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ABSTRACT
Understanding how knowledge is technically transferred across

academic disciplines is very relevant for understanding and facilitat-

ing innovation. There are two challenges for this purpose, namely

the semantic ambiguity and the asymmetric influence across dis-

ciplines. In this paper we investigate knowledge propagation and

characterize semantic correlations for cross discipline paper rec-

ommendation. We adopt a generative model to represent a paper

content as the probabilistic association with an existing hierarchi-

cally classified discipline to reduce the ambiguity of word semantics.

The semantic correlation across disciplines is represented by an

influence function, a correlation metric and a ranking mechanism.

Then a user interest is represented as a probabilistic distribution

over the target domain semantics and the correlated papers are

recommended. Experimental results on real datasets show the ef-

fectiveness of our methods. We also discuss the intrinsic factors of

results in an interpretable way. Compared with traditional word

embedding based methods, our approach supports the evolution of

domain semantics that accordingly lead to the update of semantic

correlation. Another advantage of our approach is its flexibility and

uniformity in supporting user interest specifications by either a

list of papers or a query of key words, which is suited for practical

scenarios.
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1 INTRODUCTION
Knowledge propagation across academic disciplines is one of the

most important factors for scientific innovation; many scientific

discoveries are the result of multi-disciplinary research enabled by

knowledge propagation. The impact of knowledge propagation in

today research is very clearly shown by the fast increasing numbers

of cross discipline publications and paper citations. For example, in

Biology and Information Science, the number of cross-citation papers

in Scopus[14] increased by 11.2% in the past 5 years. This trend

is also reflected by research involving different fields within the

same discipline – one example is the increased adoption of machine

learning methods in the security, computer networks, and human-

centered computing fields. To speed up scientific advances, it is

thus critical for researchers to get well acquainted with state of the

art research in related fields. To address such a need, an important

mechanism is represented by systems for cross-discipline paper

recommendation, which can recommend papers from different

disciplines that may be relevant for scientists involved in some

research task in a given discipline.

However, cross-domain recommendations have specific chal-

lenges compared to traditional recommendations, such as recom-

mendation for items to buy or movies to see. The first challenge

is the ambiguity of domain-dependent word semantics. Most com-

putational linguistic methods tackle the word semantics [5, 24, 34]

based on the word common usage. For example, the widely adopted

Word2Vec method learns the distributed word vectors from a cor-

pus by embedding word usage features into a low-dimensional

space. Although these methods have highly improved the perfor-

mance of many natural language processing tasks, they are not able

to take into account the semantic differences between scientific

fields. For example, the phrase “neural network" in the Computer
Science domain has different meanings with respect to meanings it

has in the Biology Science domain. Besides, the semantics in each

domain evolve over time as science advances. Take “AI" for in-

stance, relevant researchers focused on machine learning in the

20th century, and switched their attention to genetic algorithms,

neural networks and other domains in the 21st century. Such an

evolution has specific domain characteristics, which are not taken

into account by the current recommendation approaches.

Another challenge is how to model the academic influence across

disciplines. For example, information theory was originally pro-

posed to find fundamental limits for signal processing and com-

munication systems and has since then fostered developments in

other disciplines, such as behavioral science, neuroscience, biology,

and computer science. Such influence is asymmetric. But most of

the current researches focusing on knowledge propagation across
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recommendation platforms assume that transfer follows a sym-

metric pattern. For example, some researchers focus on product

recommendations in e-commence [21, 42] and assume that the

knowledge learned from one platform is similar to the knowledge

learned from another. Such symmetric influence does not apply to

cross-discipline scientific recommendations.

The third challenge is how to provide a flexible integrated ap-

proach bywhich users can express their interests. Onmost scientific

publication websites, a user query is usually specified as a set of

key words. However an approach, by which an academic service

directly recommends papers to its registered users based on the

publications or references of these users, seems a better fit for

websites providing academic services, such as Google Scholar and

Web of Science[14]. Although neural networks-based methods like

Bert [7, 11] are designed for sequential text data and work well

in many tasks, they are unable to seamlessly support these differ-

ent forms of user interest specifications while sharing the learned

semantics and correlation.

To tackle the above challenges, we adopt a generative model

to learn word semantics on hierarchical domains; these domains

reflect the hierarchical organizations of disciplines into research

fields. In designing our approach, we take into account two human-

centered factors concerning publications. One is that the scientific

literature in the fields of a given discipline is classified with respect

to hierarchical categories, which are widely used by authors and

publishers, such as the ACM Computing Classification System[31] in

Computer Science. Another is that the boundary between research

fields is not strict. Researcher interests can be expressed either

with respect to a general domain or a fine-grained domain, such

as Human-centered computing or Information retrieval. Therefore
the domain semantics should support flexible scopes and be proba-

bilistic. To address these factors, we adopt a supervised generative

method to learn the probabilistic associations of words with the ex-

isting discipline classification, called domain semantics. Compared

to the traditional distributed embeddings as word semantics, such a

method reveals the linguistic features with respect to the categories

and the word usages for different scenarios. Besides, the generative

method supports the character of open usage in linguistics, i.e.,

introducing new word and semantics evolution.

We then model the asymmetric influence between domain se-
mantics with a neural network. Since in practice it is difficult to find

hints about the correlations between un-cited papers, especially

because of the large numbers of publications every year, a citation

should be considered the deterministic evidence of a high correla-

tion between papers. Thus a cross-domain citation reflects authors’

consideration of the intrinsic influence from the referenced paper

to another domain. To moderately highlight the difference between

paper citations and papers without the citation relationship, we de-

sign a ranking metric to evaluate this correlation rather than using

a definite score. This model can better represent author biases with

respect to academic influence.

With the help of domain semantics and correlations, both paper

content and user interest are modeled as probabilistic distributions

over the target domain and the related papers are recommended,

where an interest can be a query with key words or a list of publica-

tions. We use three publicly available datasets to verify our model

and discuss the intrinsic factors of results in an interpretable way.

The rest of this paper is organized as follows. Section 2 discusses

related works. Then we present the technique details in Section 3

and 4. In Section 5, we present the evaluation results and discuss

the interpretability, feasibility, robustness and reusability of our

model. Finally, we conclude the paper in Section 6.

2 RELATEDWORK
Paper Recommendation. The work most related to ours is work

focusing on both the influence of a paper and the relatedness be-

tween a user interest and paper contents. For example, Yates et

al. [40] adopt the PageRank method to quantify the quality of pa-

pers by the citation network. Sugiyama et al. [33] propose a com-

prehensive evaluation of paper recommendation by an adaptive

neighbor selection method in a collaborative filtering framework.

Some approaches consider other academic recommendation, such

as expert ranking and paper recommendation [26, 39]. But these

approaches do not take into account knowledge propagation for

paper recommendation.

Considering user specific interest, Bollacker et al. [6] develop the

CiteSeer digital library system on personalized paper recommenda-

tion, which consists of three-stages: feature extraction, personalized

filtering of new publications, and discovery of interesting research

and trends. For a general query, Chakraborty et al. [9] propose a

diversified citation recommendation system that considers the se-

mantically correlated papers, especially including those papers not

using exactly the same keywords as the query. Although the above

approaches consider the main aspects of academic recommendation,

such as word semantics, paper influence, and user interests, they

focus on a single discipline and thus cannot solve the problem of

domain dependent semantics and cannot identify the asymmetric

influence between domains.

Cross-domain Recommendation. Recently a few approaches have

been proposed focusing on cross-domain recommendation by trans-

ferring the semantic knowledge from one domain to another ho-

moplasmic domain, such as Epinions and Ciao [36, 38], EachMovie

and MovieLens [12, 35]. Most of them are based on the scenario

of a rating system and the learned knowledge about user interest

is represented as some distributions over item categories [20, 23].

Zhang et al. [42] propose an active learning strategy to consider

both specific and independent knowledge over all domains for rec-

ommendation in order to alleviate the data sparsity in multi-domain

scenarios. Liu et al. [21] propose a domain-sensitive recommenda-

tion algorithm to predict a rating score by exploring user-item sub-

groups. Zhao et al. [43] extract users’ preferences from their review

documents, and transfer them based on user interactions from one

domain to the other relevant domain. Krishnan et al. [18] propose

a neural collaborative filtering method with domain-invariant com-

ponents shared across the dense and sparse domains, to improve the

user and item representations learned in the sparse domains. Bi et

al. [3, 4] learn a feature mapping function between two domains by

multi-layer perception based on the user representation similarity

in source domain and target domain. However, these methods con-

sider symmetric cross-domain recommendation scenarios, which is

not appropriate for scientific papers. Another obvious difference is

about the organization of categories. In the current approaches, the

categories in each domain are organized in the form of collections
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rather than of hierarchies. The constraints on the inheritance on

semantics make these methods not applicable to the problem of

scientific papers recommendation.

Other related methods. Some neural network methods learn the

embeddings of item tags and user attributes like gender [8, 32]

and thus they can recommend a new item to a new user based

on these embeddings, which however are not applicable to text.

Although recurrent neural networks are specifically designed for

sequential data, they cannot represent text, words and phrases

in a uniform way. To understand recommendation results, some

approaches enforce specific constraints on the model factors to

express the semantics of latent dimensions, or provide feature-based

explanations [2, 15, 26]. But they are based on the scenario of rating

systems, and thus are not able to explain the intrinsic semantics

for academic disciplines. Besides, they do not consider the different

semantics and the asymmetric influence between domains.

3 DOMAIN SEMANTICS LEARNING
A discipline refers to a set of concepts and theories; each discipline

is hierarchically organized into a set of categories, referred to as

domains. These categories typically corresponds to the fields of the

disciplines. Let T denote a scientific classification tree. Each node

in T and its subtrees represent a specific domain. Each node n ∈ T
except the root r ∈ T has a parent, denoted by pa(n) ∈ T. For a
given paper corpus P, the word vocabulary involved in P is denoted

by W. The metadata of a paper include a title, authors, an abstract,

keywords, and one or more tags corresponding to nodes in T.
Formally, if p ∈ P is associated with tag n ∈ T, then variable

yn,p is set 1, otherwise -1. According to an intuitive notion of

hierarchical categories, the inheritance property is often expressed

as constraints on tags yn,p = 1 implies ypa(n),p = 1,ypa(pa(n)),p =
1, ...,yr,p = 1. Conversely, if p is not associated with n′, then no

descendant tag of n′ ∈ T can be assigned to p.

3.1 Domain Dependent Semantics
As word usage is open and continuously evolves in scientific do-

mains, we adopt a generative probabilistic model to learn word

semantics, which is an extension of the topic model [5]. The tradi-

tional topic model is an unsupervised generative model, referred

to as latent Dirichlet allocation method, which introduces latent

variables to learn the intrinsic semantics from large document col-

lections. Under such a model, a document is modeled as a finite

mixture over a set of latent topics 1, . . . ,K , each topic k has a

probabilistic distribution over a vocabulary of words, denoted by

ϕk . Several modifications have been proposed supporting supervi-

sion [28, 30]. But they either cannot directly map the latent topics

to a set of predefined tags, or overlook the hierarchical structures

of tags. In this paper, we adopt the hierarchical supervised latent

Dirichlet allocation (HSLDA) model [29] to extract domain seman-

tics. It learns the word semantics as the associations with topics,

while leveraging the hierarchical structure of the tags. The differ-

ence with previous approaches is the introduction of discipline

classification and the restriction on choosing a tag path, which are

specific to scientific semantics learning.

Algorithm 1 Domain semantics Extraction

Require: P, T, W, topic number K , parameters α ,α ′,γ .
Ensure: Z , η.
1: for each topic k = 1, ...,K do
2: Draw a distribution over words ϕk ∼ Dir |W |(γ1 |W |)

3: end for
4: for each node n ∈ T do
5: Draw topic proportions ηn |µ,σ ∼ NK (µ1K ,σ IK )
6: end for
7: Draw the global topic proportions β |α ′ ∼ DirK (α

′1K )
8: for each paper p ∈ P do
9: Draw topic proportions εp |β ,α ∼ DirK (αβ)
10: for each wordwi in paper p do
11: Draw topic assignment zi,p |εp ∼ Multinomial(εp )
12: Draw wordwi,p |ϕzi,p ∼ Multinomial(ϕzi,p )
13: end for
14: Set the assignment of the root yr,p = 1

15: for each node n in a breadth first traversal of T starting at

the children of root r do
16: Draw node assignment of p, ζp |z̄p ,ηn ,ypa(n),p ∼{

N(z̄⊤p ηn , 1), ypa(n),p = 1

N(z̄⊤p ηn , 1)I (ζp < 0), ypa(n),p = −1

17: Assign node n to paper p according to ζp

yn,d |ζp =

{
1 ζp > 0

−1 otherwise
18: end for
19: end for

To make the paper self-contained, we present the adaptation

details in Algorithm 1, where: α ,α ′
and γ are external parame-

ters; K is the topic number; DirK (·) is a K-dimensional Dirichlet

distribution; NK (·) is a K-dimensional Normal distribution; IK is

the identity matrix; β is a global distribution over topics and it is

generated by the Dirichlet distribution; 1K is the K-dimensional

vector with each element equal to 1; I (·) is an indicator function

that takes value 1 if its argument is true and 0 otherwise.

The hierarchically organized domain semantics embed word us-

age into the fine-grained categories, denoted by DS. Formally, DS
includes two parts: the word-specific probabilistic distributions

Z ∈ R |W |∗K
over latent topics, and the probabilistic correlations

η ∈ R |T |∗K
between the nodes and the topics. Letwi,p ∈ W denote

the i-th word in the sequential text of p. Its probabilistic distribution
over topics is denoted by zi,p ∈ RK mapping to the corresponding

row of Z . The column vector ZTk ∈ R |W |
denotes the topic-specific

distribution over words of topic k . For convenience, we use ϕ1:K
to denote ZT , use ϕk ∈ R |W |

to denote ZTk , and use ηn ∈ RK to

denote the distribution over topics of node n.
The hierarchical tags are associated with p according to the

the words in p. We first assign the root node to p, i.e., yr,p = 1,

indicating that all domain-dependent papers must be labeled by

the root node. ζp ∈ R |T |
is a paper-specific distribution over nodes.

Here z̄⊤p = [z̄1, ..., z̄K ] is the empirical topic distribution for p, in
which each entry z̄k is the proportion of the words in p assigned

to topic k , i.e. z̄k = |p |−1Σ
|p |
i=1

(zi,p = k). In line 15, for every node

n ∈ T, two preconditions are used to determine whether it is applied
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to p: the topic distribution vector for p and whether the parent of

n was applied. Note that n can be assigned to p only if its parent

pa(n) is also applied. Moreover, if pa(n) is applied to p, it is possible
that n is not applied to p.

Compared to other semantic models, there are three advantages

in our domain semantic model: the DS supports flexible scopes

of a domain, denoted as domain extents; our model considers the

semantic differences between scientific fields to reduce the semantic

ambiguity; the semantics in each domain can evolve over time as

science advances, which is the property of topic model.

4 DOMAIN SEMANTIC CORRELATION
4.1 Correlation Metric and Mapping Function
Let TS

and Td
denote the node set of the hierarchical classification

trees of domain S and D, respectively. PS
and PD

denote the two

corresponding paper corpora. Since a paper citation reflects authors’

consideration on the intrinsic influence by its references, the papers

with cross-domain citations are more important and related to the

source domain S than those without a citation. Although there may

exist correlations between un-cited papers, it is time-consuming

to find evidence or hints of such correlations while the knowledge

extracted is relatively little, especially because of the large numbers

of publications every year. As an alternative way, we introduce a

ranking evaluation, referred to as correlation metric, instead than a

definite score to increase the correlation for cited papers compared

with papers without the citation relationship.

Let E = {(p,q)|p ∈ PS ,q ∈ PD ,p cites q} denote the set of

paper pairs with cross citation relationships from S to D. Similarly,

Ē = {(p,q)|p ∈ PS ,q ∈ PD ,p does not cite q}. Based on the learnt

domain semantics DS, the probabilistic distributions between words
and nodes is computed by φ = Z · η⊤. Then for paper p, its DS
representation is calculated as the expectation of word-specific

probability distributions over nodes, i.e ζp = |p |−1Σ
|p |
i=1

φi , where φi
denotes the node probability distributions of wordwi,p . Our goal is

to learn the asymmetric influence function π from S to D based on

E and Ē. Formally, π (x : R |T
S |) 7→ R |T

D |
represents the semantic

mapping between nodes ni ∈ TS
and nj ∈ TD

.

Definition 1. Correlation Metric. Let S and D be domains and
π be an asymmetric influence function defined between S and D. Let
x and y be the vectors of two papers in the same semantic space. A
cross-domain correlation metric µ(x, y) 7→ R+ should satisfy the
condition that for any two pairs of papers (p,q) ∈ E and (p,q′) ∈ Ē,
µ(π (p),q) ⩾ µ(π (p),q′).

In the above definition, the function µ(x, y)measures the seman-

tic correlation between two papers. π (p) maps the contents of p
from S to D such that papers in different domains can be mapped

into the same space and their correlation calculated. So µ(π (p),q)
highlights the semantic correlation between papers cited across-

domains. The operator ⩾ between correlations gives a preference,

which is more flexible than a hard score as a firm distance. The-

oretically, the combination of µ, π and the ranking mechanism

⩾ allows one to compute the scientific influence. We introduce a

neural network method to learn these functions.

In what follows, we adopt the distance function µ̂ instead of

the correlation function µ just for convenience in the discussion

Figure 1: Semantic correlation and paper recommendation.

as most objective functions are defined for minimization. The dis-

tance function satisfies three properties: non-negative, symmetric

and triangular. Let θ denote all the parameters to be learned. The

objective function is then regulated as follows:

L =
∑

(p,q)∈E,(p,q′)∈Ē

(µ̂(π (p),q) − µ̂(π (p),q′))
(1)

For the robustness purpose, we adopt the hinge loss function and

add a regularization term γ | |θ | |2F to the objective function, γ > 0.

L =
∑

(p, q) ∈ E
(p, q′) ∈ E

(max{0, µ̂(π (p),q) − µ̂(π (p),q′) + ϵ}) + γ | |θ | |2F
(2)

Nowwe discuss how to learn themapping function π (x : R |T
S |) 7→

R |T
D |
. Theoretically, any neural network that satisfies the above

metrics should work. It adopts the semantics based paper represen-

tation ζ Sp as input x and outputs a vector y : R |T
D |
. We now define

our multi-layer perceptron network and discuss several variants in

the experiment section. The last layer representation is the desired

embedding ζDp of p in the semantic space of the target domain D.

ζDp = π (ζ Sp ) = MLP(ζ Sp ) (3)

The difference with a direct representation ζDq for paper q in

domainD is that the cross-domain semantic representation ζDp does

not support the inheritance constraints. So we need to determine

how to evaluate their correlations or distance µ̂. The neural net-
work method is appropriate since it can theoretically simulate any

function. It uses the concatenation of ζDp and ζDq and outputs their

semantic distance. Formally, µ̂(x, y) 7→ R+. The actual formulas

are similar to the neural function π and the details are omitted

here. Thus the objective function is modeled as equation 4. Finally,

the cross domain semantic correlation is the combination of the

domain semantics mapping function, the correlation metric, and

the ranking mechanism, denoted by ρ = (π , µ̂, ⩾).

L =
∑

(p, q) ∈ E
(p, q′) ∈ E

max{0, µ̂(ζDp , ζ
D
q ) − µ̂(ζDp , ζ

D
q′ ) + ϵ} + γ | |θ | |

2

F
(4)

4.2 Cross-domain Recommendation
Since there are very large numbers of publications every year, we

choose papers published in top conferences or high reputation
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journals to ensure paper quality. Then we focus on the most se-

mantically related papers for recommendation. In this section, we

discuss how to recommend cross-domain papers based on domain

semantics and the influence function, as shown in Figure 1.

We consider two representative forms: a retrieval request in the

form of a few keywords Q , and a list of papers as a user latent

interest for an academic service provider to recommend papers

based on one’s historical publications RS and references RD in the

target domain. It is possible in practice to obtain these papers since

there are quite a few websites providing related academic services,

such as CNKI, Google Scholar, and ResearchGate. We now formalize

the cross-domain paper recommendation problem (CPR for short).

Definition 2. CPR. Given the domain semantics DSS and DSD,
the correlation function ρS→D , and a user request r = (RS ,RD ,k) or
r = (Q,k), where RS ⊂ PS,RD ⊂ PD,Q ⊂ W and k ∈ N+ is the user
preference on the number of recommended papers, the cross-domain
paper recommendation (CPR) problem is to find the top-k related
papers from the candidate paper set PD in domain D.

Forp ∈ RS , we compute the probabilistic representation ζp based

on DSS
. The publication based interest is computed as the expecta-

tion of the representations of papers in RS , Ip = |RS |−1
∑
p∈RS ζp .

Similarly, we have the reference based interest Ir = |RD |−1
∑
r ∈RD ζr .

After Ip is mapped to the target domain by the mapping function π ,
the overall cross-domain interest is computed as their combination,

i.e I = γ ∗ π (Ip ) + (1 − γ ) ∗ Ir , where γ ∈ [0..1] is a balance factor.

Considering the general case of a query, the keywords can be

selected from the source domain or the target domain, denoted by

QS
and QD

, respectively. Based on the word-specific probabilistic

distribution φ over nodes, as discussed in Section 3.1, each keyword

is computed as the probabilistic distribution over the correspond-

ing domain semantics. Formally, ISw =

∑
w∈QS φSw
|QS |

, where φSw is

the word-specific probabilistic distribution on DSS
. Similarly, we

compute the interest for the target domain IDw against DSD
. The

combined query interest is computed as I = γ ∗π (ISw )+ (1−γ ) ∗ IDw .

Then, for each candidate paper q ∈ PD , we compute the prob-

abilistic representation ζDq over DSD
and adopt µ̂ to compute the

distance between a user interest and q. The top-k related papers

are then recommended. In practice, many functions can be used to

replace the functions in ρ, such as the cosine similarity for correla-

tion metric µ, Euclidean distance for distance function µ̂, a linear
mapping function for π .

5 EXPERIMENTAL EVALUATION
5.1 Datasets and Comparison Methods
We select two kinds of representative forms of categories and three

real datasets. Considering the hierarchically organized categories,

we adopt the 1998 ACM Computing Classification System (ACM

CCS)[27] as the discipline classification, which is widely adopted

in many Computer Science datasets. For example, h.3.7 refers to

Information Systems→ Information Storage and Retrieval→ Digital
Libraries. Each subdivision has its own concepts and theories and

today there is an increase in knowledge influence between them.

For example, advances in the domain “Machine Learning” highly

influence the domain “Security” (e.g., “Deep Learning” methods

Table 1: Statistic on ACM Dataset.

Subdivision Abbr. #node #paper
General Literature A 5 117

Hardware B 56 621

Computer Systems Organization C 28 4179

Software D 48 6300

Data E 8 335

Theory of Computation F 27 1614

Mathematics of Computing G 21 1326

Information Systems H 43 10428

Computing Methodologies I 75 5908

Computer Applications J 10 911

Computing Milieux K 43 2096

are today used to detect Malicious Code). The crawled categories

include 11 subdivisions and each contains 3 levels.

We adopt two datasets related to CCS for experimental verifica-

tion. One is about the publications in the ACMDigital Library (ACM

for short), which contains 43380 conference and journal papers and

was crawled by Tang et al. [37]. Each paper has a title, authors,

an abstract, keywords, tags corresponding to CCS categories, and

citation information. The statistics on the categories involved in

each paper are shown in Table 1, which shows the number of nodes

and papers in each subdivision against CCS level two. The second

dataset is the patent database released by United States Patent and

Trademark Office (PT for short)[17]. For our experiments we used

a subset with a total of 70090 released patents from Jan 2017 to

Dec 2017. Each patent contains the ownership, mark character-

istics, classification, prosecution events, references, renewal, and

maintenance history.

We also consider higher-level knowledge propagation between

disciplines. The third dataset is crawled from Scopus and contains

papers from 27 disciplines that are considered as categories, such

as Medicine, Social science, Computer science, and etc. We select

328012 papers from discipline Medicine and 200222 papers from

Biochemistry, Genetics and Molecular Biology within 2008 to 2017.

Each paper has a title, authors, an abstract, keywords, references

and discipline tags.

Since ours is the first approach for cross-domain paper recom-

mendation, there is no previous approach that solves our exact

problem. So, for comparison purposes we choose approaches de-

veloped for a problem most close to ours, such as the methods for

reference recommendation and cross-platform recommendation

methods for e-commerce. We then make some modifications to

those approaches to adapt them to our scenario and thus be compa-

rable to our approach. The selected baseline methods and different

variants of our method are listed below. All the parameters of the

baseline methods are empirically set to their optimal values.

TRRec[34]: It recommends cross-domain papers using the tf-idf

vectors of papers to compute their relatedness. User interests are

modeled by their publications and citations.

WNMF[41]: This is the weighted nonnegative matrix decom-

position method, where each entry in the matrix is set to 1 if the

researcher has cited the paper, and to 0 otherwise. The feature

number is set to 10.
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Table 2: Methods comparison on cross-domain recommendation.

Dataset k

Method

TRRec WNMF TopicRec MdRec DsRec CATN GANRec NCNRec LCPR CPR-pub CPR-cite CPR

ACM

C-D

20 0.780 0.793 0.826 0.831 0.834 0.833 0.847 0.848 0.850 0.874 0.880 0.901
30 0.769 0.786 0.820 0.826 0.835 0.829 0.832 0.838 0.843 0.851 0.877 0.885
50 0.682 0.727 0.730 0.740 0.743 0.745 0.750 0.748 0.755 0.790 0.803 0.825

ACM

H-I

20 0.791 0.833 0.839 0.838 0.850 0.841 0.852 0.859 0.867 0.879 0.886 0.912
30 0.785 0.799 0.801 0.792 0.828 0.830 0.839 0.841 0.849 0.861 0.880 0.893
50 0.726 0.732 0.765 0.761 0.780 0.780 0.781 0.787 0.793 0.825 0.848 0.890

Scopus

20 0.680 0.693 0.706 0.731 0.734 0.742 0.754 0.760 0.770 0.780 0.789 0.793
30 0.659 0.676 0.680 0.706 0.715 0.719 0.721 0.747 0.750 0.769 0.773 0.786
50 0.542 0.627 0.650 0.690 0.693 0.691 0.710 0.713 0.730 0.741 0.760 0.773

TopicRec[28]: It clusters the topics of researchers’ publications,
and computes the similarity of the topic proportions between re-

searchers and papers.

MdRec[42]: An active learning strategy that considers both spe-

cific and independent knowledge over all domains so as to address

the data sparsity in a multi-domain scenario.

DsRec[21]: A domain-sensitive recommendation algorithm to

predict a rating while exploring the user-item subgroups.

CATN [43]: A cross-domain product recommendation system.

It extracts multiple features for each user and item from the review

documents, and learns the correlation between domains with an

attention mechanism using the overlapping users in two domains.

GANRec[7]: A generative adversarial network based heteroge-

neous bibliographic network representation model, which incor-

porates citation relationship and paper contents to learn optimal

representations of them, and recommend the top ranked papers as

references by measuring the similarity scores.

NCNRec[13]: A neural citation network based paper recommen-

dation model, which adopts a flexible encoder-decoder to represent

the paper context, and uses a max time delay neural network with

an attention mechanism to recommend the most related papers.

CPR: Our model, using both publications in source domain and

references in target domain to learn the research interest.

LCPR: A variant of CPR, which learns the knowledge propa-

gation based on the linear mapping method.

CPR-pub: A variant of CPR. Only the source domain publica-

tions are used to learn a researcher’s interest. This is appropriate

for users who are not familiar with the target domain.

CPR-cite: Our model with the researcher’s references adopted

as the target domain interest, which is appropriate for users who

are interested in some specific cross-domain papers.

5.2 Cross-domain Recommendation
We verify the proposed method by considering two representa-

tive forms: personalized recommendation based on one’s historical

publications or references; and a retrieval request with keywords.

5.2.1 Cross Hierarchical Domain Recommendation. We first verify

the performance of recommendation cross hierarchical domains.

We use the CCS hierarchies and the ACM data set. Then we select

several pairs of domains, where C and H are chosen as the source

domains, D and I as the target domains. For each domain, the

number of topics K highly affects the results, which is set according

to the perplexity of our topic model, i.e. 15, 25, 22 and 40 for C, D, H,
and I, respectively. The hyper-parameters α , α ′

and γ are sampled

by Metropolis-Hastings[10], and the prior distributions of p(α),
p(α ′) and p(γ ) are gamma distributed with a shape parameter of 1

and a scale parameter of 100. We choose 80 percent data in these

domains to learn the domain semantics and correlation functions,

and use the others for testing.

Because of the limitation of datasets, such as the shortage of

experts whose publications and references are associated with tags

at the same time, we select 300 researchers who have published at

least 3 papers in source domain and cited at least 3 papers in target

domain. For each user,m papers are randomly selected from her

historical publications or references as her interest. In the experi-

ments, for most users, we setm = 3. The ratio of positive samples

E and negative samples E is set 1:7.

Since there are a large number of papers in a domain, for most

researchers, the numbers of their publications are comparatively

very small. To make the comparison results easily understood, we

prepare k candidate papers for each user that contain at least one

of her actually cited paper. We adopt the metric nDCG@k [16]

to measure the recommendation results, since it is specifically de-

signed for a recommendation approach that takes into account

two important human-centered insights: (i) users are able to read

only a limited number of recommended items and their interests

follow a decay trend along with the ranking of items in the list; (ii)

there is a limitation on the capacity that a device has for displaying

results, such as screen space. Formally, nDCG@k = DCG@k
IDCG , in

which DCG@k =
∑k
i=1

r eli
loд2(i+1)

, reli = 5 if the i-th paper is actu-

ally cited by the researcher, otherwise reli = 0. The comparison

results with baseline methods are shown in Table 2, where we can

see CPR outperforms the other methods on all datasets. Besides,

the performance increases when incorporating both publications

and references as user interest rather than only one of them.

5.2.2 Cross Discipline Recommendation. We use the Scopus dataset
for this experiment. Medicine is selected as the source domain,

while Biochemistry, Genetics and Molecular Biology are the target

domains. 80% data in these domains are used for training. We ran-

domly select 50 researchers in Scopus from the source domains to

verify the performance. The settings of the hyper-parameters are

the same as the settings for the experiment with the ACM dataset.
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(a) Recommendation on C and D.

(b) Recommendation on H and I.

Figure 2: Cross-domain paper retrieval with keywords.

The topic numbers of domainMedicine and Biochemistry, Genetics
and Molecular Biology are set to 15 and 7, respectively. The results,

listed in the last 3 rows of Table 2, show that our model performs

better than the baseline methods.

5.2.3 Evaluation on User Retrieval. To verify this general form, we

choose the same domains of the previous experiments and adopt

the keywords used by the highly cited papers in these domains.

For each query, we recommend the most related 100 papers in the

target domain D and I, respectively. Since many academic recom-

mendation methods are not applicable for this retrieval form, the

comparable baseline methods are listed below.

TRRec[34]: Papers are represented by their tf-idf vectors.

Doc2Vec[19]: An unsupervised algorithm that learns fixed-

length feature representations of papers.

DCG@k is adopted to measure the cross-domain retrieval result.

DCG@k =
∑k
i=1

r eli
loд2(i+1)

, where k = 100, reli = 5 if the i-th paper

in the recommended list is cited by the papers in source domain,

otherwise reli = 0. In Figure 2, we present the average performance

of comparative models, as well as some query instances with key

word. Besides the dominant results by our methods, there is an

interesting phenomenon in that the performance on the queries in-

volving human factors like “semantic search" is better than queries

mentioning technologies like “collaborative filtering", which might

be attributed to the fact that human factors has stronger domain

characteristics, while the technologies applied to multiple domains

have weak domain dependence.

Table 3: The performance of CPR on different settings.

Dataset Model

Positive: negative m
1:1 1:7 1:10 1 3 5

ACM

C-D

CPR-pub 0.679 0.854 0.799 0.759 0.855 0.871
CPR-cite 0.702 0.841 0.753 0.771 0.862 0.862
CPR 0.791 0.870 0.780 0.761 0.869 0.875

Scopus

CPR-pub 0.720 0.754 0.730 0.664 0.754 0.770
CPR-cite 0.742 0.761 0.753 0.681 0.761 0.792
CPR 0.741 0.769 0.754 0.692 0.769 0.820

5.3 Evaluation of Parameter Influence
To quantify the influence of parameters, we perform the recom-

mendation task on ACM and Scopus datasets with different settings.

As the results in Table 3 show, CPR performs best when the ratio

between positive and negative samples is 1 : 7 and increases with

the increasing number of papers chosen as one’s interest. In Scopus ,
CPR-cite performs better than CPR-pub, which shows that the cross

domain influence is clearly recognized by authors’ references. Com-

paratively, in ACM , there is no obvious difference between them.

This might be due to two reasons: the flexible extent of hierarchical

categories; the knowledge difference between fine grained domains

is less distinct than cross disciplines.

5.4 Understanding the Results
Interpretable results are critical for the human centered paper rec-

ommendation task. Although our model is an extension of the topic

model where the latent topics in the generative model cannot be

directly mapped to an understandable space, the introduction of dis-

cipline categories, defined by experts, makes the domain semantics

easily understood by researchers. Compared to previous approaches

to interpretability, our model supports the discipline knowledge

without sacrificing the accuracy of the learning results.

Understanding domain semantics. To check whether domain se-

manticsDS reveal the difference of word usages between categories,
we verify whether the DS representation of a paper can be used

directly for predicating its tags. The ground truth is the tags that

the authors have actually associated with the paper. For each paper

p, we select the maximum probabilistic label path using our domain

semantics extraction model. The selected comparison methods are

as follows:

TRRec[34]: Papers are represented by their tf-idf vectors. A

node vector is the expectation of its corresponding labeled paper

vectors. The tags of a testing paper are predicted by the cosine

similarity between node vectors and the paper vector.

Doc2Vec[19]: A neural network method which adopts Doc2Vec

to train paper embeddings. The tags are predicted using the same

approach as TRRec.

LLDA[30]: The LLDA model is trained without considering the

hierarchies. The tags of a testing paper are predicted using the

LLDA inference model.

Since the loss is worse when a parent node is correctly predicted

than a child node, we introduce the average DCG as the measure-

ment, DCG =
∑
i ∈levels

r eli
i , where reli = 2 if the label on the i-th

level is predicted correctly and 0 otherwise. The results in Figure 3
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Figure 3: Methods comparison on tag predication.

(a) Ip in C (b) π (Ip ) in D (c) Ir in D

Figure 4: User interests over the classification trees.

show that our method is better than the neural network-based

method and the usual topic model.

To illustrate the domain semantics in an intuitive way, we com-

pare word semantics in a domain dependent context with a general

semantic environment. We select domain Information Systems (H )

and the probabilistic associations of word with domain semantics as

the specific word representation, while the word embeddings gener-

ated by theWord2Vec[25] method on a large corpuswikipedia are

regarded as the general vector. Then we reduce the word vectors

into a 2-dimensional visual space by T-SNE [22], shown in Figure 5,

where each node denotes a word. The closer the nodes, the more

related the word semantics. As marked colored or cross nodes, the

word “neural network" is highly correlated with “backpropagation"

in the general space, but less related in a domain specific space.

Comparatively, “neural network" is more related to “memory man-

agement unit" in domain H than in the general space. Such change

reduces the ambiguity of words in different domains.

Understanding the semantic correlation cross domains. To under-

stand how semantic correlation between domains change the word

relatedness, we choose domain Computer Systems Organization
(C) and Software (D) and several keywords in each domain. The

keywords are represented by the probabilistic association with the

corresponding domains and then are mapped to the 2-dimensional

space for visualization byT −SNE, shown in Figure 6. The keyword

ubiquitous computing in domain C (uc for short) is marked purple

and its top-100 related words in C are marked pink. After mapped

to domain D, their colors remain the same. The results show that

their correlations are changed. To clearly illustrate this result, we

select 4 keywords from the 100 words and mark them as purple

crosses: statistical analysis, energy efficiency, region management
and portability. In domain D, some words are still highly correlated

with uc, such as statistical analysis and energy efficiency, because
there are many papers mentioning them at the same time [1]. By

comparison, region management and portability become less related

to uc. Similarly, for the keyword privacy, colored orange, the top-

100 related words are marked yellow, among which 4 keywords are

marked orange crosses. There are similar conclusions as uc. That

Figure 5: Word semantics in different semantic spaces.

Figure 6: The word relatedness after semantic correlation.

is, service-level agreements and resource discovery keep close with

privacy in D after knowledge propagation, while social network and
process algebra become less related to privacy.

We now illustrate how a user interest is transferred cross domain

in an intuitive way. We take researcher K. Walsh as an example. His

interests in the source domainC are learned by his publications inC
and then transferred to D by our model, shown as the shaded nodes

over T in Figure 4(a) and 4(b), respectively. The darker the node,

the higher the interest. The results in Figure 4(c) are obtained by

using his actual references in D. By comparing Figures 4(b) and 4(c),

we can see that the semantic correlation learnt by our method well

match his cross-domain interest. Themost interested keywords ofK.
Walsh are listed in Table 4. In the left part of the table, the frequently
used keywords are the statistics on his publications and references

in C and D, respectively. Then we select the most representative

keywords which are associated with the distributions in Figure 4,

and list them in the right part of the table. All the keywords are

ranked by the frequency or the correlation against his interests. In

the upper part, we highlight the same keywords on the left and

right sides in red. From the red keywords, we can see that his

research interest learnt by our model well matches his publications;

the rest of the keywords and the exact recommendation results

reported in Section 5.2.1 prove that our method can model his latent

interest. The results in the bottom part show that the representative

keywords against both π (Ip ) and Ir match his references, and our

method can model his latent cross-domain interest.

5.5 Model Discussion
5.5.1 Model Practicality. Both the domain semantics model and

correlation mapping function are pre-trained. Theoretically, the

complexity of training the domain semantics model is linearly

bounded by the size of samples, the height of classification tree

and the paper length. But in fact, it is efficient since the method

is a random process and the probability of a node to be visited is
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Table 4: K. Walsh’s frequently used keywords and the modeled interests.

Top used keywords in pubications in C:
filesharing, credence, p2p, reputation, gnutella,

flow-based, decoy, network, client, sensor

Representative keywords against Ip :
distributed, network, wireless, applications, mobile, sensor, node, p2p, reputation, grid

Top used keywords in references in D:
software, engineering, visualization,

propagation, history, single-view, compiler,

taxonomy, stakeholder, task-specific

Representative keywords against π (Ip ):
software, engineering, propagation, java, monitor, visualization, window, memory, management, i/o

Representative keywords against Ir :
software, engineering, propagation, java, visualization, monitor, window, compiler, memory, management

ph , where h is the depth from the root to this node and p is the

probability associated with this node. Once a node is not sampled,

our sample operation will stop browsing its subtrees (see lines

15-18 in Algorithm 1). That is, for each paper, there is no need

to do a full breadth-first search. In a real time recommendation

process, the predictive process for a paper is similar to this random

process. As for the semantic correlation between disciplines, our

model supports the flexible scope of domain, that is to say a domain

can be either a hierarchically organized discipline or fine grained

categories. Their semantic correlations are learned in an efficient

way, which are represented as the probabilistic mapping function

between the whole categories. In a query, the user is allowed to

specify the source and target domain in the form of either a subtree

or a leaf. Then the recommendation algorithm chooses the papers

from the scope of user defined domains.

The second aspect is the update of model. This process can be

periodically invoked at the system free time, such as weekly or

monthly update, and select a part of the corpus on newly published

papers.

The third aspect is related to the efficiency in answering user

queries, which are performed online. There are some strategies to

accelerate this response, such as preparing a set of candidate papers

for frequently used key words, which is also a widely adopted way

for recommendation task or web search since in most cases user

queries are in the form of keywords.

5.5.2 Model Robustness. As for the robustness of our model, we

adopt a generative process which supports flexible scopes of do-

mains. In practice, there is not a clear boundary for a scientific

domain. Users may choose different levels of discipline categories,

such as a paper may be associated with the CCS tags Human-
centered computinд → Collaborative and social computinд or In-
formation systems → Information retrieval. Besides, a discipline

classification may be adjusted according to scientific progresses.

Thus it is reasonable in our model to extract domain semantics on

the basis of an existing discipline classification. Any new classifi-

cation version can work for real usages through our model. Also

the restriction on choosing a label path in the supervised learning

process supports the hierarchical tags and the extensible domain

semantics.

5.5.3 Reuse of Semantics. To check the reuse of learnt domain

semantics and correlations, we verify our model on a new dataset

containing documents with tags on the same categories but not used

in the learning process. We use the knowledge learnt by ACM and

the dataset PT to test. We randomly select the patents in domain C

Figure 7: Recommendation between C and D on PT.

with references in domain D as interest query. For each patent, we

prepare a set of patents in D that contains at least one patent being

actually cited. Each time we map the interest to domain D, and rank
the candidates based on the semantic correlations learnt by ACM .

The comparison methods are reported in Section 5.1. The results

in Figure 7 show that the learnt semantics can be applied to a new

dataset without any further learning. Since scientific categories

are widely adopted by the science community, the semantic and

correlation knowledge can be acceptable in practice.

6 CONCLUSION
In this paper, we address the challenging problem of cross-domain

paper recommendation. We introduce the notion of domain seman-
tics to learn the word semantics against a hierarchical classification

system, which reduces the discrepancies on the word usage in dif-

ferent domains. The intrinsic correlations between domains are

represented as semantic correlations. A user interest is specified as

either a set of papers or keywords. After mapping the interest to the

target domain, papers are recommended based on the relatedness

with them. We evaluate our method on real datasets and the results

show that it outperforms other related methods. Domain semantics

supported by our model can be easily understood by researchers,

which is critical for the human-centered paper recommendation

tasks. We discuss the feasibility, robustness and reusability of our

model, and illustrate that such a recommendation system is appli-

cable for real scenarios.

As future work, we plan to investigate the optimization tech-

niques on academic recommendation cross multiple domains, such

as real-time strategies. We also plan to use our model for other ap-

plications, such as cross-platform recommendation for e-commerce,

especially for the hierarchically organized classification system.
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