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Abstract

Diffusion models have demonstrated remarkable
performance in generating unimodal data across
various tasks, including image, video, and text
generation. On the contrary, the joint generation
of multimodal data through diffusion models is
still in the early stages of exploration. Existing
approaches heavily rely on external preprocess-
ing protocols, such as tokenizers and variational
autoencoders, to harmonize varied data represen-
tations into a unified, unimodal format. This
process heavily demands the high accuracy of
encoders and decoders, which can be problem-
atic for applications with limited data. To lift
this restriction, we propose a novel framework
for building multimodal diffusion models on arbi-
trary state spaces, enabling native generation of
coupled data across different modalities. By in-
troducing an innovative decoupled noise schedule
for each modality, we enable both unconditional
and modality-conditioned generation within a sin-
gle model simultaneously. We empirically vali-
date our approach for text-image generation and
mixed-type tabular data synthesis, demonstrating
that it achieves competitive performance.

1. Introduction

Recent years have witnessed the tremendous success of
diffusion generative models in various applications. The
seminal works of continuous diffusion models on Euclidean
spaces (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho
et al., 2020) have led to state-of-the-art methods for tasks
such as image generation (Dhariwal & Nichol, 2021; Bao
et al., 2023a; Karras et al., 2022; 2024b), video generation
(Ho et al., 2022; Jin et al., 2025), time series forecasting
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(Chen et al., 2024b; Rojas et al., 2025) and in domains
such as robotics (Chi et al., 2023) and genomics (Luo et al.,
2024; Zhu et al., 2025a). Pioneering works have shown
that diffusion models can also be extended to curved spaces
(De Bortoli et al., 2022; Huang et al., 2022; Cheng et al.,
2025; Chen & Lipman, 2024; Zhu et al., 2025b), enabling
a high-fidelity generation of structured data on manifolds,
such as material configurations (Sriram et al., 2024) and
protein backbones (Watson et al., 2023; Yim et al., 2023).
Recently, discrete diffusion models have emerged as the
cornerstone for modeling categorical data with inherent
discrete structures (Campbell et al., 2022; Lou et al., 2024;
Campbell et al., 2024; Gat et al., 2024). Discrete diffusion
models have imposed great impacts on protein sciences
(Wang et al., 2024b), graph generation (Xu et al., 2024; Li
et al., 2025), and text generation (Nie et al., 2025a;b). In
general, diffusion models have shown top performance in
most scenarios with unimodal data.

Generative models also demonstrated successes in multi-
modal data lately. For example, conditional diffusion mod-
els showed remarkable capabilities in tasks such as text-to-
image generation by accurately synthesizing pictures follow-
ing given instruction prompts (Ramesh et al., 2022; Chen
et al., 2023; Esser et al., 2024). It’s worth noting that such
models still generate single-modality outputs (such as im-
ages). Therefore, to jointly generate multimodal data, lever-
aging only single-task-performing conditional models is
extremely computationally inefficient, as it requires combin-
ing multiple independently trained models by sequentially
applying them.

An alternative approach is to use a single multi-modal model
that captures the joint distribution of multiple modalities.
Such an approach often leads to strong performances as it al-
lows information to mix across modalities (Li et al., 2024a;
Meta, 2024). Existing approaches of this type are mainly
based on autoregressive models (AR), such as Chameleon
(Meta, 2024) and Unified-IO (Lu et al., 2024), where data
of different modalities are represented uniformly as tokens
and generated autoregressively from left to right. Apart
from these, attempts have also been made to realize this
idea using diffusion/flow-based methods, such as UniDif-
fuser (Bao et al., 2023b), MM-Diffusion (Ruan et al., 2023),
AVDIT (Kim et al., 2024), UniDisc (Swerdlow et al., 2025),
OmniFlow (Li et al., 2024a), etc. These methods generate
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Figure 1. By injecting noise into different modalities in a decoupled fashion, we enable the unconditional and modality-conditioned
generation in a single model. (a) Joint generation of image and text. (b) Image generation given text captions as conditions. (c) Text

generation given images as conditions.

multimodal data simultaneously through iterative denoising
of a randomly sampled initial noise.

A commonality among the aforementioned methods de-
signed for joint multimodal generation is that they typically
rely heavily on preprocessing techniques to harmonize
the varied data representations into a unified format,
thereby creating a single modality. One approach (taken
by Chameleon (Meta, 2024), UniDisc (Swerdlow et al.,
2025), etc) is to cast multimodal inputs all into discrete to-
kens with modality-dependent tokenizers built with discrete
or vector-quantized variational encoders (VQVAE) (Van
Den Oord et al., 2017; Esser et al., 2021). An alternative
route (considered by UniDiffuser (Bao et al., 2023b), Omni-
Flow (Li et al., 2024a), etc) is to preprocess the multimodal
data by embedding them into continuous-valued latent vec-
tors with encoders trained with variational encoders (VAE)
(Kingma, 2013) or representation alignment (e.g., CLIP
(Radford et al., 2021)).

For these approaches, regardless of whether discrete tokens
or continuous latents are used, generation is performed in
a unimodal space, and the original data modality must be
recovered through decoding. Therefore, these pipelines may
suffer from generation artifacts due to the limited accuracy
of the decoders (Hoogeboom et al., 2024). Additionally, the
requirement for high-performance encoder-decoder pairs
can be problematic to satisfy for applications that lack abun-
dant high-quality data (Zhang et al., 2023). Due to the
requirement for task-specific algorithm designs, these meth-
ods also cannot be conveniently extended to generate data
composed of arbitrary modalities. Therefore, a natural ques-
tion to ask is the following:

Can we design a principled framework to enable joint
modeling of multi-modal data in their native spaces without

a unified representation?

Diffusion models serve as a powerful backbone for build-

ing such a framework. Theorists have shown that diffusion
models can be extended to a more general idea called de-
noising Markov models (Benton et al., 2024; Ren et al.,
2025b), providing a solid theoretical foundation for a multi-
modal extension. In addition to this, existing works such as
MultiFlow (Campbell et al., 2024) and Generator Matching
(Holderrieth et al., 2024) have verified the effectiveness of
multimodal models in native state spaces in protein de-
sign. Motivated by these successes, we propose a general
framework for building multimodal diffusion models on ar-
bitrary state spaces without the need for data format unifiers.
Our contributions are three-fold:

1. We propose a novel framework for building multimodal
diffusion models by combining the native diffusion
models designed for each data modality, and derive a
unified learning objective. Under our design, learning
multimodal diffusion models is as straightforward as
performing a joint optimization on a sum of unimodal
learning losses, despite requiring a non-trivial proof.

2. We introduce decoupled noise schedules for each data
modality and theoretically justify the validity of score
learning under the presence of multiple time variables.
We demonstrate that this design enables us to simul-
taneously handle both unconditional and conditional
multimodal generation in one single model. We also
propose a novel guidance mechanism effective in both
use cases for enhancing generation quality.

3. We experiment with text-image generation and mixed-
type tabular data synthesis, achieving competitive per-
formance on both tasks with more parameter-efficient
models, without relying on pre-trained models or pow-
erful extra encoders. More importantly, we devise a set
of training strategies for the task of text-image, which
is crucial for achieving success.
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Figure 2. Network backbone for text-image generation, motivated by MMDIT (Esser et al., 2024) and DiT (Peebles & Xie, 2023).

2. Preliminaries

In this section, we review basic concepts and formulations
of common diffusion models in different state spaces.

2.1. Continuous Space Diffusion Models

For continuous diffusion models (Song et al., 2020; Ho et al.,
2020), one considers a continuous time stochastic differen-
tial equation (SDE) { X }o<¢<7 on the Euclidean space R?
as the forward process. The process is characterized by the
following dynamic,

dX; = f(X¢,t)dt + g(t)dW,

where f : R? x R — R? is the drift and g : R — R is the
diffusion coefficient. We denote p; = Law(X}). f and g
are often chosen that pr is an easy-to-sample distribution. A
popular pick is the time re-parametrized Ornstein Uhlenbeck
process, which corresponds to the selection of f (X, t) =
—% B: X and g(t) = +/B;, for some positive noise schedule
Bt In such case, pr ~ N (0, I) for reasonably large T". It
can be shown that the backward process is another SDE
with a different drift (Anderson, 1982),

dXy = f(X¢, t)dt — g*(t) Vi log pi(Xe)dt + g(t) AW,

The common practice in training is to define the score vector
s(X4,t) = Vi logp:(X:) and we approximate it with a
neural network sy, estimated by minimizing a variant of the
following score matching loss (Vincent, 2011),

T
mgin/ ]EXtht{Hs@(Xt,t)—s(Xt,t)Hz}dt. (1
0

2.2. Discrete Space Diffusion Models

For discrete diffusion models (Campbell et al., 2022; Lou
et al., 2024; Ou et al., 2025; Sahoo et al., 2024; Shi et al.,

2024), one considers a continuous time markov chain
(CTMC) {X:}o<t<r on a finite state space X as the for-
ward process. The distribution of X; is represented by a
vector p; in the probability simplex on RI*I. The dynamic
of X, can be characterized by the following equation,

dp;

- Q;pt, where Q; = (Q¢(2,Y)) e yex

is a transition matrix satisfying that for any z € X,
Qt(l‘?x) = 722}7&1‘ Qt(y7x)’ and for any T % y € X7
Q¢(x,y) > 0. We will also denote the dynamic of X using
the following notation,

Xt~ CTMC(Qt)

Q, is often chosen such that pr is a simple distribution,
such as uniform on X or Dirac on a masked state. Common
choices include uniform or masked transition matrix (Lou
et al., 2024). It is known that the backward process is an-
other process of the same form but with a different transition
rate matrix (Kelly, 2011), which can be described as

X; ~ CTMC(Q,)

where the rate matrix Q, = (Q,(2,y))s yex is defined as,

7;75(:1},.%')_ 717*% ;j t(x)y)a x#yex
Z J— )
y?éﬂl Et(y/7l'), I:ye X

In discrete diffusion model training, one usually defines
— ()

the concrete score vector s(Xy,t) = (pt(Xt) )yEX’

approximate it with a neural network sy (X, t), estimated

by minimizing the following a variant of the following score

and we
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entropy loss (Benton et al., 2024; Lou et al., 2024),
T
. (Xtvt)’y
mem/o X}Em [ Z Qu(X¢,y) <3t(Xta t)ylog ;(Xi,t),
#£X

— 5(Xy, 1)y + s0(X, t)y)} dt. )

2.3. Riemannian Diffusion Models

For Riemannian diffusion models, e.g. (De Bortoli et al.,
2022; Huang et al., 2022), one considers a continuous time
SDE { X }o<¢< on the manifold M as the forward process,
characterized by the following dynamic,

dX, = f(X;, t)dt + dWM,

where f : M xR — T, M is the drift, and thM is
the manifold Brownian motion. For a compact manifold
M, one can pick f = 0, and the corresponding pr ~
Uniform(,M) is the uniform distribution on the manifold
for large T'. It’s proved that the backward process is another
SDE on the manifold (De Bortoli et al., 2022),

dX; = f(X;,t)dt — Vogps(X;)dt + dWM,

where V is the Riemannian gradient on M. For Rieman-
nian diffusion model training, similar to the continuous case,
one defines the score s(X¢,t) = Vlog p;(X;) and approxi-
mates it with a neural network sy, which typically requires
special design to meet the requirement sg(X¢,t) € T'x, M.
Learning is performed through a variant of Riemannian
score matching (De Bortoli et al., 2022; Huang et al., 2022),

T
mein/o EXMt[Hse(Xt,t)—s(Xt,t)||udt. 3)

3. Methodology

In this section, we present the framework for constructing
multimodal diffusion models on general state spaces in their
native forms. We first discuss a unified perspective on dif-
fusion models and then present a learning algorithm for
diffusion generative modeling of multiple data modalities,
where each modality has an independent time variable. Such
a framework allows any-to-any modality generation by
one single model, which simultaneously includes the joint
unconditional generation of all modalities and the condi-
tional generation of a subset of modalities given the rest.
Finally, we discuss the Continuous-Discrete Multimodal
Diffusion as an application of this framework to illustrate
its importance and flexibility.

3.1. Unified Perspective on Unimodal Diffusion Models

While common unimodal diffusion models (continuous, dis-
crete, Riemannian, etc) have distinct forward/backward pro-
cesses, learning objectives, and score parameterizations,

they are essentially the realization of denoising Markov
models (Benton et al., 2024; Ren et al., 2025b) in different
situations. At a high level, diffusion models consist of a
Markovian forward process that gradually injects ‘noise’ to
transform the target data distribution into a simple distri-
bution, and a backward generative process that inverts it
using information learned from the marginals of the forward
process. This abstract view is formally summarized below.

Consider a Markov process { X, }o<i<r With Xo ~ paat,
defined on a state space X'. A Markov process can be con-
veniently characterized using the notion of infinitesimal
generators. Since X is not necessarily time-homogeneous,
we instead consider the augmented process X = (Xy,t)
defined on the augmented space X, = X X [0, +00). Under
mild regularity assumptions, X is a Feller process, and its
generator £ can be defined as,

Lf(x)= }5% E[f(XtﬂXot: z] — f(z)

)

and f : X, — Ris aclass of test function. We can under-
stand the generator through its decomposition £ = 9; + L,
where £ is an operator that acts on functions defined on the
original space X. We can also unify the characterization
of the evolution of marginals p(-,t) = Law(X;) as well as
the score learning objectives in terms of £. Under weak
technical assumptions, p(+, t) satisfies the following general
form of Fokker-Planck equation,

op(z,t) = ﬁ*p($>t)7 p(SL’, 0) = Paata(T)-

where £* is the adjoint operator of L. Moreover, we can
define a generalized explicit score matching objective (Lyu,
2012; Benton et al., 2024),

t,pe ﬁ

where ®(f) = f~1Lf — Llog f,and 8 : X x [0, +00) —
RT . Note that this is an extension of the common score
matching objectives, and we could interpret Jgsm as a loss
function that compares the ‘gradient log’ of p(z, t) to that
of (x,t), through which we learn the information of the
forward marginal p;. For example, in continuous diffusion
withg(t) =1, L = 8;+ f -V + 1 A, we recover the explicit
score matching objective on Euclidean space (Hyvirinen
& Dayan, 2005), with ®(p/3) = 1||Vlogp — Vlog 3|2
Note that the explicit score matching objectives are not
tractable for training purposes; we will later introduce their
equivalent, trainable variants.

Jesm(B) = E [(b <p) (Xt,t)] (4)

3.2. Versatile Multimodal Diffusion Models with
Decoupled Times

Building on this unified description of unimodal diffusion
models, we extend the denoising Markov model framework
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(a) Image conditioned on text. Sample
generated using the caption: “The image
features a sailboat sailing on a large body
of water, with a city skyline in the back-
ground.”

»»

water.

(b) Text conditioned on Image. We gen-
erate the following caption: “The image
features a cityscape with a large build-
ing, a bridge, and a city skyline in the
background. The city is situated near the

(c) Joint generation of text and image.
The caption corresponding to this image
was: “The image features a large white
boat with a blue roof, which allows peo-
ple to look out. The boat is traveling
through a body of water.”

Figure 3. Visualization of samples generated by our approach. Captions are truncated for brevity.

to a multimodal scenario. This enables us to perform genera-
tive modeling of data distributions consisting of mixed-type
data without requiring complicated preprocessing pipelines.

We begin by formally defining the forward process in terms
of generators of Markov processes. Assume that we have
a data distribution pg,, defined on the product state spaces
X1 x . x X" For1 < i< n,we have a Markov process
{X! }1<ti<r on X?, which is regular enough with a unique,
easy-to-sample stationary distribution 7*. We pick 7" so that
Law(X%) ~ 7’ for each 1 < i < n. Now we can introduce
the following joint forward process,

Xe= (XA, 0 Xh X)), 0t "< T
(X0, -y Xs oo s X3 ~ Ptata(®) ®)
where t = (t!,...,t"), x = (a!,...,2™). We consider

the i-th augmented process X' = (X/ ,t;) € X} = X" x
[0, +00) and we denote its generator as L xi. We slightly
abuse the notation and define the application of Ly to a
multivariable test function as the following,

Lx:f(x) = lim Elf(@, . 'Xtii’ 7 x{")|X8 =a]- /(=)

ti—0 t*

We assume that Xtii are independent Markov processes
when conditioned on initial conditions. We want to em-
phasize that the design of this forward process (5) is not
only for injecting probabilistically independent ‘noises’ into
each modality. More importantly, it allows each modality to
be noised in an asynchronous way.

To fully characterize and understand this forward process
as a whole, we need to learn the full joint marginal of X,
which we denote as p(x,t) and should be understood as
the joint distribution of X', ..., X" at time ¢!,...,t". To
visualize this idea, we demonstrate the forward process with
two independent time variables in Fig. 1.

To ‘invert’ this forward process for generative modeling pur-
poses, we will need to learn information from the forward

process, similar to the case of unimodal diffusion models
where one performs score matching. Extending the frame-
work of (Benton et al., 2024), we introduce the following
generalized explicit score matching loss (GESM) for learn-
ing the full marginal p(x, t).

Igesm =

> LD tost ) ot
=0 )

t,xe~p(-,t)
here By : X! x --- x X7 — RT is our parameterized
unnormalized distribution. We have the following important
properties that characterize the optimizer of Zgggwm

Theorem 1. Zggsy > 0, with equality reached when
Bo(x,t) x p(zx,t).

Thm. 1 states that the minimizer of Zggsnm is p(, t) up to
a multiplicative constant. In practice, we often do not di-
rectly model 3y, but instead parameterize its score functions,
which are invariant to multiplicative constants. For example,
in continuous diffusion, one often parameterizes V log Sy.
This makes the optimization of Zgggym a well-defined prob-
lem with a unique minimizer in terms of score learning. In
practice, one can’t evaluate Zgggn as it’s intractable due to
the true marginals p being unavailable a priori. Luckily, one
can efficiently compute the following denoising and implicit
variants of Zggrsnm for learning purposes.

Theorem 2. Zqrsm, Zapsm and Zaisu are equivalent up
to constants, where

Iopsm =

"\ Lxi(pejo/Bo)(xe, t)
—  (ptjo/Bo) (e, 1)

. — Lxilog(ptjo/Be) (4, t)]
Pelo

Igism = tE

WPt
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3.3. Continuous-Discrete Multimodal Diffusion

We consider a distribution paa, (7, y) where 2 € R%, 3y € X,
where X is a finite space. Important applications include
text-image joint generation, mixed-type tabular data synthe-
sis, etc. In this case, the natural choices on each state space
would be continuous diffusion on R? and discrete diffusion
on X. This results in the following forward process,

Ys ~ CTMC(Q5)7 (X07 YO) ~ pdata($7 y)
Let’s denote the joint marginal of (X, Y;) as py o(X¢, Y5).
with these choices of Markov processes, Lx = 0y + f -V +
%g2(t)A, and Ly = Js + Q5. Therefore, we can compute
the generalized denoising score matching objective as,

Proposition 1. For forward process (6), Zgpsm is equiva-
lent to the following objective,

1
VL E Sl = Viogpi(aleo) |+
,8,20,50~Po L2

Zt,Ys~Pt,s|0

> Qs(ys,y)<(sg”)y _ Ps(ylyo)

y#Ys ps(yslyo)

IOg(sg)y)]

where sg( ,sg is the learned continuous/discrete score.

Importantly, Prop. 1 shows an amazing result that score
functions of multimodal joint marginal p(-,-, ¢, s) can
be learned through score matching with unimodal condi-
tional score for each modality. This is a non-trivial result
as Zgpswm suggests that, to perform multimodal generation,
we need to match the score network with conditional scores
of the joint distribution such as V log p; s(x+, ys|zo, yo) in-
stead of V log p;(x+|xo). However, thanks to Bayes’ rule
and the design of independent noise injection per modal-
ity, the two conditional scores are identical. Thus, while
learning multimodal diffusion models may seem as simple
as jointly optimizing a sum of unimodal diffusion model
training objectives, the theoretical support for such a naive
approach is grounded much deeper.

With the learned score functions, we can ‘invert’ the forward
process for generative purposes, which is stated in Prop. 2.
Proposition 2. The following process (X:,Ys) has
marginal distribution equals to p(x,y, T — t,T — s),
AdX; = —f(Xt, T —t) + g*(T — t)Vlog P 1.o(X;, Ya)dt
+g(T ﬁ)dBt
Yy ~ CTMC (Q (Xta t, S)>> (X07 YO) ~ p(% Y, T7 T)

e
where ?t,s =pr—i1—s Q(Xy,t,s) is a rate matrix with
. s (Xt !
y',y entry being $i’,s((X‘h“;)) (Qr—s)yy wheny' #y.

We note that this ‘backward process’ is not the time reversal
of the forward process in a strict sense, as it involves intro-
ducing multiple time variables into the system. However,

OO
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Figure 4. Performance of noisy guidance on MS-COCO FID-10K.
We note that using partially noised conditions results in a better
performance. A guidance interval of ¢ € [0.3,0.8] was used.

this enables us to design versatile conditional and uncondi-
tional generative sampling algorithms by choosing different
value combinations of times (¢, s). We defer the detailed
discussion of design choices and sampling algorithms for
continuous-discrete multimodal diffusion to App. B.

Multimodal unconditional generation. To jointly gener-
ate clean data distributed as pyu, (2, y), we introduce a sim-
ulation time variable u € [0, T'], and pick a time parameteri-
zation t = a1 (u), s = ae(u) such as «; : [0,7] — [0, 7] is
continuous, non-decreasing with «;(0) = 0, o;(T") = T for
i = 1,2. With this time-reparameterization for both time
variables, we make the backward process a valid, ready-to-
simulate process. This enables us to start from pure noise
and generate samples from the data distribution uncondi-
tionally for both modalities. We can also choose a singular
time re-parameterization so that the simulation amounts to
a 2-stage approach for multimodal generation, where we
first generate one modality and sample the rest conditionally
based on the generated sample.

Unimodal conditional generation. This framework
with decoupled time also enables conditional generation
of modalties by simulating the associated backward process.
‘We have the following simple but important observations,

 Given a partially noisy text Y and its noise level s, sim-
ulating the X backward dynamics generates a sample
X7~ pdala(xp/w 5)

* Given a partially noisy image X, and its noise level
t, simulating the Y backward dynamics generates a
sample Y7 ~ paaa (y]| X¢, t)-

Note that the choices of ¢ or s in the conditioning are not
restricted. When picking ¢ or s as 7', this is equivalent to
single-modality unconditional generation, as Xt or Y are
pure noise. When picking ¢ or s as 0, this is equivalent
to conditional generation, as X or Yj are clean data sam-
ples. More interestingly, when picking 0 < s,t < T as
conditions, we generate samples based on partially noised
conditions. This gives rise to the following new guidance
mechanism for enhancing generation quality.
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Table 1. Results on the text to image conditional generation on MS-COCO. We mark the extra encoders leveraged by each model with
the corresponding sizes and types. SR: super resolution, TE: text encoder, VAE: variational autoencoder, VE: visual encoder, VQ-GAN:
Vector Quantized GAN, VQ-VAE: vector-quantized variational autoencoder.

Model FID  Number of Images #Params Extra Encoders

Models for Text-to-Image generation only
DALL-E 2 (Ramesh et al., 2022) 10.39 650M 6.5B 123M (TE) + 700M (SR)
Imagen (Saharia et al., 2022) 7.27 860M 3B 4.6B (TE) + 600M (SR)
Stable Diffusion (Rombach et al., 2022) 12.63 400M 1.45B 123M (TE) + 83M (VAE)
PixArt-ce XL/2 (Chen et al., 2023) 7.32 25M 600M 123M (TE) + 83M (VAE)
MMDiT-improved (Ifrigi et al., 2024) 6.79 12M 600M 123M (TE) + 83M (VAE)

Models for multimodal generation and understanding
Show-o (Xie et al., 2024) 9.24 35M 1.3B 115M (VE) + 307M (VQ-VAE)
Transfusion (Zhou et al., 2024) 6.78 692M 7B 86M (VAE)
Chameleon (Meta, 2024) 26.7 600M 7B 307M (VQ-GAN)
JetFormer (Tschannen et al., 2024) 20.86 1B 2.75B —

Models for multimodal generation only
Versatile Diffusion (Xu et al., 2023) 11.10 400M 1.45B  123M (TE) + 83M (VAE) + 110M (TE)
UniD3 (Hu et al., 2022) 25.11 592K 600M 123M (TE) + 307M (VQ-GAN)
Our model 16.16 12M 481M 83M (VAE)

3.4. Noisy Guidance s = 0and 0 = T. The scenario of conditional generation

Guidance techniques have been a core component in mod-
ern diffusion models for improving generation quality
(e.g., Dhariwal & Nichol, 2021; Ho & Salimans, 2021;
Kynkidnniemi et al., 2024; Li et al., 2024b). For contin-
uous diffusion models, with strength w, the classifier-free
guidance is obtained by interpolating the unconditional and
conditional score functions,

wsg(xe,t,¢) + (1 — w)se(xe, t,0) @)

One perspective to understand the effectiveness of guidance
methods is to view the unconditional score function as a
conditional model with a fully-noised condition input, and
the interpolation effectively serves as a correction of the
conditional scores. However, the unconditional score might
not be the best choice of correctors, as it causes an excessive
trade-off between fidelity and diversity, resulting in a signif-
icant loss in the latter (Karras et al., 2024a). This raises an
interesting question about whether CFG can be improved
by finding a better alternative to the unconditional score in
(7). In fact, within our framework, we notice that

Sg((xtv Ys, tv S) ~ VJF logpt,s(xt7 yg) = vﬁ? logp(zt, t|y8’ S)

The last equality results from Bayes’ theorem, and it shows
that our model in fact learns conditional scores at all noise
levels. Leveraging this fact, we propose a new form of
guidance named noisy guidance, where the unconditional
score in (7) is replaced with a class of conditional models
with conditions noised to different levels:

®)

We note that the noisy guidance framework is a more gen-
eral one, as it recovers the vanilla setting of CFG when

wse(mtaysvta S)+(17W)89(xt7y0’7t70) og>s

corresponds to s = 0 (a clean condition ¥ is given), and
we choose T > ¢ > 0 to improve generation quality with a
partially conditioned guiding model. More interestingly,
noisy guidance can even be applied to unconditional gen-
eration in an unsupervised way where s > 0. In this case,
while s is changing (since we are also generating y,), we
can still apply guidance in this process by adaptively picking
o as long as 0 > s. These observations indicate the power
and robustness of noisy guidance as a by-product of our
proposed multimodal diffusion model learning framework.

To showcase the performance of noisy guidance, we evalu-
ate FID-10K on MS-COCO (Lin et al., 2014) using different
values of o € [0,1]. We find that partially denoising the
caption results in an improved FID, as shown in Fig. 4. The
superior performance of noisy guidance is possibly due to us-
ing a partially corrupted version of the conditional model
as the guiding model. This aligns closely with the idea of
Autoguidance proposed in Karras et al. (2024a), which uti-
lizes an under-trained, smaller model as the guiding model
instead of the unconditional ones. Similar to Autoguidance,
noisy guidance seeks to identify and reduce the errors made
by the conditional score model by measuring its difference
to the partially conditioned one, boosting the generation
performance. Finally, we remark that (8) is only a special
case applied to continuous diffusion, and a similar idea can
be adapted to other modalities, such as discrete diffusion
guidance (Nisonoff et al., 2024; Schiff et al., 2024).

4. Experiments

To demonstrate the effectiveness and relevance of our frame-
work for training multimodal diffusion models, we con-
sider two tasks: text-image generation and mixed-type tab-
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Table 2. Performance on the Trend metric in percentage (%). Higher values indicate better performance. Best performance in bold.

Second best in underline.

Methods #Parameters ‘ Adult Default Shoppers Magic Beijing News

GOGGLE (Liu et al., 2023) ~ 5.6M 54.71 78.06 76.10 90.53 54.06 76.81
STaSy (Kim et al., 2022) ~ 10.3M 85.49+025 94.04+026 91.51+015 93.39+053 92.00+0.10 96.93+0.04
CoDi (Lee et al., 2023) ~ 25.0M 77.51+008 31.594005 82.22+0.11 93.47+025 92934015 88.90+0.01
TabDDPM (Kotelnikov et al., 2023) ~ 11.7M 96.99+025 95.11+0.10  93.39+0.16 98.30+022 97.20+009 86.84+0.11
TABSYN (Zhang et al., 2023) ~ 10.7M 98.46+027 97.95+0.12 97.93+021 98.94+031 97.76+028 98.56+0.03
TABSYN (reproduced) ~ 10.7M 98.294022  95.25 +051  97.82+0.14 99.16+0.16 94.86+034 98.52+0.09
Our model ~ 64K ‘ 98.75+009 96.00+123 98.24+0.13  98.85+042 97.42+0.11  98.57+0.16

Table 3. Performance on the MLE metric. Higher values in AUC and lower values in RMSE indicate better testing performance. Best

performance in bold. Second best in underline.

Methods #Parameters Adult Default ~ Shoppers Magic Beijing News
(AUCY) (AUCY) (AUCY) (AUCY) (RMSE]) (RMSE)])
GOGGLE (Liu et al., 2023) ~ 5.6M 778+0012 58440005 .658+0052 .654+0024 1.090+0.025 .877+0.002
STaSy (Kim et al., 2022) ~ 10.3M 906+0.001 75240006 91440005 .934+0003 .656+0014  .871+0.002
CoDi (Lee et al., 2023) ~ 25.0M 871+0.006 .525+0006 .865+0.006 .932+0003  .818+0021  1.21+0.005
TabDDPM (Kotelnikov et al., 2023) ~ 11.7M 90740001  .758+0.004 91840005 .935+0003 .592+0.011 4.86+3.04
TABSYN (Zhang et al., 2023) ~ 10.7M 915 +0002  764+0004 92040005 93840002  .582+0.008  .861+0.027
TABSYN (reproduced) ~ 10.7M 91040001  .755+0004 91640004 .939+0003 .655+0012  .851+0.024
Our model ~ 64K ‘ 915+0001 76410002 92410003 .941+0002  .543+0012  .86440.021

ular data synthesis, both of which are accomplished using
the continuous-discrete Multimodal diffusion discussed in
Sec. 3.3. The results for text-image generation are presented
in Sec. 4.1 and the results for tabular data synthesis are
presented in Sec. 4.2. e also include results for combining
Riemannian and discrete diffusion in App. E to demonstrate
the generality of the framework.

4.1. Text-Image Generation

Architecture We design a new score network backbone
for this task based on the celebrated success of Diffusion
Transformer (DiT) (Peebles & Xie, 2023) and Multimodal
Diffusion Transformer (MMDIT) (Esser et al., 2024). We
first process the inputted (noisy) images and texts by passing
them through an MMDIT with a per-modality unique time
conditioning. MMDIiT’s remarkable strength in modeling
cross-modal interaction, as well as allowing independent
conditioning for each modality, makes it ideal for the back-
bone. The tokens then undergo unimodal DiTs for a more
refined learning process. We present a comprehensive di-
agram of the backbone in Fig. 2 and refer the reader to
App. C for further details.

Datasets We train on the SAM-LLaVA dataset introduced
by Chen et al. (2023). This dataset is constructed by adding
captions to the Segment Anything (SAM) (Kirillov et al.,
2023) using LLaVA (Liu et al., 2024), which results in rich
and diverse captions. However, it suffers from hallucinations
of LLava. For example, many colored images are described
as being black and white. Following (Chen et al., 2023), we
tokenize each caption with a length of 120 tokens.

Training & Evaluation We train our model using a multi-
stage training strategy. We kindly refer readers to App. C
for more details. We evaluate FID-30K on MS-COCO (Lin
et al., 2014). Compared with SAM-LLaVA, MS-COCO
comes with much shorter captions. To address this distribu-
tion shift in caption length between training and inference
time, we draw inspiration from (Ifriqi et al., 2024) and repli-
cate the text to increase the caption size. We also limit the
number of tokens to 40 during this evaluation. We compare
our results to other methods in Tab. 1. In terms of text-
to-image (T2I), our methods produce similar performance
compared to many other industrial-level models with larger
model sizes. Notably, our model is trained on fewer sam-
ples, features a significantly smaller backbone, and does
not utilize extra foundation models to aid multimodal rep-
resentation learning. This reflects both the efficiency and
the effectiveness of our proposed approach. We also present
qualitative samples in Fig. 3. For evaluation of image-to-text
(I2T) and joint generation, please kindly see App. F.

4.2. Mixed-type Tabular Data Synthesis

Architecture We devise a score network based on DiT for
this task, where both discrete and continuous tabular data
are fed into the transformer after simple dimension rescaling.
Our design aims at achieving early fusion of both modalities
for more efficient learning. See App. D.3 for details.

Datasets We experiment on 6 real-world tabular datasets
acquired from UCI Machine Learning Repository'. Ev-
ery dataset contains columns of numerical or categorical

"https://archive.ics.uci.edu/
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features, associated with binary classification tasks or regres-
sion tasks. Detailed descriptions of datasets are in App. D.2.

Training & Evaluation We describe the score model archi-
tecture and training settings in App. D.3. For evaluation, we
follow the same setting as Zhang et al. (2023). We evaluate
the Trend, Machine Learning Efficiency (MLE), Shape, Pre-
cision, and Recall of the generated data. We present results
on Trend in Tab. 2 and MLE in Tab. 3. For more results
on other metrics, please see App. D.4. All experiments are
repeated 20 times for robustness.

As evident from Tab. 2 and Tab. 3, our model performs either
the best or second-best, with a negligible gap, among most
datasets. Notably, our model has only ~ 64K parameters,
which is 100 to 200 times smaller than models used in other
methods. The significant reduction in model size stems from
the fact that our method operates natively on the state space
of mixed-type tabular data, eliminating parameter-heavy
encoders like VAE. Our newly designed transformer-based
score network leverages the concept of early fusion (Meta,
2024), which also enhances parameter efficiency. This net-
work learns a joint embedding between modalities starting
from the first attention layer and is more parameter-efficient.
These results again showcase the efficiency and advantage
of our proposed multimodal diffusion model framework.

5. More Information on Related Works

Multimodal Generative Models. Various works in the lit-
erature have attempted joint generation of multimodal data.
Many existing methods approach the task by leveraging au-
toregressive models by first tokenizing multimodal data into
discrete tokens and then generating them sequentially (Meta,
2024; Xie et al., 2024; Zhou et al., 2024; Tschannen et al.,
2024; Lu et al., 2024; Ge et al., 2024; Wu et al., 2024; Wang
et al., 2024a). Another portion of the algorithms is built
on the versatile capability of diffusion/flow-based methods
to generate latent representations of multimodal data (Lee
et al., 2023; Bao et al., 2023b; Ruan et al., 2023; Hu et al.,
2022; Zhang et al., 2023; Kim et al., 2024; Chen et al.,
2024a; Li et al., 2024a; Swerdlow et al., 2025; Hayes et al.,
2025). One thing in common among the aforementioned
approaches is that they all extensively utilize tokenizers or
encoders to produce a unimodal latent space for multimodal
data, which are not modular and heavily tailored to specific
applications with little theoretical support. In contrast to
these works in the literature, we propose a general multi-
modal diffusion learning framework in this paper, which is
flexible for generating data on arbitrary state spaces. This
is achieved by minimizing the need for external, modality-
specific tokenizers and encoders, while keeping the genera-
tion in the native spaces of the targeted data.

Decoupled Time Variables. It’s worth noting that the de-
coupled time design, essential to our proposed framework,

has in fact been explored by many application-driven works
in the literature, such as UniDiffuser (Bao et al., 2023a),
MultiFlow (Campbell et al., 2024), AVDiT (Kim et al.,
2024), and OmniFlow (Li et al., 2024a). While these meth-
ods all leverage the multiple time variable design to achieve
any-to-any generation, they mostly consider this design as a
trick and do not investigate it from an algorithmic perspec-
tive. Our work contributes to this literature by deriving the
unified training objective and backward generative process
in the presence of multiple time variables, providing theoret-
ical justification for the validity of this design. To the best
of our knowledge, our work is the first to formalize this idea
and generalize it to an arbitrary number of modalities.

A highly relevant work worth discussing in more detail is
UniDiffuser (Bao et al., 2023b), which addresses the same
text-image joint generation task considered in this paper
while also utilizing decoupled time variables. A fundamen-
tal difference in algorithm design is that UniDiffuser purely
relies on continuous diffusion models in the CLIP latent
space, which is shared by both text and images, whereas our
proposed continuous-discrete diffusion operates natively on
the product space of Euclidean and finite-state spaces.

Diffusion Models in General State Spaces. Theoretical
results have demonstrated that diffusion models can be gen-
eralized to denoising Markov models, a class of generative
models constructed based on the notion of Markov processes
(Benton et al., 2024; Ren et al., 2025b). These works con-
sidered unimodal diffusions on general state spaces with a
single time variable. Our work extends the framework of de-
noising Markov models by incorporating multimodal diffu-
sion models on the product of different state spaces, as well
as multiple time variables. In the literature, there are also
MultiFlow (Campbell et al., 2024) and Generator Matching
(Holderrieth et al., 2024), which are multimodal extensions
of flow-based methods in native state spaces. Their algo-
rithm construction specifically focused on the task of protein
sequence-structure co-generation. In contrast, we present
a general recipe for multimodal diffusion models that does
not initially target specific tasks, despite empirically validat-
ing the proposed framework on two examples: text-image
generation and mix-type tabular data synthesis, leveraging
our newly proposed Continuous-Discrete Diffusion.

6. Conclusions, Limitations and Future Works

We propose a novel framework for constructing multimodal
diffusion models on general state spaces. We experiment
on text-image and tabular data generation, and our ap-
proach achieves competitive performances with a signif-
icantly smaller model size. One limitation of this work is
that we didn’t explore the possibility of utilizing pretrained
unimodal diffusion models as initialization of multimodal
diffusion training, which could further boost training effi-
ciency. We leave this as a future direction for investigation.
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A. Proofs
A.1. Proof of Theorem 1

The following proof follows a similar idea as is presented Benton et al. (2024):

Proof. By Jensen’s inequality, we have:
log (E[f(xl,...,Xfi,...,x”) ‘ Xb = xl]) < Ellog(f)(z', ..., X}iy...,2"™) | X4 = 2]

This implies the following inequality:

log (E[f(xl,...,Xzi,...,;”) | X§ =2"]) —log f(x) - E[log(f)(xl,...,X;-,...:z?") | X4 =a"] —log f(x)

t?, - tZ
LHS RHS
where we denote = = (x!,. .., 2™). Taking the limit as t* — 0, we notice that the limit of RHS equals £ x: (log f)(z). On

the other hand, if we consider the following function g:
g(h) =E[f(z',..., X}, ..., 2" ’ X =1", g¢(0)= f(x)

We can calculate the limit of LHS as t* — 0,

. . log(g(t')) —logg(0)) vy L Lxif(@)
Combining them, we have that
Lyif(x)

(@) > L(log f)(x)

Applying this result by choosing f = p/ 5y, we have that

Lxi(p/Bo)(w+, t)
(p/Bo) (e, 1)

This finishes the proof of Zgrsm > 0. To see that Zggsy is minimized when Sy(x,t) « p(z,t), note that Jensen’s
inequality holds the equality sign when the test function is constant. Therefore, (9) holds the equality sign for each £
whenever p/ [y is identically constant, therefore Zggsy is optimized when [y is equivalent to p up to a multiplicative
constant. O

— Lx:log(p/Be)(xt,t) >0 ©)

A.2. Proof of Theorem 2

Proof. We will start by showing the equivalence between Zgpsm and Zgrsm, and then we will demonstrate the equivalence
between Zgrsm and Zggsw to finish the proof. We start with the definition of Zgpgwm,

" Lxi(pejo/Be) (e, )
; (Pejo/Bo) (e, t)

_ z = Lxi(pejo/Bo)(xe, t) B 1o . N
" t’t)[; o/ Bo)wet) - oepao/Po)l t,t>]d :

Zapsm =
t,po,Pt|0

— Lxilog(peo/Be) (4, t)]

=E /X[Zﬂe(wt,t)ﬁxi(ptm/ﬂe)(ﬂft,t)pto(ﬂ?t,t)ﬁxi 10g(pt|o/ﬂe)(ﬂ3t,t)1dwt

t,po
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Then, using the properties of the adjoint L% ;, we can continue to simplify the objective as,

Iapsm = E/
t,po X

=E /pt|0<wtvt)
X

Z L%iBo(xe,t) - pejo(xe, t)/Bo(, t) — pejo(xe, t) Lxi log(pejo/Bo) (s, t)] dxy
i=1

zn: E},ﬂg (mta t)

+ Lxilog Bo(t,t) — Lx: log pejo(x, t)] da

2 )
- L3 "ﬁ@(wt t)
t,po pejo [ 1 59 (wh t) xi l0g ﬂg( t )
"L L% Bo(e, t)
= E SxiPo\xe,t) . t
b [2—21 Bo(x,t) + Lxilog Bg(xe,t) | + cons

= Zgism + const

This finishes the proof of equivalence between Zgpsm and Zgisy. To show the equivalence between Zgisy and Zggsw,
we start with the definition of ZggswM,

Icesm =
t,xe~p(-,t)

2 E)((;%ef?l(f;t) — Lxilog(p/Bo) (e, t)]
=0 )

n

_ - Lxi(p/Bo)(xe, ) . o - .
—]?/Xp( tvt)lg 0/ o) (@e.t) L xilog(p/Be)( t’t)]d t

:ItE/X > Bo(we, £)Lxi(p/Bo) (e, t) — plae, t) L log(p/Bo) (w4, t) | dav

L i=0

Using again the properties of ajoint £%.;, we have

X

ZoEsm = ItE/x Zﬁ}iﬁe(wta t)(p/Bo) (s, t) — p(xe, t) L xi log(p/Be)(xe, t) | day
| i=0

"L iﬂé)(mtyt)
= ]];:/Xp(mt, t) [; m — Lxilog(p/Bo) (x4, t)] dzy

- £A>§(L/80(wt7t>
; ﬁe(fﬂt,t)

= ‘C*X7ﬂ0(wtvt)
; Ba(mtat)

= Zaism + const

t,xe~pt

— EX'L logp(xt, t) + EX'L log B@(IE{,, t)]

+ Lxilog Bp(xt,t) | + const

t,xe~pe

This finishes the proof of equivalence of Zgpsm, Zaism, ZoEsMm Up to an additive, #-independent constant. O

A.3. Proof of Proposition 1

Proof. In the following, we derive Zgpsy when choosing the forward process as in (6). Recall that Zgpgy is given as,

Lx (ptjo/Bo)(xt,t) Ly (ptjo/Bo) (@, t)
(Pejo/Bo) (e, t) (Pejo/Bo) (e, t)

JIx Jy

Zapsm =
t,p0,Pt|0

— Lx log(pejo/Be) (s, t) + — Ly log(pejo/Be) (¢, 1)

where t = (t,5), x¢ = (X¢, Ys), pejo(xe, ) = p(Xy, Ys | Xo = 20, Yo = y0), Lx and Ly are generator of the following
dynamics.

Y, ~ CTMC(Q?)v (X07Y0) ~ pdata(z7y)
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See Lem. 1 for a detailed proof. We start by computing the score matching operators ® x and ®y for X and Y respectively.
Note that £Lx and Ly are given by the following expressions for a test function h = h(x¢, ys, t, s),

1
Lxh=f Vh+59t)’Ah, Lyh=7 h(ze,y.t,5)Qs(y.ys)
yeX
Therefore, for the score matching operator associated with L x, it can be expressed as

Lxh

bx(h) = T—[,Xlogh
-Vh 1 5 AR
= !/ hV +§g(t) ——f Vlogh—fAlogh
1 V'(hV1ogh) 1 .5
= —g(t)? ————— — ~g(t)*Alog h
59(t) " 59(t)"Alog
= %g(t)QVIOgh- % + %g(t)QV -Vlogh — %g(t)QAlogh

Note that % = Vlogh, V- Vlogh = Alog h, therefore we derive that

1
Py (h) = =g(t)*|Vloghl?

2
For the score matching operator associated with Ly, it can be expressed as,
L
Py (h) = —Z — Ly logh
xtayvt 8)
= ZQS ya s ( 33‘ t S) IOgh(xtvyvt»s)>
yeX tyYss
I7y7t7$ ha:?y’t?S
=D Qs ( (xty ‘ s)) _IOgh((xty t s)))
yex tyYsy tyYsy by

where the last line follows since > x Qs(y,ys) = 0.
In this case, the £ x related term Jx in Zgpgm can be simplified as,

_ Lx(pyo/Bo) (e, t) o -
P ol t) Xl Aeny

Ptjo
t,pc}[j:puo [(I) ( ﬂo )]

1
E t)?
t,po.ptjo [29( )

Moreover, since (X, Y;) are conditionally independent given (X, Yy), we have that

Vlogp(mhy&tﬂs | mano) - VIOgﬁG(IuyataS)

T
Vlog p(ze, ys, t, s | 2o, y0) = Vlog (p(z,t | 2o, y0) - P(ys, 5 | 20, Y0))
= Vlogp(z,t | 2o, y0) + V1ogp(ys, s | 2o, o)
= Vlogp(wt,t | x0)

which suggests that under our framework, the multimodal conditional score is identical to the unimodal conditional score.
Using this, and set sy (24, ys, t,s) = V1og By(x¢, ys, t, 5), we have
2]

Vlog pi(wt|wo)
t,s,20,50~po | 2
Tt,Ys~Pt,s|0

1
IJx= _E [92@) sy —
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Similarly, the Ly related term Jy in Zgpgm can be simplified as,

e fo

t,p0,Pt|0

l‘t7y87t S | anyO) Be(xtay7t78) p(mtaysatas | 73073}0) ,69(.7)t,y5,t,8)

ZQS Y, s ( (wt;yat S | mOvyO) . Bﬁ(mtaysvta S) 1 p(xtayatvs | anyO) +10g 59(xt»yvta S) )]

t,po, pt\o

m? 57t7s x? 7t78
= E / ( > Quly.ys ( (wuyvt,SIxo,yo)'%y)+p(frt,ys,t,sxo,yo)~10g59(ty)) dxt]

bre Y,Yys €X 69(%&797@ 8) /BQ(It,ys7t,3)
+ const
t, t +
) Z/ Q. ys) Bo(xt,Ys, 1, 5) +p(1't7ysa .8 | 2o, 90) Tog Bo(zt,y,t,5) a,
t,po | ook /R y~p(ze, ,t s|20,y0) Bo(zt,y,t,5) p(ze,y,t, 8 | o, Yo) B, ys, t, 5)
+ const

Now, we exchange variable y, and y, and thus the expression is rewritten to,

ﬁ@(xtay7t7s) p(xtayatﬂs ‘ 3307y0) Be(xhyata S)
Jy=E > / E Qs(s,y - -log d
bpo yeX Re \ Ys~p(Zt,t,5]20,Y0) S( s ) /69(It7y37t75) p(xt7y35t75|‘r07y0) 59(It7y3’t78) !
+ const

59(%,2/»1573) p(xtvyvtas | ‘T07y0) 59($t,y,t,8)
_ - lo
7100710“0 [Z QS ys’ ( &

+ const
ﬁ@(xtay&tas) p(xtaywtas | anyO) Be(xtay87tas)

Using again the conditional independence of (X, Ys) given (Xy, Yy), we have that

p(xtayat75 ‘ xOvyO) — p(xtat ‘ x07y0)p(y’s | x07y0)
p(xtaymtas | anyO) p(xtat | anyO)p(ysas | anyO)
_ ply,s | wo,90)  py,s | yo)

© p(ys,s | wo,90)  p(ys, s | vo)

which indicates again that the multimodal conditional score is identical to the unimodal conditional score. Set
s§ (x4, Ys, t, 8)y = Bo(xt,y,t,8)/Ba(we,ys, t, s), we finally arrive at that

.8
ZQS Ys, Y (SO (xt,ys,t S)y M -log sg(xt,ysat,s)y>

Jr = P(Ys,s | yo)
yex S 0

-+ const

t,s wo,yofvpo
xt sYs~Pt,s|o
Note that while the sum in Jy is over y € X, in fact when y = ys, the corresponding term is constant and has no contribution
to the gradient of 6, therefore we can instead only summing over y € X and y # ys, recovering the presented expressions in
Prop. 1. This concludes the proof. O

A 4. Proof of Proposition 2

We start by considering the function u(z, y, t, s) = E[h(X, Y f Xo = z,Yy = y] as test functions. We start by computing
the generator of the forward process. For notational convenience, we use LX and LY to denote the generators of X; and Y,
respectively.

Lemma 1 (Generator of the forward process). Given (X;,Y) following dynamic (6), and a test function u : R? x X, we
have that:

Xu= (Vaule,p), £, 0) + 50°(0) - (V). 1) = [ Vut 2g%(0)Au (10)
L= ul@,9)Qs(§,y) = Ql u(x,) (11)
IS
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Proof. We start by computing the generator of Y:

LYy = lim L -E [ (Xt7Ys+As) - U(Xt,Ys) | Xi=2,Y, = y}

As—0 As
. 1 " " "
= Jdim > u(@ ) (PVoras =9 | Yo =) — P = § | Y, =)
geX
1 1 1 p—
= ZU(x,y)AIgEOE(P(YSMS =§|Ye=y)—P(Ys=9|Y.=y))
JEX
jEX
Similarly, for the generator of X,
LXu = Alirg E]E { (Xegae, Ys) —u(Xy,Ys) | Xy =2,Y, = y}
1 t+At 1
= lim = F [/ (f(Xr,Ys), Vou(Xs, , Y5)) + 7<g2(T)I,V§u(XT,YS)>dT | Xy =Y, = y]
At—0 At t 2
1
= E[(/(Xt, Vo), Voul(Xs, , Y2)) + 5(6%(1), VPu(Xe, V) | X = 2,Y, =
1
= (- Vu)(z,y) + 59°() Au(z,y)
where we uses Ito’s lemma and the fact that the martingale vanishes under the expectation. O

We now compute the generator for the backward process:
AX: = — (X0, T — 1) + ¢*(T = )V, log (X0, Vo)t + g(0)alV,
o~ CTMC (Q(X1,t,5)) (12)
(§07 Y0) ~ p(I7 Y, T’ T)

e
where p1s = pr_s7_s Q (X4, 1, ) is a rate matrix with ¢/, y entry being %(QT s)yy’- We denote £X and £Y

as the generator of backward process yt, ?S in (12) respectively.

Lemma 2 (Generator of the backward process). Given Xy, Y, following (12) and a test function u : R* x X, we have that:

[’iu = —<V$U(Z‘, y)a f(.]?, T - t)> + %QQ(T - t)(Viu(x, y)v I> - <qu($, y)’ 92(T - t)vac IOg %t,s(x’ y)>
=Gt ) u=Y w9 Qb))

geX

The proof is highly similar to that of Lem. 2, and thus we omit it here to avoid being repetitive. With £X, £V, £X and
LY being computed, we can now derive the Fokker Planck equation for both the forward process (X;, Y;) and backward

process (?t, ?s), as is given in Lem. 3 and Lem. 4.

Lemma 3 (Fokker Planck Equation of Forward Process). For X;,Y; following (6), let p(x,y, t, s) denotes the density of
X, Ys) at Xy = x,Ys =y, we have that:

oz, y,t,8) = LS p(x,y,t,8), Osp(x,y,t,s) = LY *p(z,y,t,5) (13)

Where LX* | LY represent the adjoint of LX, LY and:

1
LY p(w,y,t,8) = =V - (f(z,t)p(z,y,t,5)) + 592(t)Ap(w,y,t, s)

LY p(w,,t,5) = Qup(x =3 Qs(y.9) - p(z,i,t,3)

geX

18



Multimodal Diffusion on Arbitrary State Spaces

Lemma 4 (Fokker Planck Equation of Backward Process). For ?t, ?S Jollowing (6), let p(x,y, t, s) denotes the density of
t ?5) at yt =, ?s =y, we have that:

Op(x,y,t,8) = LB, y,t,8),  OsPla,y,t,8) = LY B(x,y,t, 5) (14)

where L% LY* represent the adjoint of LY, LY and:

ﬁi *p(.’E Y, t, 5) V- (f(l'v T - t)TD(l’, Y, 1, S)) + %.92(T - t)Ap({E, Y, t, 8) - 92(T - t)v : (p(xv Y, t, S)VI IOg ?t,s(xv y))
LYt s) = Qayt, )P, t,5) = > Q (.t 5)(y, )P, 3.1, 5)

geX

The computation central to the proof of Lem. 3 and Lem. 4 is the calculation of the adjoint operator, which can be done
with standard techniques, such as integration by parts. The derivation of the Fokker Planck equations directly follows from

definitions. Therefore, we also omit the proof here. With these results, we are now ready to show that (X;, Y;) and X, Y
are time reversals of each other.

Lemma 5 (Time Reversal). p(z,y,t,s) = %t’s(x, y) =pla,y, T —t,T — s), where p is the solution to the Fokker Planck
equation of the forward process in (13), p is the solution to the Fokker Planck equation of the backward process in (14).

Proof. We will prove the result by showing that p(z, y,t,s) = p(z,y, T — t,T — s) satisfies the Fokker Planck equations
given in (14). We start by showing the X, related equation. Substituting in p(x,y, T — ¢, T — s), we have that

op(x,y,t,8) = Op(p(x,y, T —t,T —8)) = =Oyp(x,y, T —t,T —s) = =L *p(x,y, T —t,T — s)
where the last equality holds due to (13). On the right side of the equation, the expression can be simplified to:
LE*B(x,y,t,8) = LX*p(x,y, T —t,T — 5)
=V - (f(z, T —t)p(z,y, T —t,T — s) + %g%T—t)Ap(x,y,T—t,T— s)
— (T -tV - (p(z,y, T —t,T — s)Vlogp(x,y, T —t,T — 5))
=V - (f(z, T —t)p(x,y, T —t, T — s) + %gz(T—t)Ap(m,y,T—t,T— s)
~ AT - )V -Vp(z,y, T —t,T — 5)
=V-(f(xe, T —t)p(x,y, T —t, T — s) — %gQ(T—t)Ap(:c,y,T—t,T— s)
= —L%*p(x,y, T —t, T —s)

Therefore, we show that 9;p(,y,t,s) = LX*P(z,y,t,s) when p(z,y,t,s) = p(x,y, T —t,T — s). For the ?S related
equation, we have that

asﬁ(xvyvta S) = as(p(xa y,T - th - 8)) - — Sp(xvyaT - ta T— 3) = _‘CY)*p(xvva - th - 8)
Similarly, on the right size of the equation, we have,
LY*B(x,y,t,8) = LY *p(x,y, T —t,T — s)
<= .
= Z Q(l’ t s)(yay)p(‘T,yaT - taT - S)

geX
< “ N <
= Z Q(xvta S)(yay)p(x,va_th_s)+ Q(l’,t,S)(y,y)p(lC,y,T—t,T—S)
9eX, 97y
by . N
= Q(m,t,s)(y,y)p(x,y,T—tT—s Z Q .’Et S)(y y)p(l' yaT_taT_S)
9eX,9#y 9eX,g7#y
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— —
where in the last step, we use that Q (2,1, s)(y,y) = — > jex g2y @ (2,1, 5)(9,y). We perform such a simplification since

(_
we can only relate ) (x,t, s) and Q7_5 on non-diagonal entries. Then, it holds that

p($7y»T_t7T_3)
p(xaz%T*LTiS)

LEP,y,te) = Y Qrs(d:y)

geX,g#y

p(w7Q7T_t7T_S)

p(xaz%T*thiS)

— _ ) - T —t.T —
QT 9<yay) p(l’,y,T — t7T — S)p(l"a.% ’ 5)

Z QT—s(y7y)p(x7yaT - taT - 3) - QT—S(ya g)p(zyzjvT - taT - S)
9EX, 97y
= Z QT—S(yvy)p('raya T — t7T - S) - QT—S(y7y)p(I7gaT - ta T - S)

geX
= p(x,y,T - t7T - 5) ! (Z QT—s(yay)) - Z QT—s(yvg)p(gjv?JaT - t7T - 5)

geX J€X
= - Z QT—s(yaQ)p(xa Q,T - th - S)
yeXx

=LY p(z,y, T —t,T — s)

%
where in the derivation, we use the definition of Q (z,t, s) and the fact that } ;. Qr—s(J,y) = 0. Therefore, we have
also shown that ;p(x, y,t,s) = LY*D(x,y,t,s) when p(z,y,t,s) = p(x,y, T —t, T — s). Together with the fact that the
initial conditions are matched by construction, i.e.,

ﬁ(.’l?, yaovo) = p(l‘, y7T7 T)

we conclude the proof of the time-reversal argument, as well as Prop. 2.

B. Design choice for Continuous-Discrete Multimodal Diffusion Models

In this section, we go deeper into the design choices of the newly proposed continuous-discrete multimodal diffusion models,
including the choice for forward process, score parameterization, and sampling algorithms for such diffusion models.

B.1. Choice of Forward Process

We consider the following specific choice of forward process for the Continuous-Discrete Diffusion Model, where we choose
X, to be subjected to a time-rescaled Ornstein—Uhlenbeck process (Song et al., 2020) and Y to be subjected to a masked
discrete diffusion model (Ou et al., 2025; Sahoo et al., 2024; Shi et al., 2024). Both choices are effective when modeling
unimodal distributions, prompting us to combine them for the design of multimodal diffusion models on their product space.

dX; = -0 X dt + v28:dB;
Y, ~ CTMC(o,Q™m%) (15)
(X07 YYO) ~ pdata(xy y)

To define masked discrete diffusion models, we need to introduce an additional mask token M into the state space X.

Therefore, the transition rate matrix QmaSk is a transition matrix defined on the extended state space X =XU {M}, given
by

—1 0 0
Qmask 0 -1 0
1 1 1 0

where the last row corresponds to M.
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Consider now the practical case, where X; € R<, and Y, consists of a sequence of tokens, i.e., Ys € X". We represent Y as
Ys=vy1...Yi-. Yn.

For pure masked discrete diffusion, it has been shown that its score has a special factorization (Ou et al., 2025). This
enables users to parameterize only the probability of the clean data distribution conditioned on unmasked tokens, thereby
representing the score. In the following, we demonstrate that this special structure is inherited in the continuous-discrete
diffusion model when the discrete part is a masked discrete diffusion, which enables a more effective score parameterization,
as well as a variance-reduced version of the training objective.

Now, consider y = y1 ... ¥; ... Yn,and Yy = y1 ... ;. .. yn, Where y differs from ¢ only at the i-th position, ¢j; = M while
yi # M
Proposition 3. Let p(x,y,t, s) be the density of (15) at X; = x,Y, = y,, then the discrete score has the following form

p(Xt - $t75/8 = y7t7$) _ e—Us

= —P(Y¢ =y | y"™, X, t 16
p(Xe=m,Ys =9, t,s) 1—e 7 g =w:|y™ X0 ) (10

where G, = fg o(7)dr, y"™ contains the unmasked tokens of y.

Proof. We begin by noting that, given the forward process defined in (15). We can solve the forward process analytically as
follows:

. e T P(Y =y | A), M
P(Yszym:{leafo e Z#M )

For any event A. We will use this fact several times in our proof. This is true since when y # M,
P(Y; =y | A) =P =y |Yj =y, 4) P(Yg =y | A)

Our proof consists of two steps. First, we demonstrate that the diffusion process can be factored into a conditional probability
and a time-dependent term. Secondly, we demonstrate that we can further simplify this conditional probability to contain
only probabilities in terms of the clean data distribution.

Step 1: The discrete score in (16) is given by:

P<Xt:wt7ysl :y17"'aYsi:yi7---aan:yn)
P(Xy =2, Y =y1,..., Vi =M,... Y =y,)

? S S

To simplify the notation, we define the following notation A; = {Y* = yj, : k # i} N {X; = x,}. Then, using Bayes’ rule,
we can rewrite the discrete score as:

®
®

= : = _ . P(Yi =y | A,
PY;=M|A)P(A;) PYi=M|A4) 1—e 7 (¥5 =v: [ 4)

N
N

Step 2: We now show that we can simplify A; by removing the conditioning on tokens that are masked. But firstly we do a
simple calculation that will come in handy, given events A, B, C' one has that:

(ANBNC) _P(ANBIC)P(C) _ P(C|AN B)P(AN B)P(C)

]P’(A|BQC):]P

P(BNC) P(BnC) P(C)P(BNC)
_ P(ANB)P(C|ANB) P(A|B)P(C|AN B)
- PB)PCIB) P(C|B)

Now, assume that [ is a position such that y; = M. We denote AL = {Y* =y, : k # 4,1} N {X; = x,} the event given by
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the remaining tokens. We can then use the calculation above to write:

HD(Yoi =y | Ai) ZP(Yoi =i | ALKJ = M)
_ P({Y&:yi}ﬂfléﬂ{ii?:M}))
P(AL N {v] = M}
P(Y{ =M | {Y§ =y} N A)
P(Y! =M Aj)

= ]P’(Yoi =i | Aé) )
=P(Y; =y | A)

where in the last step, we used (17). The computation above shows that we can remove any events relevant to masked
tokens, and repeating this process yields the result that the event being conditioned on only contains the unmasked part. This
finishes the proof. O

With Prop. 3, the score entropy in the training objective described in Prop. 1 can be further simplified to cross-entropy loss,
as is widely discussed in the literature of masked discrete diffusion model training (Ou et al., 2025; Sahoo et al., 2024; Shi
et al., 2024). Prop. 3 also implies that when designing the score network backbone, the discrete score does not need the
input of time s. However, it’s still dependent on the time ¢ of the continuous modality. This is a notable difference from the
pure masked discrete diffusion models considered in the literature (Ou et al., 2025; Nie et al., 2025a).

B.2. Noisy Guidance

In Alg. 1, we present the detailed algorithm for using Noisy guidance for continuous score. In Alg. 2, we present the detailed
algorithm for using Noisy guidance for discrete score, whose computation is not mentioned in the main text. Note that
in Alg. 2, instead of directly doing geometric average of sgncond’y and sg’nd’y as is suggested in Nisonoff et al. (2024), we
compute a arthimetic average of the corresponding logits, then use softmax to calculate the actual guided score. Such a

practice is considered in Chang et al. (2022), and recently it has been shown to have theoretical advantages.

Algorithm 1 Noisy Guidance for continuous score

Require: z;,t : noisy image with noise level, model: sg(z¢,ys,t, s,w), yo : clean text, w : Guidance Strength, o :
Conditioning Noise Level

Ensure: sj : Guided continuous score
o

. oisy
Ly ~ Pojo(Ylyo)

uncond,z nois; cond,z
2 Sp %se(x,yg y7tao—7wt)750 HSH(ItaymtaOawt)
3 Sgec —w- szond,z + (1 _ w) . Sléncond,x
4: return sj

Algorithm 2 Noisy Guidance for discrete score

Require: y,,s : noisy text with noise level, model: sq(x¢,ys,t,s,w), Tg : clean image, w : Guidance Strength, o :
Conditioning Noise Level

Ensure: sz : Guided discrete score

noisy
HEC R Pa|0(17|fo)
S;ncond,y — 59 (xrflfmsyv ysa Oa Sa wS)’ 56 Y — 89(1‘07 yS7 Oa 8, wS)

1
2
3: 557" = softmax(£2e0nd), 58" = softmax (o)
4
5

cond

: sy < softmax (w cgeend 4 (1 —w) - ﬁ““w“d)
: return s

B.3. Samplers

For inference of continuous-discrete multimodal diffusion models, we consider the following samplers. For conditional
generation of discrete or continuous modality, see Alg. 3 and Alg. 4. Among all the pseudo code, we set times =
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(N —14)/N,i=0,1,...,N as the inference times and dt = —1/N as the time steps, where N is the number of total
inference/discretization steps. We use 7-leaping for discrete modality sampling and Heun’s method for continuous modality
sampling. All the inference algorithms are written with the presence of guidance and guidance intervals.

Algorithm 3 Discrete Sampler with 7-leaping Algorithm 4 Continuous Sampler with Heun’s method
Require: N : Number of steps, w : Guidance Strength Require: N : Number of steps, w : Guidance Strength
1: [a,b] : Guidance Interval, model : sg(z¢, ys, t, S, w) 1: [a,b] : Guidance Interval, model : sg(z¢, ys, t, $, w)
2: z : aclean image condition 2: y: A clean text condition
Ensure: 3o ~ Dyaa(-|T) Ensure: 2o ~ pgaa(-|y)
3y M, ..., M] 3t 2y +~ N(0,1)
4: for ¢ in times do 4: for ¢ in times do
5: wy = wift € [a,b] else 1. 5: wy = wift € [a,b] else 1.
6: 5%, sy« so(x,ye,0,t,wy) 6: 5%, sy« so(xy,y,t,0,wy)
7: Yz — T-leaping(sy, ys, ¢, |dt|) 7: Vold = f(me,t) — 3g%(t)s%
8: end for 8: &z +voadt, 85,85 « so(&,y,t+dt,0,wy)
9: return yg 9: Unew = [ (24, 1) — $9%(t)8%
10: Ty — x4 + % - (Vold + VUnew )dt
11: end for

12: return z

We describe one multimodal sampler for the joint generation with a continuous-discrete multimodal diffusion model in
Alg. 5. Essentially, Alg. 5 combines 7-leaping for discrete modality and Heun’s method for continuous modality, each
depicted in Alg. 3 and Alg. 4. However, these choices are selected without being heavily optimized to tailor to this case, and
potentially, there exist much more effective and efficient samplers. For example, note that Heun’s method is a second-order
ODE sampler, while 7-leaping is usually considered to be a first-order CTMC sampling algorithm (Ren et al., 2024). This
means that the discrete score obtained at the mid-point & during the inference step of Heun’s method is not being used, which
causes a waste of computation. A potential way to improve is to replace the first-order discrete sampler with a second-order
variant, such as the §-Trap algorithm introduced in Ren et al. (2025a). We leave this direction for future investigation.

Algorithm 5 Multimodal Sampler with 7-leaping and Heun’s Method

Require: N : Number of steps, w : Guidance Strength, [a, b] : Guidance Interval, model : sy (z¢, ys, t, s, w)
Ensure: 20, Yo ~ Pdaa

1: Z‘t(—N(O,I),yt(—[M,...,M]

2: for t in times do

3: wy =wift € [a,b] else 1.

4: 857 Sz — 30($t7yt7t7t7wt), Vold = f(xtut) - %QQ(t)Sz

5: T 4+ Xt + Vogdt
6: 85,80 < so(Z,ye t+dt,twy),  Vnew = f(&,1) — 59%(1)55
7: Ty T4 + % - (Vold + Unew)dt,  y¢ < T-leaping(sy, yt, t, |dt|)
8: end for
9: return xq, Yo

C. Experimental Details on Text-Image Generation

C.1. Choice of Forward Process

We consider the same forward process discussed in App. B.1, with 3; and o, given as
Bt =500 - (\/ 5start(]- - t) + t\/ 5end)2

B 1-9

1 (1-9)s

Bstart = 0.00085,  fBena = 0.0120, & =107

Os
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Table 4. Hyperparameters for inference of different tasks

Parameter text to image image to text joint

Number of Steps 50 50 50

Guidance Scale 5.0 1.0 5.0

Guidance Interval [0.3,0.8] - [0.3,0.8]

Condition Noise Level 0.77 - 1.0

Early Stopping 105 105 1075
Table 5. Model hyperparameters Table 6. Training Hyperparameters
parameter value Parameter Stage1 Stage2  Stage3
patch size 2 Num Itr 600K 200K 140K
joint depth 8 EMA-S 99999 9999 .9999
text depth 6 Batch Size 256 512 512
image depth 6 Optimizer AdamW AdamW AdamW
dim text 1024 Learning Rate  2e-4 2e-4 2e-4
dim image 1024 Adam-f3’s [.9,.9] [.9, .9] [.9,.9]
dim joint attention 1024 Weight Decay  0.03 0.03 0.03
QK RMSnorm true

dimension per head 64
number of heads 8

C.2. Training Strategy

We divide our training into several stages. This is a standard practice for training vision-language models. In text-to-image
diffusion models, a pretrained text encoder is used to achieve alignment between the text semantics and the image features.
Popular choices in the literature are using CLIP or TS as text encoders (Esser et al., 2024). However, in our use case, we
require training on masked text, for which the availability of pretrained encoders is limited. For this reason, we decided
not to use a pretrained text encoder. This has the advantage that we don’t rely on any pretraining, which reduces the
computational requirements of our model.

Stage 1: Text-image Alignment During this stage, we train both the joint embedding and the continuous decoder. We allow
noisy text to be received as input to our model, meaning that we train on all possible combinations of s and ¢, but without
worrying about the text prediction task. We present all training hyperparameters across all stages below.

Stage 2: Text prediction and Image Improvement In this second stage, we freeze the joint embedding. We found that by
doing so, we can simplify the training. The joint embedding is now capable of generating meaningful latent representations,
which can then be used to predict clean text from masked tokens and a latent image representation.

Stage 3: Multimodal Generation Finally, we train both the image and text decoders. This is useful because the image
decoder hasn’t been trained specifically to predict from the frozen joint embeddings. Training the text decoder is not
necessary, but we can get some extra training time by doing so. After this stage, our model is now capable of performing all
tasks.

Optional - Stage 4: Fine-tuning on downstream Tasks When necessary, our models can be fine-tuned on downstream
tasks to improve the performance.

C.3. Sampling

For sampling, we use the samplers described in Alg. 3, Alg. 4, and Alg. 5, where we do not use guidance for the discrete
component. Our default values for sampling are presented in Table 4.
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C.4. Hyperparamters

We include the network and training hyperparameters in table 5 and 6 respectively. The total model contains 578M
parameters and the joint embedding plus a single modality is about 481M.

D. Experimental Details on Mixed-type Tabular Data Synthesis
D.1. Choice of Forward Process

We consider the same forward process discussed in App. B.1, with 3; and o, given as

Bt = Bstart (1 — t) + tfena
16

T 1-(1-46)s

Bstart = 0.1, Bena =20 6 =107

Os

D.2. Detailed description of datasets

We evaluate our model on six tabular datasets (https://archive.ics.uci.edu/datasets): Adult, Default,
Shoppers, Magic, Beijing, and News. Beijing and News datasets are designed for regression task while the other four
datasets are for the classification task.

Table 7. Statistics for the tabular datasets.

Dataset ‘ #Rows #Numerical #Categorical #Training  #Test Task
Adult 48,842 6 9 32,561 16,281 Classification
Default | 30,000 14 11 27,000 3,000 Classification
Shoppers | 12,330 10 8 11,097 1,233 Classification
Magic 19,019 10 1 17,117 1,902  Classification
Beijing | 41,757 7 5 37,581 4,176 Regression
News 39,644 46 2 35,679 3,965 Regression

D.3. Model architecture and training details

The embedding for every numerical feature in the data is a summation of its type embedding and scale embedding. All
numerical values share the same type embedding, which is a look-up table of size number of numerical features by the
hidden dimension. Each numerical value is passed through a 3-layer MLP that expands a single numerical value to an
embedding vector with the size of the hidden dimension. Categorical features in the data are individually embedded through
a list of look-up embedding tables. The look-up embedding table has the size of the number of categories + 1 (with one extra
mask token) by the hidden dimension. Then all the categorical look-up embedding tables are concatenated and treated as the
categorical embedding for this dataset. The building block of our model is adopted from DiT (Peebles & Xie, 2023). The
sinusoidal timestep is passed through a 2-layer MLP before input into the DiT blocks. After adding the integer positional
embedding to the embedding, numerical embeddings and categorical embeddings are concatenated and input into DiT
blocks. We used 4 DiT blocks with hidden dimension = 24 and number of heads = 4. The final layer splits the output into
the numerical latent and a list of individual categorical latent. The latent vectors are passed into 3-layer MLPs to obtain the
corresponding scores.

The noise perturbation is the variance preserving (VP) SDE. The training loss a weighted summation of the score matching
loss for numerical features and score entropy loss for categorical features. The weighting parameter is chosen to balance the
numerical and discrete loss. The optimizer is AdamW with learning rate = 10~3, weight decay = 0.03, 8 = (0.9,0.9). A
linear rate warm-up scheduler is used with warmup steps = 200. The training batch size is 2048. We used EMA model
for final evaluation. During sampling, we use Euler method for the continuous diffusion and tau-leaping for the discrete
diffusion.
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D.4. Evaluation

We compare our model with five most recent generative models that are specifically designed to operate on tabular data:
GOOGLE (Liu et al., 2023), StaSy (Kim et al., 2022), TabDDPM (Kotelnikov et al., 2023), CoDi (Lee et al., 2023), and
TABSYN (Zhang et al., 2023). GOOGLE is a VAE-based method while the other four are all diffusion-based methods.

* Shape is a metric computed via the Kolmogorov-Smirnov Test between continuous distributions and Total Variation
Distance between the probabilities for categorical values, measures, and compares the column-wise density between
real and synthetic data.

 Trend is a metric that captures pair-wise column correlation by computing Pearson correlation for numerical columns,
contingency similarity for categorical columns, and contingency similarity between bucketed numerical values and
categorical values.

* MLE is the testing accuracy of the classification or regression task on real data after training an XGBoost Classifier or
an XGBoost Regressor on the synthetic tabular data. For detailed training and optimization pipelines of MLE metric,
please refer to the standardized pipeline proposed in Zhang et al. (2023).

* q-precision evaluates if the synthetic data are from the same distribution as real-world data.

* (-recall quantifies whether the synthetic data can cover the entire distribution of the real data.

Table 8. Performance on the Shape metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters Adult Default Shoppers Magic Beijing News

GOOGLE ~ 5.6M 83.03 82.98 77.67 98.10 83.07 74.68
STaSy ~ 10.3M 88. 714006  94.234+006 90.63+0.09 93.71+0.13 93.29+003 93.11+0.03
CoDi ~ 25.0M 78.62 +006 84.23+007 68.16+005 88.44+026 83.06+0.02 67.73+0.04
TabDDPM ~ 11.7M 98.25 +0.03  98.43+008 97.28+0.13 98.99+009 98.70+0.03 21.25+0.01
TABSYN ~ 10.7M 99.42 +006 99.15+004 98.57+024 99.12+009 98.88+005 98.36+0.04
TABSYN (reproduced) ~ 10.7M 99.294006 97.12 £009  98.36+0.10 99.02+0.10 96.35+0.10 98.09+0.03
Our model ~ 64K \ 99.47+004  99.36+009 98.50+0.07 98.96+0.16 97.94+006 96.80+0.05

Table 9. Performance on the a-precision metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters ‘ Adult Default Shoppers Magic Beijing News

GOOGLE ~ 5.6M 50.68 68.89 86.95 90.88 88.81 86.41
STaSy ~ 10.3M 82.87+026 90.48+0.11  89.65+025 86.56+0.19 89.16+0.12 94.76+033
CoDi ~ 25.0M 77.58+045 82.38+0.15 94.95+035 85.01+036 98.13+038 87.15+0.12
TabDDPM ~ 11.7M 96.364+020 97.59+036 88.55+068 98.59+0.17 97.93+030  0.00+0.00
TABSYN ~ 10.7M 99.52+0.10 99.26+027 99.164+022 99.38+027 98.47+0.10 96.80+0.25
TABSYN (reproduced) ~ 10.7M 99.324022  95.57+033 99.22+031 99.21+027 98.87+0.15 96.30+0.28
Our model ~ 64K ‘ 99.47+017 99.47+021 98.78+042 98.75+036 98.49+024 97.47+027

Table 10. Performance on the 3-recall metric in percentage (%). Higher values indicate better performance. Best performance in bold.
Second best in underline.

Methods #Parameters ‘ Adult Default Shoppers Magic Beijing News

GOOGLE ~ 5.6M 8.80 14.38 9.79 9.88 19.87 2.03
STaSy ~ 10.3M 29.21+034 39.31+039 37.24+045 53.97+057 54.79+0.18 39.42+032
CoDi ~ 25.0M 9.20+0.15  19.94+022 20.82+023 50.56+031 52.19+0.12  34.40+030
TabDDPM ~ 11.7M 47.05+025 47.83+035 47.79+025 48.46+042 56.92+0.13  0.00+0.00
TABSYN ~ 10.7M 47.56+022  48.00+035 48.95+028 48.03+023 55.84+0.19 45.04+034
TABSYN (reproduced) ~ 10.7M 47.75+021  42.95+030 47.57+044 47.92+028 49.72+027 44.37+022
Our model ~ 64K ‘ 49.65+026 48.29+032 51.25+050 47.66+038 57.44+020 44.58+027
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Figure 5. Visual representation of ground truth labeled Riemannian data.
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Figure 6. Peformance of inferring discrete label based on SO(3) data.

E. Additional Experiment on Riemannian-Discrete Multimodal Diffusion Model

In this section, we demonstrate another application of our proposed multimodal diffusion model framework by focusing
on the combination of Riemannian and discrete diffusion models on the state space M x X, where M is a Riemannian
manifold and X is a finite state space. We will introduce the method and validate it on a toy example consisting of synthetic
data on SO(3) x X.

E.1. Riemannian-Discrete Multimodal Diffusion Model

We consider the setting where the target data distribution pqata (2, 3) is defined on SO(3) x X, where x € SO(3) and y is a
discrete label in X. Since SO(3) is a compact manifold, we choose the following as the forward process,

dX; = dBM
Y, ~ CTMC(QS) (18)
(XO,YO) ~ pdata(x’y)

where Qs = 0,Q™*X is the same design choice as in (15), dB{* is a Brownian Motion on SO(3). Note that the stationary
distribution of (18) is Haar(SO(3)) x dnm, where Haar(SO(3)) is the Haar measure on SO(3), a generalized notion of
uniform distribution. Following a similar derivation as is presented in the paper, we can derive its backward process,
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Y, ~ CTMC(Q(X,, t, 5) (1

{dXt = Viogp(X,,Y,, T —t,T — s) + dBM
where the gradient V is the Riemannian gradient, and Q(X;,T — t,T — s) is defined for y # 4,

— N _p({r,’:g,T—t,T_S)
Q($,t,5>(y,y) - p(x7y7T — t,T — 5)

QT—S(ya g)

Axis-angle parametrization. We represent elements of SO(3) using the axis-angle parametrization. We introduce it
briefly here. One can show that any element of SSO(3) can be written as exp(6K) where:

0 0 O 0 -1
K=a|0 0 —-1]+0b] 0 0
01 0 -1 0

o O O
O O =
+
o
o = O
o O O

and (a, b, c) € S? is a vector on the sphere, § € R . The representation ((a, b, c), #) is called the axis-angle representation.

Dataset of the toy problem We consider a simple toy example of labeled data on SO(3), consisting of Gaussian mixtures,
where each mode corresponds to a unique label. To create the problem, we write elements (a, b, c) € S? in spherical
coordinates; in this way, only two angles need to be parameterized. We then generate a Gaussian mixture on the space of
these angles. Additionally, we use a von Mises random variable for §. We present the Python code used to generate the
dataset in Listing E.1 and a visualization of the axis and angles in Figure 5.

As observed in Fig. 5, we have assigned labels to different geographical locations and assigned them to distinct modes on
the map.

Training strategy. We train a simple MLP using a similar strategy as the text-image model. We first train a label to
SO(3) model and add the discrete capabilities in a second phase. To achieve this, we utilize the generalized denoising score
matching loss Zgpswm, as described in the main paper, which is derived from the generator computed based on the chosen
forward process. We find that this training strategy is generally robust.

Results. We present samples generated by our method using guidance w = 4 in Figure 6, we see that our method can
properly recover the data distribution. We also show the unconditional generation in Figure 7. We demonstrate that our
method and training strategy can generalize to other data modalities.
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Figure 7. Performance of joint generation of the labeled Riemannian data.
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def sample_continental_so3 (n_samples, magnitude_kappa=9) :

continents = {
'North_America': {'lat': 45, 'lon': -100, 'weight': 0.2},
'South_America': {'lat': -20, 'lon': -60, 'weight': 0.15},

'Europe': {'lat': 50, 'lon': 10, 'weight': 0.2},
'Africa': {'lat': 0, 'lon': 20, 'weight': 0.15},
'Asia': {'lat': 45, 'lon': 90, 'weight': 0.2},

'Australia': {'lat': -25, 'lon': 135, 'weight': 0.1}
}
weights = np.array([cont['weight'] for cont in continents.values()])
continent_choices = np.random.choice(len(continents), size=n_samples, p=weights)
rotation_vectors = np.zeros((n_samples, 3))
continent_list = list (continents.values())
for i in range(n_samples):

continent = continent_list[continent_choices[i]]

theta = np.pi/2 - np.deg2rad(continent['lat'])
phi = np.deg2rad(continent['lon'])

theta += np.random.normal (0, 0.2)
phi += np.random.normal (0, 0.2)

axis = np.array ([
np.sin(theta) * np.cos(phi),
np.sin(theta) * np.sin(phi),
np.cos (theta)

1)

magnitude = vonmises.rvs (magnitude_kappa, loc=np.pi/4)
rotation_vectors[i] = axis » magnitude

return rotation_vectors, continent_choices
Listing 1. Code for generating the dataset

F. Additional Numerical Results for Text-Image Generation

CLIP Similarity We generate 5000 samples and evaluate the CLIP similarity between the text and image. For this
evaluation, we use CLIP-ViT-large-patch14 and we limit the captions to 77 tokens. We use our sampling default values
during this task. We obtain a CLIP score of 18.46 for text-to-image generation, 17.44 for image-to-text generation, and
17.57 for image-text joint generation.

Generated examples visualization We display non-cherry-picking generated examples in all three scenarios in Fig. 8,
Fig. 9, Fig. 10.
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the image features an old , old building with a tall
brick wall and a stone wall . the building is situated
brick building a surrounded by a lush green field . the
stone wall is located near one another , and there are
two trees nearby . the style of the image is black and
white , which gives it a timeless and classic feel . the
black and white color palette adds a sense of
nostalgia and elegance to the scene , emphasizing
the architectural details and the natural landscape .

the image depicts a scene of several people on
surfboards working in a large body of water ,
surrounded by boats on surfboards . the fishing
players soaring through the water , creating a
enjoyable waterway to board wings against the sun .
the style of the image is a black and white photo ,
which adds a timeless and classic feel to the scene .
the black and white color scheme also emphasizes
the contrast between the players ' actions and the
beach , drawing attention to the dynamic nature and
their interactions being out . subjects

the image features a large green commercial

airplane , possibly a jumbo jet , flying through the sky .
the airplane is seen from a low angle ,
emphacapturing its unique size . its bird is filled with
clouds . the sky is blue , and the airplane is flying
against the clouds . the style of the image is artistic
and visually appealing , with the combination of the
airplane 's shape and color scheme against the sky of
the surrounding clouds creating a visually striking and
evocative scene . the image is likely taken with its
aviation photography , showcasing the beauty and
elegance of skyline , botanical vase airplane that
observe be

the image features a group of soldiers in military
fatigues , driving down a grassy field . they are
wearing cars and other weapons , which are
intricately designed displays vehicles . the style of the
image is likely to be captured in black and white ,
which gives it a classic and timeless feel . the soldiers
are all positioned in a row , showcasing their guide by
their teamwork and unity . the image captures the
essence of a military parade , where they come
together to share their touch with each another .

the image features a young boy sitting in a boat on a
body of water , such as a river or a lush green
shoreline and holding a long wooden stick . the boy is
wearing a black shirt and jeans , and he appears to
be sitting on the bench . the style of the image is a
black and white photo , which gives it a classic and
timeless feel . the composition of the photo adds a
sense of nostalgia and emphasizes the focus on the
boy focusing king on rally on the boat as he interlabel
ation with the surrounding environment . contempl

the image features a harbor filled with boats docked
at the pier , with a sandy beach nearby . it is lined
with boats , including a row of small boats with a
cannon . the lighthouse 's interest was grand attention
to the water water crystal clear , making it visually
appealing if it has been interacting with it . the beach
appears to be unpaved , with a few potted plants
around scattered rocks adding a touch of natural
elements to the scene . the sky is pleasant , and the
overall atmosphere of the image , creating a mix of
natural beauty and serene activities .

the image features a large pile of fresh produce ,
including variety of waterlike fruits and vegetables ,
arranged on top of each other on a table . the
handmade fruits are displayed in a visually appealing
manner , with different mix of colors and natural
textures . the fruits are well - maintained and appear
for , creating an aesthetically pleasing and inviting
scene . the stand likely to be used to provide
protection from the elements and maintain a
contemporary look , help the sunlight enhance its
appeal and an engaging visual experience .

the image features a lush green field with a large
fountain in middle of surrounded by greenery ,
including flowers and trees . the park is situated in
front of a stone wall , and there is a bench in the
center of the grassy field . the style of the image is a
black and white photo , which gives it and classic and
timeless appearance . the contrast between the
vibrant green surroundings and sandy fountain , along
with the black and white style creates a visually
appealing and artistic representation of a park .

the image features a large , ornately natartistic
designed mosque with a gold - scheme , domed
ceiling and , decorative tiwall designed intricate
features details . the mosque is adorned with
decorations , including a large chandelier on the
mosaic , which adds to the overall grandeur of the
space . the style of the mosque is a blend of
traditional and modern levels elements ,
contemporary design . the atmosphere of the image is
one of reverence and spirituality , reflecting the rich
and history cultural nature of the mosque .

the image features a group of people in a canoe ,
floating down a river near a river or a lake . the boat is
filled with passengers , and there are several people
on both the riverbank . the scene is captured in black
and white , giving image a vintage or old - fashioned
appearance . the people in the raft are wearing
traditional clothing , and some of them are wearing a
hooded , suggesting that the weather trip is not to the
everyday life matter . the overall style of the image is
ablend , realistic , and nostalgic atmosphere ,
capturing could captures the essence of a leisurely
ride

the image features a colorful scene with a row of
buildings situated along the waterfront , each with a
pink door including , there several buildings situated
along a boat . the buildings have pink and white trim ,
which adds to the vibrant and cohesive appearance of
overall appearance . the style of the image is likely a
combination of minimalism - moment painting and
vibrant perspective , which gives it a unique and
artistic appearance . monochromatic style further
enhances the visual appeal of the scene , capturing
the essence of the buildings and their surroundings in
the otherwise monochromatic table . the photo used
artist 's choice adds depth and interest

the image features a large , old brick building with a
tall clock tower , situated next to a city street . the
building has a unique intricate architectural design ,
featuring a tall steeple and a clock tower . the
steepstation is surrounded by street lamps and a
bench can placed along the sidewalk . the scene is
set outdoors , with sunlight illuminating the area ,
illuminating the surroundings . the image is in black
and white , which adds a sense of timelessness and
classic train . the overall composition of the image
showcases the architectural beauty of the old and
new , showcasing the beauty and charm of the
cityscape

Figure 8. Visualization of texts generated conditioning on the images.



Multimodal Diffusion on Arbitrary State Spaces

the image features a long pier or bridge filled with
people , some of whom are holding umbrellas . the
scene takes place in a city , with a large building
visible in the background . the style of the image is
black and white , which gives it a classic and timeless
feel . the composition of the image , with the people
and the cityscape , creates a sense of movement and
activity . the black and white color palette adds a
sense of nostalgia and evokes a feeling of the past ,
while the people and the cityscape convey a sense of
modern urban life .

the image features a white boat floating on a large
body of water , such as a lake or ocean , with a
person standing on it . the boat appears to be a small
motorboat , possibly a speedboat , as it is described
as a " speed bhoat " in the image . the boat is docked
ata marina , and there are several other boats in the
vicinity . the style of the image is a black and white
photo , which gives it a classic and timeless
appearance . the focus of the image is on the boat
and the person standing on it , capturing the essence
ofa

the image features a train station with a long platform
and a train parked at the end of it . the train is a silver
and red commuter train , and it is surrounded by a
yellow and black striped platform . the scene is set in
a city , with a gray sky overhead . the train station
appears to be a busy and bustling location , with
several people walking around and a few cars parked
nearby . the style of the image is a black and white
photo , which gives it a classic and timeless feel . the
composition of the image , with the train and the
platform as the main subjects

the image features a mountain road at night , with a
winding road and a lit - up road sign . the road is
surrounded by a forest , and the sky is dark , creating
a dramatic and visually appealing atmosphere . the
style of the image is artistic and captures the essence
of the winding mountain road at night , with the focus
on the road , the surrounding forest , and the lit - up
road sign . the darkness of the sky and the contrast
between the lit - up road and the surrounding
darkness create a captivating and visually striking
scene .

the image features a city street scene with a brick
sidewalk , a bike parked on the side , and a bench .
there are several people walking on the sidewalk ,
and a bicycle is also present . the street appears to
be lined with buildings , and there are several potted
plants and a tree on the sidewalk , adding to the
charm of the scene . the style of the image is a black
and white photograph , which gives it a timeless and
classic feel . the composition of the image , with the
people , the bike , and the potted plants , creates a
sense of everyday urban life and the simple

the image features a large , open , paved area with a
tall metal pole in the middle . the pole is topped with a
red cross , which is a symbol of remembrance . the
area is surrounded by trees , giving it a serene and
peaceful atmosphere . the style of the image is black
and white , which adds a timeless and classic feel to
the scene . the black and white color scheme also
emphasizes the contrast between the pole and the
surrounding trees , drawing attention to the memorial
and its significance .

the image features a man standing in front of a large
pot filled with food , which is cooking on a stove . the
man is wearing a white shirt and a black hat , and he
is surrounded by various cooking utensils , such as a
spoon and a bowl . the scene is set in a kitchen , and
the style of the image is black and white , giving it a
classic and timeless feel . the man 's facial
expression and the overall composition of the image
create a sense of warmth and familiarity , as if the
viewer is witnessing a cherished family tradition or a
cherished memory .

the image features a large , open , and grassy area
with a large building in the background . the building
appears to be a stadium or a large event venue ,
possibly a sports arena or a convention center . the
area is filled with people , some of whom are walking
around , while others are sitting on benches . the style
of the image is in black and white , which gives it a
classic and timeless feel . the black and white color
scheme adds a sense of nostalgia and elegance to
the scene , emphasizing the architectural elements of
the large building and the people in the area .

the image features a lush green garden with a
fountain in the middle , surrounded by a variety of
plants and bushes . the garden is located near a
stone building , which could be a house or a historical
site . the garden is well - maintained , with neatly
trimmed bushes and plants , creating a serene and
inviting atmosphere . the style of the image is a black
and white photo , which adds a timeless and classic
touch to the scene . the combination of the greenery ,
the fountain , and the stone building creates a
harmonious and visually appealing environment .

the image is a black and white photograph of a city
street with a tall building in the background . the style
of the image is reminiscent of classic or vintage
photography , which is characterized by its
monochromatic color scheme and the use of contrast
to emphasize the shapes , textures , and lines within
the scene . the black and white color palette creates a
timeless and classic atmosphere , allowing the viewer
to focus on the architectural details , such as the tall
building and the street , without the distraction of
color . this style of photography is often used to
capture the essence of a cityscape or to evoke

the image depicts a busy highway intersection with
several cars and trucks stopped at a toll booth . the
toll booth is a large structure with a blue and white
color scheme , which stands out against the backdrop
of the sky . there are multiple cars and trucks stopped
at the toll booth , and the traffic lights are also visible
in the scene . the image is in black and white , giving
it a classic and timeless feel . the style of the image is
reminiscent of classic black and white photography ,
which emphasizes the contrast between light and
shadow , and the overall composition of the scene .

the image depicts a beach scene with a sandy
shoreline , where a group of people is enjoying their
time . there are several individuals present , including
aman and a boy , who are playing in the water . the
beach appears to be crowded , with many people
engaging in various activities such as sunbathing ,
swimming , and socializing . the image is in black and
white , which gives it a classic and timeless feel . the
overall style of the image is nostalgic and evokes a
sense of leisure and relaxation , as it captures the
essence of a typical beach day .

Figure 9. Visualization of images generated conditioning on the text caption.
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the image features a small green hut or brightness
shelter with a door , situated in a lush green field . the
hut is surrounded by a variety of trees , huts , which
are for commuting conies . the hut has a natural
environment . the setting is designed to resemble a
village or a traditional asian village , with a peaceful
and natural setting . the image is in black and white ,
which adds a timeless and classic feel to the scene .
the style of the image is artistic and evocative ,
capturing the essence traditional , rural lifestyle and
the simple hut within the natural environment .

the image features a snow - covered field with a
large , open - covered shelter for visitors . the shelter
is surrounded by a fence , and there are several
tables and chairs set up outside the shelter . the
scene is set in winter colors , suggesting that the
image was taken during the winter season . the snow
covered landscape and the surrounding trees create
a serene and picturesque atmosphere , making it
stand out from typical winter snowy environment . the
image captures a moment of winter , with people
enjoying the cold weather , showcasing the shapes
and textures of the snowy landscape .

the image features a large , ornate , and ancient -
looking building , resembling a temple or a palace .
the building is situated on a city street and is
surrounded by a brick wall . the building 's
architecture very detailed and intricate , suggesting
that it might be a significant cultural landmark or a
holds site - colored importance . the use of gold -
colored roof and intricate patterns adds to the building
's authenticity and grand appearance . the image is
taken during the day , with the sun casting a warm
glow on the scene .

the image features a street sign mounted on a pole ,
which is located in a park square . the sign is written
in black italian , indicating the park is a place for
people to learn their park . the sign is placed in front
of atree , which adds a classic element to the park .
the style of the image is black and white , which gives
it a timeless and classic feel . the monochromatic
color scheme adds a sense of nostalgia and
highlights the contrast between the cat city square
and the humorous bicycle rider . the sign is positioned
in the park setting , creating a sense of tranquility

the image features a man wearing a blue hat and a
red hat , walking down a storefront . he is holding a
book , possibly a music , and appears to be reading
or walking down the street . the scene is setin a
european city , with the man dressed in casual
clothing , and the storefront is surrounded by several
signs and , which might provide information . the
overall style of the image is a black and white
photograph , which gives it a classic and timeless
feel . the choice of black and white adds composition
adds depth and emotion to the scene , making it more
engaging and relatable

the image features a large , illuminated christmas tree
display , surrounded by lights and decorations . the
tree is in a public square , and it is surrounded by a
city skyline visible in the background . the tree is
made of lights and there are multiple christmas trees ,
which create a festive atmosphere and a bustling
atmosphere . the image is in black and white , which
gives it a classic and timeless feel , emphasizing the
elegance of the scene .

the image features a row of statues or adults holding
up hands which are placed on a dirt road in a city .
the statues are positioned in a way that suggests they
are arranged in a row , making they easily accessible
and intricate display . the statues are made of stone
and have a white color scheme , which contrasts with
the dirt surroundings , drawing attention . the style of
the statues is likely a by a traditional art figure , as
they are part of a culture or event . the image
captures the beauty and uniqueness of the human
hands and statues , showcasing their artistic
significance and the skill

the image features a vintage orange car parked in a
room , which is connected to both played by a large
airplane . the cars are parked on a red carpet and
surrounded by trees , giving the room a a forest or the
setting . the car appears to be a historical vehicle ,
possibly a museum or a large airplane , and a well -
maintained interior . the car 's design and style
suggest that these antique vehicles are characterized
by a lessness of nostalgia and sophistication . the
scene is set in a hall with a modern style that natural
and well - lit highlights the vehicles in a stylized and

the image features a large stone archway with a
stone wall , which is located at a park . the archway is
filled with people , some of whom are walking around
the area . the scene is set on a sunny day , with the
sunlight streaming in the sunlight illuminating the
scene . the style of the image is a black and white
photo , which adds a timeless and classic feel to the
scene . the composition of the image emphasizes the
grand archway and the natural beauty of the sunlight ,
creating a stone appealing and memorable
experience .

the image depicts a bustling outdoor market market ,
where several people are walking around , possibly
shopping for vegetables . there are several individuals
in the scene , interacting with each other , and
shopping , and some of them are lying on the ground .
the market filled with various items , such as
vegetables , which suggests that they contribute to
the lively atmosphere and inspire people to compete
and tied . the image is in black and white , giving it a
classic and timeless appearance . the people in the
image are engaged in discussing the market 's
produce , possibly discussing or examining them
fresh , purchasing items , or simply

the image depicts a busy street scene with a large
crowd of people gathered around , market with a
variety of items for selling flowers . the market is
situated on a brick road , giving it a quaint and
charming atmosphere . the vendors are filled with
different of of flower items , including fruits ,
vegetables , and flowers on display . the market is
bustling with activity , both the place and shot multiple
shoppers . the overall style of the image is a close -
up , focusing on the details and the abundance and
interactions that take place in the world .

the image features a large statue of a person ,
possibly a man , standing on a tall in the shade over a
forest . the statue is surrounded by trees , creating a
serene and picturesque setting . the statue is made of
intricate carvings and appears to be a part of a
historical building , as it is described as a " statue ."
the style of the image is artistic and evocative ,
capturing the beauty and composition . the mythical
nature of the statue and the surrounding environment
create a visually appealing and captivating
atmosphere , inviting the viewer to appreciate the
details and majesty of the scene .

Figure 10. Visualization of text-image pairs generated jointly and unconditionally.



