectors = np.zeros((n_samples, 3))
14

15 continent_list = list(continents.values())
16 for i in range(n_samples):
17 continent = continent_list[continent_choices[i]]
18 theta = np.pi/2 - np.deg2rad(continent['lat'])
19 phi = np.deg2rad(continent['lon'])
20

21 theta += np.random.normal(0, 0.2)
22 phi += np.random.normal(0, 0.2)
23

24 axis = np.array([
25 np.sin(theta) * np.cos(phi),
26 np.sin(theta) * np.sin(phi),
27 np.cos(theta)
28 ])
29

30 magnitude = vonmises.rvs(magnitude_kappa, loc=np.pi/4)
31

32 rotation_vectors[i] = axis * magnitude
33

34 return rotation_vectors, continent_choices

Listing 1. Code for generating the dataset

F. Additional Numerical Results for Text-Image Generation
CLIP Similarity We generate 5000 samples and evaluate the CLIP similarity between the text and image. For this
evaluation, we use CLIP-ViT-large-patch14 and we limit the captions to 77 tokens. We use our sampling default values
during this task. We obtain a CLIP score of 18.46 for text-to-image generation, 17.44 for image-to-text generation, and
17.57 for image-text joint generation.

Generated examples visualization We display non-cherry-picking generated examples in all three scenarios in Fig. 8,
Fig. 9, Fig. 10.
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Figure 8. Visualization of texts generated conditioning on the images.
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Figure 9. Visualization of images generated conditioning on the text caption.
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Figure 10. Visualization of text-image pairs generated jointly and unconditionally.
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