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ABSTRACT

Federated Learning (FL) has become a promising paradigm for distributed machine
learning. However, FL often suffers from degraded generalization performance
due to the inconsistency between local and global optimization objectives and
client-side overfitting. In this paper, we introduce global-update stability as an
analytical tool to study generalization error and derive the stability bounds of
mainstream FL optimization algorithms under non-convex settings. Our analyses
reveal how the number of global update steps, data heterogeneity, and update
rules influence their stability. We observe that momentum-based FL acceleration
methods do not improve stability. To address this issue, we propose FedSAGD, a
new FL algorithm that leverages the global momentum acceleration mechanism
and a hybrid proximal term to enhance stability. This design ensures updates follow
a globally consistent descent direction while retaining the benefits of acceleration.
Theoretical analysis shows that FedSAGD achieves an advanced stability upper

bound of O(1 —(1—-T")T)(0 < ' < 1) and attains a convergence rate of O( \/leiT)

on non-i.i.d. datasets in the non-convex settings. Extensive experiments on real-
world datasets demonstrate that FedSAGD significantly outperforms multiple
baseline methods under standard FL settings, achieving faster convergence and
state-of-the-art performance.

1 INTRODUCTION

Federated Learning (FL) enables distributed training without sharing raw data (McMahan et al., 2017),
but it struggles with two core challenges in realistic cross-device scenarios: data heterogeneity and
limited client participation rate. These factors induce local inconsistency (i.e., divergence between a
client’s local optimization objective and the global optimization goal) and local overfitting (i.e., client-
side models overfit to local data distribution), leading to a phenomenon known as client drift (Sun
et al., |2023afb). This hinders both the convergence speed and the generalization performance of
the global model (Karimireddy et al., [2020; |Charles & Konecnyl [2021; Malinovskiy et al.| [2020).
Consequently, the severe client drift caused by local overfitting to inconsistent solutions may lead to
the degradation of the global model into merely an average of the client models (Sun et al.,[2023a)).
This challenge becomes even more pronounced when the participation rate of clients is low during
each communication round.

Several methods have attempted to address this challenge by incorporating momentum mechanisms
(e.g., FedAdam (Reddi et al., [2021)), FedAvgM (Hsu et al.,|2019)), variance reduction techniques
(e.g., SCAFFOLD (Karimireddy et al.,|2020)) or regularization-based constraints (e.g., FedProx (Li
et al.}2020), FedDyn (Acar et al.||2021))). Momentum-based and variance reduction methods mainly
focus on reducing optimization error to accelerate convergence, while regularization-based methods
aim to improve generalization by constraining the deviation between local and global models during
local updates. However, these approaches often fail to significantly enhance generalization in highly
non-IID scenarios with low client participation. We attribute this limitation to the absence of explicit
attention to the stability of federated optimization, encompassing both its convergence behavior and
its sensitivity to data heterogeneity and participation variability.

To study this, we adopt the framework of algorithmic stability (Hardt et al., 2016; Kuzborskij &
Lampert, 2018 Bousquet & Elisseeff], |2002; Zhang et al., [2022), which provides a formal link
between the sensitivity of an algorithm to data perturbations and its generalization ability. We
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leverage global-update stability to investigate the sensitivity of FL algorithms to client replacement
and establish a formal link to their generalization ability. We analyze the stability of common FL
algorithms and show that momentum-based FL acceleration methods do not improve stability.

1.1 MAIN CONTRIBUTIONS

We propose FedSAGD, a new FL algorithm that leverages the global momentum acceleration
mechanism and a hybrid proximal term to enhance stability. This design ensures that the updates
always follow a globally consistent descent direction while controlling client drift, thereby improving
the stability of global updates and retaining the benefits of acceleration. We prove that FedSAGD
achieves a tighter stability bound of O(1 — (1 — I')T) than existing momentum-based FL algorithms
such as FedAdam (Reddi et al., [2021)), FedAvgM (Hsu et al.| 2019), and FedANAG (Zhang et al.,
2025), which exhibit an upper bound of O(T"), while also maintaining a same favorable convergence
rate of O( leT ). We conduct extensive experiments on real-world vision and language datasets,
including CIFAR-10/100, EMNIST, and Shakespeare. Experimental results show that the proposed
FedSAGD consistently outperforms existing baselines in terms of test generalization and convergence
speed. Our contributions are summarized below.

* We propose FedSAGD, a federated acceleration algorithm for non-convex FL with partial
participation, combining client-side gradient-corrected momentum and a hybrid proximal
term. Compared with previous momentum-based FL. methods, FedSAGD achieves improved
stability while maintaining fast convergence.

* We provide theoretical analysis of FedSAGD’s stability and convergence under non-convex
settings, showcasing its state-of-the-art performance.

* We empirically validate our theoretical findings by comparing FedSAGD with several estab-
lished baselines. Extensive experiments confirm that our method consistently outperforms
strong baselines in convergence speed, generalization, and stability.

2 RELATED WORK

Generalization and stability in centralized learning. Bousquet & Elisseeff] (2002) introduced the
concept of algorithmic stability and showed that it can be used to derive bounds on the generalization
error. On-average stability is proposed by |Shalev-Shwartz et al.| (2010) and further studied by
Kuzborskij & Lampert| (2018). Stability-based generalization analysis was introduced into stochastic
gradient-based methods (Hardt et al.| 2016; Richards & Rebeschini, [2020). |Sun et al.| (2021)); /Zhu
et al.| (2022) extended the results to D-SGD and discussed the relationship between generalization
performance and communication topology. Although stability analysis has proven to be an effective
tool for characterizing the generalization performance of algorithms in centralized learning, due
to issues such as data heterogeneity across clients and client dropout in federated learning, these
conclusions cannot be directly extended to the federated setting.

Generalization and stability in federated learning. For the generalization bounds in FL, Hu et al.
(2023)) characterized the generalization error for both participating and non-participating clients in
the training process. [Liu et al.| (2025)) proposed the first algorithm-dependent generalization analysis
with uniform stability for the typical personalized FL method. [Sun et al.|(2024) demonstrated that
the generalization performance is closely related to the data heterogeneity and the convergence
behaviors through on-average stability. [Zhang et al.[|(2025) focus on the local-update stability of
FL, i.e., how client variations affect the model after K local update. To better model the fact that
client participation in FL is partial and random, we propose global-update stability, which aims to
investigate how variations in the participating client sets affect the difference in models trained by the
FL algorithm.

Federated optimization. McMahan et al. (McMahan et al.,|2017) first introduced FedAvg to address
major challenges such as massively distributed clients and partial client participation. With the rapid
development of FL, many optimization methods have been proposed to mitigate the divergence
between clients and the global model caused by data heterogeneity. FedProx (L1 et al., 2020) restricts
the offset of local updates by adding a proximal term. FedDyn (Acar et al., [2021) dynamically
modifies the device objective with a penalty term. SCAFFOLD (Karimireddy et al., 2020) employs



Under review as a conference paper at ICLR 2026

variance reduction techniques to correct the client drift in local updates. MimeLite (Karimireddy
et al.,2021) uses a combination of control variates and server-level optimizer states (e.g., momentum)
in each client update step. As classic optimization methods, momentum methods can be traced back
to Polyak’s heavy ball method (Polyakl [1964) and Nesterov’s accelerated method (NAG) (Nesterov,
2013). With the flourishing of momentum mechanisms in machine learning research (Liu & Belkin,
2020; Liu et al., [2020; |/Assran & Rabbat, 2020), this motivates researchers to incorporate momentum
methods into FL settings. FedAvgM (Hsu et al.l 2019) and FedAdam (Reddi et al.l [2021)) apply
momentum to the server side, with the latter utilizing an adaptive optimizer. FedCM (Xu et al.,
2021) introduces global momentum into the local update. FedLNAG (Yu et all 2019) employs
NAG to accelerate each local iteration. FedACG (Kim et al.| [2024) uses the global model with a
lookahead gradient in the penalty term to regularize the local updates. FedANAG (Zhang et al.,
2025) incorporates both the global and local analog NAG, while avoiding degrading stability and the
communication overhead of uploading additional local momentum. However, these methods only
enhance the empirical performance without improving stability relative to FedAvg. Therefore, we
aim to design an algorithm with better stability that translates to improved empirical performance.

3  PROBLEM FORMULATION

3.1 PRELIMINARIES

Throughout this paper, we mainly consider the typical cross-device FL setting, which involves one
server and a large number of clients. Let m be the total number of clients, we use [M] to denote the
set {1,2,...,m}. We denote the set of active clients at round ¢ as S;, with |S;| = s. T'is the total
communication rounds, K represents the number of local updates per communication round. x is the
model parameter. (-, -) denotes the inner product for two vectors, and || - || the Euclidean norm.

We consider minimizing the following optimization problem of the form:
1 m
= F, % ) 1
) = 25 S Rla) M

where the F;(x) = E¢,~p, [Fi(x, &;)] is the local loss function of the client ¢ € [M], &; represents the
random data samples drawn from the distribution P; and n; is the number of local samples. In FL
settings, P; may differ across the local clients, i.e., for clients ¢ and 7, their data distribution might be
significantly different. We state some standard assumptions (Reddi et al., 2021 |Karimireddy et al.,
2021;|Zhang et al.| [2025) as follows.

Assumption 3.1. (L-smooth). F} is L-smooth for all client i, i.e., |V F;(z) — VE;(y)|| < L||z — |,
Va,y € R

Assumption 3.2. (Unbiased estimator of local gradient with bounded variance). The local gradient
estimate g , = VIF;(x ., &) with randomly sampled data &; is unbiased, i.e., E[g; ;] = VFi(x} ;).
The variance of local gradients is bounded, i.e., E||g; ,, — VFi(x} ,)|[’] < o7, Vi € [M] and Vt.

Assumption 3.3. (Bounded heterogeneity). The variance of local gradients at all clients is bounded,
i.e, B[|VFi(x:) — Vf(x)||?] <02, Vi € [M] and Vt.

Assumption 3.4. (Z-Lipschitz) F; is Z-Lipschitz for all client i, i.e.,
Vo, y € R

Fi(z) = F()ll < Zlz —y

>

Assumption [3.1] guarantees a Lipschitz continuity and Assumption [3.2] guarantees the stochastic
gradient is bounded by zero mean and constant variance. Although in practical FL the samples are not
i.i.d., they are still sampled from distributions that are not entirely unrelated (Li et al.}[2020). Thus, it
is reasonable to bound the dissimilarity between local functions in Assumption [3.3] Assumption[3.4]
is widely used in the stability analysis (Hardt et al.,|2016; [Let & Ying, [2020).

3.2 STABILITY BOUNDS ANALYSIS

We introduce the notion of algorithmic stability to provide an upper bound on the generalization
error. In particular, we formally improve the on-average stability proposed by [Sun et al.|(2024]),
While [Sun et al.| (2024)) characterizes sensitivity to single data point perturbations within a client,
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this perspective does not fully capture the dominant source of variability in FL, i.e., partial client
participation. In practice, client participation is partial and random, and models must generalize to
unseen clients whose data distributions may differ significantly. To better model this scenario, we
extend the stability analysis from sample-level perturbations to client-level perturbations, leading to
the following definition.

Definition 3.5. (global-update stability for FL). Let A(S) denote the model output by algorithm A
on client set S. A FL algorithm A is said to satisfy e-global update stability if given any two client
sets S and S, then for any j € [M]

marEas.g, [IF5(A(S), &) — Fi(AS™),&)]] <,

€[M]

where two neighboring sets S and S only differ by one client i. Here, the expectation is also taken
over the randomness of the active client set S.

Global-update stability means that any change in the participating FL clients will not cause a
significant difference in the model trained by the FL algorithm in expectation. To better capture this
partial participation setting, we adopt the concept of semi-empirical risk from Yuan et al.{(2021) and
Zhang et al [(2025) to define generalization error €4.,. The unparticipating expected risk as follows

Ry = Eivc[Eg,~p, [Fi(A(S), &), @

where C is a meta distribution from which the active clients are drawn. R,, denotes the expected loss
of the model over all clients in the meta-distribution. And the semi-empirical risk is defined by

Re = 15 Y [Een [FUAS). €] @)

€S

R, represents the expected loss of the model over the clients participating in the training. Note that,
to characterize the partial and random participation of clients, we adopt semi-empirical risk (Yuan
et al.;[2021; Zhang et al., [2025)) rather than the traditional empirical risk. This replaces the empirical
loss within each client with the expected loss over that client’s local data distribution. Traditional
generalization error measures the performance of a model on unseen data, while the generalization
error we define here measures the performance of the model on the data of unseen clients. To better
assess the generalization error for unparticipating clients, we define the generalization error of a
model output A(S) is

€gen ‘= ElNC[]E&N'Pq[ ( ( Z |S| Z ]E&NPZ ) 51)]] (4)

€S

a smaller €y, implies the model A(S) has a better generalization performance on the data of
unparticipating clients. The following theorem shows that generalization error of the model can be
bounded by global-update stability. The proof is given in Appendix [B]

Theorem 3.6. Suppose that a FL algorithm A satisfies the e-global-update stability. Then,
ESEA[egen] < ]ESEAHRu - Re” <e

Theorem [3.6establishes that if the algorithm exhibits high global update stability (i.e., a small stability
upper bound), the generalization gap is guaranteed to be small. This indicates that the model not only
fits the participating clients but also generalizes well to unseen clients. Therefore, improving stability
becomes a key objective in designing effective FL algorithms. Based on Definition [3.3] we analyze
the stability of existing methods. Following |Hardt et al.| (2016), we denote x7 and x’T as the global
models trained by two neighboring active client sets, and, under the Assumption 3.4, we relate the
model difference E||zp — x/-|| to stability. Supposing the same model initialization, we present in
Table [T]the upper bounds of the resulting models for different FL algorithms. See Appendix [C|for
the detailed proof.

As proposed in [Sun et al.| (2024), the model differences of the algorithms increase linearly with
the heterogeneity of the client data distributions, are proportional to the sampling variance of the
gradients, and also depend on the learning rates chosen during the local training process. Although
Zhang et al.|(2025)) also analyzed the stability of FL algorithms, which they termed local-update
stability, their study only considered the effect of client changes on the model difference after K
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local training steps, essentially corresponding to stability at the local update level. In contrast, our
work investigates global-update stability, namely, the impact of changes in client participation on
the model difference of FL algorithms over 7' communication rounds. Moreover, the conclusion on
local momentum stability in [Zhang et al.| (2025)) is limited to the setting of quadratic functions. As
shown in Table [T} our stability results demonstrate that, in the non-convex setting, the global stability
of existing momentum-based algorithms grows linearly with T". Furthermore, applying Nesterov
momentum locally does not significantly increase the upper bound of model discrepancy, and relying
solely on global momentum is also insufficient to improve the stability of FL algorithms.

Analysis reveals that FedProx and FedDyn exhibit better stability due to the incorporation of proximal
terms in the local update process. Based on the discussion in Appendix [C.2] after introducing the
proximal term, the local-update stability of FedProx and FedDyn is reduced from the linear upper
bound O(K) to a finite upper bound O(1 — (1 — A1) %). However, this cannot improve the global-

update stability of the FL algorithm, which remains at O(T'). To address this limitation, we propose
1

a hybrid proximal term: 55 [|(1 + A) 24,k — Az ||2. Then we can get the following conclusion

Theorem 3.7. Suppose Assumption hold and consider FedSAGD. Let xr and x/. be two
model results obtained by neighboring active client-sets S and S', respectively. Under the assumption
that F; is a non-convex and L-smooth function, then

1-(1-D)"2+28
r A4 p

E||Fi(zr) — Fi(27)|| < ZE[zr — 27| < (07 + 207 +22%)2 7,

where T := 1 — [Aiu + 55 A=A+ ©))%] € (0,1). By combining the proximal term with
weight decay, this design transforms the accumulated historical gradients over 7" rounds into an
exponential moving average, thereby reducing the global stability of the algorithm from a linear

upper bound O(T) to a finite upper bound O(1 — (1 — I')T). The detailed proof can be found in
Appendix [C.T1]

Learning Rate and Convergence. The stability analysis of various algorithms demonstrates that,
under non-convex objective functions, stability is influenced by the learning rate. As the number
of global iterations 7' increases, the bias of the FL. model in non-convex settings accumulates
and becomes progressively larger. To guarantee convergence in such scenarios, the learning rate
7, is typically set to be inversely proportional to the square root of the global rounds 7', that is,

m=0 (Tl\/f) . This choice also effectively compensates for the stability discrepancies in non-

convex settings. Indeed, this convergence requirement has been validated in many existing studies
(Yang et al} 2021} [Yu et al.,|2019; |Zhang et al., [2025)). Nevertheless, even with this compensation

introduced by learning rate decay, the stability of existing algorithms remains at (’)(\/T), which is
weaker than that of our proposed algorithm, achieving O(1 — (1 — T')7).

Table 1: Summary of stability bounds of FL algorithms. All results are the ones under non-convex
and Assumptions We define © := (o7 + 207 + 27 2)2 for simplicity.

Method Non-convex Historical gradient® Proximal term  Communication®

FedAvg 2 KeT - - 1%
FedProx® 22071001 — (1 — M) K|T - v 1x
SCAFFOLD 6 KOT Variance reduction - 2x
FedDyn AATO[L — (1 - KT - v 1x
FedLNAG 2 KOT Client side-momentum - 2x
FedAdam 277 Iy KOT Server side-momentum - 1x

FedCM 20T Client side-momentum - I~ 1.5x
MimeLite 2mKeT - - 2%

FedANAG 2(1— ﬁ)flmK(—)T Client side-momentum - 1~ 1.5x
FedACG (4—20)(1 -\ ""'nKeT Server side-momentum v 1x

FedSAGD(ours) (A + )~ 'T~1(2+28)O[1 — (1 —I)T]  Client side-momentum v I~ 1.5x

2 This column refers to the utilization of historical gradients g‘f.ﬂT for 7 < k and r < ¢ during the k-th local update.

b Here, communication refers to amount of data transmitted w.r.t. to FedAvg.
¢ A, p, ( are the hyper-parameters of different algorithms.
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4 METHODOLOGY

4.1 FEDSAGD ALGORITHM

We introduce FedSAGD, as shown in Algorithm[I] to improve stability and generalization while
accelerating convergence, by coupling global momentum with client-side acceleration and a hybrid
proximal term. Together, these components enable FedSAGD to reduce the negative effects of
heterogeneity while achieving faster convergence with fewer communication rounds.

At the beginning of each round ¢, a subset of clients S; are randomly selected to participate in the
current training process (line 4). The global server will communicate the parameter x; and global
momentum v;(vy = 0) to the active clients for local training (line 6). Each active client perform
three stages: (1) computing the unbiased stochastic gradient gi, B = VFi(:ci’ > &) with local data
& (line 8); (2) computing the local momentum mff i through combining v; and gzy i (ine 9); (3)
executing the gradient descent step with the local momentum m; & and the hybrid proximal term
(line 10). After K iterations, local updates are completed, and the clients communicate the offset of
the model parameters xi K= xf;’O to the server for aggregation (line 12). On the global server, the
global momentum v; will be updated as the weighted sum of the current average local offset Ax; and
the historical global momentum (line 15). Then, the server performs a simple update to derive the
global model x4 (line 16).

Algorithm 1 FedSAGD Algorithm Framework

1: Input: model parameters x(, total communication rounds 7', number of local iterations K,
momentum coefficient 5,proximal term A, y, local learning rate 7);, global learning rate 7.

2: Qutput:model parameters z.

3: fort=0,1,2,..., T —1do

4: select active clients-sets S; at round t

5 for client i € S; in parallel do

6: communicate x; and v; to local client ¢ and initialize .TJ%,O =T

7: fork=0,1,2,..., K —1do

8:

9

compute unbiased stochastic gradient: g} , = VEF;(z! ,,&;)
update the momentum: m! , = Buv; + gi .

10: update the gradient step: @} . = x} , — m(mj ;. + (A + p)x} ) — Azy))
11: end for _ _
12: Axy =z} j¢ — 4 o and communicate Az to server
13: end for
. 1 i
14 Az =) s, Ay
. . _ _B A
15: update global momentum: v;41 = gVt — m
16: update global model: z;y1 = x¢ + nAx,
17: end for

Hybrid proximal term. In traditional optimization problems, penalized proximal term are typically
added to the objective function to improve the model’s generalization ability and prevent overfitting
(Krogh & Hertz,|1991};|Ghojogh & Crowley,2019). In FedProx (Li et al.,[2020), the prox term is used
to enhance local consistency in FL, while FedDyn (Acar et al.,[2021) utilizes a dynamic regularization
term to align the global and local optima. Through analysis, we find that the proximal term can

improve the local-update stability O(1 — (1 — 1, A)%), but fail to enhance the global updates stability
O(T). Therefore, we propose a hybrid proximal term: m (1 + A) 4, )¢ — Azy||, which further
improves the stability of global updates to O(1 — (1 — I')T). As shown in the local update in

Algorithm(Line.lO), foralli,j € [M],i # j we have:

Ellz} i — o] |l <(1—D)E[a, — 2] + ¢(2 + 25)6, (5)

Ap

where ( = 1=t proof details can be referred to in Appendix From equation it
can be observed that after incorporating the hybrid proximal term, the accumulated historical gradients
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over T  rounds are transformed into an exponential moving average, which differs fundamentally
from FedProx, as shown in Fig[6b] This also explains why our method achieves improved stability.

Momentum update. In FL settings, using local momentum can lead the update direction toward
local optima rather than the global optimum, thus hindering global convergence. This issue becomes
particularly pronounced in the presence of data heterogeneity. Therefore, we use global momentum
locally to accelerate convergence while preserving stability. In fact, according to Line 8 of Algorithm
E], the accumulated local update of FedSAGD can be written as:

K—1
Tl —Tho=—m Y akdiy — aBnuv, 6)
k=0
where ay, := (1 — )5~ 1"%and o := Zf;ol ag. vy denotes the global momentum. The detailed

derivation is provided in Appendix [D.2] FedSAGD achieves the same local-update stability upper

bound as FedProx, but introduces an additional update term involving the global momentum v;. In
1—a¥

other words, at each local iteration, FedSAGD differs from FedProx by an extra term (8 v;. To
maintain the same maximum model discrepancy as FedProx, the local update direction of FedSAGD
is forced to be closer to the global optimum, as shown in Fig[6al Consequently, FedSAGD is able to
accelerate the training process while preserving high local-update stability.

Note that the overall communication cost of the proposed FedSAGD scheme consists of two parts:
the downlink cost of broadcasting the global model x; and global momentum v, from the server,
and the uplink cost of unicasting s local model updates from the clients. In wireless communication,
broadcasting a file to s destinations is significantly more efficient than unicasting s copies of the same
file to each destination. Therefore, the communication overhead of FedSAGD is approximately fi;
times that of FedAvg, where s typically represents a large number in cross-device FL. (Kairouz et al.
2021).

4.2 CONVERGENCE ANALYSIS

We rigorously prove the convergence of FedSAGD for non-convex settings, assuming partial par-
ticipation, i.e.|S;| < m,Vt € [T]. Our analysis can be directly extended to full participation. We
provide a proof sketch in the following. For the full proof, please refer to Appendix

Proof sketch. To facilitate the handling of the momentum terms in the proof, we introduce an

. ; K—=1 _ .
auxiliary sequence z;. Denote G} = > ;" axg; ;. &' = % and v = 1 4 o'. The form of z; is as

follows:
T, t=0;
2t = { 1+8 @)

B Bnn i
l—a’BIt - 1—()/[3xt_1 + (1—a’;3)s ZiESt—l Gi_l’ t=>1
The z; update is:
nm i
i =a - g o ) G
(1 a B)S 1ES,
From the expression of z;, it can be seen that, as ¢ tends to positive infinity, z; and z; both converge
to optimum z*. Furthermore, after mapping z; to z;, the entire update process will be simplified to

an SGD-type method with the gradient g. We subsequently introduce the convergence result for the
FedSAGD algorithm.

Theorem 4.1. Under Assumption and loss function is non-convex, we define Dy := E(f(z9)—
f(z1)). When the learning rate satisfies n; < ﬁ and

ms—-1) . )0~ BPVE (1—a'f)y 1-a'B
s(m—1) 4aBLv3a | 6BLV2a ’ 2aL [’

Then the auxiliary sequence z; in equation equation /| generated by executing the FedSAGD satisfies:

nm <

1, LDy o2 1,02 , o2 o2
=2 Vi) <o + + (5 +Koi+—L+2)+ 0,4+ 0
T;” fedl (\/sKT VsKT nive Pttt 9)
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where
1 K\ (m—s),1 1 1 9
\Ill_(f—}_siT) m—1 (T+3K2T+\/3KT)U“
(K (m—s) 1 1 1 9
Vo= (7 + 81 Tt o )

Remark 4.2. To obtain the above results, it is also necessary to suppose that n = O(VsK) and

m = O 7 K1 \/T) This is consistent with the assumptions on the convergence rate in Reddi et al.

(2021)); Yang et al.|(2021). However, we do not make the assumption of bounded gradients as in |Reddi
et al.| (2021). When T is sufficiently large, the dominant term of convergence bound of algorithm

is O( W) for full participation and (’)(%) for partial participation, which matches with the
convergence rate of current FL algorithms (Yang et al.} 2021} |Zhang et al.| 2025|).

Remark 4.3. Though uniform sampling can effectively approximate the distribution of all working
nodes in expectation, resulting in a structurally similar convergence rate between partial and full
participation, the distribution deviation due to the fewer participating clients could destabilize the
training process, particularly in highly non-i.i.d. cases (Yang et al.||2021)). Our proposed algorithm
reduces the upper bound of stability from O(T) to O(1 — (1 — T')1) while still achieving a linear

speedup O(%) with partial worker participation under heterogeneous datasets.

5 EXPERIMENTAL ANALYSIS ON REAL WORLD DATASETS

5.1 SETUP

Datasets and models. We adopt standard federated learning benchmarks following the same train/test
splits as prior works (McMahan et al.| 2017; [Li et al.| 2020), including CIFAR-10 and CIFAR-100
(Krizhevskyl 2009), a subset of EMNIST (Cohen et al., [2017) referred to as EMNIST-L, and the
Shakespeare dataset (Shakespeare, |1907)). To comprehensively evaluate performance across diverse
federated scenarios, the experiments adopt three settings similar to those in previous work (Zhang
et al., |2025): Setting I (CIFAR-10 and CIFAR-100): 200 clients with a 2% participation rate per
round; Setting IT (EMNIST-L): 500 clients with a 1% participation rate; Setting III (Shakespeare): 100
clients with a 3% participation rate. To simulate data heterogeneity, we follow the approach of [Hsu
et al.|(2019), sampling label distributions from a Dirichlet distribution with concentration parameter
0.3. For the IID setting, training data is randomly assigned to clients. In the non-IID setting, label
distributions follow the sampled Dirichlet proportions. The model architectures include multinomial
logistic regression, convolutional neural networks (CNNs), and recurrent neural networks (RNNs),
standard ResNet-18 network, aligned with configurations used in previous studies (Sun et al.,[2023aj
Acar et al., 2021} |[Kim et al.,[2024; |Zhang et al., [2025)). Due to space limitations, further details on
datasets and models are provided in the Appendix

Baseline methods. We compare against a broad set of classical and efficient methods designed
to address local inconsistency and client drift in federated learning, including FedAvg (McMahan
et al.,[2017), FedProx (Li et al.,[2020), FedAdam (Reddi et al.,[2021), SCAFFOLD (Karimireddy
et al.,[2020), FedCM (Xu et al., 2021}, FedDyn (Acar et al.,[2021)), FedACG (Kim et al., [2024]),
FedANAG (Zhang et al.| 2025)), FedAvgM (Hsu et al.,[2019), MimeLite (Karimireddy et al.|[2021),
and FedLNAG (Yu et al.| [2019). FedAdam improves global updates via adaptive optimization.
FedCM, FedACG, FedANAG, and FedAVG-M leverage global momentum to correct local updates.
SCAFFOLD and FedDyn mitigate client heterogeneity by aligning local and global loss functions
using control variates or dual variables, respectively. FedProx addresses local inconsistency through
the addition of a proximal term. To ensure a fair evaluation under practical federated settings, we
report the test accuracy after 2000 communication rounds across all experiments, following the
baseline settings in |Acar et al.| (2021); Zhang et al.| (2025). Further implementation details and
hyperparameter configurations are provided in the Appendix [A]

Evalution metrics. Different algorithms are evaluated with two metrics: the convergence rate (i.e.,
number of rounds required to reach a target test accuracy) and the generalization performance (i.e.,
final global model performance on a validation set throughout training). These two metrics are widely
adopted by many prior works such as |Acar et al.[(2021); |Kim et al.[(2024); |Zhang et al.| (2025)).



Under review as a conference paper at ICLR 2026

5.2 MAIN RESULTS

We evaluate the aforementioned FL algorithms under a variety of challenging settings, including
scenarios characterized by extreme data heterogeneity and very low client participation rates. The
peak test accuracies reported in Table 1 are obtained by averaging results over five independent runs
with different random seeds to ensure statistical reliability. We further investigate the sensitivity of per-
formance to the hyperparameter (5, 1 and A\ under varying configurations. In addition, Appendix
presents the variance of test accuracy across different seeds to complement the robustness analysis.
Table[Z]reports the test accuracies of FedSAGD and baseline methods on CIFAR-10, CIFAR-100,
EMNIST, and Shakespeare under different settings, and the corresponding convergence curves are
shown in Appendix We also verified the stability and empirical generalization error of most
algorithms as shown in Appendix [A.4] And we conducted experiments under feature-skewed settings,
details can be found in Appendix [A.7]

Table 2: Number of communication rounds required to achieve the preset target accuracy (presented
in the first two lines on four datasets), and the top validation accuracy averaged over five random
seeds for recent state-of-the-art methods (presented in the third line on four datasets), with the bold
number representing the best result. Using CIFAR-10 as an example, the first two lines present the
required communication rounds to reach 81% and 75% test accuracy, respectively. The third line
shows the highest accuracy achieved by each method within 2000 rounds. *2000+’ indicates that 81%
accuracy was not reached even after 2000 rounds.

Method CIFAR-10 CIFAR-100 EMNIST Shakespeare

75 81 top(%) 40 45 top(%) | 78 80  top(%) 45 50 top(%)
FedAvg 572 2000+ 78.64 | 2000+ 2000+ 40.79 | 102 271  81.01 176 516 51.61
FedProx 572 2000+ 78.88 1207 2000+ 41.74 | 46 154  81.83 194 522 51.54
FedDyn 354 2000+ 80.14 | 1512 2000+ 41.89 | 65 146  81.02 231 489 51.77
SCAFFOLD 364 1535  81.34 | 1308 2000+ 4224 | 60 141  81.55 180 465 52.04
MimelLite 439 1959  81.02 578 1050 4759 | 57 129 8191 177 477 51.71
FedAvgM 489 1522 81.86 714 1197 4831 50 151 81.92 84 313 52.32
FedAdam 1295 2000+ 78.29 1458 1877 4451 | 61 162 81.58 99 359 52.30
FedCM 530 1891  81.09 1265 1718  45.02 | 277 1101  80.16 | 2000+ 2000+ 39.14
FedLNAG 497 2000+ 79.60 | 1031 1602 4231 | 41 196  81.92 93 296 52.23
FedANAG 338 882 83.51 673 1701 4532 | 38 181  82.01 68 183 52.46
FedACG 338 891 83.52 582 1139 5059 | 36 155  82.02 72 214 52.52
FedSAGD(ours) | 287 851 84.05 536 852 5453 | 30 131 82.24 56 147 53.03

Table 3: Accuracy (%) vs. Non-iid-ness, With  Table 4: Accuracy (%) vs. PR, With Dirichlet
PR = 1%. 0.3.

Dirichlet 0.3 0.6 0.8 iid PR(%) 1 2 5 10

FedSAGD 82.86 84.08 84.46 85.36 FedSAGD 82.86 84.05 83.49 83.01
FedACG 81.52 82.34 83.12 85.03 FedACG 81.52 83.52 83.14 82.63
FedANAG  82.37 83.11 84.27 85.13 FedANAG  82.37 83.51 83.04 82.50
SCAFFOLD 80.88 81.88 8231 83.17 SCAFFOLD 80.88 81.34 81.97 82.12
FedDyn 78.45 8195 83.01 83.10 FedDyn 78.45 80.14 80.45 82.46
FedLNAG  79.05 80.53 80.93 81.99 FedLNAG  79.05 79.60 80.10 79.54
FedAvgM 81.34 82.15 83.12 84.70 FedAvgM 81.34 81.86 82.71 82.08
FedAdam 78.81 81.10 82.52 845 FedAdam 78.81 78.29 81.77 81.73
FedCM 79.44 80.46 81.62 82.07 FedCM 79.44 81.09 82.00 81.89

As shown in Table 2] FedSAGD consistently and significantly improves both convergence speed
and accuracy across almost all scenarios. This remarkable performance is attributed to the global
momentum at the client side and the hybrid proximal term. This momentum-based acceleration
mechanism not only leverages global momentum to accelerate both local and global training, but also
provides a globally consistent update direction, thereby enhancing global convergence. Furthermore,
aligning local updates with the trajectory of global gradients improves inter-client model consistency,
resulting in increased stability. In contrast, other momentum-based methods such as FedLNAG can
accelerate local convergence toward local optima, but due to the misalignment between local and
global optima, the performance of the aggregated global model remains suboptimal. On the other
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hand, approaches that rely solely on global momentum such as FedCM, FedACG, and FedANAG may
improve global convergence, but have limited ability to improve inter-client consistency, which in turn
leads to degraded generalization performance. This observation is also theoretically supported by our
stability analysis. In addition, compared with methods that rely solely on global momentum and the
current gradient, FedSAGD leverages the hybrid proximal term to correct the gradient, thereby further
improving the consistency of client update directions. This process reduces model discrepancies
across clients and further enhances training efficiency.

Tables 3 and 4 demonstrate that FedSAGD exhibits the highest robustness under conditions of severe
data heterogeneity and low client participation rates. The results under milder heterogeneity settings
are provided in Appendix [A.6] To further evaluate performance, we examine the peak validation
accuracy achieved by each method on the CIFAR-10 dataset under varying degrees of non-i.i.d.
distributions and client participation rates (PR). Across both i.i.d. and non-i.i.d. scenarios, FedSAGD
consistently outperforms all baselines under various participation settings in terms of generalization.
Moreover, increases in data heterogeneity and decreases in client participation exert only a minimal
adverse impact on the performance of FedSAGD.

6 CONCLUSION

We propose FedSAGD, a novel and practical federated learning algorithm designed to address the
issue of unstable client updates in existing momentum-based and variance-reduction-based methods.
To this end, we introduce a consistency-based stability metric and show that current acceleration
schemes do not yield notable advantages in terms of stability. FedSAGD employs a global momentum
acceleration mechanism to guide client updates and introduces a hybrid proximal term to further
enhance the consistency among client models. We provide rigorous theoretical analysis demonstrating

that FedSAGD achieves the optimal O(1 — (1 — I')T') stability and O( \/leiT) convergence rates in

non-convex settings. Extensive experiments conducted on multiple datasets validate the superiority
of FedSAGD in both training efficiency and final performance, which is highly consistent with our
theoretical findings.
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A EXPERIMENT DETAILS

A.1 REAL DATA

We evaluate our models on four benchmark datasets: EMNIST-L, CIFAR-10, CIFAR-100, and
Shakespeare. EMNIST-L is a subset of the EMNIST dataset, comprising the first 10 characters from
the alphabet split, following prior work such as FedProx (Li et al.|[2020) and FedDyn (Acar et al.|
2021). For image classification tasks, EMNIST-L, CIFAR-10, and CIFAR-100 are used, with image
dimensions of 1 x 28 x 28 for EMNIST-L and 3 x 32 x 32 for both CIFAR-10 and CIFAR-100.
These datasets contain 10, 10, and 100 classes, respectively. The Shakespeare dataset is used for
next-character prediction, with 80 distinct characters as inputs and the subsequent character as the
label, resulting in 80 output classes. We adopt the standard training/testing splits for all datasets. A
summary of the number of training and test samples for each benchmark is provided in Table

To generate Non-IID data partitions for EMNIST, CIFAR-10, and CIFAR-100, we allocate training
samples to clients based on class labels. Specifically, following prior works (Yurochkin et al.
2019), we use the Dirichlet distribution to create federated heterogeneous datasets by sampling a
class-probability vector for each client, where each vector is drawn from a Dirichlet distribution
with a concentration parameter that controls the degree of data heterogeneity. For each client, labels
are sampled according to this probability vector, and corresponding images are drawn without
replacement. This process is repeated until all data points are allocated. As a result, each client’s
label distribution follows the Dirichlet distribution, with the concentration parameter governing the
level of statistical heterogeneity across devices. For instance, when the Dirichlet factor is set to 0.3,
approximately 80% of each client’s data is concentrated in 3—4 dominant classes. In the IID setting,
data is randomly shuffled and evenly distributed across clients.

For the Shakespeare dataset, we adopt the LEAF framework (Caldas et al.||2018) to generate Non-I1ID
data, capping each client’s dataset to 2000 samples, consistent with FedDyn. In this setting, data is
naturally partitioned by role, where each device corresponds to a character in the script and holds all
lines spoken by that character. In the IID setting, all lines are merged and then randomly distributed
across clients.

A.2 MODELS

For CIFAR-10 dataset, we adopt a CNN architecture similar to those used in FedAvg and FedDyn,
which consists of two convolutional layers with 64 filters of size 5 x 5, followed by two 2 x 2
max-pooling layers, two fully connected layers with 384 and 192 neurons respectively, and a final
softmax output layer (see Table [5] for complete model details). This CNN model is identical to
the one used in FedAvg, except that batch normalization layers are excluded. For the CIFAR-100
dataset, we use standard ResNet-18-GN model (He et al., 2016)) backbone with the 7x7 filter size
in the first convolution layer as implemented in the previous works, e.g. for (Karimireddy et al.|
2020; |Acar et al.} [2021). We follow the (Hsieh et al.,[2020; Sun et al.,|2023a) to replace the batch
normalization layer with group normalization layer (Wu & He, 2018), which can be aggregated
directly by averaging. These are all common setups in many previous works. For the EMNIST-L
dataset, we use a multi-class logistic regression model with a cross-entropy loss function. For the
next-character prediction task on the Shakespeare dataset, we follow the configurations used in
FedProx and FedDyn, employing an RNN model that first embeds the input character sequence into
an 8-dimensional space, then passes it through a two-layer LSTM with 100 units, and finally outputs
predictions via a softmax layer (see Table 6] for full specifications).

A.3 HYPER-PARAMETERS

In our experiments, all algorithms are implemented using PyTorch 2.0.0 with CUDA 11.8 on a
GEFORCE RTX 4090 GPU. We consider different hyperparameter configurations for various setups
and datasets. For all experiments, we fix the batch size as 48 for EMNIST-L, 50 for CIFAR-10 and
CIFAR-100, and 100 for Shakespeare. For each dataset, we compare the performance of different
methods under various hyperparameter configurations. The client learning rate 7; and the learning
rate decay factor are individually tuned via grid search.
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Table 5: CNN Architecture for CIFAR-10

Table 6: Shakespeare model architecture

Layer Type Size
Convolution + ReLU 5xbx64 Layer Type Size
Max Pooling 2x2 -
Convolution + ReLU 5xHx64 Embedding (80, 8)
. LSTM (80, 100)
Max Pooling 2x2 LSTM 80. 100
Fully Connected + ReLU 1600 x 384 Fully C ted (1 Ob 80)
Fully Connected + ReLU 384 x 192 ully Connected _ (100, 30)
Fully Connected 192 x 10 & 192 x 100

Table 7: Train and test splits

Dataset No. Train No. Test No. clients sampling rate  No. Train per client Batch size Rounds
EMNIST-L 48000 8000 500 1% 96 48 2000
CIFAR-10 50000 10000 200 2% 250 50 2000
CIFAR-100 50000 10000 200 2% 250 50 2000
Shakespeare 200000 40000 100 3% 2000 100 1000

EMNIST-L. As for the 500 devices, balanced data, full participation setup, hyperparameters
are searched for all algorithms in all IID and Dirichlet settings for a fixed 100 communication
rounds. The search space consists of learning rates in [0.1,0.01,0.001], As in [1,0.01,0.001] and
as in [0.001,0.01,0.02,0.1], epochs is 20. The learning rate decay is selected from the range of
[0.995,0.998,0.999, 1.0]. The selected configuration for FedAvg is 0.1 learning rate; for FedProx is
0.001 learning rate and 0.001 p; for FedDyn is 0.001 learning rate and 0.01«; and for SCAFFOLD
is 0.001 learning rate; and for FedSAGD, FedANAG, FedACG, FedLNAG, FedAvgM are 0.001
learning rate and 0.93; and for FedCM is 0.001 learning rate and 0.1/; and for MimeLite is 0.001
learning rate and 0.2/3; and for Fedadam is 0.001 learning rate and 0.1 glabal learning rate for all IID
and Dirichlet settings. These configurations are fixed and their performances are obtained for 500
communication rounds.

CIFAR-10. We used similar hyperparameters as in EMNIST-L dataset. The configuration in-
cludes: 0.1 for learning rate, 5 for epochs. The learning rate decay is selected from the range of
[0.995,0.998,0.999,1.0]. The « value is selected from the range of [0.001,0.01, 0.1] for FedDyn.
The p value is selected from the range of [0.1,0.01,0.001, 0.0001].

CIFAR-100. The same hyperparameters are applied to the CIFAR-100 experiments with 200 devices
including: 0.1 for learning rate, 5 for epochs. The learning rate decay is selected from the range of
[0.995,0.998,0.999, 1.0]. The « value is selected from the range of [0.001,0.01,0.1] for FedDyn.
The p value is selected from the range of [0.1,0.01,0.001, 0.0001].

Shakespeare. As for 100 devices, balanced data, full participation setup, the hyperpa-
rameters are searched with all combinations of learning rate in 1, epochs in [1,5], As in
[0.01,0.001] and as in [0.001,0.009,0.01,0.015]. The learning rate decay is selected from
the range of [0.995,0.998,0.999,1.0]. The learning rate decay is selected from the range of
[0.995,0.998,0.999, 1.0]. The selected configuration for FedSAGD, FedANAG, FedACG, FedL-
NAG, FedAvgM are 0.93; and for FedCM is 0.153; and for MimeLite is 0.23; The « value is
selected from the range of [0.001, 0.01,0.1] for FedDyn. The p value is selected from the range of
[0.1,0.01,0.001, 0.0001].

A.4 VALIDATION OF STABILITY AND EMPIRICAL GENERALIZATION ERROR

As stated in Section[3.2} since we can establish a connection between the difference in loss functions
and the difference in models, we measure stability by computing the maximum discrepancy among
client models after two times of FL training. We evaluate the global update stability by measuring
the model discrepancy for models including multiclass logistic classification and CNN. We use
EMNIST on multi-class logistic classification model with 500 clients and 1% client sampling, and
CIFAR10/CIFAR100 on CNN with 200 clients and 2% client sampling. Empirical evaluation on
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logistic and CNN models in Fig [T|and Fig[2} The model discrepancy here is measured using the Lo
norm. For the empirical generalization error, we measure it using the absolute difference between the
training and test losses, as well as the absolute difference between the training and test accuracies.
We evaluate this metric on CIFAR-10 using a CNN model with 200 clients and a 2% client sampling
rate. The results are shown in Fig.[3]

As show in Fig [I] the experimental results have verified local-update stability of our method.
Existing momentum-based algorithms, due to data heterogeneity, may actually impair local-update
stability when local momentum acceleration is used (e.g., FedLNAG); using global momentum (e.g.,
FedAdam) performs slightly better, but it still does not improve compared to FedAvg. Besides, while
FedDyn'’s stability is enhanced compared to FedAvg, its local-update stability is inferior to that of
FedSAGD and FedProx due to low participation rates.

As show in Fig [2] the experimental results have verified global-update stability of our method. The
FedLLNAG algorithm exhibits significantly poorer stability than other methods across all tasks. The
stability of other momentum-based methods is largely comparable to that of FedAvg. In terms of
global update stability, the improvements achieved by FedDyn and FedProx over FedAvg and related
methods are rather limited, and their performance remains far inferior to that of FedSAGD. In contrast,
FedSAGD demonstrates substantially better global stability than all other methods, further validating
the effectiveness of our approach. Therefore, our algorithm can still achieve optimal stability while
accelerating training.

— FedAvg — FedAvg — FedDyn

— FedProx —— FedProx — FedAvg

—— FedAdam —— FedAdam —— FedLNAG

— FedDyn - — FedDyn — FedANAG
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Figure 1: Local model discrepancy (local-update stability) vs. index of local updates K.
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Figure 2: Global model discrepancy (global-update stability) vs. index of communication rounds 7.

As show in Fig.[3] the results are highly consistent with the stability results, further confirming the
reliability of our theoretical findings.

A.5 HYPERPARAMETER SENSITIVITY

We evaluate the performance of our algorithm under different settings of 3, 3y and A on the CIFAR-10
dataset, using 500 communication rounds and 10% client participation among 100 clients.

Momentum coefficent 3 for global momentum. In the simple analysis, 5 can be selected as a
proper value which has no impact on the convergence complexity. Table 8 shows that performance of
FedSAGD remains stable across /3 values ranging from 0.1 to 0.99. Despite slight fluctuations, the
accuracy stays consistently high, peaking at 5 = 0.9.
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Figure 3: Empirical generalization error vs. communication rounds 7'.

Table 8: Performance of different 5 with 4+ = 0.001 and A = 0.01.

B 099 095 0.9 0.8 0.7 0.6 0.1
Acc. 80.27 81.14 81.34 81.02 80.81 80.63 78.57

Coefficent 1 for the weight of the proximal term. As shown in Table [9] the performance of
FedSAGD remains stable across p values ranging from 0.00001 to 0.1. Despite slight fluctuations,
the accuracy stays consistently high, peaking at ¢ = 0.001.

Table 9: Performance of different yz with 5 = 0.9 and A = 0.01.

I 0.1 0.01 0.005 0.001 0.0005 0.0001 0.00001
Acc. 7722 80.09 8093 81.34 81.14  80.08 78.72

Coefficent )\ for the weight of the proximal term. As shown in Table [I0] the performance of
FedSAGD remains stable across A values ranging from 0.0001 to 1. Despite slight fluctuations, the
accuracy stays consistently high, peaking at A = 0.01.

Table 10: Performance of different A with 8 = 0.9 and p = 0.001.

A 1 0.1 0.05 0.01 0.005 0.001 0.0001
Acc. 76.07 80.68 8096 8134 81.26 81.19 81.06

The performance of FedSAGD remains stable across a wide range of values for the parameters 3, p,
and A. Specifically, for 8 values ranging from 0.6 to 0.95, FedSAGD maintains consistently high
accuracy with slight fluctuations, peaking at 5 = 0.9. For g values ranging from 0.1 to 0.0001, the
accuracy remains high and stable, with the highest performance observed at ; = 0.001. Also, for
A values ranging from 0.1 to 0.001, FedSAGD shows stable performance with consistent accuracy,
reaching its peak at A = 0.01. These results demonstrate that FedSAGD is robust to variations in
these hyperparameters, even under the condition that of high heterogeneity and low participation
rates. Furthermore, we also conducted a hyperparameter sensitivity analysis under a more extreme
heterogeneity setting with o = 0.1. The conclusions are consistent with the above.
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Table 11: Performance of different S with ¢ = 0.001,A = 0.01 and o = 0.1.

B 099 095 0.9 0.8 0.7 0.6 0.1
Acc. 80.27 81.14 81.34 81.02 80.81 80.63 78.57

Table 12: Performance of different x4 with 5 = 0.9, A = 0.01 and o = 0.1.

I 0.1 0.01 0.005 0.001 0.0005 0.0001 0.00001
Acc. 7722 80.09 8093 8134 81.14  80.08 78.72

Table 13: Performance of different A with 3 = 0.9, . = 0.001 and o = 0.1.

A 1 0.1 0.05 0.01 0.005 0.001 0.0001
Acc. 76.07 80.68 8096 81.34 81.26 81.19 81.06

A.6 DIFFERENT HETEROGENEITY

To further examine the behavior of all algorithms under more extreme levels of data heterogeneity,
we additionally evaluate the setting with smaller heterogeneity parameters, specifically a« = 0.1 and
o = 0.2, while keeping all other experimental configurations identical to those in Table 3. The results
in Table [I4] show that FedSAGD exhibits the highest robustness under conditions of severe data
heterogeneity.

Table 14: Performance under more extreme heterogeneity.

o ‘F edSAGD FedACG FedANAG SCAFFOLD FedDyn FedLNAG FedAvgM FedAdam FedCM

0.1} 81.01 76.64 80.56 79.18 76.65 76.52 78.7 74.3 73.39
02| 82.37 80.97 81.86 80.35 77.51 78.05 80.09 78.31 78.82

Table 15: Performance comparison under feature skew

Method ‘ Acc. (%, 1) 250R Acc. (%, T) S00R Rounds () 75% Rounds ({) 80%
FedSAGD(ours) 79.82 81.14 80 267
FedACG 79.5 80.62 82 285
FedANAG 79.37 80.54 86 288
FedAdam 76.79 79.01 180 500+
SCAFFOLD 78.58 79.86 175 500+
FedLNAG 74.46 78.31 346 500+
FedAvg 77.29 78.74 192 500+
MimeLite 78.78 80.18 179 372
FedAvgM 78.73 80.07 166 467
FedCM 75.58 79.05 226 500+
FedProx 77.79 79.33 187 500+
Algl2 77.31 79.7 172 487
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A.7 FEATURE SKEW

We additionally evaluate our method under feature-skew settings, following the experimental setup
in | Kim et al.|(2024). We conduct the evaluation on the real-world LEAF dataset FEMNIST, which
naturally contains feature-skewed client distributions. In this experiment, we set the number of
clients to 2000, use user-level partitioning, randomly sample 5 clients per communication round, and
adopt a two-layer CNN architecture as in[Caldas et al| (2018). The experimental results in Table [I3]
demonstrate that our method also outperforms the baselines under feature-skew settings, highlighting

its robustness to feature-skew heterogeneity.

A.8 VARIANCE MEASUREMENTS OF TOP ACCURACY WITH DIFFERENT SEEDS

Table 16: The variance measurement of top validation accuracy that can be achieved, with 5 random

seeds.

Dataset FedSAGD FedANAG FedACG FedLNAG FedCM FedAdam
EMNIST 82.24 +£0.07 82.01 0.18 82.02+0.16 81.92 £0.35 80.16 +0.82 81.58 £ 0.60
CIFAR-10  84.05 +0.13 83.51 £0.17 83.52 4+ 0.16 79.60 & 0.47 81.09 0.81 78.29 +0.34
CIFAR-100 54.53 £0.71 45324 0.85 50.59 092 4231 £1.64 45024192 4451 +£1.34
Shakespeare 53.03 +£0.11 5246 +£0.14 52.524+0.13 5223 +0.11 39.24 +£1.89 52.30+0.18

Dataset FedAvgM MimeLite SCAFFOLD FedDyn FedProx FedAvg
EMNIST 81.92+0.19 8191 +0.14 81.55+0.15 81.02+0.65 81.83 +0.56 81.01 £0.53
CIFAR-10 81.86 £0.37 81.02+0.23 81.34 +0.34 80.14 £0.61 78.88 =0.51 78.64 £ 0.39
CIFAR-100 48.31 +1.67 47.59+0.80 4224 +1.18 41.89 +1.19 41.74 +£1.12 40.79 +1.34
Shakespeare 52.32 +0.08 51.71 £0.31 52.04 £0.25 51.77 £0.23 51.54 +£0.21 51.61 £0.19
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A.9 CONVERGENCE AND TOP VALIDATION ACCURACY

The experimental results demonstrate that our algorithm consistently outperforms the majority of
existing optimization algorithms proposed to address data heterogeneity as shown in Fig[d]and Fig 5]
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Figure 4: Convergence, top validation accuracy for various FL. methods in the different datasets.
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Figure 5: Convergence, loss for various FL. methods in the different datasets.

A.10 ABLATION STUDIES

Compared with the FedAvg, FedSpeed adds two main modules: (1) global momentum, (2) hybrid
proximal term. We test the performance of 2000 communication rounds of the different combination
of the modules above on the CIFAR-10 with the settings of 2% participating ratio of total 200 clients.
The Table [I7] shows their performance.

Table 17: Ablation studies on different modules.

Momentum  Hybrid proximal term  Accuracy

v X 82.84
X v 80.54
v v 84.05
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A.11 CONCEPTUAL ILLUSTRATION OF STABILITY

Fig.[6] provides a conceptual illustration of stability. In Fig.[6a] each curve represents the local update
trajectory of a client. Stronger local-update stability implies that variations in the set of clients
selected for local training have a smaller impact on the aggregated model. In Fig. [6b] each curve
denotes the global update trajectory of an FL task. Stronger global-update stability indicates that
changes in the participating client set exert less influence on the final global model.

For local-update stability, under the same learning rate, FedSAGD achieves a smaller maximum local
model discrepancy than FedAvg and remains comparable to FedProx. FedSAGD (blue solid line)
consistently updates with a larger step size than FedProx (green solid line), thereby moving closer to
the global optimum of the participating clients. This enables superior performance while maintaining
the same maximum model discrepancy. As illustrated, the updates of FedSAGD are closest to X *
(black solid line), followed by FedProx, while FedAvg remains the farthest. When the learning rate

: _ 1
is set to n; = O(LK\/T

discrepancy; however, due to momentum acceleration, FedSAGD still outperforms FedProx.

), FedProx, FedAvg, and FedSAGD achieve the same maximum model

For global-update stability, regardless of whether the learning rate is fixed or set as g, = O (ﬁ),

FedSAGD consistently yields a smaller global model discrepancy compared to both FedAvg and
FedProx. FedSAGD (blue dashed line) updates with a larger step size than FedProx (green dashed
line), and thus, while maintaining a smaller maximum model discrepancy, it approaches the global
optimum of all clients more closely.

------------- Local model discrepancy

X
——> FedAvg local update @ -——--- > FedAvg global update
—> FedProx local update @ =====- > FedProx global update
——> FedSAGD local update  -===-- > FedSAGD global update
(a) Conceptual illustration of the local-update (b) Conceptual illustration of the global-update
stability. stability.

Figure 6: Conceptual illustration of stability. X* is the the global optimum of the participating
clients; X’ is the global optimum of all clients.
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B PROOF OF THEOREM 1

In this section, we provide the proof of Theorem 3.6]
Given that S and S’ only differ by one client. According to the definition of R, and R, we have

|S| ZE&NP@ ) gz)]]

€S

EsE 4

— EgEsE4 l"ﬂ > Ee,np, [Fi(A(S), 51)]]

€S

=EsEsEa l|5|ZE§z~P i(A(S),&i)] — Eg,np, [Fi(A(S )&)])]

i€S
+EsEsEa Z]ngP §),&)]
|S| i€S
=Es/EsEa [|S| > (EBeinp, [Fi(A(S), &)] — Ee,mp, [Fz‘(A(S’),&)])]
i€S

+EsEa[Binc[Be ~p, [Fi(AS), &)

Since A satisfies e-global update stability, rearranging the above equality we can get
EsEA[[Ru(A(S)) — Re(A(S))l] < e
C STABILITY UPPER BOUND FOR NON-CONVEX LOSSES

Lemma C.1. Suppose Assumption[31N3.4 hold. Then

E||VE;(zl ;&) < (0F +202 +22%)3,Vie [M,Y0 <k < K — 1.

Proof.
E(|VFi(zip)|? = E|VE;(xy ) — V(2 ,) + V()2
< 2E||VFi(x} ) — V(i )lI° + 2BV f(zf )17

Since

E|VFi(x} . &) — VFi(x) )2

= E|VE (24, &)1° + E|VFi(2 ) |* — 2(EVFi(f 4, &), VEi(2} 1))

= E(VFEi(zf 5, &)I° — BIVE (2417,
we have

E|VF;(x 4, &)l
<E|VE (e &) = VE@)|” + 2B VEF(2,) = V@)l + 2BV f ()]
<o} +20) +27°.

The last inequality follows from Assumption [3.4] by the Lipschitz continuity, we can obtain that
Vf<Z. O

C.1 ANALYSIS FOR FEDAVG UNDER NON-CONVEX LOSSES
The local update at iteration k is described as follows:

Ty 1 =Ty — MV E(a] 4, &)
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Theorem C.2. (global update stability of FedAvg). Suppose Assumption hold and consider
FedAvg. Let x and xl. be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

Ellor — || < 2mK (0} + 202 +22%)= 1.

Proof. Consider two clients i € S and j € §’. According to the local update formula, we have
EHwi,k - xi’kH
=Kz}, —mVE(x, 1,&) — (@] xo1 = mVE (@ 1, 6)]
< Ellwt gy = ool + mENVE (@) 51, &)l + mEIVE; (27,1, &)l
<El|zh 1 = 27| +2(07 + 205+ 22%) 2,

where the last inequality we use Lemma|C.1] Unrolling it gives:

Ella i — ] gell < Ellae — 2| +2(0f + 207 +22%) K.
Note: In the local stability analysis of Zhang et al.| (2025), it holds that E||z; — z}|| = 0. Therefore,
the local-update stability of the FedAvg algorithm is given by O (Q(cfl2 + 203 +27Z 2)%mK ) .
Similarly, the local-update stability of subsequent algorithms can be derived from E||x§ K~ aji wll-

: _ 1 i i
Since z411 = x4 + 5 D 5(Th x — 7}), we have

1 ; i
Ellwesr — ahll = BN D ol — Y ikl
i€S JjES’

< Ela, — || + 2mK (0F + 202 + 222)3.
Note that 2o = x{,, then unrolling it gives

Ellzy — || < 2mK (0} + 202 +22%)5T.

C.2 ANALYSIS FOR FEDPROX UNDER NON-CONVEX LOSSES
The local update at iteration k is described as follows:
Ty g1 = Ty — MV Ei(@y g, &) + Moy, — 24))-

Theorem C.3. (global update stability of of FedProx). Suppose Assumption hold and consider
FedProx. Let 1 and x. be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F;; is a non-convex and L-smooth function, then

2 1
E|zr — 24| < X(al2 +207 +22°)2[1 — (1 — ) "|T.

Proof. Consider two clients i € S and j € §’. According to the local update rule, we have

Ellz} 5 — a7l

=El[(1 = mM\) (@)1 — 21 p_1) = mVEi(x) 1, &) + m(VE; (-1, §) + M — 27|

S E = mA) (@t gy — @)+ mENVE (2} 41, &) — VEj (7,1, &) | + MEllae — i
. : 1

< (L= MEl|z} oy — @y | +2(07 + 207 +22°) 2 + ME||z, — 23],
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where the last inequality follows Lemmal[C.1] Unrolling it gives:

K-1
. . 1
Ellaf i — af il < (1= d) “Elley — x| + Y (1= dp)*[2(07 + 207 +22°) 2
k=0
+ Az — 2]
1-— (]. — )\m)K

= (1= M) 5E||z, — 2| + [2(07 + 202 + 2223y

An
+ AEl|zy — 2]
2 1

=El|jx; — z}|| + X(o—l2 +207 +27%)2[1— (1— ).

Since zy41 = £ Y05 T} - We obtain
1 _ .
Elleess = ol = ~EN Y wh = 3l
i€S jES’
2
< Elley — zf| + T (0F + 205 +22°) 21— (1 - x)"].
Note that 2:p = x{,, then unrolling it gives

2 1
E|lzr — 24| < X(al2 +207 +22%)2[1 — (1= ) "|T.

C.3 ANALYSIS FOR SCAFFOLD UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:

Tf i1 = Tpp — nl(VFi(ffi,ka &) —ci+c),
where ¢; = % 52—01 VE(xi__ ., &) is the control variate of the client i whose last participation in
training was in the ¢ — 7 round. Note that, unlike other algorithms, the local update here involves
gradient information from ¢ — 7 rounds.

Theorem C.4. (global update stability of SCAFFOLD). Suppose Assumption hold and
consider SCAFFOLD. Let x1 and x' be two model results obtained by neighboring active client-sets
S and S', respectively. Under the assumption that F; is a non-convex and L-smooth function, then

El|lzr — af|| < 6mK (o} + 202 +22%)5T.

Proof. Consider two clients i € S and j € S’. According to the local update rule, we have
I EAE
= Ella} 1 = m(VEF(x)1,&) = ci+¢) = g +m(VEj (a4 _1,) = ¢ + )
< Ellwy oy — | +mElles — ¢ + mEIVF (@ 1. &) = VEj(a] 1. &)l
+mEle— ||
< Ellay oy — g ||+ 6m(of + 205 +22%)3,

where the last inequality follows Lemma|[C.I] Unrolling it gives:
Ell2} s — o] x| < Ellz, — afl| + 6(07 + 207 +22%)2 2 K.

: _ 1 i i
Since z441 = ¢ + 5 D 5(2h ¢ — 7}), we have

1 , ,
Ellzir1 — 2p4qll = ;EH Z%K - Z xiKH
= jes’

< Ela, — || + 6mK (0F + 202 + 222)3.
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Note that g = x(,, then unrolling it gives

El|lzr — @] < 6mK (o} + 202 +22%)3T.

C.4 ANALYSIS FOR FEDDYN UNDER CONVEX LOSSES
The local update at iteration k is described as follows:
xi,k’-&-l = fcék - WI(VFi(xi,k,&) - vFi(zi—T,K7£i) + )‘(xi,k —x¢)),

where the ¢ — 7 is because clients do not participate in training every round and recently participated
inround t — 7.

Theorem C.5. (global update stability of FedDyn). Suppose Assumption 5.4\ hold and consider
FedDyn. Let xp and x! be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

4
El|zp — x| < X(al2 + 202 + 2727 [1 — (1 — Ap)5]T.

Proof. Consider two clients i € S and j € §’. According to the local update rule, we have
Ellzi s — ] 4
= E”xi,k—l - nl(VFi(mi,k—lv &) — VFi(xi—T,K’ &)+ )\(fi,kq — ) — x{,k—l
(V] 1 &) = VE ()i, §) + Ay = )
SElagp =] ooy = Mgy = 2y )|+ mEIVE (rh1.6) = VE (@] .6
+ME|VE (21 . €) = VE; (@] 0, &) + AmEllze — |
< (U= Am)Ellat oy = @]y |+ 4m(0f + 207 +22°)% + Ml |, — )],

where the last inequality follows Lemma[C.1] Unrolling it gives:

) . 4
Ellaf, i — o scll < Ellae = ]| + 5 (0f + 205 +22%) 21 = (1= xm) ],

: _ 1 i i :
Since z141 = ¢ + | D ;e 5(T) x — T} o), We obtain

1 ; j
Ellziy1 — 2]l = ;E” Zmi,K - Z ikl
i€S Jjes’

4 1
< Ellzy — 2 + X(al2 +202 +22%)2[1 — (1 = M) "],
Note that 2o = x{,, then unrolling it gives

4
Eller — afp|| < 5 (0F +207 +22°) 21 — (1 - ) ¥T.

C.5 ANALYSIS FOR FEDLNAG UNDER NON-CONVEX LOSS
Consider the orignial update rule of NAG:
yék = xik - Bmi,k
mi 1 = Bmiy + (1= B)VFi(yi . &)

7 o 7
Li k41 = Lok — MMy oy1-
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Theorem C.6. (global update stability of FedLNAG). Suppose Assumption hold and consider
FedLNAG. Let xp and xl. be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

Ellzy — || < 2mK (0f + 202 +22%)3 1.

Proof. For the momentum term m j, by recursion we have

k—1

mer = (1—0) Z BTV F (Yt —r—1,§)-

7=0
Consider two clients ¢ € S and j € S’. According to the local update rule, we have
]E”xi,kﬂ - xi,k—i—lH
= ]E||$ik - mmi,kﬂ - (l"ik - nlmg,k+1)”
< Ellzt g, — 27 il + mllmg g |+ mlimi |

k

<Ellafy — 2l il +m(1 = 8) > B IVE WL s &)+ m(1 = B ZBTHVF W &)l
T7=0 7=0

< Ella - af ]l + 2m(1 = 85 (07 + 207 +227)3.
where the last inequality follows Lemma[C.I] Unrolling it gives
. - 1
Ellz} x — 2] x|l < Ellwe — 2;]| + |12m (07 + 202 + 227)2 K.
Since zy41 = ¢ + + Y, 5(wh x — Ti ), we obtain
1 ‘ ,
Blaen — 2yl = BN S oha = 3wl
i€S JjeS’
< Ellzy — @} + 2m(0? + 202 +22°)3 K.
Note that 2o = x{,, then unrolling it gives

Ellzy — || < 2mK (0f + 202 +22%)% 1.

C.6 ANALYSIS FOR FEDADAM UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
Th e = Ty — MV EF (2] 4, &)

Theorem C.7. (global update stability of FedAdam). Suppose Assumption[3.113.4hold and consider
FedAdam. Let x1 and x!, be two model results obtained by neighboring active client-sets S and S’,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

2 1
E||zp — 2| < ;mK(alQ + 207 +22°%)2T.

Proof. Firstly,
Ai = x@ K — Tt

:xiK —mVE; (xtK 1,&i) —
-1

= Z —mVE; (1, &),
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By using Lemma [C.T] we get
E||A} < pK (o} + 202 +22%)%.
Note that Ay = S18;—1 + (1 — B1)(2 3,c5 Al), so we can deduce that
El|A ]| < mE (o} + 202 +22%)%.

since Tyy1 = T + \/U%;T, we have

A Al
\/77t+7' \FJrT
/ At 2
< Efz; — il + Ef

J S +E7
e I+ Bl

< Eflz; — i +]E|| i+ ]EIIJII

Ellzi11 — 2pyq]l = Ella +

< Ellz; — 2| + ;mK(al +202 4227,
Note that 2o = x{,, then unrolling it gives

2 1
E|zr — 24| < ;mK(UZQ + 207 4 227)2T.

C.7 ANALYSIS FOR FEDCM UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
Ty g1 = Ty — M@V E(z) 1, &) + (1 — a)my),
where « € [0, 1] is momentum parameter.

Theorem C.8. (global update stability of FedCM). Suppose Assumption hold and consider
FedCM. Let x1 and x! be two model results obtained by neighboring active client-sets S and S’,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

Ellzy — a/p|| < 2(0F + 202 +22%)5T.
Proof. Consider two clients i € S and j € S’. Accoring to the local update rule, we have
El|a} s — i
= Ellz} 51 — 7] p_y — ma(VE(x} 4 1,&) = V(] 1,&5)) —m(1 = a)(m, —m})|
< Ellz} gy — 2] || + maBIVE (2} x_1,&) = VF (] 1, &) +m(1 = a)E[m, —mi|
< Ella} oy — 2yl + 2m(o7 + 205 +22°)2,

where the last inequality follows Lemma[C.I] Unrolling it gives:
Bl - 7} kIl < Ellee — ]| + 20K (of + 207 +22%)%.

Since x4 1 = x; + mKS > ies (@i g — 1), we obtain

KSE”Z 6K thK”

Ellziq1 — $t+1H <E[[(1 - 7)( xt |+
77 jeS’

(1‘77)Ellwt—wtll+ E\Ixt || +2(0F + 202 +22%)%

= E|lz; — z}|| + 2(0f + 202 + 222)%.
Note that 2o = x,, unrolling it gives

Ellzr — afp|| < 2(0? + 202 4+ 22%)5T.
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C.8 ANALYSIS FOR MIMELITE UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
xi,k+1 = x;k —m((1 - ﬁ)VFi(mi,kvgi) + pm),
where 3 € [0, 1] is momentum parameter.

Theorem C.9. (global update stability of MimeLite). Suppose Assumption[3-I{3.4 hold and consider
MimeLite. Let x1 and x'n be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F;; is a non-convex and L-smooth function, then

Ellzy — || < 2mK (0f + 202 +22%)5T.

Proof. Consider two clients i € S and j € S’. According to the local update rule, we have
Ellaf j — o] .|
= Ellai p1 —m(1 = B)VE (x5 1,6) — (2] oy —m(1 = H)VEj (a1 &)
+ BnEljm — /||
<E|z} g —al ol +m(l = BE|VEFi(} _1,&) — V(2] 1, &) + mBElm — m/||
S Ellay oy — |l +2m(of + 205 +22%)3,

where the last inequality follows Lemma [C.1] Unrolling it gives:

E|z) jc — 2] |l < Ellw, — || + 2mK (of + 202 +22°)%.
Since 441 = £ Y ;e L4 i We have

1 , ,
Ellzir1 — 2p4qll = ;EH in,K - Z xiKH
i€S jes’
< El, — || + 2mK (0F + 202 + 222)3.

Note that 2o = x{,, unrolling it gives

Ellzr — af|| < 2mK (o} + 202 +22%)5T.

C.9 ANALYSIS FOR FEDACG UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
xi,kJrl = mfek - UlVFi(fEi,m &i)-
Theorem C.10. (global update stability of FedACG). Suppose Assumption hold and consider

FedACG. Let xr and xl be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

4—2) .
Eler — a7l < 5 3 mK (of + 202 +22%)2T.

Proof. Consider two clients : € S and j € S’. According to the local update rule, we have
Ellaf . — o] 4l
= Ella} -1 = mVE(p1.6) = (@] iy = mVE (] 1. )]
< ]E||95i,k—1 - 33{,1%1“ + WZEHVFi(xi,k—pgi) - VFj(xzj:.,kfpfj)
< E”xztl,kfl - xi,k_l\\ + 2y (o + 203 + 222)%7
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where the last inequality follows Lemmal[C.1] Unrolling it gives:
, . , } )
Ellzy g — 7 gl < Ellat o — 2] oll + 2mK (of + 207 +22°)%.
Since z o = xy_1 + Amy_y and my = Amy_y + = 3 (@) ¢ — xi ). then

Ty = Te—1 + My

1 _ A
=T+ Amp_1 + — E LK — T
t—1 =11 7 (It,K It,o)

€S
1 )
(A
= ; E Tt Ko

icS
so we have
1 ) .
Ellzs11 — 2y 44l = ;]E]H Zx;-&-l,K - Z xi+1,KH
€S jes’

< Ellw, + Amy — () + Am})|| + 2m K (0F + 202 + 22%)%
< Ellw; — || + AE||lm; — mj|| + 2m K (0f + 202 + 222)%

t

1—-A

< E|z; — x4|| + ( + 1) 2K (0f + 202 +22%)%

4—2X\
< E|z; — 3| + T mK (o} + 202 +22%)3.

Note that zo = x{, then unrolling it gives
4—2)\

E|zr — 24| < ﬁmK(crl2 + 20’2 + 2Z2)%T.

C.10 ANALYSIS FOR FEDANAG UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
T} = 24, — m((1+ B)VFi(x) 4, &) + B7ma).

Theorem C.11. (global update stability of FedANAG). Suppose Assumption hold and consider
FedANAG. Let x1 and x'n be two model results obtained by neighboring active client-sets S and S,
respectively. Under the assumption that F;; is a non-convex and L-smooth function, then

2
Elar — 24| < mmK(a—l2 +202 4+ 22%)3T.

Proof. Consider two clients i € S and j € S’. According to the local update rule, we have
Ellwi, — 27 4
= E”xi,kfl — (1 + B)VF (2 j_1,6) — (x{,kq —m(l+ B)VFj(mik_pgj))
— B (my —my)|
< Elay oy — 2] i+ m(L+ BEIVE (2] 1, &) — VE; (2] 11, &)
+mB7E|me —mi|

: 1 ﬁ2(1 - ﬂt) 2 2 2\ 1
<Ellz; _fik—1”+ 1+5+W 2mi(oy + 20, +227)2
. . 2 1
< Ellal g — 2]yl + ———=m(o? + 202 +22%)%.

1-p
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where the second inequality follows Lemma|C.1I] Unrolling it gives:

i . 2 1
Ellefx — ol |l < Bl =yl + T=mK (of + 203 +22%)%,

Since zy41 = ¢ + + Y, 5(wh ¢ — Ti ), we have
1 ) .
Ellzi11 — 2ppqll = EEH Zxé,lf - Z ‘TZKH
i€S jes’
2
< E|z; — 23| + mmK(alQ + 207 + 27%)3.

Note that 2:p = x{,, then unrolling it gives

2
Ellzr — 27| < ﬂmK(al2 + 207 + 27°)3T.

C.11 ANALYSIS FOR FEDSAGD UNDER NON-CONVEX LOSSES

The local update at iteration k is described as follows:
xi,k—&-l = xi,k - m(VFi(l‘i,k, &) + Bue + )‘(m;k - xi,o) - W?;k),

where 5 € (0, 1) are the momentum coefficients.

Theorem C.12. (global update stability of FedSAGD). Suppose Assumption[3. 13-4 hold and consider
FedSAGD. Let x1 and x!p be two model results obtained by neighboring active client-sets S and S’,
respectively. Under the assumption that F; is a non-convex and L-smooth function, then

E|lzp — /|| <ﬂg(2+2ﬂ)( 2492052 427%)3
T .TT ~ T (o4} Ug 5

(1 K
whereI' =1 — [ﬁ + ﬁ(l —771()\+M))K} €(0,1) and ¢ = W

Proof. Consider two clients : € S and j € S’. According to the local update formula, we have
El|z} s — i
=Ellz p 1 — mVFi(x} 1, &) —m\+ w)zh g — B — (2], = mVEF (2] 1, &)
—m(A+ )l = Bmvr) + mA(w — )|
SEN( = mO+ ) (@i g = 2] o) |+ mEIVE (1, &) = VE; (2] 4y &)
+ BE(ve — vyl + mAE[z — 2|
< (1 =mO+ P)E|a} oy — 2]y |+ mABl|ze — 2| + (2 + 28)m(o7 + 205 +22°)2,

where the last inequality we use Lemma|C.1] Unrolling it gives:

A= A1 —mA+p)E
O L) g, — )

Ellat i — ] x| < (1= m(\ + ) “Ellz, — ot +

A4
1—(1- K
( A”i(y W) (9 4 98) (0 + 207 + 22%)
A
= m'Fﬁ(l—m()\‘Hi))K Ell2; — ]|
1—(1- K
( )\nj_(i;+u)) (2 +28) (07 + 202 + 22°)%.

30



Under review as a conference paper at ICLR 2026

We define ¢ = %ﬁﬂm Since zy41 = ¢ + + Y, 5(a} ¢ — Tl ), we have
1 i ;
Blloes — apll = SBI Y w3 ol
€S jeS’
24205 1
< (1 =DEflz; — 2| + 5 o (07 + 207 +227%),
whereI' =1 — A—/s\-u + 5@ =m(A+ u))K] € (0,1). Note that zy = x{,, then unrolling it gives
1-(1-D)T2+2p 1
El|lzr — 25| < - T a (07 4207 +22°)2.
O
D CONVERGENCE OF PROPOSED ALGORITHM
D.1 PRELIMINARY LEMMAS
We will use the following foundational lemma for our proof.
Lemma D.1. For vy, vo € RY we have
1
lor +v2* < (1+ @)Jor|I* + (1 + =)o
Lemma D.2. For L-smooth function f, and x,y in its domain, the following is true:
L
Fly) < f(@) + (VI(@)y —2) + Zllz =yl

Lemma D.3. For independent, mean 0 random variables X1, ..., X,,, we have

B[l X1 + -+ Xn "] = B[IX2|* + ... + [ X ?] ®)
Lemma D.4. Given vector X1, , X,, € R%, ifwe sample S C {1,--- ,m} uniformly randomly

such that |S| = s, then it holds that

ZX

ZGS

2

Z 1[I + Z X

zE[]VI] i€[M]

Proof. Let I{i € S} be the indicator for the event i € S, we prove this lemma by calculating as
follows:
2

2
EZXZ- =E % > Xil{i e S}

i€S i€[M]
= ]E<Z |1 X:%1{i € S} +22 X, X)) {i, 5 € S}>
7,<j
1 24
_% Z 12X + 2ZXZ,X
i<j
1 o 1 s(s=1) 9
= om 2 P+ ot L x| - 2 il
i€[M] i€[M] i€[M]
m—s 5 —
e X2y - - X,
sm(m —1) ; %17+ sm(m —1) ; ‘
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D.2 CONVERGENCE OF FEDSAGD

In this subsection, we present the proofs for the FedSAGD algorithm. We denote VF(x) as VF(x)+
pa, it can be derived that V F' also satisfies the three assumptions.

Lemma D.5. For act b € RY Vi € S;, we denote (5t B = xt & xt k_1 With setting 6' to=0 and
A; = E 00t = tk — x} o. Under the local update rule in Algorlthml we have:

» 1—(1—mAE
Z—WZ 11— 1ktk—ﬁ—( )\m) .

Proof. According to the update rule, we have:

i,k = i,k - i,kq
= xi,k - xi,kfl
= —m(Bvs + @i,k) - 771/\($i,k—1 - xi,o)
= —mu(Bug + @i,k) - Wl/\Ai,k—r

Then we can obtain

e =L =mNAL L —m(Boe+9fp_1)

k-1
= —m Y _(1=mN) T (Bo + i, y)
7=0
o 1—(1—m\)k
Letay = (1 —qA)E"1"Fand a = 17(1;[7;”)‘)}( = N1 = mA) K17k 5o we have
K—1
A g=—m Y iy — afmuy,
k=0
O
Lemma D.6. Under the update rule of Algorithm[I] we have
B
Vpp1 = Gt
s (1+ﬁ )sK Z;

where v = (1+ %) and G} = Zf:_ol ozkgf’k.
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Proof.
Vi1 = b Ut — Ay
1+5 (1+B)mK
I} 1

= Vy — Aml
1+5" (1+ﬂ)msKi€% '

_ B 1 ;
148" 018 lsKZAtK

1€St

3 1 K-1
= 1+ﬁvt+ (L4 B)sK Z(Z gy ) + aBoy)

€S, k=0

__# o
- (1+5)(1+?)“t+(1+ﬂsz{z Za’“gfk

1€S: k=0
B

- (1+ﬂ)vt+(1+ﬁ N PILL

i€ES

Consider the auxiliary sequence z;, given by

1+5 B By Z ai

Zt = Ty — Ty1 +

11— 1-op (1—-a/B)s

—l
where o = o

Lemma D.7. Consider the sequence z;, we have

77711
241 T 2 = — Z Gl
1€S

Proof.
241 T Rt

1
= %(Jjﬂ_l — ]Jt) — 1 ji/ﬂ (a:t — xt—l) 577771 Z Gz Z Gt 1

ZESt 1€S:_1

(L+ B)nm ; ~Bnm; .
“1—aB)s Z;&(Gt + afvr) + (I—a'B)s i€§1(Gt—1 + aBvi_q)

B i
1—770% Q_Ci= > Gi)

1€S; 1€Ss_1

- 1—0/5 ZGl

€S

the last equality follow from Lemma[D.6 Besides,

ZG’

1€ES,

n*n;
- T tnzzawtkn

€St k=0

ZG’

1€St

IEt||215+1 - ZtH2 =E,

< 0”727712 2
- (1- o/B)2s !

where we denote G := ZkK;(,l o VE; (z¢ ). The inequality is based on Assumptionand Lemma
D3l ’ O

77771 Jr
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Lemma D.8. Consider the z; and x;, then we have

o — B+ B
T (1-ap)
Proof.
Zt — Tt = lji/ﬂ(ﬁt—xtfl) 1?27% Z Gt 1
1€St—1

_ 7677171 (Y iy +apsu) + Bnm Z Gi,

1 o ﬂ 1€St_1 zeS, 1
_a(f+ 52)7mzv

(1—aB) "

Lemma D.9. Consider the global momentum sequence v, and summing over t from 0 to T — 1, then
we have

Tao? 9
o/ B)2sK2 -

ZG‘

ZGS,

1 T-1
Edllerl® < g 22 B3 1
t=0

8 i
=E; || —vpy + —m—8m— E apg’
Hisp Tt 1+6 5. = K1k

=E; (1+63KZ 1+ﬂt 1- TZS

t—1

1 [1—(%)] 2
< B (1+5)3KZ il Z; —+

o B)2sK?
@ 2 SKZ 711+6f172‘; %U?
) (1i;)((f+f);’ﬁ) Z(ﬁﬁ_lm EEQG W 2
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The first inequality is based on Assumption [3.2|and Lemma In (a), p; = Zi;lo(%)t_l_T.
Now we sum equation[9over ¢ from 0 to T’ — 1:

T—-1
> Eellve|?
t=0

T—1t-1 To?
< t 1— ‘r Gz 2
1+ B o' B) Z ZO T+p sK ; T Ak
T— 2
7 76 s—1—71 Ta 2
= ZEt > G Z (3 Tt Ao
( Iﬁ 7=0 K €S, s=71+1 1+ B <1 - O/B) sK
T-1 2
1 1 . Ta?
< —m—— E; || — G e ——
~ (1-a/B)? ; ¢ SKiEZS o (1 —a’B)QSKzal

O

Lemma D.10. Suppose the local learning rate satisfies n; < ﬁ, we can bound the client drift by:

= Z el — @]l < 3607 KBy |V f ()| + 3607 K02 + 307 Koj + 188% 07 KBy vy ||,
16[1\/1]

Proof.

By} — 2

=Bz} oy — @ — mA@] gy — T¢) — mbi g1 — Bruvel?

=Eoll(1 = mA) (@} 1 — @) — mdi g1 — Bowvel®

< E|(1— nd) (@) oy — xe) — MV Ei (@) 1) — Bl + njo?

, 1 L
S Ef(1+a)l|(1 = mA) (@) oy — z)[P] +niof + Ee[(1+ 5)?712\\VF2‘($$,;C71) + Bue?].

The first inequality we use Lemma[D.3]and the last inequality we use Assumption[3.1]and Lemma
[D.11 We further bound the third term as

Et”VFi(mi,kq) + Bue||* = E\Wﬂ@i,k-ﬂ — VE () + VEi(4) + +Bve|?
SEB|VEi(x) 1) — VE ()| + 3 VE; () ]|* + 38%01)
< BL°E||z}j_y — x| + 6|V £ (x0)||” + 607 + 38°E vy >.
Hence, we have
Bz} s, — z¢]?
1 ) 1 .
<[ =mA)?(1+a) +6(1+ a)nZQIP]Etsz,kfl — o]’ + (1 + E)6nl2(Et||vf($t)H2 + ;)
1
+niof + (1+ 5)3527712&”%”2-

For K =1, take a = 1 and the lemma holds. Suppose that K > 2 thereafter then take a = 52— . It

2K—1
follows from 7; < that

15LK
Bz} s, — o4l
1
<(1+ T )]EtHSCt po1 — Tel? + 1202 KE ||V f(w)]|? + 1207 K02 + 68%n KEq |2

+77[20'l .
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Unrolling the recursion, noting that E¢ ||z} o — 2[|* = O and (k —1)[(1+
we obtain

— Z Et”xtk — a?

ZG [M]

)" —1] <3k fork > 2,

K—1
1
< Z(1+ w7 112 PRIV f(20)|* + 1207 Ko + nf o7 + 6507 KEqlvg]|*)
k=

< 3607 KB ||V f(24)|]* + 3607 K202 + 37 Kof + 18320t KBy |v .

Lemma D.11. Suppose that the local learning rate satisfies n; < ﬁ we can bound the sum of
gradients by:

2

TSI PSRN

t=0 i€[M]
a? T— 402

< (72a%; L2K+— Z AV F ()| + (720427712L2K+7)TU§+60421712L2TUZ2
t=0
360{4B2772
T— L 52
+ (l—o/ﬁ)sKUl

Proof.

mK ZEt

ZakVF xtk mK Z E;

K—-1 a
> R E (2
o
i€[M] k=0

K-1
a Aod
e E E OékEt”vFi(xt,k)H2

i€[M] k=0

IN

For all ¢ € [M], we have

i

oKy IIVFZ(:vZk) [§

T
LL

arE ||V Ey(x} ) — VEj(ze) + VEi(2)||?
=0

Bl
=

—1

2> B[V Ei(x} ) — VE(o)l* + IVEi(ze) = V(1) + V()]
=0

INA
?r

K—
Z arByllzy g, — @4l|” + dao) + 4B ||V f (a)]|®

(72an L2K2 +4a)E |V f(24) |2 + (72an? L2 K? + 4a)o? + 6an? LK o}
+ 36032 nF L K*Ey ||ve ||*.
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Substituting it back into above inequality we get
2
E
m K Z t
2

da da
< (72020 L2 K + Y)EtHVf(a:t)Hz (72007 L*K + ?)U + 6a’nf Lo}

+ 360232 nF L* KE¢ ||v¢ || ]

Z akVF xt &)
k=0

We sum the above inequality by using weight 1, we get

*ZZE

t=0 i€[M]

Z oszF .Z‘t i)

T—
(72a2772L2K+ =) Z IV F ()] + (72a2m2L2K+ iR )TU + 60207 L*To}

t=0

T—
+ 3602327 L* Z o
t=0
2 T- 4o
< (T2cx nfLQK—i- — Z AIVF()|? + (72020 L2 K + 7)Ta + 6029} L*To?
t=0
3604262 2L2K 36013202 L?
E G T — 1= 52
S (1-a'B)? Z K Klg + lfo/ﬁ)QsKal
We define a positive constant x; < 1 such that 1 — % < gpifng < GQﬁL So we get
2
TSP P SIRLTER
t=0 i€[M]
T—
< (T2a 772L2K+ Z IV F ()| + (720207 L2 K + Y)TU + 60207 L*To}
t=0
360[4 2 2L2
(1- O/B)SK

O

Lemma D.12. Under Assumption and loss function is non-convex, we define Dy := E(f(z0)—
f(21)). When the learning rate satisfies i < 155 and

< m(s — Dmin (1-a/B)*VK (1-ad'B)n 1-d'B
=S —1) 10fLV3a  68Lv2a 2aL |-

Then the auxiliary sequence z; in equation equation|[7| generated by executing the FedSAGD satisfies:

! LD o 1,02 02 o2
— <0 0 ! L 4 Ko U+,
§ 19 (o)l (ﬁ+ﬁ LA B
where
1 K. (m—-s),1 1 1 9
U, = (— _ —
! (T+5T) m—1 (T+5K2T+\/sKT)Ul’
K (m—s),1 1 1 9
U, = (= +K - .
o=+ K Gt et )
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Proof. For the general non-convex case, according to the Assumptions and the smoothness of f , we
take the conditional expectation at round ¢ + 1 and expand the f(z;41) as

. . . L
Eelf(zer1)] < f(20) + (VF(2e) Belzern — 2e]) + 5Bl 2041 — ||
Note that the second term can be split into the following:

(VF(2e), Etlze1 — 2]y = (VF(20) = V(i) + VF(22), Eelze1 — 22])
= (Vf(z) = VF(@e), Eelzesr — 2]) + (VF(@0), Belzepr — 2]) -

Ay Ao
We first bound the A;:
<Vf(zt) - Vf(xt)7Et [Zt+1 - Zt]>
= <Vf(zt)_vf(xt)7_( Z G’
ze[M]
VIIE oo T 1
< I*O/ﬂv'f(Zt) Vf(wt)v 2(1—0/ﬂ)KEt[m ZEE[J:M] Gt]>
K 2, nm 2
< 1_O/BIIVJ”( 2) = Vi()|? + T 2KIEtH ez[:M Gl
77771L2K 2 N ~i 2
St +4<1—CMW<EAIHZM] Gl
Then the A5 can be bounded as:
<Vf($t)aEt[Zt+1 - Zt]>
= (Vf(z:), - Z ail)
zG[M
1

= <mvf( xy), —mE— g/[] Gy — aVf(z) +aV f(z,)])
= IV F @l + (S ), - \/ﬂﬁ m 3 Gi-avfa)
_ i« 2 uul - 5 ;
=30 IV @I+ s e e IZ;;]G av f(x: u IIZ;[:M]G 1)

T 2 Zak VE (i) = VI = 57 o 19 f Gl

i€[M] k=0
n 7
- 2(1 — o/B)am QEtH ZGHQ
G[M]
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, a large language model (LLM) was used solely for minor text
polishing and grammar corrections. The LLM did not contribute to research ideation, content
generation, or any other significant aspect of the work. All content, including the final text, has been
thoroughly reviewed and approved by the authors, who take full responsibility for its accuracy and
originality.
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