

000 001 002 003 004 005 FEDSAGD: FEDERATED LEARNING WITH STABLE AND 006 ACCELERATED CLIENT GRADIENT DESCENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Federated Learning (FL) has become a promising paradigm for distributed machine
029 learning. However, FL often suffers from degraded generalization performance
030 due to the inconsistency between local and global optimization objectives and
031 client-side overfitting. In this paper, we introduce global-update stability as an
032 analytical tool to study generalization error and derive the stability bounds of
033 mainstream FL optimization algorithms under non-convex settings. Our analyses
034 reveal how the number of global update steps, data heterogeneity, and update
035 rules influence their stability. We observe that momentum-based FL acceleration
036 methods do not improve stability. To address this issue, we propose FedSAGD, a
037 new FL algorithm that leverages the global momentum acceleration mechanism
038 and a hybrid proximal term to enhance stability. This design ensures updates follow
039 a globally consistent descent direction while retaining the benefits of acceleration.
040 Theoretical analysis shows that FedSAGD achieves an advanced stability upper
041 bound of $\mathcal{O}(1 - (1 - \Gamma)^T)$ ($0 < \Gamma < 1$) and attains a convergence rate of $\mathcal{O}(\frac{1}{\sqrt{sKT}})$
042 on non-i.i.d. datasets in the non-convex settings. Extensive experiments on real-
043 world datasets demonstrate that FedSAGD significantly outperforms multiple
044 baseline methods under standard FL settings, achieving faster convergence and
045 state-of-the-art performance.
046

1 INTRODUCTION

047 Federated Learning (FL) enables distributed training without sharing raw data (McMahan et al., 2017),
048 but it struggles with two core challenges in realistic cross-device scenarios: data heterogeneity and
049 limited client participation rate. These factors induce local inconsistency (i.e., divergence between a
050 client’s local optimization objective and the global optimization goal) and local overfitting (i.e., client-
051 side models overfit to local data distribution), leading to a phenomenon known as client drift (Sun
052 et al., 2023a;b). This hinders both the convergence speed and the generalization performance of
053 the global model (Karimireddy et al., 2020; Charles & Konečný, 2021; Malinovskiy et al., 2020).
054 Consequently, the severe client drift caused by local overfitting to inconsistent solutions may lead to
055 the degradation of the global model into merely an average of the client models (Sun et al., 2023a).
056 This challenge becomes even more pronounced when the participation rate of clients is low during
057 each communication round.
058

059 Several methods have attempted to address this challenge by incorporating momentum mechanisms
060 (e.g., FedAdam (Reddi et al., 2021), FedAvgM (Hsu et al., 2019)), variance reduction techniques
061 (e.g., SCAFFOLD (Karimireddy et al., 2020)) or regularization-based constraints (e.g., FedProx (Li
062 et al., 2020), FedDyn (Acar et al., 2021)). Momentum-based and variance reduction methods mainly
063 focus on reducing optimization error to accelerate convergence, while regularization-based methods
064 aim to improve generalization by constraining the deviation between local and global models during
065 local updates. However, these approaches often fail to significantly enhance generalization in highly
066 non-IID scenarios with low client participation. We attribute this limitation to the absence of explicit
067 attention to the stability of federated optimization, encompassing both its convergence behavior and
068 its sensitivity to data heterogeneity and participation variability.
069

070 To study this, we adopt the framework of algorithmic stability (Hardt et al., 2016; Kuzborskij &
071 Lampert, 2018; Bousquet & Elisseeff, 2002; Zhang et al., 2022), which provides a formal link
072 between the sensitivity of an algorithm to data perturbations and its generalization ability. We
073

054 leverage global-update stability to investigate the sensitivity of FL algorithms to client replacement
 055 and establish a formal link to their generalization ability. We analyze the stability of common FL
 056 algorithms and show that momentum-based FL acceleration methods do not improve stability.
 057

058 1.1 MAIN CONTRIBUTIONS 059

060 We propose FedSAGD, a new FL algorithm that leverages the global momentum acceleration
 061 mechanism and a hybrid proximal term to enhance stability. This design ensures that the updates
 062 always follow a globally consistent descent direction while controlling client drift, thereby improving
 063 the stability of global updates and retaining the benefits of acceleration. We prove that FedSAGD
 064 achieves a tighter stability bound of $\mathcal{O}(1 - (1 - \Gamma)^T)$ than existing momentum-based FL algorithms
 065 such as FedAdam (Reddi et al., 2021), FedAvgM (Hsu et al., 2019), and FedANAG (Zhang et al.,
 066 2025), which exhibit an upper bound of $\mathcal{O}(T)$, while also maintaining a same favorable convergence
 067 rate of $\mathcal{O}(\frac{1}{\sqrt{sKT}})$. We conduct extensive experiments on real-world vision and language datasets,
 068 including CIFAR-10/100, EMNIST, and Shakespeare. Experimental results show that the proposed
 069 FedSAGD consistently outperforms existing baselines in terms of test generalization and convergence
 070 speed. Our contributions are summarized below.
 071

- 072 • We propose FedSAGD, a federated acceleration algorithm for non-convex FL with partial
 073 participation, combining client-side gradient-corrected momentum and a hybrid proximal
 074 term. Compared with previous momentum-based FL methods, FedSAGD achieves improved
 075 stability while maintaining fast convergence.
- 076 • We provide theoretical analysis of FedSAGD’s stability and convergence under non-convex
 077 settings, showcasing its state-of-the-art performance.
- 078 • We empirically validate our theoretical findings by comparing FedSAGD with several estab-
 079 lished baselines. Extensive experiments confirm that our method consistently outperforms
 080 strong baselines in convergence speed, generalization, and stability.

081 2 RELATED WORK 082

083 **Generalization and stability in centralized learning.** Bousquet & Elisseeff (2002) introduced the
 084 concept of algorithmic stability and showed that it can be used to derive bounds on the generalization
 085 error. On-average stability is proposed by Shalev-Shwartz et al. (2010) and further studied by
 086 Kuzborskij & Lampert (2018). Stability-based generalization analysis was introduced into stochastic
 087 gradient-based methods (Hardt et al., 2016; Richards & Rebeschini, 2020). Sun et al. (2021); Zhu
 088 et al. (2022) extended the results to D-SGD and discussed the relationship between generalization
 089 performance and communication topology. **Although stability analysis has proven to be an effective**
 090 **tool for characterizing the generalization performance of algorithms in centralized learning, due**
 091 **to issues such as data heterogeneity across clients and client dropout in federated learning, these**
 092 **conclusions cannot be directly extended to the federated setting.**

093 **Generalization and stability in federated learning.** For the generalization bounds in FL, Hu et al.
 094 (2023) characterized the generalization error for both participating and non-participating clients in
 095 the training process. Liu et al. (2025) proposed the first algorithm-dependent generalization analysis
 096 with uniform stability for the typical personalized FL method. Sun et al. (2024) demonstrated that
 097 the generalization performance is closely related to the data heterogeneity and the convergence
 098 behaviors through on-average stability. Zhang et al. (2025) focus on the local-update stability of
 099 FL, i.e., how client variations affect the model after K local update. To better model the fact that
 100 client participation in FL is partial and random, we propose global-update stability, which aims to
 101 investigate how variations in the participating client sets affect the difference in models trained by the
 102 FL algorithm.

103 **Federated optimization.** McMahan et al. (McMahan et al., 2017) first introduced FedAvg to address
 104 major challenges such as massively distributed clients and partial client participation. With the rapid
 105 development of FL, many optimization methods have been proposed to mitigate the divergence
 106 between clients and the global model caused by data heterogeneity. FedProx (Li et al., 2020) restricts
 107 the offset of local updates by adding a proximal term. FedDyn (Acar et al., 2021) dynamically
 108 modifies the device objective with a penalty term. SCAFFOLD (Karimireddy et al., 2020) employs

108 variance reduction techniques to correct the client drift in local updates. MimeLite (Karimireddy
 109 et al., 2021) uses a combination of control variates and server-level optimizer states (e.g., momentum)
 110 in each client update step. As classic optimization methods, momentum methods can be traced back
 111 to Polyak’s heavy ball method (Polyak, 1964) and Nesterov’s accelerated method (NAG) (Nesterov,
 112 2013). With the flourishing of momentum mechanisms in machine learning research (Liu & Belkin,
 113 2020; Liu et al., 2020; Assran & Rabbat, 2020), this motivates researchers to incorporate momentum
 114 methods into FL settings. FedAvgM (Hsu et al., 2019) and FedAdam (Reddi et al., 2021) apply
 115 momentum to the server side, with the latter utilizing an adaptive optimizer. FedCM (Xu et al.,
 116 2021) introduces global momentum into the local update. FedLNAG (Yu et al., 2019) employs
 117 NAG to accelerate each local iteration. FedACG (Kim et al., 2024) uses the global model with a
 118 lookahead gradient in the penalty term to regularize the local updates. FedANAG (Zhang et al.,
 119 2025) incorporates both the global and local analog NAG, while avoiding degrading stability and the
 120 communication overhead of uploading additional local momentum. However, these methods only
 121 enhance the empirical performance without improving stability relative to FedAvg. Therefore, we
 122 aim to design an algorithm with better stability that translates to improved empirical performance.
 123

3 PROBLEM FORMULATION

3.1 PRELIMINARIES

127 Throughout this paper, we mainly consider the typical cross-device FL setting, which involves one
 128 server and a large number of clients. Let m be the total number of clients, we use $[M]$ to denote the
 129 set $\{1, 2, \dots, m\}$. We denote the set of active clients at round t as \mathcal{S}_t , with $|\mathcal{S}_t| = s$. T is the total
 130 communication rounds, K represents the number of local updates per communication round. x is the
 131 model parameter. $\langle \cdot, \cdot \rangle$ denotes the inner product for two vectors, and $\|\cdot\|$ the Euclidean norm.
 132

We consider minimizing the following optimization problem of the form:

$$134 \quad f(x) = \frac{1}{m} \sum_{i=1}^m F_i(x), \quad (1)$$

137 where the $F_i(x) = \mathbb{E}_{\xi_i \sim \mathcal{P}_i}[F_i(x, \xi_i)]$ is the local loss function of the client $i \in [M]$, ξ_i represents the
 138 random data samples drawn from the distribution \mathcal{P}_i and n_i is the number of local samples. In FL
 139 settings, \mathcal{P}_i may differ across the local clients, i.e., for clients i and j , their data distribution might be
 140 significantly different. We state some standard assumptions (Reddi et al., 2021; Karimireddy et al.,
 141 2021; Zhang et al., 2025) as follows.

142 **Assumption 3.1.** (*L-smooth*). F_i is *L-smooth* for all client i , i.e., $\|\nabla F_i(x) - \nabla F_i(y)\| \leq L\|x - y\|$,
 143 $\forall x, y \in R^d$.

144 **Assumption 3.2.** (*Unbiased estimator of local gradient with bounded variance*). The local gradient
 145 estimate $g_{t,k}^i = \nabla F_i(x_{t,k}^i, \xi_i)$ with randomly sampled data ξ_i is unbiased, i.e., $\mathbb{E}[g_{t,k}^i] = \nabla F_i(x_{t,k}^i)$.
 146 The variance of local gradients is bounded, i.e., $\mathbb{E}[\|g_{t,k}^i - \nabla F_i(x_{t,k}^i)\|^2] \leq \sigma_l^2$, $\forall i \in [M]$ and $\forall t$.

147 **Assumption 3.3.** (*Bounded heterogeneity*). The variance of local gradients at all clients is bounded,
 148 i.e., $\mathbb{E}[\|\nabla F_i(x_t) - \nabla f(x_t)\|^2] \leq \sigma_g^2$, $\forall i \in [M]$ and $\forall t$.

150 **Assumption 3.4.** (*Z-Lipschitz*) F_i is *Z-Lipschitz* for all client i , i.e., $\|F_i(x) - F_i(y)\| \leq Z\|x - y\|$,
 151 $\forall x, y \in R^d$.

152 Assumption 3.1 guarantees a Lipschitz continuity and Assumption 3.2 guarantees the stochastic
 153 gradient is bounded by zero mean and constant variance. Although in practical FL the samples are not
 154 i.i.d., they are still sampled from distributions that are not entirely unrelated (Li et al., 2020). Thus, it
 155 is reasonable to bound the dissimilarity between local functions in Assumption 3.3. **Assumption 3.4**
 156 is widely used in the stability analysis (Hardt et al., 2016; Lei & Ying, 2020).

3.2 STABILITY BOUNDS ANALYSIS

160 We introduce the notion of algorithmic stability to provide an upper bound on the generalization
 161 error. In particular, we formally improve the on-average stability proposed by Sun et al. (2024),
 While Sun et al. (2024) characterizes sensitivity to single data point perturbations within a client,

162 this perspective does not fully capture the dominant source of variability in FL, i.e., partial client
 163 participation. In practice, client participation is partial and random, and models must generalize to
 164 unseen clients whose data distributions may differ significantly. To better model this scenario, we
 165 extend the stability analysis from sample-level perturbations to client-level perturbations, leading to
 166 the following definition.

167 **Definition 3.5.** (*global-update stability for FL*). *Let $\mathcal{A}(\mathcal{S})$ denote the model output by algorithm \mathcal{A} on client set \mathcal{S} . A FL algorithm \mathcal{A} is said to satisfy ϵ -global update stability if given any two client sets \mathcal{S} and $\mathcal{S}^{(i)}$, then for any $j \in [M]$*

$$170 \quad \max_{i \in [M]} \mathbb{E}_{\mathcal{A}, \mathcal{S}, \xi_j} [|F_j(\mathcal{A}(\mathcal{S}), \xi_j) - F_j(\mathcal{A}(\mathcal{S}^{(i)}), \xi_j)|] \leq \epsilon,$$

173 where two neighboring sets \mathcal{S} and $\mathcal{S}^{(i)}$ only differ by one client i . Here, the expectation is also taken
 174 over the randomness of the active client set \mathcal{S} .

175 Global-update stability means that any change in the participating FL clients will not cause a
 176 significant difference in the model trained by the FL algorithm in expectation. To better capture this
 177 partial participation setting, we adopt the concept of semi-empirical risk from Yuan et al. (2021) and
 178 Zhang et al. (2025) to define generalization error ϵ_{gen} . The unparticipating expected risk as follows

$$179 \quad R_u = \mathbb{E}_{i \sim \mathcal{C}} [\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(\mathcal{A}(\mathcal{S}), \xi_i)]], \quad (2)$$

181 where \mathcal{C} is a meta distribution from which the active clients are drawn. R_u denotes the expected loss
 182 of the model over all clients in the meta-distribution. And the semi-empirical risk is defined by

$$184 \quad R_e = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} [\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(\mathcal{A}(\mathcal{S}), \xi_i)]]. \quad (3)$$

186 R_e represents the expected loss of the model over the clients participating in the training. Note that,
 187 to characterize the partial and random participation of clients, we adopt semi-empirical risk (Yuan
 188 et al., 2021; Zhang et al., 2025) rather than the traditional empirical risk. This replaces the empirical
 189 loss within each client with the expected loss over that client's local data distribution. Traditional
 190 generalization error measures the performance of a model on unseen data, while the generalization
 191 error we define here measures the performance of the model on the data of unseen clients. To better
 192 assess the generalization error for unparticipating clients, we define the generalization error of a
 193 model output $\mathcal{A}(\mathcal{S})$ is

$$194 \quad \epsilon_{gen} := \mathbb{E}_{i \sim \mathcal{C}} [\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(\mathcal{A}(\mathcal{S}), \xi_i)]] - \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} [\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(\mathcal{A}(\mathcal{S}), \xi_i)]], \quad (4)$$

197 a smaller ϵ_{gen} implies the model $\mathcal{A}(\mathcal{S})$ has a better generalization performance on the data of
 198 unparticipating clients. The following theorem shows that generalization error of the model can be
 199 bounded by global-update stability. The proof is given in Appendix B.

200 **Theorem 3.6.** *Suppose that a FL algorithm \mathcal{A} satisfies the ϵ -global-update stability. Then,*

$$201 \quad \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} [\epsilon_{gen}] \leq \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} [|R_u - R_e|] \leq \epsilon.$$

203 Theorem 3.6 establishes that if the algorithm exhibits high global update stability (i.e., a small stability
 204 upper bound), the generalization gap is guaranteed to be small. This indicates that the model not only
 205 fits the participating clients but also generalizes well to unseen clients. Therefore, improving stability
 206 becomes a key objective in designing effective FL algorithms. Based on Definition 3.5, we analyze
 207 the stability of existing methods. Following Hardt et al. (2016), we denote x_T and x'_T as the global
 208 models trained by two neighboring active client sets, and, under the **Assumption 3.4**, we relate the
 209 model difference $\mathbb{E}\|x_T - x'_T\|$ to stability. Supposing the same model initialization, we present in
 210 Table 1 the upper bounds of the resulting models for different FL algorithms. See Appendix C for
 211 the detailed proof.

212 As proposed in Sun et al. (2024), the model differences of the algorithms increase linearly with
 213 the heterogeneity of the client data distributions, are proportional to the sampling variance of the
 214 gradients, and also depend on the learning rates chosen during the local training process. Although
 215 Zhang et al. (2025) also analyzed the stability of FL algorithms, which they termed local-update
 216 stability, their study only considered the effect of client changes on the model difference after K

local training steps, essentially corresponding to stability at the local update level. In contrast, our work investigates global-update stability, namely, the impact of changes in client participation on the model difference of FL algorithms over T communication rounds. Moreover, the conclusion on local momentum stability in Zhang et al. (2025) is limited to the setting of quadratic functions. As shown in Table 1, our stability results demonstrate that, in the non-convex setting, the global stability of existing momentum-based algorithms grows linearly with T . Furthermore, applying Nesterov momentum locally does not significantly increase the upper bound of model discrepancy, and relying solely on global momentum is also insufficient to improve the stability of FL algorithms.

Analysis reveals that FedProx and FedDyn exhibit better stability due to the incorporation of proximal terms in the local update process. Based on the discussion in Appendix C.2, after introducing the proximal term, the local-update stability of FedProx and FedDyn is reduced from the linear upper bound $\mathcal{O}(K)$ to a finite upper bound $\mathcal{O}(1 - (1 - \lambda\eta_l)^K)$. However, this cannot improve the global-update stability of the FL algorithm, which remains at $\mathcal{O}(T)$. To address this limitation, we propose a hybrid proximal term: $\frac{1}{2(\mu+\lambda)} \|\langle \mu + \lambda \rangle x_{t,K} - \lambda x_t \|^2$. Then we can get the following conclusion

Theorem 3.7. Suppose Assumption 3.1-3.4 hold and consider FedSAGD. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' , respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

$$\mathbb{E}\|F_i(x_T) - F_i(x'_T)\| \leq Z\mathbb{E}\|x_T - x'_T\| \leq \frac{1 - (1 - \Gamma)^T}{\Gamma} \frac{2 + 2\beta}{\lambda + \mu} (\sigma_l^2 + 2\sigma_g^2 + 2Z^2)^{\frac{1}{2}} Z,$$

where $\Gamma := 1 - [\frac{\lambda}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} (1 - \eta_l(\lambda + \mu))^K] \in (0, 1)$. By combining the proximal term with weight decay, this design transforms the accumulated historical gradients over T rounds into an exponential moving average, thereby reducing the global stability of the algorithm from a linear upper bound $\mathcal{O}(T)$ to a finite upper bound $\mathcal{O}(1 - (1 - \Gamma)^T)$. The detailed proof can be found in Appendix C.11.

Learning Rate and Convergence. The stability analysis of various algorithms demonstrates that, under non-convex objective functions, stability is influenced by the learning rate. As the number of global iterations T increases, the bias of the FL model in non-convex settings accumulates and becomes progressively larger. To guarantee convergence in such scenarios, the learning rate η_l is typically set to be inversely proportional to the square root of the global rounds T , that is, $\eta_l = \mathcal{O}\left(\frac{1}{LK\sqrt{T}}\right)$. This choice also effectively compensates for the stability discrepancies in non-convex settings. Indeed, this convergence requirement has been validated in many existing studies (Yang et al., 2021; Yu et al., 2019; Zhang et al., 2025). Nevertheless, even with this compensation introduced by learning rate decay, the stability of existing algorithms remains at $\mathcal{O}(\sqrt{T})$, which is weaker than that of our proposed algorithm, achieving $\mathcal{O}(1 - (1 - \Gamma)^T)$.

Table 1: Summary of stability bounds of FL algorithms. All results are the ones under non-convex and Assumptions 3.1-3.4. We define $\Theta := (\sigma_l^2 + 2\sigma_g^2 + 2Z^2)^{\frac{1}{2}}$ for simplicity.

Method	Non-convex	Historical gradient ^a	Proximal term	Communication ^b
FedAvg	$2\eta_l K\Theta T$	-	-	$1 \times$
FedProx ^c	$2\lambda^{-1}\Theta[1 - (1 - \lambda\eta_l)^K]T$	-	✓	$1 \times$
SCAFFOLD	$6\eta_l K\Theta T$	Variance reduction	-	$2 \times$
FedDyn	$4\lambda^{-1}\Theta[1 - (1 - \lambda\eta_l)^K]T$	-	✓	$1 \times$
FedLNAG	$2\eta_l K\Theta T$	Client side-momentum	-	$2 \times$
FedAdam	$2\tau^{-1}\eta_l K\Theta T$	Server side-momentum	-	$1 \times$
FedCM	$2\Theta T$	Client side-momentum	-	$1 \sim 1.5 \times$
MimeLite	$2\eta_l K\Theta T$	-	-	$2 \times$
FedANAG	$2(1 - \beta)^{-1}\eta_l K\Theta T$	Client side-momentum	-	$1 \sim 1.5 \times$
FedACG	$(4 - 2\lambda)(1 - \lambda)^{-1}\eta_l K\Theta T$	Server side-momentum	✓	$1 \times$
FedSAGD(ours)	$(\lambda + \mu)^{-1}\Gamma^{-1}(2 + 2\beta)\Theta[1 - (1 - \Gamma)^T]$	Client side-momentum	✓	$1 \sim 1.5 \times$

^a This column refers to the utilization of historical gradients $g_{r,\tau}^i$ for $\tau < k$ and $r \leq t$ during the k -th local update.

^b Here, communication refers to amount of data transmitted w.r.t. to FedAvg.

^c λ, μ, β are the hyper-parameters of different algorithms.

270 4 METHODOLOGY
271272 4.1 FEDSAGD ALGORITHM
273274 We introduce FedSAGD, as shown in Algorithm 1, to improve stability and generalization while
275 accelerating convergence, by coupling global momentum with client-side acceleration and a hybrid
276 proximal term. Together, these components enable FedSAGD to reduce the negative effects of
277 heterogeneity while achieving faster convergence with fewer communication rounds.278 At the beginning of each round t , a subset of clients \mathcal{S}_t are randomly selected to participate in the
279 current training process (line 4). The global server will communicate the parameter x_t and global
280 momentum $v_t (v_0 = 0)$ to the active clients for local training (line 6). Each active client perform
281 three stages: (1) computing the unbiased stochastic gradient $g_{t,k}^i = \nabla F_i(x_{t,k}^i, \xi_i)$ with local data
282 ξ_i (line 8); (2) computing the local momentum $m_{t,k}^i$ through combining v_t and $g_{t,k}^i$ (line 9); (3)
283 executing the gradient descent step with the local momentum $m_{t,k}^i$ and the hybrid proximal term
284 (line 10). After K iterations, local updates are completed, and the clients communicate the offset of
285 the model parameters $x_{t,K}^i - x_{t,0}^i$ to the server for aggregation (line 12). On the global server, the
286 global momentum v_t will be updated as the weighted sum of the current average local offset Δx_t and
287 the historical global momentum (line 15). Then, the server performs a simple update to derive the
288 global model x_{t+1} (line 16).
289290 **Algorithm 1** FedSAGD Algorithm Framework
291

 292 1: **Input:** model parameters x_0 , total communication rounds T , number of local iterations K ,
293 momentum coefficient β , proximal term λ, μ , local learning rate η_l , global learning rate η .
 294 2: **Output:** model parameters x_T .
 295 3: **for** $t = 0, 1, 2, \dots, T - 1$ **do**
 296 4: select active clients-sets \mathcal{S}_t at round t
 297 5: **for** client $i \in \mathcal{S}_t$ in parallel **do**
 298 6: communicate x_t and v_t to local client i and initialize $x_{t,0}^i = x_t$
 299 7: **for** $k = 0, 1, 2, \dots, K - 1$ **do**
 300 8: compute unbiased stochastic gradient: $g_{t,k}^i = \nabla F_i(x_{t,k}^i, \xi_i)$
 301 9: update the momentum: $m_{t,k}^i = \beta v_t + g_{t,k}^i$
 302 10: update the gradient step: $x_{t,k+1}^i = x_{t,k}^i - \eta_l(m_{t,k}^i + ((\lambda + \mu)x_{t,k}^i - \lambda x_t))$
 303 11: **end for**
 304 12: $\Delta x_t^i = x_{t,K}^i - x_{t,0}^i$ and communicate Δx_t^i to server
 305 13: **end for**
 306 14: $\Delta x_t = \frac{1}{s} \sum_{i \in \mathcal{S}_t} \Delta x_t^i$
 307 15: update global momentum: $v_{t+1} = \frac{\beta}{1+\beta} v_t - \frac{\Delta x_t}{(1+\beta)K\eta_l}$
 308 16: update global model: $x_{t+1} = x_t + \eta \Delta x_t$
 309 17: **end for**

310
311 **Hybrid proximal term.** In traditional optimization problems, penalized proximal term are typically
312 added to the objective function to improve the model’s generalization ability and prevent overfitting
313 (Krogh & Hertz, 1991; Ghojogh & Crowley, 2019). In FedProx (Li et al., 2020), the prox term is used
314 to enhance local consistency in FL, while FedDyn (Acar et al., 2021) utilizes a dynamic regularization
315 term to align the global and local optima. Through analysis, we find that the proximal term can
316 improve the local-update stability $\mathcal{O}(1 - (1 - \eta_l \lambda)^K)$, but fail to enhance the global updates stability
317 $\mathcal{O}(T)$. Therefore, we propose a hybrid proximal term: $\frac{1}{2(\mu+\lambda)} \|(\mu + \lambda)x_{t,K} - \lambda x_t\|^2$, which further
318 improves the stability of global updates to $\mathcal{O}(1 - (1 - \Gamma)^T)$. As shown in the local update in
319 Algorithm 1 (Line.10), for all $i, j \in [M], i \neq j$ we have:
320

321
$$\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq (1 - \Gamma)\mathbb{E}\|x_t - x_t'\| + \zeta(2 + 2\beta)\Theta, \quad (5)$$

322

323 where $\zeta = \frac{1 - (1 - \eta_l(\lambda + \mu))^K}{\lambda + \mu}$. Proof details can be referred to in Appendix C.11. From equation 5, it
324 can be observed that after incorporating the hybrid proximal term, the accumulated historical gradients

324 over T rounds are transformed into an exponential moving average, which differs fundamentally
 325 from FedProx, as shown in Fig 6b. This also explains why our method achieves improved stability.
 326

327 **Momentum update.** In FL settings, using local momentum can lead the update direction toward
 328 local optima rather than the global optimum, thus hindering global convergence. This issue becomes
 329 particularly pronounced in the presence of data heterogeneity. Therefore, we use global momentum
 330 locally to accelerate convergence while preserving stability. In fact, according to Line 8 of Algorithm
 331 1, the accumulated local update of FedSAGD can be written as:

$$332 \quad x_{t,K}^i - x_{t,0}^i = -\eta_l \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i - \alpha \beta \eta_l v_t, \quad (6)$$

335 where $\alpha_k := (1 - \eta_l \lambda)^{K-1-k}$ and $\alpha := \sum_{k=0}^{K-1} \alpha_k$. v_t denotes the global momentum. The detailed
 336 derivation is provided in Appendix D.2. FedSAGD achieves the same local-update stability upper
 337 bound as FedProx, but introduces an additional update term involving the global momentum v_t . In
 338 other words, at each local iteration, FedSAGD differs from FedProx by an extra term $\beta \frac{1-\alpha^K}{\lambda} v_t$. To
 339 maintain the same maximum model discrepancy as FedProx, the local update direction of FedSAGD
 340 is forced to be closer to the global optimum, as shown in Fig 6a. Consequently, FedSAGD is able to
 341 accelerate the training process while preserving high local-update stability.

342 Note that the overall communication cost of the proposed FedSAGD scheme consists of two parts:
 343 the downlink cost of broadcasting the global model x_t and global momentum v_t from the server,
 344 and the uplink cost of unicasting s local model updates from the clients. In wireless communication,
 345 broadcasting a file to s destinations is significantly more efficient than unicasting s copies of the same
 346 file to each destination. Therefore, the communication overhead of FedSAGD is approximately $\frac{2+s}{1+s}$
 347 times that of FedAvg, where s typically represents a large number in cross-device FL (Kairouz et al.,
 348 2021).

349 4.2 CONVERGENCE ANALYSIS

351 We rigorously prove the convergence of FedSAGD for non-convex settings, assuming partial par-
 352 ticipation, i.e. $|\mathcal{S}_t| < m, \forall t \in [T]$. Our analysis can be directly extended to full participation. We
 353 provide a proof sketch in the following. For the full proof, please refer to Appendix D.

354 **Proof sketch.** To facilitate the handling of the momentum terms in the proof, we introduce an
 355 auxiliary sequence z_t . Denote $G_t^i = \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i$, $\alpha' = \frac{\alpha}{K}$ and $\gamma = 1 + \alpha'$. The form of z_t is as
 356 follows:

$$357 \quad z_t = \begin{cases} x_t, & t = 0; \\ 358 \quad \frac{1+\beta}{1-\alpha'\beta} x_t - \frac{\gamma\beta}{1-\alpha'\beta} x_{t-1} + \frac{\beta\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i, & t \geq 1. \end{cases} \quad (7)$$

360 The z_t update is:

$$361 \quad z_{t+1} = z_t - \frac{\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_t} G_t^i.$$

364 From the expression of z_t , it can be seen that, as t tends to positive infinity, z_t and x_t both converge
 365 to optimum x^* . Furthermore, after mapping x_t to z_t , the entire update process will be simplified to
 366 an SGD-type method with the gradient \hat{g} . We subsequently introduce the convergence result for the
 367 FedSAGD algorithm.

368 **Theorem 4.1.** Under Assumption 3.1-3.3 and loss function is non-convex, we define $D_0 := \mathbb{E}(\hat{f}(z_0) -$
 369 $\hat{f}(z_T))$. When the learning rate satisfies $\eta_l \leq \frac{1}{16KL}$ and

$$370 \quad \eta_l \leq \frac{m(s-1)}{s(m-1)} \min \left\{ \frac{(1-\alpha'\beta)^2 \sqrt{K}}{4\alpha\beta L \sqrt{3\alpha}}, \frac{(1-\alpha'\beta)\eta_l}{6\beta L \sqrt{2\alpha}}, \frac{1-\alpha'\beta}{2\alpha L} \right\}.$$

373 Then the auxiliary sequence z_t in equation equation 7 generated by executing the FedSAGD satisfies:

$$376 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla \hat{f}(x_t)\| \leq \mathcal{O} \left(\frac{LD_0}{\sqrt{sKT}} + \frac{\sigma_l^2}{\sqrt{sKT}} + \frac{1}{T} \left(\frac{\sigma_l^2}{K^2} + K\sigma_l^2 + \frac{\sigma_l^2}{sK} + \frac{\sigma_g^2}{K} \right) + \Psi_l + \Psi_g \right)$$

378 where

$$\begin{aligned}\Psi_l &= \left(\frac{1}{T} + \frac{K}{sT}\right) \frac{(m-s)}{m-1} \left(\frac{1}{T} + \frac{1}{sK^2T} + \frac{1}{\sqrt{sKT}}\right) \sigma_l^2, \\ \Psi_g &= \left(\frac{K}{T} + K\right) \frac{(m-s)}{m-1} \left(\frac{1}{T} + \frac{1}{sK^2T} + \frac{1}{\sqrt{sKT}}\right) \sigma_g^2.\end{aligned}$$

385 **Remark 4.2.** To obtain the above results, it is also necessary to suppose that $\eta = \mathcal{O}(\sqrt{sK})$ and
386 $\eta_l = \mathcal{O}(\frac{1}{LK\sqrt{T}})$. This is consistent with the assumptions on the convergence rate in Reddi et al.
387 (2021); Yang et al. (2021). However, we do not make the assumption of bounded gradients as in Reddi
388 et al. (2021). When T is sufficiently large, the dominant term of convergence bound of algorithm
389 is $\mathcal{O}(\frac{1}{\sqrt{mKT}})$ for full participation and $\mathcal{O}(\frac{\sqrt{K}}{\sqrt{sT}})$ for partial participation, which matches with the
390 convergence rate of current FL algorithms (Yang et al., 2021; Zhang et al., 2025).

391 **Remark 4.3.** Though uniform sampling can effectively approximate the distribution of all working
392 nodes in expectation, resulting in a structurally similar convergence rate between partial and full
393 participation, the distribution deviation due to the fewer participating clients could destabilize the
394 training process, particularly in highly non-i.i.d. cases (Yang et al., 2021). Our proposed algorithm
395 reduces the upper bound of stability from $\mathcal{O}(T)$ to $\mathcal{O}(1 - (1 - \Gamma)^T)$ while still achieving a linear
396 speedup $\mathcal{O}(\frac{\sqrt{K}}{\sqrt{sT}})$ with partial worker participation under heterogeneous datasets.

398 5 EXPERIMENTAL ANALYSIS ON REAL WORLD DATASETS

400 5.1 SETUP

402 **Datasets and models.** We adopt standard federated learning benchmarks following the same train/test
403 splits as prior works (McMahan et al., 2017; Li et al., 2020), including CIFAR-10 and CIFAR-100
404 (Krizhevsky, 2009), a subset of EMNIST (Cohen et al., 2017) referred to as EMNIST-L, and the
405 Shakespeare dataset (Shakespeare, 1907). To comprehensively evaluate performance across diverse
406 federated scenarios, the experiments adopt three settings similar to those in previous work (Zhang
407 et al., 2025): Setting I (CIFAR-10 and CIFAR-100): 200 clients with a 2% participation rate per
408 round; Setting II (EMNIST-L): 500 clients with a 1% participation rate; Setting III (Shakespeare): 100
409 clients with a 3% participation rate. To simulate data heterogeneity, we follow the approach of Hsu
410 et al. (2019), sampling label distributions from a Dirichlet distribution with concentration parameter
411 0.3. For the IID setting, training data is randomly assigned to clients. In the non-IID setting, label
412 distributions follow the sampled Dirichlet proportions. The model architectures include multinomial
413 logistic regression, convolutional neural networks (CNNs), and recurrent neural networks (RNNs),
414 standard ResNet-18 network, aligned with configurations used in previous studies (Sun et al., 2023a;
415 Acar et al., 2021; Kim et al., 2024; Zhang et al., 2025). Due to space limitations, further details on
416 datasets and models are provided in the Appendix A.

417 **Baseline methods.** We compare against a broad set of classical and efficient methods designed
418 to address local inconsistency and client drift in federated learning, including FedAvg (McMahan
419 et al., 2017), FedProx (Li et al., 2020), FedAdam (Reddi et al., 2021), SCAFFOLD (Karimireddy
420 et al., 2020), FedCM (Xu et al., 2021), FedDyn (Acar et al., 2021), FedACG (Kim et al., 2024),
421 FedANAG (Zhang et al., 2025), FedAvgM (Hsu et al., 2019), MimeLite (Karimireddy et al., 2021),
422 and FedLNAG (Yu et al., 2019). FedAdam improves global updates via adaptive optimization.
423 FedCM, FedACG, FedANAG, and FedAVG-M leverage global momentum to correct local updates.
424 SCAFFOLD and FedDyn mitigate client heterogeneity by aligning local and global loss functions
425 using control variates or dual variables, respectively. FedProx addresses local inconsistency through
426 the addition of a proximal term. To ensure a fair evaluation under practical federated settings, we
427 report the test accuracy after 2000 communication rounds across all experiments, following the
428 baseline settings in Acar et al. (2021); Zhang et al. (2025). Further implementation details and
429 hyperparameter configurations are provided in the Appendix A.

430 **Evaluation metrics.** Different algorithms are evaluated with two metrics: the convergence rate (i.e.,
431 number of rounds required to reach a target test accuracy) and the generalization performance (i.e.,
432 final global model performance on a validation set throughout training). These two metrics are widely
433 adopted by many prior works such as Acar et al. (2021); Kim et al. (2024); Zhang et al. (2025).

432 5.2 MAIN RESULTS
433

434 We evaluate the aforementioned FL algorithms under a variety of challenging settings, including
435 scenarios characterized by extreme data heterogeneity and very low client participation rates. The
436 peak test accuracies reported in Table 1 are obtained by averaging results over five independent runs
437 with different random seeds to ensure statistical reliability. We further investigate the sensitivity of per-
438 formance to the hyperparameter β , μ and λ under varying configurations. In addition, Appendix A.8
439 presents the variance of test accuracy across different seeds to complement the robustness analysis.
440 Table 2 reports the test accuracies of FedSAGD and baseline methods on CIFAR-10, CIFAR-100,
441 EMNIST, and Shakespeare under different settings, and the corresponding convergence curves are
442 shown in Appendix A.9. We also verified the stability and empirical generalization error of most
443 algorithms as shown in Appendix A.4. [And we conducted experiments under feature-skewed settings, details can be found in Appendix A.7.](#)
444

445 Table 2: Number of communication rounds required to achieve the preset target accuracy (presented
446 in the first two lines on four datasets), and the top validation accuracy averaged over five random
447 seeds for recent state-of-the-art methods (presented in the third line on four datasets), with the bold
448 number representing the best result. Using CIFAR-10 as an example, the first two lines present the
449 required communication rounds to reach 81% and 75% test accuracy, respectively. The third line
450 shows the highest accuracy achieved by each method within 2000 rounds. '2000+' indicates that 81%
451 accuracy was not reached even after 2000 rounds.
452

Method	CIFAR-10			CIFAR-100			EMNIST			Shakespeare		
	75	81	top(%)	40	45	top(%)	78	80	top(%)	45	50	top(%)
FedAvg	572	2000+	78.64	2000+	2000+	40.79	102	271	81.01	176	516	51.61
FedProx	572	2000+	78.88	1207	2000+	41.74	46	154	81.83	194	522	51.54
FedDyn	354	2000+	80.14	1512	2000+	41.89	65	146	81.02	231	489	51.77
SCAFFOLD	364	1535	81.34	1308	2000+	42.24	60	141	81.55	180	465	52.04
MineLite	439	1959	81.02	578	1050	47.59	57	129	81.91	177	477	51.71
FedAvgM	489	1522	81.86	714	1197	48.31	50	151	81.92	84	313	52.32
FedAdam	1295	2000+	78.29	1458	1877	44.51	61	162	81.58	99	359	52.30
FedCM	530	1891	81.09	1265	1718	45.02	277	1101	80.16	2000+	2000+	39.14
FedLNAG	497	2000+	79.60	1031	1602	42.31	41	196	81.92	93	296	52.23
FedANAG	338	882	83.51	673	1701	45.32	38	181	82.01	68	183	52.46
FedACG	338	891	83.52	582	1139	50.59	36	155	82.02	72	214	52.52
FedSAGD(ours)	287	851	84.05	536	852	54.53	30	131	82.24	56	147	53.03

463
464 Table 3: Accuracy (%) vs. Non-iid-ness, With
465 PR = 1%.
466

Dirichlet	0.3	0.6	0.8	iid
FedSAGD	82.86	84.08	84.46	85.36
FedACG	81.52	82.34	83.12	85.03
FedANAG	82.37	83.11	84.27	85.13
SCAFFOLD	80.88	81.88	82.31	83.17
FedDyn	78.45	81.95	83.01	83.10
FedLNAG	79.05	80.53	80.93	81.99
FedAvgM	81.34	82.15	83.12	84.70
FedAdam	78.81	81.10	82.52	84.5
FedCM	79.44	80.46	81.62	82.07

467 Table 4: Accuracy (%) vs. PR, With Dirichlet =
468 0.3.
469

PR(%)	1	2	5	10
FedSAGD	82.86	84.05	83.49	83.01
FedACG	81.52	83.52	83.14	82.63
FedANAG	82.37	83.51	83.04	82.50
SCAFFOLD	80.88	81.34	81.97	82.12
FedDyn	78.45	80.14	80.45	82.46
FedLNAG	79.05	79.60	80.10	79.54
FedAvgM	81.34	81.86	82.71	82.08
FedAdam	78.81	78.29	81.77	81.73
FedCM	79.44	81.09	82.00	81.89

470 As shown in Table 2, FedSAGD consistently and significantly improves both convergence speed
471 and accuracy across almost all scenarios. This remarkable performance is attributed to the global
472 momentum at the client side and the hybrid proximal term. This momentum-based acceleration
473 mechanism not only leverages global momentum to accelerate both local and global training, but also
474 provides a globally consistent update direction, thereby enhancing global convergence. Furthermore,
475 aligning local updates with the trajectory of global gradients improves inter-client model consistency,
476 resulting in increased stability. In contrast, other momentum-based methods such as FedLNAG can
477 accelerate local convergence toward local optima, but due to the misalignment between local and
478 global optima, the performance of the aggregated global model remains suboptimal. On the other
479

486 hand, approaches that rely solely on global momentum such as FedCM, FedACG, and FedANAG may
 487 improve global convergence, but have limited ability to improve inter-client consistency, which in turn
 488 leads to degraded generalization performance. This observation is also theoretically supported by our
 489 stability analysis. In addition, compared with methods that rely solely on global momentum and the
 490 current gradient, FedSAGD leverages the hybrid proximal term to correct the gradient, thereby further
 491 improving the consistency of client update directions. This process reduces model discrepancies
 492 across clients and further enhances training efficiency.

493 Tables 3 and 4 demonstrate that FedSAGD exhibits the highest robustness under conditions of severe
 494 data heterogeneity and low client participation rates. [The results under milder heterogeneity settings
 495 are provided in Appendix A.6](#). To further evaluate performance, we examine the peak validation
 496 accuracy achieved by each method on the CIFAR-10 dataset under varying degrees of non-i.i.d.
 497 distributions and client participation rates (PR). Across both i.i.d. and non-i.i.d. scenarios, FedSAGD
 498 consistently outperforms all baselines under various participation settings in terms of generalization.
 499 Moreover, increases in data heterogeneity and decreases in client participation exert only a minimal
 500 adverse impact on the performance of FedSAGD.

501 6 CONCLUSION

502 We propose FedSAGD, a novel and practical federated learning algorithm designed to address the
 503 issue of unstable client updates in existing momentum-based and variance-reduction-based methods.
 504 To this end, we introduce a consistency-based stability metric and show that current acceleration
 505 schemes do not yield notable advantages in terms of stability. FedSAGD employs a global momentum
 506 acceleration mechanism to guide client updates and introduces a hybrid proximal term to further
 507 enhance the consistency among client models. We provide rigorous theoretical analysis demonstrating
 508 that FedSAGD achieves the optimal $\mathcal{O}(1 - (1 - \Gamma)^T)$ stability and $\mathcal{O}(\frac{1}{\sqrt{sKT}})$ convergence rates in
 509 non-convex settings. Extensive experiments conducted on multiple datasets validate the superiority
 510 of FedSAGD in both training efficiency and final performance, which is highly consistent with our
 511 theoretical findings.

512 ETHICS STATEMENT

513 Our research conforms to the ICLR Code of Ethics in every respect. We have thoroughly reviewed
 514 the guidelines and ensured that our work adheres to the ethical standards set forth.

515 520 REPRODUCIBILITY STATEMENT

521 We have made every effort to ensure the reproducibility of our work. The details of the model
 522 architecture, training process, and hyperparameters are provided in Section 5.1 and Appendix A.3. A
 523 complete description of the experimental setup, including datasets, models, and evaluation metrics, is
 524 included in Section 5.1 and Appendix A.1. Algorithmic details and proofs of theoretical claims are
 525 presented in Appendix B, Appendix C and Appendix D.

526 This study adheres to the principles of open science, emphasizing transparency and accessibility in
 527 research. The source code accompanying this work is publicly available on Anonymous GitHub
 528 at <https://anonymous.4open.science/r/Fed-SAGD-808E>. The repository provides
 529 artifact instructions, dependencies, core codes (e.g., data, models, evaluation), in compliance with
 530 ICLR’s reproducibility policy.

531 533 REFERENCES

534 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
 535 and Venkatesh Saligrama. Federated learning based on dynamic regularization. *arXiv preprint
 536 arXiv:2111.04263*, 2021.

537 Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gradient method
 538 in stochastic settings. In *Proceedings of the 37th International Conference on Machine Learning*,
 539 ICML’20. JMLR.org, 2020.

540 Olivier Bousquet and André Elisseeff. Stability and generalization. *Journal of machine learning*
 541 *research*, 2(Mar):499–526, 2002.

542

543 Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H Brendan McMahan,
 544 Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. *arXiv*
 545 *preprint arXiv:1812.01097*, 2018.

546

547 Zachary Charles and Jakub Konečný. Convergence and accuracy trade-offs in federated learning and
 548 meta-learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 2575–2583.
 549 PMLR, 2021.

550

551 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andrévan Schaik. Emnist: an extension of mnist
 552 to handwritten letters. *Computer Vision and Pattern Recognition, Computer Vision and Pattern*
 553 *Recognition*, Feb 2017.

554

555 Benyamin Ghojogh and Mark Crowley. The theory behind overfitting, cross validation, regularization,
 556 bagging, and boosting: tutorial. *arXiv preprint arXiv:1905.12787*, 2019.

556

557 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
 558 gradient descent. In *International conference on machine learning*, pp. 1225–1234. PMLR, 2016.

559

560 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 561 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 562 pp. 770–778, 2016.

563

564 Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
 565 decentralized machine learning. In *International Conference on Machine Learning*, pp. 4387–4398.
 566 PMLR, 2020.

567

568 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
 569 distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

570

571 Xiaolin Hu, Shaojie Li, and Yong Liu. Generalization bounds for federated learning: Fast rates,
 572 unparticipating clients and unbounded losses. In *The Eleventh International Conference on*
 573 *Learning Representations*, 2023.

574

575 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 576 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. *Foundations and trends® in machine learning*,
 577 14(1–2):1–210, 2021.

578

579 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 580 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 581 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

582

583 Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U
 584 Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated
 585 learning. *Advances in Neural Information Processing Systems*, 34:28663–28676, 2021.

586

587 Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient federated learning with
 588 accelerated client gradient. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 589 *Pattern Recognition (CVPR)*, pp. 12385–12394, June 2024.

590

591 Alex Krizhevsky. Learning multiple layers of features from tiny images. Jan 2009.

592

593 Anders Krogh and John Hertz. A simple weight decay can improve generalization. *Advances in*
 594 *neural information processing systems*, 4, 1991.

595

596 Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
 597 *international conference on machine learning*, pp. 2815–2824. PMLR, 2018.

598

599 Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
 600 gradient descent. In *International Conference on Machine Learning*, pp. 5809–5819. PMLR, 2020.

594 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 595 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 596 2:429–450, 2020.

597 Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-parameterized learning.
 598 In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=r1gixp4FPH>.

600 Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
 601 momentum. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-*
 602 *vances in Neural Information Processing Systems*, volume 33, pp. 18261–18271. Curran Asso-
 603 *ciates, Inc.*, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/d3f5d4de09ea19461dab00590df91e4f-Paper.pdf.

604 Yingqi Liu, Qinglun Li, Jie Tan, Yifan Shi, Li Shen, and Xiaochun Cao. Understanding the stability-
 605 based generalization of personalized federated learning. In *The Thirteenth International Conference*
 606 *on Learning Representations*, 2025.

607 Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik. From
 608 local sgd to local fixed-point methods for federated learning. In *International Conference on*
 609 *Machine Learning*, pp. 6692–6701. PMLR, 2020.

610 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 611 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-*
 612 *gence and statistics*, pp. 1273–1282. PMLR, 2017.

613 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 614 Science & Business Media, 2013.

615 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr computa-*
 616 *tional mathematics and mathematical physics*, 4(5):1–17, 1964.

617 Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 618 Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In *International*
 619 *Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=LkFG31B13U5>.

620 Dominic Richards and Patrick Rebeschini. Graph-dependent implicit regularisation for distributed
 621 stochastic subgradient descent. *Journal of Machine Learning Research*, 21(34):1–44, 2020.

622 William Shakespeare. *The complete works of William Shakespeare*, volume 10. Harper, 1907.

623 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
 624 and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.

625 Tao Sun, Dongsheng Li, and Bao Wang. Stability and generalization of decentralized stochastic
 626 gradient descent. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 627 9756–9764, 2021.

628 Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. Fedspeed: Larger local interval,
 629 less communication round, and higher generalization accuracy. In *International Conference on*
 630 *Learning Representations*, 2023a.

631 Yan Sun, Li Shen, and Dacheng Tao. Understanding how consistency works in federated learning
 632 via stage-wise relaxed initialization. *Advances in Neural Information Processing Systems*, 36:
 633 80543–80574, 2023b.

634 Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning via
 635 stability: Heterogeneity matters. In *Proceedings of The 27th International Conference on Artificial*
 636 *Intelligence and Statistics*, pp. 676–684. PMLR, 2024. URL <https://proceedings.mlr.press/v238/sun24a.html>.

637 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*
 638 *computer vision (ECCV)*, pp. 3–19, 2018.

648 Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
649 client-level momentum. *CoRR*, abs/2106.10874, 2021. URL <https://arxiv.org/abs/2106.10874>.
650

651 Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
652 in non-iid federated learning. *arXiv preprint arXiv:2101.11203*, 2021.
653

654 Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
655 momentum SGD for distributed non-convex optimization. In Kamalika Chaudhuri and Ruslan
656 Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*,
657 pp. 7184–7193. PMLR, 2019. URL <https://proceedings.mlr.press/v97/yu19d.html>.
658

659 Honglin Yuan, Warren Morningstar, Lin Ning, and Karan Singhal. What do we mean by generalization
660 in federated learning? 2021.
661

662 Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
663 Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In *International
664 conference on machine learning*, pp. 7252–7261. PMLR, 2019.

665 Hao Zhang, Chenglin Li, Wenrui Dai, Ziyang Zheng, Junni Zou, and Hongkai Xiong. Stabilizing
666 and accelerating federated learning on heterogeneous data with partial client participation. *IEEE
667 Transactions on Pattern Analysis and Machine Intelligence*, 47(1):67–83, 2025. doi: 10.1109/TPAMI.2024.3469188.
668

669 Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pingali, Chao Chen, and Mayank Goswami.
670 Stability of sgd: Tightness analysis and improved bounds. In *Uncertainty in artificial intelligence*,
671 pp. 2364–2373. PMLR, 2022.
672

673 Tongtian Zhu, Fengxiang He, Lan Zhang, Zhengyang Niu, Mingli Song, and Dacheng Tao. Topology-
674 aware generalization of decentralized sgd. In *International Conference on Machine Learning*, pp.
675 27479–27503. PMLR, 2022.
676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A EXPERIMENT DETAILS
703704 A.1 REAL DATA
705

706 We evaluate our models on four benchmark datasets: EMNIST-L, CIFAR-10, CIFAR-100, and
707 Shakespeare. EMNIST-L is a subset of the EMNIST dataset, comprising the first 10 characters from
708 the alphabet split, following prior work such as FedProx (Li et al., 2020) and FedDyn (Acar et al.,
709 2021). For image classification tasks, EMNIST-L, CIFAR-10, and CIFAR-100 are used, with image
710 dimensions of $1 \times 28 \times 28$ for EMNIST-L and $3 \times 32 \times 32$ for both CIFAR-10 and CIFAR-100.
711 These datasets contain 10, 10, and 100 classes, respectively. The Shakespeare dataset is used for
712 next-character prediction, with 80 distinct characters as inputs and the subsequent character as the
713 label, resulting in 80 output classes. We adopt the standard training/testing splits for all datasets. A
714 summary of the number of training and test samples for each benchmark is provided in Table 7.
715

716 To generate Non-IID data partitions for EMNIST, CIFAR-10, and CIFAR-100, we allocate training
717 samples to clients based on class labels. Specifically, following prior works (Yurochkin et al.,
718 2019), we use the Dirichlet distribution to create federated heterogeneous datasets by sampling a
719 class-probability vector for each client, where each vector is drawn from a Dirichlet distribution
720 with a concentration parameter that controls the degree of data heterogeneity. For each client, labels
721 are sampled according to this probability vector, and corresponding images are drawn without
722 replacement. This process is repeated until all data points are allocated. As a result, each client’s
723 label distribution follows the Dirichlet distribution, with the concentration parameter governing the
724 level of statistical heterogeneity across devices. For instance, when the Dirichlet factor is set to 0.3,
725 approximately 80% of each client’s data is concentrated in 3–4 dominant classes. In the IID setting,
726 data is randomly shuffled and evenly distributed across clients.
727

728 For the Shakespeare dataset, we adopt the LEAF framework (Caldas et al., 2018) to generate Non-IID
729 data, capping each client’s dataset to 2000 samples, consistent with FedDyn. In this setting, data is
730 naturally partitioned by role, where each device corresponds to a character in the script and holds all
731 lines spoken by that character. In the IID setting, all lines are merged and then randomly distributed
732 across clients.
733

A.2 MODELS

734 For CIFAR-10 dataset, we adopt a CNN architecture similar to those used in FedAvg and FedDyn,
735 which consists of two convolutional layers with 64 filters of size 5×5 , followed by two 2×2
736 max-pooling layers, two fully connected layers with 384 and 192 neurons respectively, and a final
737 softmax output layer (see Table 5 for complete model details). This CNN model is identical to
738 the one used in FedAvg, except that batch normalization layers are excluded. For the CIFAR-100
739 dataset, we use standard ResNet-18-GN model (He et al., 2016) backbone with the 7×7 filter size
740 in the first convolution layer as implemented in the previous works, e.g. for (Karimireddy et al.,
741 2020; Acar et al., 2021). We follow the (Hsieh et al., 2020; Sun et al., 2023a) to replace the batch
742 normalization layer with group normalization layer (Wu & He, 2018), which can be aggregated
743 directly by averaging. These are all common setups in many previous works. For the EMNIST-L
744 dataset, we use a multi-class logistic regression model with a cross-entropy loss function. For the
745 next-character prediction task on the Shakespeare dataset, we follow the configurations used in
746 FedProx and FedDyn, employing an RNN model that first embeds the input character sequence into
747 an 8-dimensional space, then passes it through a two-layer LSTM with 100 units, and finally outputs
748 predictions via a softmax layer (see Table 6 for full specifications).
749

A.3 HYPER-PARAMETERS

750 In our experiments, all algorithms are implemented using PyTorch 2.0.0 with CUDA 11.8 on a
751 GEFORCE RTX 4090 GPU. We consider different hyperparameter configurations for various setups
752 and datasets. For all experiments, we fix the batch size as 48 for EMNIST-L, 50 for CIFAR-10 and
753 CIFAR-100, and 100 for Shakespeare. For each dataset, we compare the performance of different
754 methods under various hyperparameter configurations. The client learning rate η_l and the learning
755 rate decay factor are individually tuned via grid search.

756 Table 5: CNN Architecture for CIFAR-10
757

758 Layer Type	759 Size
760 Convolution + ReLU	$5 \times 5 \times 64$
761 Max Pooling	2×2
762 Convolution + ReLU	$5 \times 5 \times 64$
763 Max Pooling	2×2
764 Fully Connected + ReLU	1600×384
765 Fully Connected + ReLU	384×192
766 Fully Connected	$192 \times 10 \text{ & } 192 \times 100$

767 Table 6: Shakespeare model architecture
768

769 Layer Type	770 Size
771 Embedding	$(80, 8)$
772 LSTM	$(80, 100)$
773 LSTM	$(80, 100)$
774 Fully Connected	$(100, 80)$

775 Table 7: Train and test splits
776

777 Dataset	778 No. Train	779 No. Test	780 No. clients	781 sampling rate	782 No. Train per client	783 Batch size	784 Rounds
785 EMNIST-L	48000	8000	500	1%	96	48	2000
786 CIFAR-10	50000	10000	200	2%	250	50	2000
787 CIFAR-100	50000	10000	200	2%	250	50	2000
788 Shakespeare	200000	40000	100	3%	2000	100	1000

789 **EMNIST-L.** As for the 500 devices, balanced data, full participation setup, hyperparameters
790 are searched for all algorithms in all IID and Dirichlet settings for a fixed 100 communication
791 rounds. The search space consists of learning rates in $[0.1, 0.01, 0.001]$, λ s in $[1, 0.01, 0.001]$ and
792 α s in $[0.001, 0.01, 0.02, 0.1]$, epochs is 20. The learning rate decay is selected from the range of
793 $[0.995, 0.998, 0.999, 1.0]$. The selected configuration for FedAvg is 0.1 learning rate; for FedProx is
794 0.001 learning rate and 0.001 μ ; for FedDyn is 0.001 learning rate and 0.01α ; and for SCAFFOLD
795 is 0.001 learning rate; and for FedSAGD, FedANAG, FedACG, FedLNAG, FedAvgM are 0.001
796 learning rate and 0.9β ; and for FedCM is 0.001 learning rate and 0.1β ; and for MimeLite is 0.001
797 learning rate and 0.2β ; and for Fedadam is 0.001 learning rate and 0.1 global learning rate for all IID
798 and Dirichlet settings. These configurations are fixed and their performances are obtained for 500
799 communication rounds.

800 **CIFAR-10.** We used similar hyperparameters as in EMNIST-L dataset. The configuration includes:
801 0.1 for learning rate, 5 for epochs. The learning rate decay is selected from the range of
802 $[0.995, 0.998, 0.999, 1.0]$. The α value is selected from the range of $[0.001, 0.01, 0.1]$ for FedDyn.
803 The μ value is selected from the range of $[0.1, 0.01, 0.001, 0.0001]$.

804 **CIFAR-100.** The same hyperparameters are applied to the CIFAR-100 experiments with 200 devices
805 including: 0.1 for learning rate, 5 for epochs. The learning rate decay is selected from the range of
806 $[0.995, 0.998, 0.999, 1.0]$. The α value is selected from the range of $[0.001, 0.01, 0.1]$ for FedDyn.
807 The μ value is selected from the range of $[0.1, 0.01, 0.001, 0.0001]$.

808 **Shakespeare.** As for 100 devices, balanced data, full participation setup, the hyperparameters
809 are searched with all combinations of learning rate in 1, epochs in $[1, 5]$, λ s in
810 $[0.01, 0.001]$ and α s in $[0.001, 0.009, 0.01, 0.015]$. The learning rate decay is selected from
811 the range of $[0.995, 0.998, 0.999, 1.0]$. The learning rate decay is selected from the range of
812 $[0.995, 0.998, 0.999, 1.0]$. The selected configuration for FedSAGD, FedANAG, FedACG, FedLNAG,
813 FedAvgM are 0.9β ; and for FedCM is 0.1β ; and for MimeLite is 0.2β ; The α value is
814 selected from the range of $[0.001, 0.01, 0.1]$ for FedDyn. The μ value is selected from the range of
815 $[0.1, 0.01, 0.001, 0.0001]$.

816 A.4 VALIDATION OF STABILITY AND EMPIRICAL GENERALIZATION ERROR

827 As stated in Section 3.2, since we can establish a connection between the difference in loss functions
828 and the difference in models, we measure stability by computing the maximum discrepancy among
829 client models after two times of FL training. We evaluate the global update stability by measuring
830 the model discrepancy for models including multiclass logistic classification and CNN. We use
831 EMNIST on multi-class logistic classification model with 500 clients and 1% client sampling, and
832 CIFAR10/CIFAR100 on CNN with 200 clients and 2% client sampling. Empirical evaluation on

810 logistic and CNN models in Fig 1 and Fig 2. The model discrepancy here is measured using the L_2
 811 norm. For the empirical generalization error, we measure it using the absolute difference between the
 812 training and test losses, as well as the absolute difference between the training and test accuracies.
 813 We evaluate this metric on CIFAR-10 using a CNN model with 200 clients and a 2% client sampling
 814 rate. The results are shown in Fig. 3.

815 As show in Fig 1, the experimental results have verified local-update stability of our method.
 816 Existing momentum-based algorithms, due to data heterogeneity, may actually impair local-update
 817 stability when local momentum acceleration is used (e.g., FedLNAG); using global momentum (e.g.,
 818 FedAdam) performs slightly better, but it still does not improve compared to FedAvg. Besides, while
 819 FedDyn’s stability is enhanced compared to FedAvg, its local-update stability is inferior to that of
 820 FedSAGD and FedProx due to low participation rates.

821 As show in Fig 2, the experimental results have verified global-update stability of our method. The
 822 FedLNAG algorithm exhibits significantly poorer stability than other methods across all tasks. The
 823 stability of other momentum-based methods is largely comparable to that of FedAvg. In terms of
 824 global update stability, the improvements achieved by FedDyn and FedProx over FedAvg and related
 825 methods are rather limited, and their performance remains far inferior to that of FedSAGD. In contrast,
 826 FedSAGD demonstrates substantially better global stability than all other methods, further validating
 827 the effectiveness of our approach. Therefore, our algorithm can still achieve optimal stability while
 828 accelerating training.

839 Figure 1: Local model discrepancy (local-update stability) vs. index of local updates K .
 840

851 Figure 2: Global model discrepancy (global-update stability) vs. index of communication rounds T .
 852

853 As show in Fig. 3, the results are highly consistent with the stability results, further confirming the
 854 reliability of our theoretical findings.
 855

856 A.5 HYPERPARAMETER SENSITIVITY

858 We evaluate the performance of our algorithm under different settings of β , β_0 and λ on the CIFAR-10
 859 dataset, using 500 communication rounds and 10% client participation among 100 clients.
 860

861 **Momentum coefficient β for global momentum.** In the simple analysis, β can be selected as a
 862 proper value which has no impact on the convergence complexity. Table 8 shows that performance of
 863 FedSAGD remains stable across β values ranging from 0.1 to 0.99. Despite slight fluctuations, the
 864 accuracy stays consistently high, peaking at $\beta = 0.9$.

Figure 3: Empirical generalization error vs. communication rounds T .Table 8: Performance of different β with $\mu = 0.001$ and $\lambda = 0.01$.

β	0.99	0.95	0.9	0.8	0.7	0.6	0.1
Acc.	80.27	81.14	81.34	81.02	80.81	80.63	78.57

Coefficient μ for the weight of the proximal term. As shown in Table 9, the performance of FedSAGD remains stable across μ values ranging from 0.00001 to 0.1. Despite slight fluctuations, the accuracy stays consistently high, peaking at $\mu = 0.001$.

Table 9: Performance of different μ with $\beta = 0.9$ and $\lambda = 0.01$.

μ	0.1	0.01	0.005	0.001	0.0005	0.0001	0.00001
Acc.	77.22	80.09	80.93	81.34	81.14	80.08	78.72

Coefficient λ for the weight of the proximal term. As shown in Table 10, the performance of FedSAGD remains stable across λ values ranging from 0.0001 to 1. Despite slight fluctuations, the accuracy stays consistently high, peaking at $\lambda = 0.01$.

Table 10: Performance of different λ with $\beta = 0.9$ and $\mu = 0.001$.

λ	1	0.1	0.05	0.01	0.005	0.001	0.0001
Acc.	76.07	80.68	80.96	81.34	81.26	81.19	81.06

The performance of FedSAGD remains stable across a wide range of values for the parameters β , μ , and λ . Specifically, for β values ranging from 0.6 to 0.95, FedSAGD maintains consistently high accuracy with slight fluctuations, peaking at $\beta = 0.9$. For μ values ranging from 0.1 to 0.0001, the accuracy remains high and stable, with the highest performance observed at $\mu = 0.001$. Also, for λ values ranging from 0.1 to 0.001, FedSAGD shows stable performance with consistent accuracy, reaching its peak at $\lambda = 0.01$. These results demonstrate that FedSAGD is robust to variations in these hyperparameters, even under the condition that of high heterogeneity and low participation rates. Furthermore, we also conducted a hyperparameter sensitivity analysis under a more extreme heterogeneity setting with $\alpha = 0.1$. The conclusions are consistent with the above.

918
919
920
921
922
923
924
925
926
Table 11: Performance of different β with $\mu = 0.001, \lambda = 0.01$ and $\alpha = 0.1$.

β	0.99	0.95	0.9	0.8	0.7	0.6	0.1
Acc.	80.27	81.14	81.34	81.02	80.81	80.63	78.57

926
927
928
929
930
931
932
933
934
Table 12: Performance of different μ with $\beta = 0.9, \lambda = 0.01$ and $\alpha = 0.1$.

μ	0.1	0.01	0.005	0.001	0.0005	0.0001	0.00001
Acc.	77.22	80.09	80.93	81.34	81.14	80.08	78.72

935
936
937
938
939
940
941
942
943
944
945
946
947
Table 13: Performance of different λ with $\beta = 0.9, \mu = 0.001$ and $\alpha = 0.1$.

λ	1	0.1	0.05	0.01	0.005	0.001	0.0001
Acc.	76.07	80.68	80.96	81.34	81.26	81.19	81.06

948
949
950
951
952
953
954
955
956
957

A.6 DIFFERENT HETEROGENEITY

948
949
950
951
952
953
954
955
956
957
To further examine the behavior of all algorithms under more extreme levels of data heterogeneity, we additionally evaluate the setting with smaller heterogeneity parameters, specifically $\alpha = 0.1$ and $\alpha = 0.2$, while keeping all other experimental configurations identical to those in Table 3. The results in Table 14 show that FedSAGD exhibits the highest robustness under conditions of severe data heterogeneity.

958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 14: Performance under more extreme heterogeneity.

α	FedSAGD	FedACG	FedANAG	SCAFFOLD	FedDyn	FedLNAG	FedAvgM	FedAdam	FedCM
0.1	81.01	76.64	80.56	79.18	76.65	76.52	78.7	74.3	73.39
0.2	82.37	80.97	81.86	80.35	77.51	78.05	80.09	78.31	78.82

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
Table 15: Performance comparison under feature skew

Method	Acc. (% , \uparrow) 250R	Acc. (% , \uparrow) 500R	Rounds (\downarrow) 75%	Rounds (\downarrow) 80%
FedSAGD(ours)	79.82	81.14	80	267
FedACG	79.5	80.62	82	285
FedANAG	79.37	80.54	86	288
FedAdam	76.79	79.01	180	500+
SCAFFOLD	78.58	79.86	175	500+
FedLNAG	74.46	78.31	346	500+
FedAvg	77.29	78.74	192	500+
MimeLite	78.78	80.18	179	372
FedAvgM	78.73	80.07	166	467
FedCM	75.58	79.05	226	500+
FedProx	77.79	79.33	187	500+
Alg12	77.31	79.7	172	487

972
973

A.7 FEATURE SKEW

974
975
976
977
978
979
980

We additionally evaluate our method under feature-skew settings, following the experimental setup in Kim et al. (2024). We conduct the evaluation on the real-world LEAF dataset FEMNIST, which naturally contains feature-skewed client distributions. In this experiment, we set the number of clients to 2000, use user-level partitioning, randomly sample 5 clients per communication round, and adopt a two-layer CNN architecture as in Caldas et al. (2018). The experimental results in Table 15 demonstrate that our method also outperforms the baselines under feature-skew settings, highlighting its robustness to feature-skew heterogeneity.

981
982

A.8 VARIANCE MEASUREMENTS OF TOP ACCURACY WITH DIFFERENT SEEDS

983
984
985

Table 16: The variance measurement of top validation accuracy that can be achieved, with 5 random seeds.

Dataset	FedSAGD	FedANAG	FedACG	FedLNAG	FedCM	FedAdam
EMNIST	82.24 \pm 0.07	82.01 \pm 0.18	82.02 \pm 0.16	81.92 \pm 0.35	80.16 \pm 0.82	81.58 \pm 0.60
CIFAR-10	84.05 \pm 0.13	83.51 \pm 0.17	83.52 \pm 0.16	79.60 \pm 0.47	81.09 \pm 0.81	78.29 \pm 0.34
CIFAR-100	54.53 \pm 0.71	45.32 \pm 0.85	50.59 \pm 0.92	42.31 \pm 1.64	45.02 \pm 1.92	44.51 \pm 1.34
Shakespeare	53.03 \pm 0.11	52.46 \pm 0.14	52.52 \pm 0.13	52.23 \pm 0.11	39.24 \pm 1.89	52.30 \pm 0.18
Dataset	FedAvgM	MimeLite	SCAFFOLD	FedDyn	FedProx	FedAvg
EMNIST	81.92 \pm 0.19	81.91 \pm 0.14	81.55 \pm 0.15	81.02 \pm 0.65	81.83 \pm 0.56	81.01 \pm 0.53
CIFAR-10	81.86 \pm 0.37	81.02 \pm 0.23	81.34 \pm 0.34	80.14 \pm 0.61	78.88 \pm 0.51	78.64 \pm 0.39
CIFAR-100	48.31 \pm 1.67	47.59 \pm 0.80	42.24 \pm 1.18	41.89 \pm 1.19	41.74 \pm 1.12	40.79 \pm 1.34
Shakespeare	52.32 \pm 0.08	51.71 \pm 0.31	52.04 \pm 0.25	51.77 \pm 0.23	51.54 \pm 0.21	51.61 \pm 0.19

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A.9 CONVERGENCE AND TOP VALIDATION ACCURACY
1027

1028 The experimental results demonstrate that our algorithm consistently outperforms the majority of
1029 existing optimization algorithms proposed to address data heterogeneity as shown in Fig 4 and Fig 5.
1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 4: Convergence, top validation accuracy for various FL methods in the different datasets.

Figure 5: Convergence, loss for various FL methods in the different datasets.

A.10 ABLATION STUDIES

Compared with the FedAvg, FedSpeed adds two main modules: (1) global momentum, (2) hybrid proximal term. We test the performance of 2000 communication rounds of the different combination of the modules above on the CIFAR-10 with the settings of 2% participating ratio of total 200 clients. The Table 17 shows their performance.

Table 17: Ablation studies on different modules.

Momentum	Hybrid proximal term	Accuracy
✓	✗	82.84
✗	✓	80.54
✓	✓	84.05

1080
1081

A.11 CONCEPTUAL ILLUSTRATION OF STABILITY

1082
1083
1084
1085
1086

Fig. 6 provides a conceptual illustration of stability. In Fig. 6a, each curve represents the local update trajectory of a client. Stronger local-update stability implies that variations in the set of clients selected for local training have a smaller impact on the aggregated model. In Fig. 6b, each curve denotes the global update trajectory of an FL task. Stronger global-update stability indicates that changes in the participating client set exert less influence on the final global model.

1087
1088
1089
1090
1091
1092
1093
1094
1095

For local-update stability, under the same learning rate, FedSAGD achieves a smaller maximum local model discrepancy than FedAvg and remains comparable to FedProx. FedSAGD (blue solid line) consistently updates with a larger step size than FedProx (green solid line), thereby moving closer to the global optimum of the participating clients. This enables superior performance while maintaining the same maximum model discrepancy. As illustrated, the updates of FedSAGD are closest to X^* (black solid line), followed by FedProx, while FedAvg remains the farthest. When the learning rate is set to $\eta_l = \mathcal{O}\left(\frac{1}{LK\sqrt{T}}\right)$, FedProx, FedAvg, and FedSAGD achieve the same maximum model discrepancy; however, due to momentum acceleration, FedSAGD still outperforms FedProx.

1096
1097
1098
1099
1100

For global-update stability, regardless of whether the learning rate is fixed or set as $\eta_l = \mathcal{O}\left(\frac{1}{LK\sqrt{T}}\right)$, FedSAGD consistently yields a smaller global model discrepancy compared to both FedAvg and FedProx. FedSAGD (blue dashed line) updates with a larger step size than FedProx (green dashed line), and thus, while maintaining a smaller maximum model discrepancy, it approaches the global optimum of all clients more closely.

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(a) Conceptual illustration of the local-update stability.

(b) Conceptual illustration of the global-update stability.

Figure 6: Conceptual illustration of stability. X^* is the the global optimum of the participating clients; X' is the global optimum of all clients.

1134 **B PROOF OF THEOREM 1**
11351136 In this section, we provide the proof of Theorem 3.6.
11371138 Given that \mathcal{S} and \mathcal{S}' only differ by one client. According to the definition of R_e and R_e , we have
1139

$$\begin{aligned}
& \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} \left[\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}), \xi_i)] \right] \\
&= \mathbb{E}_{\mathcal{S}'} \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} \left[\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}), \xi_i)] \right] \\
&= \mathbb{E}_{\mathcal{S}'} \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} \left[\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} (\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}), \xi_i)] - \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}'), \xi_i)]) \right] \\
&\quad + \mathbb{E}_{\mathcal{S}'} \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} \left[\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}'), \xi_i)] \right] \\
&= \mathbb{E}_{\mathcal{S}'} \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} \left[\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} (\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}), \xi_i)] - \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}'), \xi_i)]) \right] \\
&\quad + \mathbb{E}_{\mathcal{S}'} \mathbb{E}_{\mathcal{A}} [\mathbb{E}_{i \sim \mathcal{C}} [\mathbb{E}_{\xi_i \sim \mathcal{P}_i} [F_i(A(\mathcal{S}'), \xi_i)]]].
\end{aligned}$$

1155 Since \mathcal{A} satisfies ϵ -global update stability, rearranging the above equality we can get
1156

1157
$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\mathcal{A}} [|R_u(\mathcal{A}(\mathcal{S})) - R_e(\mathcal{A}(\mathcal{S}))|] \leq \epsilon.$$

1158 **C STABILITY UPPER BOUND FOR NON-CONVEX LOSSES**
11591160 **Lemma C.1.** Suppose Assumption 3.1-3.4 hold. Then
1161

1162
$$\mathbb{E} \|\nabla F_i(x_{t,k}^i; \xi_i)\| \leq (\sigma_l^2 + 2\sigma_g^2 + 2Z^2)^{\frac{1}{2}}, \forall i \in [M], \forall 0 \leq k \leq K-1.$$

1163 *Proof.*

1164
$$\begin{aligned}
\mathbb{E} \|\nabla F_i(x_{t,k}^i)\|^2 &= \mathbb{E} \|\nabla F_i(x_{t,k}^i) - \nabla f(x_{t,k}^i) + \nabla f(x_{t,k}^i)\|^2 \\
&\leq 2\mathbb{E} \|\nabla F_i(x_{t,k}^i) - \nabla f(x_{t,k}^i)\|^2 + 2\mathbb{E} \|\nabla f(x_{t,k}^i)\|^2.
\end{aligned}$$

1165 Since
1166

1167
$$\begin{aligned}
&\mathbb{E} \|\nabla F_i(x_{t,k}^i, \xi_i) - \nabla F_i(x_{t,k}^i)\|^2 \\
&= \mathbb{E} \|\nabla F_i(x_{t,k}^i, \xi_i)\|^2 + \mathbb{E} \|\nabla F_i(x_{t,k}^i)\|^2 - 2\langle \mathbb{E} \nabla F_i(x_{t,k}^i, \xi_i), \nabla F_i(x_{t,k}^i) \rangle \\
&= \mathbb{E} \|\nabla F_i(x_{t,k}^i, \xi_i)\|^2 - \mathbb{E} \|\nabla F_i(x_{t,k}^i)\|^2,
\end{aligned}$$

1168 we have
1169

1170
$$\begin{aligned}
&\mathbb{E} \|\nabla F_i(x_{t,k}^i, \xi_i)\|^2 \\
&\leq \mathbb{E} \|\nabla F_i(x_{t,k}^i, \xi_i) - \nabla F_i(x_{t,k}^i)\|^2 + 2\mathbb{E} \|\nabla F_i(x_{t,k}^i) - \nabla f(x_{t,k}^i)\|^2 + 2\mathbb{E} \|\nabla f(x_{t,k}^i)\|^2 \\
&\leq \sigma_l^2 + 2\sigma_g^2 + 2Z^2.
\end{aligned}$$

1171 The last inequality follows from Assumption 3.4, by the Lipschitz continuity, we can obtain that
1172 $\nabla f \leq Z$. \square
11731174 **C.1 ANALYSIS FOR FEDAVG UNDER NON-CONVEX LOSSES**
11751176 The local update at iteration k is described as follows:
1177

1178
$$x_{t,k+1}^i = x_{t,k}^i - \eta_l \nabla F_i(x_{t,k}^i, \xi_i).$$

1188
 1189 **Theorem C.2.** (global update stability of FedAvg). Suppose Assumption 3.1-3.4 hold and consider
 1190 FedAvg. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
 1191 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

$$1192 \mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1193
 1194 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update formula, we have

$$\begin{aligned} 1195 \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| &= \mathbb{E}\|x_{t,k-1}^i - \eta_l \nabla F_i(x_{t,k-1}^i, \xi_i) - (x_{t,k-1}^j - \eta_l \nabla F_j(x_{t,k-1}^j, \xi_j))\| \\ 1196 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l \mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i)\| + \eta_l \mathbb{E}\|\nabla F_j(x_{t,k-1}^j, \xi_j)\| \\ 1197 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 2(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} \eta_l, \\ 1198 &\quad \vdots \\ 1199 &\quad \vdots \\ 1200 &\quad \vdots \\ 1201 \end{aligned}$$

1202 where the last inequality we use Lemma C.1. Unrolling it gives:

$$1203 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + 2(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} \eta_l K.$$

1204 Note: In the local stability analysis of Zhang et al. (2025), it holds that $\mathbb{E}\|x_t - x'_t\| = 0$. Therefore,
 1205 the local-update stability of the FedAvg algorithm is given by $\mathcal{O}(2(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} \eta_l K)$.

1206 Similarly, the local-update stability of subsequent algorithms can be derived from $\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\|$.
 1207 Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_t^i)$, we have

$$\begin{aligned} 1208 \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ 1209 &\leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \\ 1210 &\quad \vdots \\ 1211 &\quad \vdots \\ 1212 &\quad \vdots \end{aligned}$$

1213 Note that $x_0 = x'_0$, then unrolling it gives

$$1214 \mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1215 \square

1216 C.2 ANALYSIS FOR FEDPROX UNDER NON-CONVEX LOSSES

1217 The local update at iteration k is described as follows:

$$1218 x_{t,k+1}^i = x_{t,k}^i - \eta_l (\nabla F_i(x_{t,k}^i, \xi_i) + \lambda(x_{t,k}^i - x_t)).$$

1219 **Theorem C.3.** (global update stability of FedProx). Suppose Assumption 3.1-3.4 hold and consider
 1220 FedProx. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
 1221 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

$$1222 \mathbb{E}\|x_T - x'_T\| \leq \frac{2}{\lambda} (\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} [1 - (1 - \lambda\eta_l)^K] T.$$

1223 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have

$$\begin{aligned} 1224 \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| &= \mathbb{E}\|(1 - \eta_l \lambda)(x_{t,k-1}^i - x_{t,k-1}^j) - \eta_l \nabla F_i(x_{t,k-1}^i, \xi_i) + \eta_l (\nabla F_j(x_{t,k-1}^j, \xi_j) + \lambda\eta_l(x_t - x'_t))\| \\ 1225 &\leq \mathbb{E}\|(1 - \eta_l \lambda)(x_{t,k-1}^i - x_{t,k-1}^j)\| + \eta_l \mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| + \lambda\eta_l \mathbb{E}\|x_t - x'_t\| \\ 1226 &\leq (1 - \lambda\eta_l) \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 2(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} \eta_l + \lambda\eta_l \mathbb{E}\|x_t - x'_t\|, \\ 1227 &\quad \vdots \\ 1228 &\quad \vdots \\ 1229 &\quad \vdots \\ 1230 &\quad \vdots \\ 1231 &\quad \vdots \\ 1232 &\quad \vdots \\ 1233 &\quad \vdots \end{aligned}$$

1242 where the last inequality follows Lemma C.1. Unrolling it gives:
 1243

$$\begin{aligned}
 1244 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| &\leq (1 - \lambda\eta_l)^K \mathbb{E}\|x_t - x'_t\| + \sum_{k=0}^{K-1} (1 - \lambda\eta_l)^k [2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}\eta_l \\
 1245 &\quad + \lambda\eta_l \mathbb{E}\|x_t - x'_t\|] \\
 1246 &= (1 - \lambda\eta_l)^K \mathbb{E}\|x_t - x'_t\| + \frac{1 - (1 - \lambda\eta_l)^K}{\lambda\eta_l} [2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}\eta_l \\
 1247 &\quad + \lambda\eta_l \mathbb{E}\|x_t - x'_t\|] \\
 1248 &= \mathbb{E}\|x_t - x'_t\| + \frac{2}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K].
 \end{aligned}$$

1249 Since $x_{t+1} = \frac{1}{s} \sum_{i \in \mathcal{S}} x_{t,K}^i$, we obtain
 1250

$$\begin{aligned}
 1251 \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\
 1252 &\leq \mathbb{E}\|x_t - x'_t\| + \frac{2}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K].
 \end{aligned}$$

1253 Note that $x_0 = x'_0$, then unrolling it gives
 1254

$$\mathbb{E}\|x_T - x'_T\| \leq \frac{2}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K]T.$$

1255 \square
 1256

1257 C.3 ANALYSIS FOR SCAFFOLD UNDER NON-CONVEX LOSSES

1258 The local update at iteration k is described as follows:
 1259

$$x_{t,k+1}^i = x_{t,k}^i - \eta_l(\nabla F_i(x_{t,k}^i, \xi_i) - c_i + c),$$

1260 where $c_i = \frac{1}{K} \sum_{k=0}^{K-1} \nabla F(x_{t-\tau,k}^i, \xi_i)$ is the control variate of the client i whose last participation in
 1261 training was in the $t - \tau$ round. Note that, unlike other algorithms, the local update here involves
 1262 gradient information from $t - \tau$ rounds.
 1263

1264 **Theorem C.4.** (global update stability of SCAFFOLD). Suppose Assumption 3.1-3.4 hold and
 1265 consider SCAFFOLD. Let x_T and x'_T be two model results obtained by neighboring active client-sets
 1266 \mathcal{S} and \mathcal{S}' , respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
 1267

$$\mathbb{E}\|x_T - x'_T\| \leq 6\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}T.$$

1268 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
 1269

$$\begin{aligned}
 1270 \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| \\
 1271 &= \mathbb{E}\|x_{t,k-1}^i - \eta_l(\nabla F_i(x_{t,k-1}^i, \xi_i) - c_i + c) - x_{t,k-1}^j + \eta_l(\nabla F_j(x_{t,k-1}^j, \xi_j) - c_j + c')\| \\
 1272 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l \mathbb{E}\|c_i - c_j\| + \eta_l E\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| \\
 1273 &\quad + \eta_l \mathbb{E}\|c - c'\| \\
 1274 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 6\eta_l(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}},
 \end{aligned}$$

1275 where the last inequality follows Lemma C.1. Unrolling it gives:
 1276

$$\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + 6(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}\frac{1}{2}\eta_l K.$$

1277 Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_t^i)$, we have
 1278

$$\begin{aligned}
 1279 \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\
 1280 &\leq \mathbb{E}\|x_t - x'_t\| + 6\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}.
 \end{aligned}$$

1296 Note that $x_0 = x'_0$, then unrolling it gives
 1297

$$\mathbb{E}\|x_T - x'_T\| \leq 6\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}T.$$

□

1300
 1301 **C.4 ANALYSIS FOR FEDDYN UNDER CONVEX LOSSES**
 1302

1303 The local update at iteration k is described as follows:
 1304

$$x_{t,k+1}^i = x_{t,k}^i - \eta_l(\nabla F_i(x_{t,k}^i, \xi_i) - \nabla F_i(x_{t-\tau,K}^i, \xi_i) + \lambda(x_{t,k}^i - x_t)),$$

1305 where the $t - \tau$ is because clients do not participate in training every round and recently participated
 1306 in round $t - \tau$.
 1307

Theorem C.5. (global update stability of FedDyn). Suppose Assumption 3.1-3.4 hold and consider
 1308 FedDyn. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
 1309 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
 1310

$$\mathbb{E}\|x_T - x'_T\| \leq \frac{4}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta)^K]T.$$

1311
 1312 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
 1313

$$\begin{aligned} & \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| \\ &= \mathbb{E}\|x_{t,k-1}^i - \eta_l(\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_i(x_{t-\tau,K}^i, \xi_i) + \lambda(x_{t,k-1}^i - x_t)) - x_{t,k-1}^j\| \\ & \quad + \eta_l(\nabla F_j(x_{t,k-1}^j, \xi_j) - \nabla F_j(x_{t-\tau,K}^j, \xi_j) + \lambda(x_{t,k-1}^j - x_t'))\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j - \lambda\eta_l(x_{t,k-1}^i - x_{t,k-1}^j)\| + \eta_l\mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| \\ & \quad + \eta_l\mathbb{E}\|\nabla F_i(x_{t-\tau,K}^i, \xi_i) - \nabla F_j(x_{t-\tau,K}^j, \xi_j)\| + \lambda\eta_l\mathbb{E}\|x_t - x_t'\| \\ &\leq (1 - \lambda\eta_l)\mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 4\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} + \lambda\eta_l\mathbb{E}\|x_t - x_t'\|, \end{aligned}$$

1314
 1315 where the last inequality follows Lemma C.1. Unrolling it gives:
 1316

$$\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x_t'\| + \frac{4}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K].$$

1317 Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i)$, we obtain
 1318

$$\begin{aligned} \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ &\leq \mathbb{E}\|x_t - x_t'\| + \frac{4}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K]. \end{aligned}$$

1319 Note that $x_0 = x'_0$, then unrolling it gives
 1320

$$\mathbb{E}\|x_T - x'_T\| \leq \frac{4}{\lambda}(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}[1 - (1 - \lambda\eta_l)^K]T.$$

□

1321
 1322 **C.5 ANALYSIS FOR FEDLNAG UNDER NON-CONVEX LOSS**
 1323

1324 Consider the original update rule of NAG:
 1325

$$\begin{aligned} y_{t,k}^i &= x_{t,k}^i - \beta m_{t,k}^i \\ m_{t,k+1}^i &= \beta m_{t,k}^i + (1 - \beta)\nabla F_i(y_{t,k}^i, \xi_i) \\ x_{t,k+1}^i &= x_{t,k}^i - \eta_l m_{t,k+1}^i. \end{aligned}$$

1350
Theorem C.6. (global update stability of FedLNAG). Suppose Assumption 3.1-3.4 hold and consider
1351 FedLNAG. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
1352 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
1353

$$1354 \mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1355 *Proof.* For the momentum term $m_{t,k}$, by recursion we have

$$1356 m_{t,k} = (1 - \beta) \sum_{\tau=0}^{k-1} \beta^\tau \nabla F(y_{t,k-\tau-1}, \xi).$$

1360 Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
1361

$$\begin{aligned} 1362 \mathbb{E}\|x_{t,k+1}^i - x_{t,k+1}^j\| \\ 1363 &= \mathbb{E}\|x_{t,k}^i - \eta_l m_{t,k+1}^i - (x_{t,k}^j - \eta_l m_{t,k+1}^j)\| \\ 1364 &\leq \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| + \eta_l \|m_{t,k+1}^i\| + \eta_l \|m_{t,k+1}^j\| \\ 1365 &\leq \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| + \eta_l(1 - \beta) \sum_{\tau=0}^k \beta^\tau \|\nabla F_i(y_{t,k-\tau}^i, \xi_i)\| + \eta_l(1 - \beta) \sum_{\tau=0}^k \beta^\tau \|\nabla F_j(y_{t,k-\tau}^j, \xi_j)\| \\ 1366 &\leq \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| + 2\eta_l(1 - \beta^{k+1})(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1367 where the last inequality follows Lemma C.1. Unrolling it gives
1368

$$1369 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} K.$$

1370 Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i)$, we obtain
1371

$$\begin{aligned} 1372 \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ 1373 &\leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} K. \end{aligned}$$

1374 Note that $x_0 = x'_0$, then unrolling it gives
1375

$$1376 \mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1377 \square

1378 C.6 ANALYSIS FOR FEDADAM UNDER NON-CONVEX LOSSES

1379 The local update at iteration k is described as follows:
1380

$$1381 x_{t,k+1}^i = x_{t,k}^i - \eta_l \nabla F_i(x_{t,k}^i, \xi_i).$$

1382 **Theorem C.7.** (global update stability of FedAdam). Suppose Assumption 3.1-3.4 hold and consider
1383 FedAdam. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
1384 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
1385

$$1386 \mathbb{E}\|x_T - x'_T\| \leq \frac{2}{\tau} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1387 *Proof.* Firstly,

$$\begin{aligned} 1388 \Delta_t^i &= x_{t,K}^i - x_t \\ 1389 &= x_{t,K-1}^i - \eta_l \nabla F_i(x_{t,K-1}^i, \xi_i) - x_t \\ 1390 &= \sum_{k=0}^{K-1} -\eta_l \nabla F_i(x_{t,k}^i, \xi_i), \end{aligned}$$

1404 By using Lemma C.1 we get
 1405

$$\mathbb{E}\|\Delta_t^i\| \leq \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}.$$

1406 Note that $\Delta_t = \beta_1 \Delta_{t-1} + (1 - \beta_1) \left(\frac{1}{s} \sum_{i \in \mathcal{S}} \Delta_t^i \right)$, so we can deduce that
 1407

$$\mathbb{E}\|\Delta_t\| \leq \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}.$$

1408 since $x_{t+1} = x_t + \frac{\Delta_t}{\sqrt{v_t + \tau}}$, we have
 1409

$$\begin{aligned} \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \mathbb{E}\|x_t + \frac{\Delta_t}{\sqrt{v_t + \tau}} - (x'_t + \frac{\Delta'_t}{\sqrt{v'_t + \tau}})\| \\ &\leq \mathbb{E}\|x_t - x'_t\| + \mathbb{E}\|\frac{\Delta_t}{\sqrt{v_t + \tau}}\| + \mathbb{E}\|\frac{\Delta'_t}{\sqrt{v'_t + \tau}}\| \\ &\leq \mathbb{E}\|x_t - x'_t\| + \mathbb{E}\|\frac{\Delta_t}{\tau}\| + \mathbb{E}\|\frac{\Delta'_t}{\tau}\| \\ &\leq \mathbb{E}\|x_t - x'_t\| + \frac{2}{\tau} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1410 Note that $x_0 = x'_0$, then unrolling it gives
 1411

$$\mathbb{E}\|x_T - x'_T\| \leq \frac{2}{\tau} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} T.$$

□

1425 C.7 ANALYSIS FOR FEDCM UNDER NON-CONVEX LOSSES

1426 The local update at iteration k is described as follows:
 1427

$$x_{t,k+1}^i = x_{t,k}^i - \eta_l (\alpha \nabla F_i(x_{t,k}^i, \xi_i) + (1 - \alpha) m_t),$$

1428 where $\alpha \in [0, 1]$ is momentum parameter.
 1429

1430 **Theorem C.8.** (global update stability of FedCM). Suppose Assumption 3.1-3.4 hold and consider
 1431 FedCM. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
 1432 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
 1433

$$\mathbb{E}\|x_T - x'_T\| \leq 2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} T.$$

1434 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
 1435

$$\begin{aligned} \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| &= \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j - \eta_l \alpha (\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)) - \eta_l (1 - \alpha) (m_t - m'_t)\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l \alpha \mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| + \eta_l (1 - \alpha) \mathbb{E}\|m_t - m'_t\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 2\eta_l (\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}, \end{aligned}$$

1444 where the last inequality follows Lemma C.1. Unrolling it gives:
 1445

$$\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}.$$

1446 Since $x_{t+1} = x_t + \frac{1}{\eta_l K s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_t)$, we obtain
 1447

$$\begin{aligned} \mathbb{E}\|x_{t+1} - x'_{t+1}\| &\leq \mathbb{E}\|(1 - \frac{1}{\eta_l K})(x_t - x'_t)\| + \frac{1}{\eta_l K s} \mathbb{E}\|\sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j\| \\ &\leq (1 - \frac{1}{\eta_l K}) \mathbb{E}\|x_t - x'_t\| + \frac{1}{\eta_l K} \mathbb{E}\|x_t - x'_t\| + 2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} \\ &= \mathbb{E}\|x_t - x'_t\| + 2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1448 Note that $x_0 = x'_0$, unrolling it gives
 1449

$$\mathbb{E}\|x_T - x'_T\| \leq 2(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} T.$$

□

1458 C.8 ANALYSIS FOR MIMEELITE UNDER NON-CONVEX LOSSES
14591460 The local update at iteration k is described as follows:

1461
$$x_{t,k+1}^i = x_{t,k}^i - \eta_l((1 - \beta)\nabla F_i(x_{t,k}^i, \xi_i) + \beta m),$$

1462

1463 where $\beta \in [0, 1]$ is momentum parameter.1464 **Theorem C.9.** (global update stability of MimeLite). Suppose Assumption 3.1-3.4 hold and consider
1465 MimeLite. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
1466 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

1467
$$\mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1468

1469 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
1470

1471
$$\begin{aligned} & \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| \\ &= \mathbb{E}\|x_{t,k-1}^i - \eta_l(1 - \beta)\nabla F_i(x_{t,k-1}^i, \xi_i) - (x_{t,k-1}^j - \eta_l(1 - \beta)\nabla F_j(x_{t,k-1}^j, \xi_j))\| \\ & \quad + \beta\eta_l\mathbb{E}\|m - m'\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l(1 - \beta)\mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| + \eta_l\beta\mathbb{E}\|m - m'\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 2\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}, \end{aligned}$$

1472
1473
1474
1475
1476
1477
1478

1479 where the last inequality follows Lemma C.1. Unrolling it gives:
1480

1481
$$\mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}.$$

1482

1483 Since $x_{t+1} = \frac{1}{s} \sum_{i \in \mathcal{S}} x_{t,K}^i$, we have

1484
$$\begin{aligned} \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ &\leq \mathbb{E}\|x_t - x'_t\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1485
1486
1487

1488 Note that $x_0 = x'_0$, unrolling it gives
1489

1490
$$\mathbb{E}\|x_T - x'_T\| \leq 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1491
1492

□

1493 C.9 ANALYSIS FOR FEDACG UNDER NON-CONVEX LOSSES
14941495 The local update at iteration k is described as follows:

1496
$$x_{t,k+1}^i = x_{t,k}^i - \eta_l \nabla F_i(x_{t,k}^i, \xi_i).$$

1497

1498 **Theorem C.10.** (global update stability of FedACG). Suppose Assumption 3.1-3.4 hold and consider
1499 FedACG. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
1500 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

1501
$$\mathbb{E}\|x_T - x'_T\| \leq \frac{4 - 2\lambda}{1 - \lambda} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T.$$

1502
1503

1504 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
1505

1506
$$\begin{aligned} & \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| \\ &= \mathbb{E}\|x_{t,k-1}^i - \eta_l \nabla F_i(x_{t,k-1}^i, \xi_i) - (x_{t,k-1}^j - \eta_l \nabla F_j(x_{t,k-1}^j, \xi_j))\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l \mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| \\ &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + 2\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}, \end{aligned}$$

1507
1508
1509
1510
1511

1512 where the last inequality follows Lemma C.1. Unrolling it gives:
1513

$$1514 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_{t,0}^i - x_{t,0}^j\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}.$$

1515
1516 Since $x_{t,0}^i = x_{t-1} + \lambda m_{t-1}$ and $m_t = \lambda m_{t-1} + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i)$, then
1517

$$1518 \begin{aligned} x_t &= x_{t-1} + m_t \\ 1519 &= x_{t-1} + \lambda m_{t-1} + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i) \\ 1520 &= \frac{1}{s} \sum_{i \in \mathcal{S}} x_{t,K}^i, \end{aligned}$$

1521 so we have
1522

$$1523 \begin{aligned} \mathbb{E}\|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t+1,K}^i - \sum_{j \in \mathcal{S}'} x_{t+1,K}^j \right\| \\ 1524 &\leq \mathbb{E}\|x_t + \lambda m_t - (x'_t + \lambda m'_t)\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} \\ 1525 &\leq \mathbb{E}\|x_t - x'_t\| + \lambda \mathbb{E}\|m_t - m'_t\| + 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} \\ 1526 &\leq \mathbb{E}\|x_t - x'_t\| + \left(\frac{1 - \lambda^t}{1 - \lambda} + 1 \right) 2\eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} \\ 1527 &\leq \mathbb{E}\|x_t - x'_t\| + \frac{4 - 2\lambda}{1 - \lambda} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1528 Note that $x_0 = x'_0$, then unrolling it gives
1529

$$1530 \mathbb{E}\|x_T - x'_T\| \leq \frac{4 - 2\lambda}{1 - \lambda} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} T.$$

1531 \square
1532

1533 C.10 ANALYSIS FOR FEDANAG UNDER NON-CONVEX LOSSES

1534 The local update at iteration k is described as follows:
1535

$$1536 x_{t,k+1}^i = x_{t,k}^i - \eta_l((1 + \beta)\nabla F_i(x_{t,k}^i, \xi_i) + \beta^2 m_t).$$

1537 **Theorem C.11.** (global update stability of FedANAG). Suppose Assumption 3.1-3.4 hold and consider
1538 FedANAG. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
1539 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then
1540

$$1541 \mathbb{E}\|x_T - x'_T\| \leq \frac{2}{1 - \beta} \eta_l K(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} T.$$

1542 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update rule, we have
1543

$$1544 \begin{aligned} \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| &= \mathbb{E}\|x_{t,k-1}^i - \eta_l(1 + \beta)\nabla F_i(x_{t,k-1}^i, \xi_i) - (x_{t,k-1}^j - \eta_l(1 + \beta)\nabla F_j(x_{t,k-1}^j, \xi_j)) \\ 1545 &\quad - \eta_l\beta^2(m_t - m'_t)\| \\ 1546 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l(1 + \beta)\mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| \\ 1547 &\quad + \eta_l\beta^2\mathbb{E}\|m_t - m'_t\| \\ 1548 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \left(1 + \beta + \frac{\beta^2(1 - \beta^t)}{1 - \beta}\right) 2\eta_l(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}} \\ 1549 &\leq \mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \frac{2}{1 - \beta} \eta_l(\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z}^2)^{\frac{1}{2}}. \end{aligned}$$

1566 where the second inequality follows Lemma C.1. Unrolling it gives:
 1567

$$1568 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq \mathbb{E}\|x_t - x'_t\| + \frac{2}{1-\beta}\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \\ 1569$$

1570 Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i)$, we have
 1571

$$1572 \mathbb{E}\|x_{t+1} - x'_{t+1}\| = \frac{1}{s} \mathbb{E}\left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ 1573 \\ 1574 \leq \mathbb{E}\|x_t - x'_t\| + \frac{2}{1-\beta}\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \\ 1575 \\ 1576$$

1577 Note that $x_0 = x'_0$, then unrolling it gives
 1578

$$1579 \mathbb{E}\|x_T - x'_T\| \leq \frac{2}{1-\beta}\eta_l K(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} T. \\ 1580$$

□

1583 C.11 ANALYSIS FOR FEDSAGD UNDER NON-CONVEX LOSSES

1584 The local update at iteration k is described as follows:
 1585

$$1586 x_{t,k+1}^i = x_{t,k}^i - \eta_l(\nabla F_i(x_{t,k}^i, \xi_i) + \beta v_t + \lambda(x_{t,k}^i - x_{t,0}^i) - \mu x_{t,k}^i), \\ 1587$$

1588 where $\beta \in (0, 1)$ are the momentum coefficients.
 1589

1590 **Theorem C.12.** (global update stability of FedSAGD). Suppose Assumption 3.1-3.4 hold and consider
 1591 FedSAGD. Let x_T and x'_T be two model results obtained by neighboring active client-sets \mathcal{S} and \mathcal{S}' ,
 1592 respectively. Under the assumption that F_i is a non-convex and L -smooth function, then

$$1593 \mathbb{E}\|x_T - x'_T\| \leq \frac{1 - (1 - \Gamma)^T}{\Gamma} \zeta (2 + 2\beta)(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}, \\ 1594$$

1595 where $\Gamma = 1 - \left[\frac{\lambda}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} (1 - \eta_l(\lambda + \mu))^K \right] \in (0, 1)$ and $\zeta = \frac{1 - (1 - \eta_l(\lambda + \mu))^K}{\lambda + \mu}$.
 1596

1597 *Proof.* Consider two clients $i \in \mathcal{S}$ and $j \in \mathcal{S}'$. According to the local update formula, we have
 1598

$$1600 \mathbb{E}\|x_{t,k}^i - x_{t,k}^j\| \\ 1601 = \mathbb{E}\|x_{t,k-1}^i - \eta_l \nabla F_i(x_{t,k-1}^i, \xi_i) - \eta_l(\lambda + \mu)x_{t,k-1}^i - \beta \eta_l v_t - (x_{t,k}^j - \eta_l \nabla F_j(x_{t,k-1}^j, \xi_j) \\ 1602 - \eta_l(\lambda + \mu)x_{t,k-1}^j - \beta \eta_l v_t') + \eta_l \lambda (x_t - x'_t)\| \\ 1603 \leq \mathbb{E}\|(1 - \eta_l(\lambda + \mu))(x_{t,k-1}^i - x_{t,k-1}^j)\| + \eta_l \mathbb{E}\|\nabla F_i(x_{t,k-1}^i, \xi_i) - \nabla F_j(x_{t,k-1}^j, \xi_j)\| \\ 1604 + \beta \eta_l \mathbb{E}\|v_t - v_t'\| + \eta_l \lambda \mathbb{E}\|x_t - x'_t\| \\ 1605 \leq (1 - \eta_l(\lambda + \mu))\mathbb{E}\|x_{t,k-1}^i - x_{t,k-1}^j\| + \eta_l \lambda \mathbb{E}\|x_t - x'_t\| + (2 + 2\beta)\eta_l(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}, \\ 1606 \\ 1607$$

1608 where the last inequality we use Lemma C.1. Unrolling it gives:
 1609

$$1610 \mathbb{E}\|x_{t,K}^i - x_{t,K}^j\| \leq (1 - \eta_l(\lambda + \mu))^K \mathbb{E}\|x_t - x'_t\| + \frac{\lambda - \lambda(1 - \eta_l(\lambda + \mu))^K}{\lambda + \mu} \mathbb{E}\|x_t - x'_t\| \\ 1611 \\ 1612 + \frac{1 - (1 - \eta_l(\lambda + \mu))^K}{\lambda + \mu} (2 + 2\beta)(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}} \\ 1613 \\ 1614 = \left[\frac{\lambda}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} (1 - \eta_l(\lambda + \mu))^K \right] \mathbb{E}\|x_t - x'_t\| \\ 1615 \\ 1616 + \frac{1 - (1 - \eta_l(\lambda + \mu))^K}{\lambda + \mu} (2 + 2\beta)(\sigma_l^2 + 2\sigma_g^2 + 2\mathbf{Z}^2)^{\frac{1}{2}}. \\ 1617 \\ 1618 \\ 1619$$

1620 We define $\zeta = \frac{1-(1-\eta_l(\lambda+\mu))^K}{\lambda+\mu}$. Since $x_{t+1} = x_t + \frac{1}{s} \sum_{i \in \mathcal{S}} (x_{t,K}^i - x_{t,0}^i)$, we have
 1621

$$\begin{aligned} 1622 \mathbb{E} \|x_{t+1} - x'_{t+1}\| &= \frac{1}{s} \mathbb{E} \left\| \sum_{i \in \mathcal{S}} x_{t,K}^i - \sum_{j \in \mathcal{S}'} x_{t,K}^j \right\| \\ 1623 &\leq (1 - \Gamma) \mathbb{E} \|x_t - x'_t\| + \frac{2 + 2\beta}{\lambda + \mu} (\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z^2})^{\frac{1}{2}}, \\ 1624 \end{aligned}$$

1625 where $\Gamma = 1 - \left[\frac{\lambda}{\lambda+\mu} + \frac{\mu}{\lambda+\mu} (1 - \eta_l(\lambda + \mu))^K \right] \in (0, 1)$. Note that $x_0 = x'_0$, then unrolling it gives
 1626

$$\mathbb{E} \|x_T - x'_T\| \leq \frac{1 - (1 - \Gamma)^T}{\Gamma} \frac{2 + 2\beta}{\lambda + \mu} (\sigma_l^2 + 2\sigma_g^2 + \mathbf{2Z^2})^{\frac{1}{2}}.$$

1627
 1628
 1629
 1630
 1631
 1632 \square
 1633

1634 D CONVERGENCE OF PROPOSED ALGORITHM

1635 D.1 PRELIMINARY LEMMAS

1636 We will use the following foundational lemma for our proof.
 1637

Lemma D.1. For $v_1, v_2 \in \mathbb{R}^d$, we have

$$1640 \|v_1 + v_2\|^2 \leq (1 + a) \|v_1\|^2 + (1 + \frac{1}{a}) \|v_2\|^2.$$

1641 **Lemma D.2.** For L -smooth function f , and x, y in its domain, the following is true:
 1642

$$1644 f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|x - y\|^2.$$

1645 **Lemma D.3.** For independent, mean 0 random variables X_1, \dots, X_n , we have
 1646

$$1647 \mathbb{E} [\|X_1 + \dots + X_n\|^2] = \mathbb{E} [\|X_1\|^2 + \dots + \|X_n\|^2]. \quad (8)$$

1648 **Lemma D.4.** Given vector $X_1, \dots, X_m \in \mathbb{R}^d$, if we sample $\mathcal{S} \subset \{1, \dots, m\}$ uniformly randomly
 1649 such that $|\mathcal{S}| = s$, then it holds that
 1650

$$1651 \mathbb{E} \left\| \frac{1}{s} \sum_{i \in \mathcal{S}} X_i \right\|^2 = \frac{m-s}{ms(m-1)} \sum_{i \in [M]} \|X_i\|^2 + \frac{s-1}{ms(m-1)} \left\| \sum_{i \in [M]} X_i \right\|^2$$

1652 *Proof.* Let $\mathbb{I}\{i \in \mathcal{S}\}$ be the indicator for the event $i \in \mathcal{S}$, we prove this lemma by calculating as
 1653 follows:
 1654

$$\begin{aligned} 1655 \mathbb{E} \left\| \frac{1}{s} \sum_{i \in \mathcal{S}} X_i \right\|^2 &= \mathbb{E} \left\| \frac{1}{s} \sum_{i \in [M]} X_i \mathbb{I}\{i \in \mathcal{S}\} \right\|^2 \\ 1656 &= \frac{1}{s^2} \mathbb{E} \left(\sum_i \|X_i\|^2 \mathbb{I}\{i \in \mathcal{S}\} + 2 \sum_{i < j} \langle X_i, X_j \rangle \mathbb{I}\{i, j \in \mathcal{S}\} \right) \\ 1657 &= \frac{1}{sm} \sum_{i \in [M]} \|X_i\|^2 + \frac{1}{s^2} \frac{s(s-1)}{m(m-1)} 2 \sum_{i < j} \langle X_i, X_j \rangle \\ 1658 &= \frac{1}{sm} \sum_{i \in [M]} \|X_i\|^2 + \frac{1}{s^2} \frac{s(s-1)}{m(m-1)} \left(\left\| \sum_{i \in [M]} X_i \right\|^2 - \sum_{i \in [M]} \|X_i\|^2 \right) \\ 1659 &= \frac{m-s}{sm(m-1)} \sum_{i=1}^m \|X_i\|^2 + \frac{s-1}{sm(m-1)} \left\| \sum_{i=1}^m X_i \right\|^2. \end{aligned}$$

1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673 \square

1674
1675 D.2 CONVERGENCE OF FEDSAGD1676
1677 In this subsection, we present the proofs for the FedSAGD algorithm. We denote $\nabla \hat{F}(x)$ as $\nabla F(x) +$
1678 μx , it can be derived that $\nabla \hat{F}$ also satisfies the three assumptions.1679
1680 **Lemma D.5.** For $x_{t,k}^i \in R^d$, $\forall i \in \mathcal{S}_t$, we denote $\delta_{t,k}^i = x_{t,k}^i - x_{t,k-1}^i$ with setting $\delta_{t,0}^i = 0$, and
1681 $\Delta_{t,k}^i = \sum_{\tau=0}^k \delta_{t,\tau}^i = x_{t,k}^i - x_{t,0}^i$. Under the local update rule in Algorithm 1, we have:

1682

1683
1684
$$\Delta_{t,K}^i = -\eta_l \sum_{k=0}^{K-1} (1 - \eta_l \lambda)^{K-1-k} \hat{g}_{t,k}^i - \beta \frac{1 - (1 - \eta_l \lambda)^K}{\lambda} v_t.$$

1685

1686

1687

1688

1689 *Proof.* According to the update rule, we have:
1690

1691

1692
1693
$$\begin{aligned} \delta_{t,k}^i &= \Delta_{t,k}^i - \Delta_{t,k-1}^i \\ &= x_{t,k}^i - x_{t,k-1}^i \\ &= -\eta_l (\beta v_t + \hat{g}_{t,k}^i) - \eta_l \lambda (x_{t,k-1}^i - x_{t,0}^i) \\ &= -\eta_l (\beta v_t + \hat{g}_{t,k}^i) - \eta_l \lambda \Delta_{t,k-1}^i. \end{aligned}$$

1694

1695

1696

1697

1698 Then we can obtain
1699

1700

1701
1702
$$\begin{aligned} \Delta_{t,k}^i &= (1 - \eta_l \lambda) \Delta_{t,k-1}^i - \eta_l (\beta v_t + \hat{g}_{t,k-1}^i) \\ &= -\eta_l \sum_{\tau=0}^{k-1} (1 - \eta_l \lambda)^{k-1-\tau} (\beta v_t + \hat{g}_{t,\tau-1}^i) \\ &= -\eta_l \sum_{\tau=0}^{k-1} (1 - \eta_l \lambda)^{k-1-\tau} \hat{g}_{t,\tau-1}^i - \beta \frac{1 - (1 - \eta_l \lambda)^k}{\lambda} v_t. \end{aligned}$$

1703

1704

1705

1706

1707

1708

1709

1710

1711

Let $\alpha_k = (1 - \eta_l \lambda)^{K-1-k}$ and $\alpha = \frac{1 - (1 - \eta_l \lambda)^K}{\eta_l \lambda} = \sum_{k=0}^{K-1} (1 - \eta_l \lambda)^{K-1-k}$, so we have
1712

1713

1714

1715

$$\Delta_{t,K}^i = -\eta_l \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k-1}^i - \alpha \beta \eta_l v_t,$$

1716

1717

1718

1719

1720

1721

1722

Lemma D.6. Under the update rule of Algorithm 1, we have

1723

1724

1725

1726

1727

$$v_{t+1} = \frac{\gamma \beta}{(1 + \beta)} v_t + \frac{1}{(1 + \beta) s K} \sum_{i \in \mathcal{S}_t} G_t^i,$$

where $\gamma = (1 + \frac{\alpha}{K})$ and $G_t^i = \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i$.

1728 *Proof.*

$$\begin{aligned}
v_{t+1} &= \frac{\beta}{1+\beta}v_t - \frac{\Delta x_t}{(1+\beta)\eta_l K} \\
&= \frac{\beta}{1+\beta}v_t - \frac{1}{(1+\beta)\eta_l s K} \sum_{i \in \mathcal{S}_t} \Delta x_t^i \\
&= \frac{\beta}{1+\beta}v_t - \frac{1}{(1+\beta)\eta_l s K} \sum_{i \in \mathcal{S}_t} \Delta_{t,K}^i \\
&= \frac{\beta}{1+\beta}v_t + \frac{1}{(1+\beta)s K} \sum_{i \in \mathcal{S}_t} \left(\sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i + \alpha \beta v_t \right) \\
&= \frac{\beta}{(1+\beta)}(1 + \frac{\alpha}{K})v_t + \frac{1}{(1+\beta)s K} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i \\
&= \frac{\gamma \beta}{(1+\beta)}v_t + \frac{1}{(1+\beta)s K} \sum_{i \in \mathcal{S}_t} G_t^i.
\end{aligned}$$

□

1747 Consider the auxiliary sequence z_t , given by

$$z_t = \frac{1+\beta}{1-\alpha'\beta}x_t - \frac{\gamma\beta}{1-\alpha'\beta}x_{t-1} + \frac{\beta\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i,$$

1751 where $\alpha' = \frac{\alpha}{K}$.

1752 **Lemma D.7.** Consider the sequence z_t , we have

$$z_{t+1} - z_t = -\frac{\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_t} G_t^i.$$

1757 *Proof.*

$$\begin{aligned}
z_{t+1} - z_t &= \frac{1+\beta}{1-\alpha'\beta}(x_{t+1} - x_t) - \frac{\gamma\beta}{1-\alpha'\beta}(x_t - x_{t-1}) + \frac{\beta\eta_l\eta_l}{(1-\alpha'\beta)s} \left(\sum_{i \in \mathcal{S}_t} G_t^i - \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i \right) \\
&= -\frac{(1+\beta)\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_t} (G_t^i + \alpha \beta v_t) + \frac{\gamma\beta\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_{t-1}} (G_{t-1}^i + \alpha \beta v_{t-1}) \\
&\quad + \frac{\beta\eta_l\eta_l}{(1-\alpha'\beta)s} \left(\sum_{i \in \mathcal{S}_t} G_t^i - \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i \right) \\
&= -\frac{\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_t} G_t^i.
\end{aligned}$$

1770 the last equality follow from Lemma D.6. Besides,

$$\begin{aligned}
\mathbb{E}_t \|z_{t+1} - z_t\|^2 &= \mathbb{E}_t \left\| -\frac{\eta_l\eta_l}{(1-\alpha'\beta)s} \sum_{i \in \mathcal{S}_t} G_t^i \right\|^2 \\
&= \frac{\eta_l^2 \eta_l^2}{(1-\alpha'\beta)^2 s^2} \mathbb{E}_t \left\| \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t,k}^i \right\|^2 \\
&\leq \frac{\eta_l^2 \eta_l^2}{(1-\alpha'\beta)^2 s^2} \mathbb{E}_t \left\| \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 + \frac{\alpha \eta_l^2 \eta_l^2}{(1-\alpha'\beta)^2 s} \sigma_l^2.
\end{aligned}$$

1781 where we denote $\bar{G}_t^i := \sum_{k=0}^{K-1} \alpha_k \nabla \hat{F}_i(x_{t,k}^i)$. The inequality is based on Assumption 3.2 and Lemma D.3. □

1782 **Lemma D.8.** Consider the z_t and x_t , then we have
 1783

$$1784 \quad 1785 \quad z_t - x_t = -\frac{\alpha(\beta + \beta^2)\eta\eta_l}{(1 - \alpha'\beta)}v_t. \\ 1786$$

1787 *Proof.*
 1788

$$1789 \quad 1790 \quad z_t - x_t = \frac{\gamma\beta}{1 - \alpha'\beta}(x_t - x_{t-1}) + \frac{\beta\eta\eta_l}{(1 - \alpha'\beta)s} \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i \\ 1791 \quad 1792 \quad = -\frac{\gamma\beta\eta\eta_l}{(1 - \alpha'\beta)s} \left(\sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i + \alpha\beta s v_{t-1} \right) + \frac{\beta\eta\eta_l}{(1 - \alpha'\beta)s} \sum_{i \in \mathcal{S}_{t-1}} G_{t-1}^i \\ 1793 \quad 1794 \quad = -\frac{\alpha(\beta + \beta^2)\eta\eta_l}{(1 - \alpha'\beta)}v_t. \\ 1795 \quad 1796 \quad 1797 \quad 1798$$

□

1800 **Lemma D.9.** Consider the global momentum sequence v_t and summing over t from 0 to $T - 1$, then
 1801 we have
 1802

$$1803 \quad 1804 \quad \sum_{k=0}^{T-1} \mathbb{E}_t \|v_t\|^2 \leq \frac{1}{(1 - \alpha'\beta)^2} \sum_{t=0}^{T-1} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 + \frac{T\alpha^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2. \\ 1805 \quad 1806 \quad 1807 \quad 1808$$

1809 *Proof.*
 1810

$$1811 \quad 1812 \quad \mathbb{E}_t \|v_t\|^2 \\ 1813 \quad 1814 \quad = \mathbb{E}_t \left\| \frac{\gamma\beta}{1 + \beta} v_{t-1} + \frac{1}{(1 + \beta)sK} \sum_{i \in \mathcal{S}_{t-1}} \sum_{k=0}^{K-1} \alpha_k \hat{g}_{t-1,k}^i \right\|^2 \\ 1815 \quad 1816 \quad = \mathbb{E}_t \left\| \frac{1}{(1 + \beta)sK} \sum_{\tau=0}^{t-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \sum_{i \in \mathcal{S}_\tau} G_\tau^i \right\|^2 \\ 1817 \quad 1818 \quad \leq \mathbb{E}_t \left\| \frac{1}{(1 + \beta)sK} \sum_{\tau=0}^{t-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{\alpha^2 [1 - (\frac{\gamma\beta}{1 + \beta})^t]^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2 \\ 1819 \quad 1820 \quad \stackrel{(a)}{=} p_t^2 \mathbb{E}_t \left\| \frac{1}{(1 + \beta)sK} \sum_{\tau=0}^{t-1} p_t^{-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{\alpha^2 [1 - (\frac{\gamma\beta}{1 + \beta})^t]^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2 \\ 1821 \quad 1822 \quad \leq \frac{p_t^2}{(1 + \beta)^2} \sum_{\tau=0}^{t-1} p_t^{-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{\alpha^2 [1 - (\frac{\gamma\beta}{1 + \beta})^t]^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2 \quad (9) \\ 1823 \quad 1824 \quad = \frac{1 - (\frac{\gamma\beta}{1 + \beta})^t}{(1 + \beta)(1 - \alpha'\beta)} \sum_{\tau=0}^{t-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{\alpha^2 [1 - (\frac{\gamma\beta}{1 + \beta})^t]^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2 \\ 1825 \quad 1826 \quad \leq \frac{1}{(1 + \beta)(1 - \alpha'\beta)} \sum_{\tau=0}^{t-1} \left(\frac{\gamma\beta}{1 + \beta} \right)^{t-1-\tau} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{\alpha^2}{(1 - \alpha'\beta)^2 s K^2} \sigma_l^2. \\ 1827 \quad 1828 \quad 1829 \quad 1830 \quad 1831 \quad 1832 \quad 1833 \quad 1834 \quad 1835$$

1836 The first inequality is based on Assumption 3.2 and Lemma D.3. In (a), $p_t = \sum_{\tau=0}^{t-1} (\frac{\gamma\beta}{1+\beta})^{t-1-\tau}$.
1837 Now we sum equation 9 over t from 0 to $T-1$:

$$\begin{aligned}
1839 & \sum_{t=0}^{T-1} \mathbb{E}_t \|v_t\|^2 \\
1840 & \leq \frac{1}{(1+\beta)(1-\alpha'\beta)} \sum_{t=0}^{T-1} \sum_{\tau=0}^{t-1} (\frac{\gamma\beta}{1+\beta})^{t-1-\tau} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 + \frac{T\alpha^2}{(1-\alpha'\beta)^2 sK^2} \sigma_l^2 \\
1842 & = \frac{1}{(1+\beta)(1-\alpha'\beta)} \sum_{\tau=0}^{T-2} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_\tau} \bar{G}_\tau^i \right\|^2 \sum_{s=\tau+1}^{T-1} (\frac{\gamma\beta}{1+\beta})^{s-1-\tau} + \frac{T\alpha^2}{(1-\alpha'\beta)^2 sK^2} \sigma_l^2 \\
1845 & \leq \frac{1}{(1-\alpha'\beta)^2} \sum_{t=0}^{T-1} \mathbb{E}_t \left\| \frac{1}{sK} \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 + \frac{T\alpha^2}{(1-\alpha'\beta)^2 sK^2} \sigma_l^2.
\end{aligned}$$

1851 \square

1853 **Lemma D.10.** Suppose the local learning rate satisfies $\eta_l \leq \frac{1}{KL}$, we can bound the client drift by:
1854

$$1855 \frac{1}{m} \sum_{i \in [M]} \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 \leq 36\eta_l^2 K^2 \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 36\eta_l^2 K^2 \sigma_g^2 + 3\eta_l^2 K \sigma_l^2 + 18\beta^2 \eta_l^2 K^2 \mathbb{E}_t \|v_t\|^2.$$

1858 *Proof.*

$$\begin{aligned}
1860 & \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 \\
1861 & = \mathbb{E}_t \|x_{t,k-1}^i - x_t - \eta_l \lambda(x_{t,k-1}^i - x_t) - \eta_l \hat{g}_{t,k-1}^i - \beta \eta_l v_t\|^2 \\
1862 & = \mathbb{E}_t \|(1 - \eta_l \lambda)(x_{t,k-1}^i - x_t) - \eta_l \hat{g}_{t,k-1}^i - \beta \eta_l v_t\|^2 \\
1863 & \leq \mathbb{E}_t \|(1 - \eta_l \lambda)(x_{t,k-1}^i - x_t) - \eta_l \nabla \hat{F}_i(x_{t,k-1}^i) - \beta \eta_l v_t\|^2 + \eta_l^2 \sigma_l^2 \\
1864 & \leq \mathbb{E}_t [(1 + a) \|(1 - \eta_l \lambda)(x_{t,k-1}^i - x_t)\|^2 + \eta_l^2 \sigma_l^2 + \mathbb{E}_t [(1 + \frac{1}{a}) \eta_l^2 \|\nabla \hat{F}_i(x_{t,k-1}^i) + \beta v_t\|^2]].
\end{aligned}$$

1868 The first inequality we use Lemma D.3 and the last inequality we use Assumption 3.1 and Lemma
1869 D.1. We further bound the third term as
1870

$$\begin{aligned}
1871 & \mathbb{E}_t \|\nabla \hat{F}_i(x_{t,k-1}^i) + \beta v_t\|^2 = \mathbb{E} \|\nabla \hat{F}_i(x_{t,k-1}^i) - \nabla \hat{F}_i(x_t) + \nabla \hat{F}_i(x_t) + \beta v_t\|^2 \\
1872 & \leq \mathbb{E} (3 \|\nabla \hat{F}_i(x_{t,k-1}^i) - \nabla \hat{F}_i(x_t)\|^2 + 3 \|\nabla \hat{F}_i(x_t)\|^2 + 3\beta^2 v_t) \\
1873 & \leq 3L^2 \mathbb{E} \|x_{t,k-1}^i - x_t\|^2 + 6\mathbb{E} \|\nabla \hat{f}(x_t)\|^2 + 6\sigma_g^2 + 3\beta^2 \mathbb{E} \|v_t\|^2.
\end{aligned}$$

1875 Hence, we have

$$\begin{aligned}
1877 & \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 \\
1878 & \leq [(1 - \eta_l \lambda)^2 (1 + a) + 6(1 + \frac{1}{a}) \eta_l^2 L^2] \mathbb{E}_t \|x_{t,k-1}^i - x_t\|^2 + (1 + \frac{1}{a}) 6\eta_l^2 (\mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + \sigma_g^2) \\
1879 & \quad + \eta_l^2 \sigma_l^2 + (1 + \frac{1}{a}) 3\beta^2 \eta_l^2 \mathbb{E}_t \|v_t\|^2.
\end{aligned}$$

1883 For $K = 1$, take $a = 1$ and the lemma holds. Suppose that $K \geq 2$ thereafter then take $a = \frac{1}{2K-1}$. It
1884 follows from $\eta_l \leq \frac{1}{15LK}$ that
1885

$$\begin{aligned}
1886 & \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 \\
1887 & \leq (1 + \frac{1}{K-1}) \mathbb{E}_t \|x_{t,k-1}^i - x_t\|^2 + 12\eta_l^2 K \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 12\eta_l^2 K \sigma_g^2 + 6\beta^2 \eta_l^2 K \mathbb{E}_t \|v_t\|^2 \\
1888 & \quad + \eta_l^2 \sigma_l^2.
\end{aligned}$$

1890 Unrolling the recursion, noting that $\mathbb{E}_t \|x_{t,0}^i - x_t\|^2 = 0$ and $(k-1)[(1 + \frac{1}{k-1})^k - 1] \leq 3k$ for $k \geq 2$,
 1891 we obtain
 1892

$$\begin{aligned} 1893 \quad & \frac{1}{m} \sum_{i \in [M]} \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 \\ 1894 \quad & \leq \sum_{k=0}^{K-1} \left(1 + \frac{1}{K-1}\right) [12\eta_l^2 \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 12\eta_l^2 K \sigma_g^2 + \eta_l^2 \sigma_l^2 + 6\beta^2 \eta_l^2 K \mathbb{E}_t \|v_t\|^2] \\ 1895 \quad & \leq 36\eta_l^2 K^2 \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 36\eta_l^2 K^2 \sigma_g^2 + 3\eta_l^2 K \sigma_l^2 + 18\beta^2 \eta_l^2 K^2 \mathbb{E}_t \|v_t\|^2. \\ 1896 \quad & \end{aligned}$$

1897

□

1898

1899

1900

1901

1902

1903

1904 **Lemma D.11.** Suppose that the local learning rate satisfies $n_l \leq \frac{1}{15KL}$, we can bound the sum of
 1905 gradients by:

1906

$$\begin{aligned} 1907 \quad & \frac{\kappa_1}{mK} \sum_{t=0}^{T-1} \sum_{i \in [M]} \mathbb{E}_t \left\| \sum_{k=0}^{K-1} \alpha_k \nabla \hat{F}_i(x_{t,k}^i) \right\|^2 \\ 1908 \quad & \leq (72\alpha^2 \eta_l^2 L^2 K + \frac{4\alpha^2}{K}) \sum_{t=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + (72\alpha^2 \eta_l^2 L^2 K + \frac{4\alpha^2}{K}) T \sigma_g^2 + 6\alpha^2 \eta_l^2 L^2 T \sigma_l^2 \\ 1909 \quad & + T \frac{36\alpha^4 \beta^2 \eta_l^2 L^2}{(1 - \alpha' \beta) s K} \sigma_l^2. \\ 1910 \quad & \end{aligned}$$

1911

1912

1913

1914

1915

1916

1917

1918

Proof.

1919

$$\begin{aligned} 1920 \quad & \frac{1}{mK} \sum_{i \in [M]} \mathbb{E}_t \left\| \sum_{k=0}^{K-1} \alpha_k \nabla \hat{F}_i(x_{t,k}^i) \right\|^2 = \frac{\alpha^2}{mK} \sum_{i \in [M]} \mathbb{E}_t \left\| \sum_{k=0}^{K-1} \frac{\alpha_k}{\alpha} \nabla \hat{F}_i(x_{t,k}^i) \right\|^2 \\ 1921 \quad & \leq \frac{\alpha}{mK} \sum_{i \in [M]} \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t \|\nabla \hat{F}_i(x_{t,k}^i)\|^2 \\ 1922 \quad & \end{aligned}$$

1923

1924

1925

1926

1927

1928

For all $i \in [M]$, we have

1929

$$\begin{aligned} 1930 \quad & \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t \|\nabla \hat{F}_i(x_{t,k}^i)\|^2 \\ 1931 \quad & = \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t \|\nabla \hat{F}_i(x_{t,k}^i) - \nabla \hat{F}_i(x_t) + \nabla \hat{F}_i(x_t)\|^2 \\ 1932 \quad & \leq 2 \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t [\|\nabla \hat{F}_i(x_{t,k}^i) - \nabla \hat{F}_i(x_t)\|^2 + \|\nabla \hat{F}_i(x_t) - \nabla \hat{f}(x_t) + \nabla \hat{f}(x_t)\|^2] \\ 1933 \quad & \leq 2L^2 \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t \|x_{t,k}^i - x_t\|^2 + 4\alpha \sigma_g^2 + 4\alpha \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 \\ 1934 \quad & \leq (72\alpha \eta_l^2 L^2 K^2 + 4\alpha) \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + (72\alpha \eta_l^2 L^2 K^2 + 4\alpha) \sigma_g^2 + 6\alpha \eta_l^2 L^2 K \sigma_l^2 \\ 1935 \quad & + 36\alpha \beta^2 \eta_l^2 L^2 K^2 \mathbb{E}_t \|v_t\|^2. \\ 1936 \quad & \end{aligned}$$

1937

1938

1939

1940

1941

1942

1943

1944 Substituting it back into above inequality we get
 1945

$$\begin{aligned} 1946 \quad & \frac{1}{mK} \sum_{i \in [M]} \mathbb{E}_t \left\| \sum_{k=0}^{K-1} \alpha_k \nabla \hat{F}_i(x_{t,k}^i) \right\|^2 \\ 1947 \quad & \leq [(72\alpha^2 \eta_l^2 L^2 K + \frac{4\alpha^2}{K}) \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + (72\alpha^2 \eta_l^2 L^2 K + \frac{4\alpha^2}{K}) \sigma_g^2 + 6\alpha^2 \eta_l^2 L^2 \sigma_l^2 \\ 1948 \quad & + 36\alpha^2 \beta^2 \eta_l^2 L^2 K \mathbb{E}_t \|v_t\|^2] \\ 1949 \quad & \\ 1950 \quad & \\ 1951 \quad & \\ 1952 \quad & \\ 1953 \quad & \\ 1954 \quad & \text{We sum the above inequality by using weight 1, we get} \\ 1955 \quad & \\ 1956 \quad & \\ 1957 \quad & \\ 1958 \quad & \\ 1959 \quad & \\ 1960 \quad & \\ 1961 \quad & \\ 1962 \quad & \\ 1963 \quad & \\ 1964 \quad & \\ 1965 \quad & \\ 1966 \quad & \\ 1967 \quad & \\ 1968 \quad & \\ 1969 \quad & \\ 1970 \quad & \\ 1971 \quad & \text{We define a positive constant } \kappa_1 < 1 \text{ such that } 1 - \frac{36\alpha^2 \beta^2 \eta_l^2 L^2}{(1-\alpha'\beta)^2} \leq \kappa_1 \text{ if } \eta_l \leq \frac{1-\alpha'\beta}{6\alpha\beta L}. \text{ So we get} \\ 1972 \quad & \\ 1973 \quad & \\ 1974 \quad & \\ 1975 \quad & \\ 1976 \quad & \\ 1977 \quad & \\ 1978 \quad & \\ 1979 \quad & \\ 1980 \quad & \\ 1981 \quad & \square \\ 1982 \quad & \\ 1983 \quad & \\ 1984 \quad & \\ 1985 \quad & \\ 1986 \quad & \\ 1987 \quad & \\ 1988 \quad & \\ 1989 \quad & \\ 1990 \quad & \\ 1991 \quad & \\ 1992 \quad & \\ 1993 \quad & \\ 1994 \quad & \\ 1995 \quad & \\ 1996 \quad & \\ 1997 \quad & \\ \end{aligned}$$

Lemma D.12. Under Assumption 3.1-3.3 and loss function is non-convex, we define $D_0 := \mathbb{E}(\hat{f}(z_0) - \hat{f}(z_T))$. When the learning rate satisfies $\eta_l \leq \frac{1}{16KL}$ and

$$\eta \eta_l \leq \frac{m(s-1)}{s(m-1)} \min \left\{ \frac{(1-\alpha'\beta)^2 \sqrt{K}}{4\alpha\beta L \sqrt{3\alpha}}, \frac{(1-\alpha'\beta)\eta}{6\beta L \sqrt{2\alpha}}, \frac{1-\alpha'\beta}{2\alpha L} \right\}.$$

Then the auxiliary sequence z_t in equation equation 7 generated by executing the FedSAGD satisfies:

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\| \leq \mathcal{O} \left(\frac{LD_0}{\sqrt{sKT}} + \frac{\sigma_l^2}{\sqrt{sKT}} + \frac{1}{T} \left(\frac{\sigma_l^2}{K^2} + K\sigma_l^2 + \frac{\sigma_l^2}{sK} + \frac{\sigma_g^2}{K} \right) + \Psi_l + \Psi_g \right)$$

where

$$\begin{aligned} \Psi_l &= \left(\frac{1}{T} + \frac{K}{sT} \right) \frac{(m-s)}{m-1} \left(\frac{1}{T} + \frac{1}{sK^2T} + \frac{1}{\sqrt{sKT}} \right) \sigma_l^2, \\ \Psi_g &= \left(\frac{K}{T} + K \right) \frac{(m-s)}{m-1} \left(\frac{1}{T} + \frac{1}{sK^2T} + \frac{1}{\sqrt{sKT}} \right) \sigma_g^2. \end{aligned}$$

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
Proof. For the general non-convex case, according to the Assumptions and the smoothness of \hat{f} , we take the conditional expectation at round $t + 1$ and expand the $\hat{f}(z_{t+1})$ as

$$\mathbb{E}_t[\hat{f}(z_{t+1})] \leq \hat{f}(z_t) + \langle \nabla \hat{f}(z_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle + \frac{L}{2} \mathbb{E}_t \|z_{t+1} - z_t\|^2.$$

Note that the second term can be split into the following:

$$\begin{aligned} \langle \nabla \hat{f}(z_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle &= \langle \nabla \hat{f}(z_t) - \nabla \hat{f}(x_t) + \nabla \hat{f}(x_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle \\ &= \underbrace{\langle \nabla \hat{f}(z_t) - \nabla \hat{f}(x_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle}_{A_1} + \underbrace{\langle \nabla \hat{f}(x_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle}_{A_2}. \end{aligned}$$

We first bound the A_1 :

$$\begin{aligned} \langle \nabla \hat{f}(z_t) - \nabla \hat{f}(x_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle &= \langle \nabla \hat{f}(z_t) - \nabla \hat{f}(x_t), -\frac{\eta\eta_l}{(1-\alpha'\beta)} \mathbb{E}_t \left[\frac{1}{m} \sum_{i \in [M]} G_t^i \right] \rangle \\ &\quad \langle \frac{\sqrt{2\eta\eta_l K}}{\sqrt{1-\alpha'\beta}} \nabla \hat{f}(z_t) - \nabla \hat{f}(x_t), -\frac{\sqrt{\eta\eta_l}}{\sqrt{2(1-\alpha'\beta)K}} \mathbb{E}_t \left[\frac{1}{m} \sum_{i \in [M]} \bar{G}_t^i \right] \rangle \\ &\leq \frac{\eta\eta_l K}{1-\alpha'\beta} \|\nabla \hat{f}(z_t) - \nabla \hat{f}(x_t)\|^2 + \frac{\eta\eta_l}{4(1-\alpha'\beta)m^2 K} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_{t,K}^i \right\|^2 \\ &\leq \frac{\eta\eta_l L^2 K}{1-\alpha'\beta} \|z_t - x_t\|^2 + \frac{\eta\eta_l}{4(1-\alpha'\beta)m^2 K} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_{t,K}^i \right\|^2. \end{aligned}$$

Then the A_2 can be bounded as:

$$\begin{aligned} \langle \nabla \hat{f}(x_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle &= \langle \nabla \hat{f}(x_t), -\frac{\eta\eta_l}{1-\alpha'\beta} \mathbb{E}_t \left[\frac{1}{m} \sum_{i \in [M]} \bar{G}_t^i \right] \rangle \\ &= \langle \frac{1}{1-\alpha'\beta} \nabla \hat{f}(x_t), -\eta\eta_l \mathbb{E}_t \left[\frac{1}{m} \sum_{i \in [M]} \bar{G}_t^i - \alpha \nabla \hat{f}(x_t) + \alpha \nabla \hat{f}(x_t) \right] \rangle \\ &= -\frac{\eta\eta_l \alpha}{1-\alpha'\beta} \|\nabla \hat{f}(x_t)\|^2 + \langle \frac{\sqrt{\eta\eta_l \alpha}}{\sqrt{1-\alpha'\beta}} \nabla \hat{f}(x_t), -\frac{\sqrt{\eta\eta_l}}{\sqrt{(1-\alpha'\beta)\alpha}} \mathbb{E}_t \left[\frac{1}{m} \sum_{i \in [M]} \bar{G}_t^i - \alpha \nabla \hat{f}(x_t) \right] \rangle \\ &= -\frac{\eta\eta_l \alpha}{2(1-\alpha'\beta)} \|\nabla \hat{f}(x_t)\|^2 + \frac{\eta\eta_l}{2(1-\alpha'\beta)\alpha m^2} \mathbb{E}_t \left(\left\| \sum_{i \in [M]} \bar{G}_t^i - \alpha \nabla \hat{f}(x_t) \right\|^2 - \left\| \sum_{i \in [M]} G_t^i \right\|^2 \right) \\ &= \frac{\eta\eta_l}{2(1-\alpha'\beta)\alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \sum_{k=0}^{K-1} \alpha_k [\nabla F_i(x_{t,k}^i) - \nabla f(x_t)] \right\|^2 - \frac{\eta\eta_l \alpha}{2(1-\alpha'\beta)} \|\nabla f(x_t)\|^2 \\ &\quad - \frac{\eta\eta_l}{2(1-\alpha'\beta)\alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2 \\ &\leq \frac{\eta\eta_l L^2}{2(1-\alpha'\beta)\alpha m} \sum_{i \in [M]} \sum_{k=0}^{K-1} \alpha_k \mathbb{E}_t [\|x_{t,k}^i - x_t\|^2] - \frac{\eta\eta_l \alpha}{2(1-\alpha'\beta)} \|\nabla f(x_t)\|^2 \\ &\quad - \frac{\eta\eta_l}{2(1-\alpha'\beta)\alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2 \\ &\leq \frac{\eta\eta_l L^2}{(1-\alpha'\beta)} (36\eta_l^2 K^2 \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 36\eta_l^2 K^2 \sigma_g^2 + 3\eta_l^2 K \sigma_l^2 + 18\beta^2 \eta_l^2 K^2 \mathbb{E}_t \|v_t\|^2) \\ &\quad - \frac{\eta\eta_l \alpha}{2(1-\alpha'\beta)} \|\nabla \hat{f}(x_t)\|^2 - \frac{\eta\eta_l}{2(1-\alpha'\beta)\alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2. \end{aligned}$$

2052

Now we have

2053

2054

2055

2056

2057

$$\mathbb{E}_t[\hat{f}(z_{t+1})]$$

2058

2059

$$\begin{aligned} & \leq \hat{f}(z_t) + \langle \nabla \hat{f}(z_t), \mathbb{E}_t[z_{t+1} - z_t] \rangle + \frac{L}{2} \mathbb{E}_t \|z_{t+1} - z_t\|^2 \\ & \leq \hat{f}(z_t) + \frac{\eta \eta_l L^2 K}{1 - \alpha' \beta} \|z_t - x_t\|^2 + \frac{\eta \eta_l}{4(1 - \alpha' \beta) m^2 K} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2 - \frac{\eta \eta_l \alpha}{2(1 - \alpha' \beta)} \|\nabla \hat{f}(x_t)\|^2 \\ & \quad + \frac{\eta \eta_l L^2}{(1 - \alpha' \beta)} (36 \eta_l^2 K^2 \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + 36 \eta_l^2 K^2 \sigma_g^2 + 3 \eta_l^2 K \sigma_l^2 + 18 \beta^2 \eta_l^2 K^2 \mathbb{E}_t \|v_t\|^2) \\ & \quad - \frac{\eta \eta_l}{2(1 - \alpha' \beta) \alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2 + \frac{L}{2} \mathbb{E}_t \|z_{t+1} - z_t\|^2 \\ & \leq \hat{f}(z_t) + \left(\frac{\alpha^2 \beta^2 (1 + \beta)^2 \eta^3 \eta_l^3 L^2 K}{(1 - \alpha' \beta)^3} + \frac{18 \beta^2 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \right) \mathbb{E}_t \|v_t\|^2 - \frac{\eta \eta_l \alpha}{2(1 - \alpha' \beta)} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 \\ & \quad + \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + \left(\frac{3 \eta \eta_l^3 L^2 K}{(1 - \alpha' \beta)} + \frac{\alpha \eta^2 \eta_l^2 L}{2(1 - \alpha' \beta)^2 s} \right) \sigma_l^2 + \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \sigma_g^2 \\ & \quad + \frac{\eta^2 \eta_l^2 L}{2(1 - \alpha' \beta)^2 s^2} \mathbb{E}_t \left\| \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 - \frac{\eta \eta_l}{4(1 - \alpha' \beta) \alpha m^2} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2. \end{aligned}$$

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

Summing from $t = 0, \dots, T - 1$, we get

2081

2082

2083

2084

$$\mathbb{E}_t[\hat{f}(z_T)] - \hat{f}(z_0)$$

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

$$\begin{aligned} & \leq -\left(\frac{\eta \eta_l \alpha}{2(1 - \alpha' \beta)} - \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \right) \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + T \left(\frac{3 \eta \eta_l^3 L^2 K}{(1 - \alpha' \beta)} + \frac{\alpha \eta^2 \eta_l^2 L}{2(1 - \alpha' \beta)^2 s} \right) \sigma_l^2 \\ & \quad + \left(\frac{\alpha^2 \beta^2 (1 + \beta)^2 \eta^3 \eta_l^3 L^2 K}{(1 - \alpha' \beta)^3} + \frac{18 \beta^2 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \right) \sum_{k=0}^{T-1} \mathbb{E}_t \|v_t\|^2 + T \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \sigma_g^2 \\ & \quad + \frac{\eta^2 \eta_l^2 L}{2(1 - \alpha' \beta)^2 s^2} \sum_{k=0}^{T-1} \mathbb{E}_t \left\| \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 - \frac{\eta \eta_l}{4(1 - \alpha' \beta) \alpha m^2} \sum_{k=0}^{T-1} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2 \\ & \leq -\left(\frac{\eta \eta_l \alpha}{2(1 - \alpha' \beta)} - \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \right) \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + T \left(\frac{3 \eta \eta_l^3 L^2 K}{(1 - \alpha' \beta)} + \frac{\alpha \eta^2 \eta_l^2 L}{2(1 - \alpha' \beta)^2 s} \right) \sigma_l^2 \\ & \quad + T \left(\frac{4 \alpha^4 \beta^2 \eta^3 \eta_l^3 L^2}{(1 - \alpha' \beta)^5 s K} + \frac{18 \alpha^2 \beta^2 \eta \eta_l^3 L^2}{(1 - \alpha' \beta)^3 s} \right) \sigma_l^2 + T \frac{36 \eta \eta_l^3 L^2 K^2}{1 - \alpha' \beta} \sigma_g^2 \\ & \quad + \left(\frac{4 \alpha^2 \beta^2 \eta^3 \eta_l^3 L^2 K}{(1 - \alpha' \beta)^5} + \frac{18 \beta^2 \eta \eta_l^3 L^2 K^2}{(1 - \alpha' \beta)^3} + \frac{\eta^2 \eta_l^2 L K^2}{2(1 - \alpha' \beta)^2} \right) \sum_{k=0}^{T-1} \mathbb{E}_t \left\| \frac{1}{s K} \sum_{i \in \mathcal{S}_t} \bar{G}_t^i \right\|^2 \\ & \quad - \frac{\eta \eta_l}{4(1 - \alpha' \beta) \alpha m^2} \sum_{k=0}^{T-1} \mathbb{E}_t \left\| \sum_{i \in [M]} \bar{G}_t^i \right\|^2. \end{aligned}$$

2106 Then we use Lemma D.4 and let $\eta\eta_l$ satisfies $\eta\eta_l \leq \frac{m(s-1)}{s(m-1)} \min \left\{ \frac{(1-\alpha'\beta)^2\sqrt{K}}{4\alpha\beta L\sqrt{3\alpha}}, \frac{(1-\alpha'\beta)\eta}{6\beta L\sqrt{2\alpha}}, \frac{1-\alpha'\beta}{2\alpha L} \right\}$,
2107 we have
2108

$$\begin{aligned}
& \mathbb{E}_t[\hat{f}(z_T)] - \hat{f}(z_0) \\
& \leq -\left(\frac{\eta\eta_l\alpha}{2(1-\alpha'\beta)} - \frac{36\eta\eta_l^3L^2K^2}{1-\alpha'\beta}\right) \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 + T\left(\frac{3\eta\eta_l^3L^2K}{(1-\alpha'\beta)} + \frac{\alpha\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2s}\right) \sigma_l^2 \\
& \quad + T\left(\frac{4\alpha^4\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5sK} + \frac{18\alpha^2\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3s}\right) \sigma_l^2 + T\frac{36\eta\eta_l^3L^2K^2}{1-\alpha'\beta} \sigma_g^2 \\
& \quad + \frac{(m-s)}{ms(m-1)} \left(\frac{4\alpha^2\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5K} + \frac{18\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3} + \frac{\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2}\right) \sum_{k=0}^{T-1} \sum_{i \in [M]} \mathbb{E}_t \|\bar{G}_t^i\|^2 \\
& \leq T\left(\frac{3\eta\eta_l^3L^2K}{(1-\alpha'\beta)} + \frac{\alpha\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2s} + \frac{4\alpha^4\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5sK} + \frac{18\alpha^2\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3s} + (6\alpha^2\eta_l^2L^2K\right. \\
& \quad \left. + \frac{36\alpha^4\beta^2\eta_l^2L^2}{(1-\alpha'\beta)s} \frac{(m-s)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5K} + \frac{18\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3} + \frac{\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2}\right)\right) \sigma_l^2 \\
& \quad + T\left(\frac{(72\alpha^2\eta_l^2L^2K^2 + 4\alpha^2)(m-p)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5K} + \frac{18\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3} + \frac{\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2}\right)\right. \\
& \quad \left. + \frac{36\eta\eta_l^3L^2K^2}{1-\alpha'\beta}\right) \sigma_g^2 - \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 \left(\frac{\eta\eta_l\alpha}{2(1-\alpha'\beta)} - \frac{36\eta\eta_l^3L^2K^2}{1-\alpha'\beta}\right. \\
& \quad \left. - \frac{(72\alpha^2\eta_l^2L^2K^2 + 4\alpha^2)(m-s)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^3\eta_l^3L^2}{(1-\alpha'\beta)^5K} + \frac{18\beta^2\eta\eta_l^3L^2}{(1-\alpha'\beta)^3} + \frac{\eta^2\eta_l^2L}{2(1-\alpha'\beta)^2}\right)\right).
\end{aligned}$$

2132 We define a positive constant c such that $0 < c \leq \frac{1}{2} - \frac{36\eta_l^2L^2K^2}{\alpha} -$
2133 $\frac{(72\alpha\eta_l^2L^2K^2 + 4\alpha)(m-s)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^2\eta_l^2L^2}{(1-\alpha'\beta)^4K} + \frac{18\beta^2\eta_l^2L^2}{(1-\alpha'\beta)^2} + \frac{\eta\eta_lL}{2(1-\alpha'\beta)}\right)$ and rearrange the above inequality, we
2134 have

$$\begin{aligned}
& \frac{1}{T} \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 \\
& \leq \left(\frac{3\eta_l^2L^2K}{\alpha} + \frac{\eta\eta_lL}{2(1-\alpha'\beta)s} + \frac{4\alpha^3\beta^2\eta^2\eta_l^2L^2}{(1-\alpha'\beta)^4sK} + \frac{18\alpha\beta^2\eta_l^2L^2}{(1-\alpha'\beta)^2s} + (6\alpha\eta_l^2L^2K\right. \\
& \quad \left. + \frac{36\alpha^3\beta^2\eta_l^2L^2}{(1-\alpha'\beta)s} \frac{(m-s)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^2\eta_l^2L^2}{(1-\alpha'\beta)^4K} + \frac{18\beta^2\eta_l^2L^2}{(1-\alpha'\beta)^2} + \frac{\eta\eta_lL}{2(1-\alpha'\beta)}\right)\right) \frac{\sigma_l^2}{c} \\
& \quad + \left(\frac{(72\alpha\eta_l^2L^2K^2 + 4\alpha)(m-s)}{\kappa_1s(m-1)} \left(\frac{4\alpha^2\beta^2\eta^2\eta_l^2L^2}{(1-\alpha'\beta)^4K} + \frac{18\beta^2\eta_l^2L^2}{(1-\alpha'\beta)^2} + \frac{\eta\eta_lL}{2(1-\alpha'\beta)}\right)\right. \\
& \quad \left. + \frac{36\eta_l^2L^2K^2}{\alpha}\right) \frac{\sigma_g^2}{c} + \frac{(1-\alpha'\beta)(\hat{f}(z_0) - \mathbb{E}_t[\hat{f}(z_T)])}{c\alpha\eta_lT}
\end{aligned}$$

2148 Then we set $\eta_l = \mathcal{O}(\frac{1}{LK\sqrt{T}})$ and $\eta = \mathcal{O}(\sqrt{sK})$, we can deduce that $\alpha = \mathcal{O}(K)$. Thus, we get:
2149

$$\begin{aligned}
& \frac{1}{T} \sum_{k=0}^{T-1} \mathbb{E}_t \|\nabla \hat{f}(x_t)\|^2 \\
& \leq \frac{(1-\beta)L(\hat{f}(z_0) - \mathbb{E}_t[\hat{f}(z_T)])}{c\sqrt{sKT}} + \left(\frac{3}{K^2T} + \frac{1}{2(1-\beta)\sqrt{sKT}} + \frac{4\beta^2K}{(1-\beta)^4T} + \frac{18\beta^2}{(1-\beta)^2sKT}\right. \\
& \quad \left. + \left(\frac{6}{T} + \frac{36\beta^2K}{(1-\beta)sT}\right) \frac{(m-s)}{\kappa_1(m-1)} \left(\frac{4\beta^2}{(1-\beta)^4T} + \frac{18\beta^2}{(1-\beta)^2sK^2T} + \frac{1}{2\sqrt{sKT}}\right)\right) \frac{\sigma_l^2}{c} \\
& \quad + \left(\left(\frac{72K}{T} + 4K\right) \frac{(m-s)}{\kappa_1(m-1)} \left(\frac{4\beta^2}{(1-\beta)^4T} + \frac{18\beta^2}{(1-\beta)^2sK^2T} + \frac{1}{2\sqrt{sKT}}\right) + \frac{36}{KT}\right) \frac{\sigma_g^2}{c}.
\end{aligned}$$

2160

□

2161

2162

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

2164

In the preparation of this paper, a large language model (LLM) was used solely for minor text polishing and grammar corrections. The LLM did not contribute to research ideation, content generation, or any other significant aspect of the work. All content, including the final text, has been thoroughly reviewed and approved by the authors, who take full responsibility for its accuracy and originality.

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213