
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Offline vs. Online Learning in Model-based RL:
Lessons for Data Collection Strategies

Anonymous authors
Paper under double-blind review

Keywords: Model-based RL, Online Learning, Offline Learning, Active Exploration

Summary
Data collection is crucial for learning robust world models in model-based reinforcement

learning. The most prevalent strategies are to actively collect trajectories by interacting with the
environment during online training or training on offline datasets. At first glance, the nature
of learning task-agnostic environment dynamics makes world models a good candidate for
effective offline training. However, the effects of online vs. offline data on world models and
thus on the resulting task performance have not been thoroughly studied in the literature. In
this work, we investigate both paradigms in model-based settings, conducting experiments
on 31 different environments. First, we showcase that online agents outperform their offline
counterparts. We identify a key challenge behind performance degradation of offline agents:
encountering Out-Of-Distribution (OOD) states at test time. This issue arises because, without
the self-correction mechanism in online agents, offline datasets with limited state space coverage
induce a mismatch between the agent’s imagination and real rollouts, compromising policy
training. We demonstrate that this issue can be mitigated by allowing for additional online
interactions in a fixed or adaptive schedule, restoring the performance of online training with
limited interaction data. We also showcase that incorporating exploration data helps mitigate
the performance degradation of offline agents. Based on our insights, we recommend adding
exploration data when collecting large datasets, as current efforts predominantly focus on expert
data alone.

Contribution(s)
1. We provide an in-depth analysis of performance degradation in offline model-based agents

with practical considerations. We highlight the coupling of model and policy learning as a
primary contributing factor beyond the pure OOD challenge.
Context: In model-free RL, the performance degradation is often linked to limited coverage
of offline datasets, which leads to inaccurate value estimates and poor extrapolation of the
learned policy (Ostrovski et al., 2021; Yue et al., 2023; 2022). Similar issues plague offline
model-based RL (He, 2023; Kidambi et al., 2020; Chen et al., 2023; Yu et al., 2020; Cang
et al., 2021). However, they overlook an alternative perspective-the role of data quality and
online interaction ratios-in the assessment of robustness and generalization of world model.

2. We demonstrate that incorporating exploration data with a mixed reward improves the state-
space coverage in offline training. This provides insights in how to create the offline dataset
such that the performance degradation can be mitigated and competitive task performance
can be maintained.
Context: Existing methods primarily focus on constraining the agent within in-distribution
regions for the task (Kidambi et al., 2020; Yu et al., 2020; 2021; Wang et al., 2024; Mat-
sushima et al., 2021) but do not explicitly assess which data collection strategies best support
offline training.

3. We propose using the world model loss as a metric to measure the novelty of regions
explored by the current policy. It enables offline agents to generate some online data itself
with minimal additional interactions.
Context: The approach of self-generated data is mostly investigated in the context of
model-free RL (Ostrovski et al., 2021; Lee et al., 2021).

Under review for RLC 2025, to be published in RLJ

Offline vs. Online Learning in Model-based RL:
Lessons for Data Collection Strategies

Anonymous authors
Paper under double-blind review

Abstract

Data collection is crucial for learning robust world models in model-based reinforcement1
learning. The most prevalent strategies are to actively collect trajectories by interacting2
with the environment during online training or training on offline datasets. At first glance,3
the nature of learning task-agnostic environment dynamics makes world models a good4
candidate for effective offline training. However, the effects of online vs. offline data5
on world models and thus on the resulting task performance have not been thoroughly6
studied in the literature. In this work, we investigate both paradigms in model-based7
settings, conducting experiments on 31 different environments. First, we showcase8
that online agents outperform their offline counterparts. We identify a key challenge9
behind performance degradation of offline agents: encountering Out-Of-Distribution10
states at test time. This issue arises because, without the self-correction mechanism11
in online agents, offline datasets with limited state space coverage induce a mismatch12
between the agent’s imagination and real rollouts, compromising policy training. We13
demonstrate that this issue can be mitigated by allowing for additional online interactions14
in a fixed or adaptive schedule, restoring the performance of online training with limited15
interaction data. We also showcase that incorporating exploration data helps mitigate16
the performance degradation of offline agents. Based on our insights, we recommend17
adding exploration data when collecting large datasets, as current efforts predominantly18
focus on expert data alone.19

1 Introduction20

Online training of reinforcement learning (RL) agents enables continual adaptation through direct21
interaction with the environment. However, this approach is often impractical and less scalable in22
real-world settings due to high data collection costs, safety concerns, or hardware constraints. To23
address these limitations, offline RL methods attempt to reuse past experiences, training agents on24
pre-collected datasets without further environment interaction.25

However, offline RL is prone to performance degradation when encountering Out-Of-Distribution26
(OOD) states, leading to poor generalization and overestimation errors (Ostrovski et al., 2021; Yue27
et al., 2023; 2022). Model-based Reinforcement Learning (MBRL) offers a potential alternative by28
learning task-agnostic environment dynamics, enabling agents to train policies via model rollouts29
instead of direct environment interaction (Bruce et al., 2024). In principle, this should help mitigate30
OOD challenges by allowing for better generalization.31

Yet, recent studies have shown that MBRL is still vulnerable to OOD issues, particularly when world32
models are trained on limited offline data (Yu et al., 2020; Kidambi et al., 2020; Wang et al., 2024).33
While prior works, such as MOPO, focus on mitigating distributional shift by penalizing model34
uncertainty during policy deployment, our study takes a fundamentally different approach: rather35
than addressing OOD errors post hoc, we investigate how data diversity, dataset optimality, and online36
interaction ratios impact the robustness of world models and MBRL policies. By systematically37

Under review for RLC 2025, to be published in RLJ

PassiveTandem Active

sample

updateupdate

Environment
sampleupdate

interact

store

Active Passive Tandem Passive+Auto interact

30%
100%

Training progress

Ep
is

od
e

sc
or

e

(Expl. bonus 0.5)
Active Passive Tandem

N
or

m
al

iz
ed

 s
co

re

Remedy - Interaction

Remedy - Exploration

Environments

N
or

m
al

iz
ed

 s
co

re

Performance degradation

Average over 31 tasks

Run - Vision

#env steps

#env steps

#interactions

Active-task

a)

b) c)

d)

e)

Average over 31 tasks

Figure 1: Investigation of the performance degradation in offline agents and potential remedies. a) Illustra-
tion of Active, Passive, and Tandem agents. The Active agent is trained using online RL and is allowed to interact
with the environment. The Passive agent is trained from the full buffer of an Active agent, without performing any
additional interactions. The Tandem agent, is also trained offline, but samples batches from the Active agent’s
replay buffer in the exact same sequence. b) We conduct experiments in 31 tasks across various domains. c) Il-
lustration of the performance degradation in Passive and Tandem agents w.r.t. the Active agent. d-e) exploration
data (d) and online interaction (e) effectively mitigate performance degradation observed in offline Passive agents.

decoupling the roles of the policy and the world model, we aim to provide a deeper understanding38
of the failure modes of MBRL in offline and semi-offline settings. Our study shifts the focus from39
uncertainty-penalization techniques to data-driven solutions, offering insights into how data collection40
strategies influence the reliability and generalization of world models.41

In this work, we aim to provide an exhaustive analysis of online and offline data collection paradigms42
in an MBRL setting and address two key questions: (1) How can we best leverage offline data43
to train a robust world model and (2) what combination of data collection strategies yields44
the best performance at the lowest cost across different scenarios? We believe this is a crucial45
research direction, as analyzing these phenomena from a unified perspective across a wide range of46
environments can provide valuable insights for future dataset collection.47

We employ DreamerV3 (Hafner et al., 2023) across 31 diverse environments on well-established48
benchmarks including locomotion, manipulation, and numerous other robotic tasks. As shown in49
Fig. 1, we examine three scenarios: (1) an Active agent training tabula rasa, (2) a Tandem agent50
replaying the learning history of the Active agent in the same temporal order but with a different51
random initialization, and (3) a Passive agent with access to the Active agent’s full experience from52
the start, also with a different random initialization.53

Our key findings reveal that in a task-oriented setting, Tandem and Passive agents underperform54
compared to the Active agent, primarily due to visiting novel states during evaluation. This OOD55
tendency stems from the absence of a self-correction mechanism in offline agents, causing a mismatch56
between the agent’s imagination and real rollouts, which misguides policy training. We demonstrate57
that using offline exploration data instead of solely task-oriented data mitigates this problem and,58
surprisingly, find that expert demonstrations alone are insufficient for high performance in MBRL.59
However, we showcase that performance can be recovered with minimal environment interactions.60
Based on these results, we analyze an adaptive fine-tuning agent that can recover the Active agent’s61
performance with just 6% of environment interactions relative to its offline dataset. As a result of our62
large-scale experimental study, we suggest to everyone collecting expert demonstration data to also63
collect exploration data for sufficient state-space coverage.64

Our contributions are as follows:65

• Analysing the process behind performance degradation in offline model-based agents, along66
with several practical considerations.67

Under review for RLC 2025, to be published in RLJ

• Demonstrating the benefits of exploration data and proposing that a mixed reward function68
enhances state-space coverage in data collection, preventing performance degradation in offline69
training while maintaining strong task performance.70

• Examining world-model loss as a metric for targeted active data collection, thereby substantially71
enhancing the efficiency of offline agents with minimal additional interactions.72

2 Method73

2.1 Preliminaries74

Model-based Reinforcement Learning In this work, we consider environments that can be75
described by a partially observable Markov Decision Process (POMDP), with high-dimensional76
observations xt, which are encoded into latent representations st, state-conditioned actions at77
generated by an agent and scalar rewards rt (conditional on st and at) generated by the environment.78
In MBRL, our aim is to learn the latent transition dynamics by a world model T̂ (st+1 | st, at) and79
find an optimal policy π(at|st) maximizing the expected discounted return with discount factor γ:80

π∗ = argmax
π

E
st∼T̂ (·|st−1,at−1)

at∼π(a|st)

[∞∑
t=0

γtr(st, at)

]
. (1)

DreamerV3 We use DreamerV3 (Hafner et al., 2023), a state-of-the-art model-based RL method,81
as the base architecture in all our experiments. Based on the Recurrent State-Space Model82
(RSSM) (Hafner et al., 2018) summarized in Eq. (2), the world model predicts the latent state83
st = (ht, zt) from the previous state and action, where ht is the deterministic and zt is the stochastic84
state component. The estimated observation x̂t, reward r̂t, and continuation flag ĉt (signalling whether85
the episode has ended or not) are decoded from the latent states; given by the tuple êt = (x̂t, r̂t, ĉt).86
The policy has an actor-critic architecture, detailed in Eq. (3). Rt is the discounted return from state87
st. For the off-policy updates of DreamerV3, environment interactions are added to a replay buffer88
B = {(xt, at, rt, ct, . . .)}Nt=1, where each tuple contains the observation xt, action at, reward rt,89
continuation flag ct, and optionally other variables collected from the environment.90

Sequence model: ht = fϕ(ht−1, zt−1, at−1) Encoder: zt ∼ qϕ(zt | ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt | ht) Decoder: êt ∼ pϕ(êt | ht, zt)

(2)

91

Actor: at ∼ πθ(at | st) Critic: vψ(st) ≈ Epϕ,πθ

[
Rt

]
(3)

DreamerV3 minimizes the world model loss, which is a weighted loss of multiple components and is92
defined in the original paper (Hafner et al., 2023), as shown in Eq. (4).93

L(ϕ) .
= Eqϕ

[∑T
t=1(βdynLdyn(ϕ) + βrepLrep(ϕ) + βpredLpred(ϕ))

]
. (4)

It consists of the dynamics-based loss components given by Ldyn and Lrep, defined in Eq. (S1), as94
well as the loss Lpred from three prediction heads: observation reconstruction, reward estimation,95
and continuity prediction.96

The following three-step cycle is repeated throughout the training process of DreamerV3: (1) The97
agent interacts with the environment to collect data, adding it to its replay buffer B. Meanwhile, the98
latent states (ht, zt) are updated closed-loop using the current observation xt and are used to compute99
the action. (2) The world model is trained on a batch of sequence data uniformly sampled from the100
replay buffer using the loss function shown in Eq. (4). (3) Open-loop trajectories are generated in101
imagination by the world model to train the actor and critic networks.102

Under review for RLC 2025, to be published in RLJ

2.2 Learning Agents103

In order to investigate the online and offline training paradigms, we design three off-policy agents, as104
shown in Fig. 1, each representing a different variation of training data collection.105

Active agent is the typical RL agent in online RL. It interacts with the environment and performs106
training steps using the collected data by its own policy. An Active agent can adapt its world model107
with its own policy rollouts, which is a self-correction mechanism, enabling the agent to learn from108
its own mistakes (Ostrovski et al., 2021).109

Passive agent is trained offline without any environment interactions by uniformly sampling data110
from the final replay buffer BN of an Active agent. This gives the Passive agent access to the full data111
of the Active agent right from the start of the training process, including high-reward trajectories.112

Tandem agent is another agent trained offline, but sees the training data in the same order as the113
Active agent, i.e. the training batches bt are replayed exactly as they were sampled during the training114
of the Active agent (Ostrovski et al., 2021). The goal here is to introduce a more controlled offline115
learning setting than the Passive agent, with the only difference from the Active agent being the116
model initialization. This setup facilitates easier interpretation of the experimental results.117

The offline agents, Passive and Tandem, are initialized independently of the Active agent used for118
data collection with a different random seed. The pseudocode of the agents is in Appendix 7.1.5.119

3 Experiments120

We use DreamerV3 for all our experiments (details on hyperparameters can be found in Appendix 7.1).121
In total, we conducted 2000 experiments using 20 000 GPU hours. All agents are trained from scratch122
using task-oriented rewards unless specified otherwise.123

3.1 Environment Setup124

Our experiments are conducted in the Deepmind Control Suite (DMC) (Tunyasuvunakool et al.,125
2020; Yarats et al., 2022), Metaworld (Yu et al., 2019), and MinAtar (Young & Tian, 2019) domains,126
including a total of 31 tasks. These are representative environments for robotic locomotion, ma-127
nipulation, and discrete game tasks. The environment settings mainly follow the default settings128
in Hafner et al. (2023). The results for all individual experiments and detailed setups are provided129
in the Appendix 7.7 and Appendix 7.1. Whether state or image observations are used is indicated130
alongside the task name as “proprio” or “vision” respectively. We run 1 million environment steps per131
task, training every second step, with results averaged across three seeds unless stated otherwise. For132
the Passive and Tandem agents, we keep the same total number of environment and training steps as133
the Active agent to ensure consistency and comparability; however, without collecting any interaction134
data, as explained in Appendix 7.1.4.135

3.2 Metrics for Analysis136

World model loss The mean error of the world model for the prediction of dynamics, observation,137
reward, and continuity (Sec. 2.1). It is an indicator of the total aleatoric and epistemic model138
uncertainty and can serve as a simple OOD measure (Yu et al., 2020; Chen et al., 2023).139

Episode score The undiscounted sum of rewards over the episode.140

The metrics shown in all figures are calculated as follows, unless specified otherwise: (1) Every 5K141
environment steps, we roll out the agent’s policy for a total of 4 episodes. (2) We compute the mean142
episode score and the mean world model loss across the 4 episodes. Each agent is evaluated in an143
on-policy manner on its own test-time trajectories. The data distributions of visited states are thus144
conditioned on the policy and are different for individual agents.145

Under review for RLC 2025, to be published in RLJ

2000

1500

1000

500

0

8

10

12

14

(a) (b) (c) (d)Active Passive Tandem

Ep
is

od
e

sc
or

e

Vi
si

ta
tio

n
Fr

eq
ue

nc
y

W
or

ld
 M

od
el

 L
os

s

Active Passive
Tandem

Figure 2: Example of the degraded performance during offline training in 2D point mass maze environment.
The task is to move the yellow point mass from the top-left initial position to the red marker in the bottom-right
of the maze, which is the goal position. The episode score of each agent is shown in (a). In (b-d), we show
the point mass trajectory generated by the final model after 1M environment steps. The two heatmaps on the
trajectory represent: 1) a count-based frequency of each covered cell that is visited in the replay buffer and 2)
world model loss on each visited state. The median visitation frequency along the shown trajectory is 608.5 for
Active, 12.5 for Passive, and 9.0 for Tandem.

3.3 Toy Example146

We first study the performance of all learning agents in a toy environment. We select the point mass147
maze environment in DMC, where an actuated 2-DoF point mass has to reach the red goal position,148
as shown in Fig. 2. The results show that only the Active agent successfully solves the task, while149
both agents trained offline fail, showing degraded performance compared to the Active agent.150

Hypothesis: Lack of self-correction causes OOD errors The policy in DreamerV3 is trained151
purely in the imagination of the world model. As a result, the policy can learn to exploit inaccuracies152
in the imagination. The Active agent continuously collects data from regions where the world model153
could be unreliable, specifically for regions where the world model predicts a high reward and,154
therefore, the policy is likely to visit. Training the world model on the collected data from these155
regions helps to improve the world model in a targeted manner with respect to the current Active156
agent’s policy. This not only helps to improve the policy to solve the task but also makes the world157
model adapt to the agent’s policy rollouts, ensuring sufficient data coverage around its self-rollouts.158
Consequently, the agent is unlikely to encounter novel states when rolling out the policy during159
evaluation.160

The agents trained offline lack this critical feedback loop of self-correction. Although the overall161
training data distribution is the same as the Active agent, differences in sampling sequences (Passive)162
and/or model initializations (Passive and Tandem) lead to distinct policies during training. To163
effectively improve these policies, the training data generated from the world model’s imagination164
should closely match real rollout performance. However, without self-correction and constrained165
by data coverage tailored to another agent’s policy, the imagination of this limited-capability world166
model fails to align with real rollouts under its own policy, leading to a persistent discrepancy between167
imagination and reality in offline training. Consequently, the policy will exploit these inaccuracies168
during training and be updated blindly to eventually steer the agent toward novel, unvisited areas.169
During test time, visiting novel states can lead to world model prediction errors and, therefore,170
suboptimal policy actions. It creates a catastrophic cycle where each compromised action leads to171
further novel states and additional inaccuracies in the world model until the episode ends or the agent172
accidentally re-enters into a familiar state.173

We observe this behavior in the performance of the three agents as shown in Fig. 2. The Active174
agent learned to adapt its world model to its own rollouts; therefore, it did not meet any novel states175

Under review for RLC 2025, to be published in RLJ

Active Passive Tandem
Figure 3: Episode score and world model loss during evaluation rollouts of 4 selected tasks. The first two
are from DMC and the last two are from the Metaworld domain. The performance degradation of offline agents,
including Passive and Tandem, is common across domains and tasks, especially for Tandem agents.

when rolling out the policy for evaluation, as shown by the consistent low world model loss and176
high visitation frequencies alongside its trajectory. However, this is not the case for the Passive and177
Tandem agents. From the start, their policies seem to behave anomalously, guiding them towards a178
suboptimal direction even in the regions familiar to the world model. Since the task-oriented dataset179
has limited state-space coverage, they inevitably visit novel states, and their mistakes are catastrophic.180
As a result, both the Passive and Tandem agents cannot recover and end up in OOD states until the181
end of the episode, failing to solve the task.182

To summarize, self-correction ensures sufficient data coverage related to the agent’s policy183
rollouts, thereby 1) preventing OOD errors and 2) facilitating policy training by reducing gaps184
between imaginations and real rollouts. Without self-correction, imagination gaps compromise policy185
training and push offline agents toward OOD states, where they become trapped in a catastrophic186
cycle that leads to further performance degradation.187

Our hypothesis is generally in line with previous research in model-free RL (Ostrovski et al., 2021;188
Yue et al., 2023; Emedom-Nnamdi et al., 2023; Kumar et al., 2020b) , which attributes performance189
degradation to extrapolation errors in Q-values in OOD state-action pairs during training and190
evaluation. However, in the context of MBRL, the paradigm is shifted from a focus on Q-functions191
to the coupling of a world model and a policy network.192

3.4 Validation across Tasks193

The performance degradation phenomenon in offline agents is observed across various tasks and do-194
mains, as shown in Fig. 3 and Appendix 7.7.2. In tasks such as Quadruped Run - Vision and Pick-Place195
- Proprio, the Passive agent initially demonstrates a faster increase in performance but has a larger196
variance or even experiences performance drops as training progresses. The degraded performance in197
Passive and Tandem agents is accompanied by a significantly larger world model loss on evaluation198
episodes than the Active agent. Given that a high world model loss indicates novel states, this observa-199
tion supports our hypothesis in Sec. 3.3. The discrepancy between imagined and real rollouts in offline200
agents is shown in Appendix 7.4. Our detailed inspections on a timestep level in Appendix 7.5.1201
further validate our hypothesis of the catastrophic cycle during testing. Fig. 3 also shows a potential202
advantage of Passive agents: faster convergence by having access to high reward trajectories from the203
start of training (validated in Appendix 7.6), though additional measures may be necessary to ensure204
training stability. The results of Tandem agents also follow the findings of degraded performance205
of the Tandem training regime in Ostrovski et al. (2021) and extend its validity to MBRL.206

3.5 Deep Dive into Performance Degradation207

3.5.1 OOD in MBRL208

Both world model and policy affect performance degradation To decouple the effect of the world209
model and the policy on the performance degradation, we carry out a more controlled experiment210

Under review for RLC 2025, to be published in RLJ

Active Tandem Tandem_sameWM
Passive Passive_sameWM(frozen)

Figure 4: Performance comparison when keeping an equivalent world model in Passive or Tandem agents
to the one of the Active agent throughout training. Despite utilizing the same world model during training,
performance degradation still occurs, albeit to varying degrees.

as shown in Fig. 4. In this setup, the Tandem agent’s world model replicates that of the Active agent211
precisely at each training step, which is referred to as Tandem_sameWM. For Passive agents, we212
keep using the final world model from their Active counterpart for the remainder of training, which213
is named Passive_sameWM(frozen).214

After isolating the effect of different world models, we observe that the degradation still persists215
although the extent of it varies across tasks. In tasks such as Hopper Hop - Proprio, the performance216
degradation of the Tandem_sameWM agent is minimal, while it remains significant in others like217
Quadruped - Proprio. A similar trend appears in Passive_sameWM(frozen) agents. These findings218
suggest that deviations in both the world model and policy from the Active agent contribute to219
performance degradation, with their relative impacts depending on the specific task.220

What is the difference to supervised learning? In classical supervised learning, a model is221
optimized on an offline dataset, e.g., for image classification. Training on independent and identically222
distributed data from different random initializations typically yields similar performance, showing223
robustness to initialization. Why is this not the case in the MBRL setting, where Tandem agents per-224
form worse than Active agents, despite one expecting the world model to perform equally well across225
seeds given the same data? This is because offline trained agents will cause states to be visited during226
policy optimization that are not collected by the Active agent, leading to OOD queries to the model.227

3.5.2 World model loss is a pessimistic indicator of performance degradation228

Figure 5: Performance comparison of
Active, Passive as well as Passive agents
trained on expert, suboptimal, and
mixed data, which is implemented by
splitting the replay buffer of the Active
agent in different ways.

The world model loss is due to prediction errors arising from229
both epistemic and aleatoric uncertainty. Novel states lead230
to high variance predictions due to epistemic uncertainty231
induced by insufficient state space coverage during training.232
Overlaid are errors due to partial observability and environ-233
ment stochasticity. In particular, the latter factors can lead to234
high model loss without significant impacts on performance,235
depending on whether exact predictions are required for the236
task at hand.237

In addition, even when the agent is in novel states, other fac-238
tors, e.g. environment constraints, and the policy producing239
correct actions by coincidence in hallucinations of the world240
model, can reduce the impact of a poorly performing world241
model on agent performance. Therefore, the world model242
loss is a pessimistic indicator of performance degradation.243

Under review for RLC 2025, to be published in RLJ

3.5.3 Expert data alone exacerbates OOD issues244

Expert data is commonly used in offline learning, but compared to data collected by the Active agent,245
its coverage is more limited to task-specific trajectories, typically capturing only certain ways of246
solving the task. As a result, states are more likely to be OOD for the world model, resulting in even247
worse task performance, as shown in Fig. 5, where we treat the second half of the buffer as expert248
data. As expected, the world model loss evaluated on test-time trajectories is significantly larger than249
for other agents with suboptimal or mixed data. For more details, see Appendix 7.6.250

3.5.4 Considerations in Practical Applications251

In further experiments, we find that initializing the Passive agents’ weights identically to the Active252
agents’ does not improve task performance. In contrast, even minor differences in the model253
initialization of Tandem agents compared to Active agents leads to degraded performance, reflecting254
the chaotic training dynamics of gradient-based optimization. See Appendix 7.6 for more details.255

4 Potential Remedies from a Data Perspective256

Based on the previous analysis, we conclude that insufficient state coverage during training of257
Passive and Tandem agents leads to worse model performance, which results in visiting OOD states258
during evaluation. To address this, we propose two strategies for effective agent training with offline259
datasets: training on an exploration dataset and (adaptively) incorporating self-generated data.260

4.1 Training on Exploration Data261

We investigate how training on exploration data affects the performance of Active, Passive and Tandem262
agents. Here, we use Plan2Explore (Sekar et al., 2020), where the objective is to maximize the263
information gain of the world model. The exploration reward is calculated as ensemble disagreement,264
denoted by rdisag. We investigate exploration in two modes: 1) pure exploration in a task-free setting,265
i.e. agent only maximizes for rdisag, 2) a mixed reward setting, where rdisag is added as an exploration266
bonus on top of the task reward:267

rt
.
= wtask · rtask + wexpl · rdisag, (5)

where wtask and wexpl weights are normalized such that they sum up to 1.268

For agents trained offline, exploration data in the training set can provide a larger state-space coverage,269
which can counteract the missing self-correction mechanisms of an active agent. Fig. 6 demonstrates270
how task-oriented data is narrower compared to exploration data. The addition of exploration data271
becomes crucial in alleviating the OOD challenge during evaluation, as validated in Fig. 7, where the272
training data is gathered by an Active agent based on pure exploration rewards rdisag. As a result, the273

Vi
si

ta
tio

n
Fr

eq
ue

nc
y2000

1500

1000

500

0

(a) (b) (d) Pure Exploration Reward(c)Pure Task Reward Mixed RewardPoint Mass Maze - Vision

Figure 6: State visitation in the Point Mass Maze task. They are calculated using the discretized states from
three different Active agents’ final replay buffers after 1M environment steps. (b) Agent in a pure task-oriented
setting. (c) Agent with pure exploration rewards based on ensemble disagreement (Sekar et al., 2020). (d) Agent
with a mixed reward: task plus exploration rewards, see Eq. (5) with wexpl = 0.5. The unvisited areas are
painted gray, and the outliers that have extremely high values are painted dark red. Here the task-oriented agent
only explores limited state space in the map and always follows certain routes towards the goal position, while
the two explorative agents visit all the regions much more equally.

Under review for RLC 2025, to be published in RLJ

Active-expl.Active-task (final) Passive-expl. Tandem-expl.

Figure 7: Performance comparison when training on pure exploration data. The dataset is generated by the
Active-expl. agent with a behavioral policy based on ensemble disagreement (Sekar et al., 2020). We additionally
show the baseline performance of a task-oriented Active agent.

Active Passive Tandem

Expl. bonus 0.0 Expl. bonus 0.1 Expl. bonus 0.5 Expl. bonus 0.9 Expl. bonus 1.0

Figure 8: Training on pure exploration data is not optimal. Performance comparison when assigning different
exploration bonuses wexpl in the reward function. The black dashed lines represent pure task-oriented policy
without any exploration bonus.

Passive agents consistently outperform the Active, and the performance of the Tandem agents matches274
their Active counterparts. Furthermore, the relationship between task performance and world model275
loss generally also matches the findings in Sec. 3.4. However, some cases in Appendix 7.7.4 indicate276
that world model loss can occasionally be less predictive of task performance. This inconsistency277
arises as novel regions for the world model shrink with exploration data, leading to lower world model278
losses. In addition, the pure exploration dataset contains numerous trajectories irrelevant to the task,279
reducing the world model’s accuracy in task-specific states and preventing the effective learning of the280
task policy. Consequently, task performance becomes increasingly dependent on the task difficulty.281
For example, in two challenging tasks – Quadruped Run - Vision and Pick-Place - Proprio – their282
overall performance is significantly lower than that of the task-oriented version, as shown in Fig. 7.283

To this end, we investigate the mixed reward setting, where we add the exploration reward as a284
bonus, as defined in Eq. (5). This approach allows a more concentrated exploration near the goal,285
as shown in Fig. 6, preventing the excessive exploration of irrelevant areas that could arise from a286
purely explorative dataset.287

Indeed, in Fig. 8, we show that pure exploration is hardly the best option for the hard tasks like288
Quadruped Run - Vision. The addition of an exploration bonus e.g. wexpl = 0.5 together with task289
rewards in Quadruped Run - Vision can lead to an improved task performance compared to runs with290
pure task rewards, especially in Passive agents. A downside of this approach is the introduction of291
the hyperparameter wexpl, the optimal value of which can depend on the specific task as shown in our292
experiments in Appendix 7.7.1.293

4.2 Adding Additional Self-generated Data294

We have demonstrated the critical importance of self-correction. However, as training solely on295
interaction data is expensive, and offline data is often cheaply available; we would like to explore296
how one can most effectively combine fixed offline data with online interaction data. To analyze297
this interplay, we first examine a strategy that uses a predetermined schedule for the Passive agent to298
interact with its environment.299

Under review for RLC 2025, to be published in RLJ

Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure 9: Performance comparison when allowing adding additional self-generated data for Passive agents.
The Passive+Auto interact agent adds 6.5% self-generated data in Cheetah Run - Vision, 2.9% in Quadruped
Run - Vision, 9.8% in Pick-Place - Proprio, and 0.5% in Spaceinvaders. The percentage is calculated w.r.t. to the
size of the final replay buffer of Active agents.

Specifically, for every N environment steps, the Passive agent is allowed to collect 2K-step transitions300
based on its learned policy. Then the interactive data will be added to expand the replay buffer for301
later sampling during world model training as usual. By choosing a different N , we can adjust the302
frequency of interactive data injection. Experiments were conducted with N set to 4K, 20K, and303
200K, respectively corresponding to 50%, 10%, and 1% self-generated data. The results are shown in304
Fig. 9. Accordingly, merely 10% additional self-generated data can already result in a significant305
improvement in the episode score as well as a notable reduction in the world model loss, recovering306
the performance of its Active counterpart. In certain environments, such as the Spaceinvaders from307
the MinAtar domain, the Passive agents may already solve the task and have a faster convergence308
than the Active one; therefore, self-generated data provides no performance increase.309

Adaptive interaction Upon examining the results with a fixed schedule, we see that interaction310
ratios to restore agents’ performance vary across tasks. Therefore, we analyze an adaptive interaction311
schedule based on the insights of OOD states causing degenerate performance. We calculate a ratio by312
dividing the world model loss on evaluation trajectories by the loss on trajectories in the replay buffer.313
This ratio measures the novelty of the trajectories visited by the current learned policy compared to314
those seen during training and enables a single threshold for adding self-generated data across tasks.315

We set the threshold for the OOD ratio to 1.35 (see the ablation study in Appendix 7.1.6) and316
inspect it every 5K environment steps over 4 evaluation episodes. If the OOD ratio exceeds this317
threshold, the Passive agent collects 2K-step transitions from the environment using its learned policy,318
denoted as Passive+Auto interact (refer to Appendix 7.1.5 for the agent’s pseudocode). As shown in319
Fig. 9, this strategy fine-tunes self-generated data injection based on task demands, achieving similar320
performance with less data (5.67% across 31 tasks) compared to an agent that regularly adds 10%321
self-generated data. The inspection frequency can be reduced to lower evaluation costs. For more322
results, see Appendix 7.7.3. A complete offline evaluation would be desirable, but is outside the323
scope of this paper. We hope to inspire research in this direction.324

5 Related Work325

Performance Degradation in Offline Model-based Agents Performance degradation of offline326
agents is a known phenomenon in MBRL (He, 2023) and is mainly attributed to two factors:327

1) The distribution mismatch between training data and the states visited by the learned328
policy (Kidambi et al., 2020; Chen et al., 2023; Yu et al., 2020; Cang et al., 2021). These inaccuracies329
in the world model within unseen regions are then exacerbated by compounding errors in multi-step330

Under review for RLC 2025, to be published in RLJ

predictions (Asadi et al., 2019; Janner et al., 2019). These accumulated errors in the model-based331
imagination process based on OOD queries can mislead both policy training (Wang et al., 2024) and332
planning by overestimation in critics (Sims et al., 2024), ultimately resulting in a performance drop.333

2) The inability of offline agents to self-correct through active data collection (He, 2023; Cang334
et al., 2021; Yu et al., 2020). Prior works on offline agents (Ostrovski et al., 2021; Tang et al., 2024;335
Emedom-Nnamdi et al., 2023; Lin et al., 2024) have shown that utilizing data from interactions with336
the environment introduces a corrective feedback loop (Kumar et al., 2020a), allowing the agent to337
learn from its own mistakes and consequently improve its task performance.338

Building on existing studies, we explore phenomena across various tasks and domains in model-based339
RL using DreamerV3. Additionally, we investigate the conditions (e.g. the nature and quality of the340
dataset) that exacerbate distribution mismatches and model inaccuracies.341

Remedies to Support Offline Training To address performance degradation in offline model-342
based agents, many studies add conservatism to their algorithms. One method is to include an343
uncertainty penalty in the reward function to deter the agent from exploring new states (Kidambi344
et al., 2020; Yu et al., 2020; 2021; Wang et al., 2024), while another employs trust-region updates345
to maintain the learned policy’s proximity to the data collection policy (Matsushima et al., 2021).346
RAMBO (Rigter et al., 2022) trains an adversarial environment model that generates pessimistic347
transitions for OOD state-action pairs, reducing the value function in uncertain regions. In contrast,348
MAPLE (Chen et al., 2023) enables adaptive agent behavior in OOD regions during deployment,349
using a context-aware policy based on meta-learning techniques.350

While these methods provide insights on mitigating performance degradation in offline MBRL, few351
address which type of data best facilitates offline training. In model-free RL, studies suggest adding352
self-generated data (Ostrovski et al., 2021; Lee et al., 2021) and emphasize the importance of diversity353
and exploration (Mediratta et al., 2024; Suau et al., 2023; Kanitscheider et al., 2021; Kim et al., 2023).354
We extend these ideas to model-based RL with validation in various tasks and domains.355

6 Conclusions and Discussions356

In this work, we show that visiting novel states during evaluation is the key factor behind the357
degradation of the performance of offline model-based agents through a wide range of experiments358
across various domains. From a data perspective, we identify that training on partially exploratory359
data collected using a mixed task-exploration reward function is effective in mitigating performance360
degradation. Importantly, training offline solely on expert data exacerbates performance degradation361
compared to a typical mixed dataset due to severe OOD issues. Additionally, our experiments show362
that adding as little as 10% self-generated data at regular intervals can significantly enhance the363
performance of Passive agents. When we allow the Passive agent to adaptively interact based on its364
world-model loss as a proxy measure of OOD state visitation, we observe a significant performance365
improvement while minimizing the need for additional interaction data. However, our method still366
requires evaluation rollouts. An offline measure would be desirable and is left for future research.367

Overall, we highlight the importance of sufficient state-space coverage in the training data to train368
a robust model-based agent, which can be achieved either by an explorative offline dataset or by369
enabling the agent to learn from its own mistakes. As efforts to collect large-scale real-world data370
for robotics are increasing, the question arises: What is the best way to collect data to facilitate371
robust agent training? As model-based RL shows strong task performance and promises efficient372
fine-tuning and good transfer capabilities for new tasks, we suggest that dataset collection should373
incorporate exploration data. We plan to extend our experiments to other RL methods and real-world374
scenarios to identify optimal data collection strategies. We believe that our insights can help design375
a data-efficient fine-tuning method for robotics foundation models. This will help develop more376
resilient and adaptable agents capable of performing reliably in complex environments.377

Under review for RLC 2025, to be published in RLJ

References378

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the379
compounding-error problem with a multi-step model, 2019. URL https://arxiv.org/380
abs/1905.13320.381

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,382
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative383
interactive environments. In Forty-first International Conference on Machine Learning, 2024.384

Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, and Michael Laskin. Behavioral priors and385
dynamics models: Improving performance and domain transfer in offline rl, 2021. URL https:386
//arxiv.org/abs/2106.09119.387

Xiong-Hui Chen, Fan-Ming Luo, Yang Yu, Qingyang Li, Zhiwei Qin, Wenjie Shang, and Jieping388
Ye. Offline model-based adaptable policy learning for decision-making in out-of-support regions.389
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12):15260–15274, 2023.390
DOI: 10.1109/TPAMI.2023.3317131.391

Patrick Emedom-Nnamdi, Abram L. Friesen, Bobak Shahriari, Nando de Freitas, and Matt W.392
Hoffman. Knowledge transfer from teachers to learners in growing-batch reinforcement learning.393
In International Conference on Learning Representations (ICLR) – Reincarnating RL Workshop,394
2023.395

Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad396
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized397
behavior value estimation, 2021. URL https://arxiv.org/abs/2103.09575.398

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James399
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,400
2018.401

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains402
through world models. arXiv preprint arXiv:2301.04104, 2023.403

Haoyang He. A survey on offline model-based reinforcement learning, 2023. URL https://404
arxiv.org/abs/2305.03360.405

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based406
policy optimization. In Advances in Neural Information Processing Systems, volume 32. Cur-407
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/408
paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf.409

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton, Raul410
Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, Oleg Klimov, and Jeff Clune.411
Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft, 2021.412
URL https://arxiv.org/abs/2106.14876.413

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:414
Model-based offline reinforcement learning. In Advances in Neural Information Pro-415
cessing Systems, volume 33, pp. 21810–21823. Curran Associates, Inc., 2020. URL416
https://proceedings.neurips.cc/paper_files/paper/2020/file/417
f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.418

Hyun Kim, Injun Park, Ingook Jang, Seonghyun Kim, Samyeul Noh, and Joonmyon Cho. Exploring419
generalization and adaptability of offline reinforcement learning for robot manipulation. In 2023420
23rd International Conference on Control, Automation and Systems (ICCAS), pp. 1542–1547,421
2023. DOI: 10.23919/ICCAS59377.2023.10316902.422

https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/2106.09119
https://arxiv.org/abs/2106.09119
https://arxiv.org/abs/2106.09119
https://arxiv.org/abs/2103.09575
https://arxiv.org/abs/2305.03360
https://arxiv.org/abs/2305.03360
https://arxiv.org/abs/2305.03360
https://proceedings.neurips.cc/paper_files/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://arxiv.org/abs/2106.14876
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf

Under review for RLC 2025, to be published in RLJ

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback423
in reinforcement learning via distribution correction. In Advances in Neural Infor-424
mation Processing Systems, volume 33, pp. 18560–18572. Curran Associates, Inc.,425
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/426
file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf.427

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline428
reinforcement learning. In 34th Conference on Neural Information Processing Systems (NeurIPS429
2020), Vancouver, Canada, 2020b.430

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-431
learning on diverse multi-task data both scales and generalizes. In The Eleventh International432
Conference on Learning Representations, 2022.433

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online434
reinforcement learning via balanced replay and pessimistic q-ensemble. In 5th Annual Conference435
on Robot Learning, 2021. URL https://openreview.net/forum?id=AlJXhEI6J5W.436

Zhixuan Lin, Pierluca D’Oro, Evgenii Nikishin, and Aaron Courville. The curse of diversity in437
ensemble-based exploration. In The Twelfth International Conference on Learning Representations,438
2024. URL https://openreview.net/forum?id=M3QXCOTTk4.439

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-440
efficient reinforcement learning via model-based offline optimization. In International Confer-441
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=442
3hGNqpI4WS.443

Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline444
reinforcement learning. In The Twelfth International Conference on Learning Representations,445
2024. URL https://openreview.net/forum?id=3w6xuXDOdY.446

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep447
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,448
2021.449

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-450
based offline reinforcement learning. In Advances in Neural Information Process-451
ing Systems, volume 35, pp. 16082–16097. Curran Associates, Inc., 2022. URL452
https://proceedings.neurips.cc/paper_files/paper/2022/file/453
6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf.454

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.455
Planning to explore via self-supervised world models. In International conference on machine456
learning, pp. 8583–8592. PMLR, 2020.457

Anya Sims, Cong Lu, and Yee Whye Teh. The edge-of-reach problem in offline model-based458
reinforcement learning. CoRR, abs/2402.12527, 2024. DOI: 10.48550/ARXIV.2402.12527. URL459
https://doi.org/10.48550/arXiv.2402.12527.460

Miguel Suau, Matthijs T. J. Spaan, and Frans A. Oliehoek. Bad habits: Policy confounding and461
out-of-trajectory generalization in rl. CoRR, 2023. URL https://doi.org/10.48550/462
arXiv.2306.02419.463

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,464
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, and Will Dabney. Understanding465
the performance gap between online and offline alignment algorithms, 2024. URL https:466
//arxiv.org/abs/2405.08448.467

https://proceedings.neurips.cc/paper_files/paper/2020/file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf
https://openreview.net/forum?id=AlJXhEI6J5W
https://openreview.net/forum?id=M3QXCOTTk4
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3w6xuXDOdY
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2402.12527
https://doi.org/10.48550/arXiv.2306.02419
https://doi.org/10.48550/arXiv.2306.02419
https://doi.org/10.48550/arXiv.2306.02419
https://arxiv.org/abs/2405.08448
https://arxiv.org/abs/2405.08448
https://arxiv.org/abs/2405.08448

Under review for RLC 2025, to be published in RLJ

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom468
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for469
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. DOI: https://doi.470
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/471
article/pii/S2665963820300099.472

Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu,473
and Furong Huang. Coplanner: Plan to roll out conservatively but to explore optimistically for474
model-based rl. In International Conference on Learning Representations, 2024.475

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,476
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline477
reinforcement learning, 2022. URL https://arxiv.org/abs/2201.13425.478

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible479
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.480

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey481
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.482
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.483
10897.484

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea485
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances486
in Neural Information Processing Systems, volume 33, pp. 14129–14142. Curran Asso-487
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/488
2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf.489

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea490
Finn. Combo: Conservative offline model-based policy optimization. In Advances in Neu-491
ral Information Processing Systems, volume 34, pp. 28954–28967. Curran Associates, Inc.,492
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/493
file/f29a179746902e331572c483c45e5086-Paper.pdf.494

Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng YAN. Boosting495
offline reinforcement learning via data rebalancing. In 3rd Offline RL Workshop: Offline RL as a496

”Launchpad”, 2022. URL https://openreview.net/forum?id=vOC01fqW2T.497

Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and better498
resolving q-value divergence in offline-RL. In Thirty-seventh Conference on Neural Information499
Processing Systems, 2023. URL https://openreview.net/forum?id=71P7ugOGCV.500

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/2201.13425
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://openreview.net/forum?id=vOC01fqW2T
https://openreview.net/forum?id=71P7ugOGCV

Under review for RLC 2025, to be published in RLJ

Supplementary Materials501

The following content was not necessarily subject to peer review.502
503

7 Appendix504

7.1 Implementation Details505

7.1.1 Runtime Overview506

Our experiments comprised approximately 2000 runs, totaling 20000 GPU hours. Each run took507
between 8 and 15 hours, depending on the specific task. All experiments were conducted using508
NVIDIA RTX 4090 or A100 GPUs.509

7.1.2 Model Hyperparameters510

For all experiments, we use the same model size S, defined in Hafner et al. (2023). Each agent, which511
consists of a world model, an actor network, and a critic network, has a total of 18M optimizable512
variables. We follow the default values in Hafner et al. (2023) for the training hyperparameters e.g.513
learning rate and batch size for each component of the agent as well as other hyperparameters. For514
more details about DreamerV3, please refer to Hafner et al. (2023).515

7.1.3 Environment Hyperparameters516

We list the environment hyperparameters in Tab. S1. The implementation of the task Point Mass517
Maze is based on Yarats et al. (2022).

Table S1: Environment hyperparameters for each domain

Hyperparameter DMC Metaworld MinAtar

Image Size [64,64] [64,64] [32,32]
Action Repeat 2 2 1

Episode Truncate - - 2500
Parallel Env Num 4 4 4

518

7.1.4 Environment Steps in Offline Agents519

Tracking performance metrics relative to environment steps during online training is standard practice520
in the RL community. This methodology is also applied in the analysis of the offline Tandem agent521
in Ostrovski et al. (2021), which closely mirrors the behavior of its Active counterpart.522

However, the Passive agent—by definition—does not interact with the environment and thus cannot523
influence environment steps. This poses a challenge for directly comparing its performance with that524
of the Active and Tandem agents. To ensure comparability across training procedures, we allow the525
Passive agent to interact with the environment during training in the same manner as an online agent,526
but without adding the resulting interaction data into its replay buffer. This setup enables the Passive527
agent to remain trained solely on an offline dataset while allowing performance comparisons based528
on environment steps, with only minimal code changes required.529

7.1.5 Pseudocode of methods530

We add the pseudocode of the Active, Passive, and Tandem agents (in Alg. 1) as well as the second531
remedy (in Alg. 2) for better clarity.532

Under review for RLC 2025, to be published in RLJ

Algorithm 1 Learning agents (key difference is highlighted in its representative colors).

Active Agent
1: Initialize: Replay buffer B

= a few random episodes.
2: World model M + Policy π

by seed SA.
3: for each step i do
4: Sample Di

A ∼ B
5: Update M using Di

A

6: Train π in the imagina-
tion of M

7: Execute π in the env to
expand B

8: Return: Final BA, π

Passive Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di

P ∼ B
5: Update M using Di

P

6: Train π in the imagina-
tion of M
-
-

7: Return: Final B, π

Tandem Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed ST .
3: for each step i do
4: Copy Di

T =Di
A

5: Update M using Di
T

6: Train π in the imagina-
tion of M
-
-

7: Return: Final B, π

Algorithm 2 Passive agents adding additional self-generated data (key difference is highlighted in its
representative colors)

Passive Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M
-
-
-
-

7: Return: Final B, π

Fixed Schedule
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M

7: if i%N == 0 then
// N = 4K, 20K, 200K

8: Execute π in the env to
expand B by 2K step data

9: Return: Final B, π

Adaptive Schedule
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M

7: if i%2K == 0 and
ood_ratioi > thres. then

8: Execute π in the env to
expand B by 2K step data

9: Return: Final B, π

7.1.6 Ablation Studies533

We test different threshold values used in adaptive Passive agents for autonomously adding self-534
generated interaction data. In Fig. S13, we observe that the majority OOD ratio in Active agents535
reaches below 2.0 during training. Therefore, we begin with an upper bound threshold value of 2.0536
and test four values: 2.0, 1.65, 1.35, and 1.2. It is important to note that this upper bound serves537
solely as a reference point for initiating the ablation studies and does not imply any dependence538
of the OOD_ratio on the performance of the Active agent. In Fig. S1, we show that although a539
lower threshold value (e.g. 1.2) could bring more self-generated data (about 10% average) to the540
replay buffer, the improvement in performance is not significant compared to other higher values.541
However, a high threshold value (e.g. 2.0 or 1.65) makes the training process less stable, as shown542
in the relatively low normalized mean score and an increasing tendency of OOD ratio from step543
800K, compared to lower threshold values. But generally, the sensitivity of this threshold value to544
performance is low. One can set a low threshold value if the training budget allows. In the main545
experiments, we choose a middle threshold value of 1.35, which balances the number of added546
interaction data and stable performance.547

Under review for RLC 2025, to be published in RLJ

Passive+Auto interact 1.65
Passive+Auto interact 2.0Passive+Auto interact 1.35

Passive+Auto interact 1.2

Figure S1: Ablation studies on threshold value for adaptive Passive agents. We test four threshold values:
2.0, 1.65, 1.35, and 1.2 in three tasks. The last column shows a normalized mean across tasks. The number of
added steps in the third row is shown as a percentage of the original replay buffer size.

7.2 Supplementary of DreamerV3548

The computation of each component in the world model loss:549

Lpred(ϕ)
.
= − ln pϕ(xt | zt, ht)− ln pϕ(rt | zt, ht)− ln pϕ(ct | zt, ht)

Ldyn(ϕ)
.
= max

(
1,KL

[
sg(qϕ(zt | ht, xt))

∥∥ pϕ(ẑt | ht)
])

Lrep(ϕ)
.
= max

(
1,KL

[
qϕ(zt | ht, xt)

∥∥ sg(pϕ(ẑt | ht))
]) (S1)

7.3 Additional Metrics550

Policy input reconstruction loss We train an autoencoder functioning as an OOD detector for551
the policy inputs. The autoencoder is optimized to minimize the negative log-likelihood (Eq. S2) to552
reconstruct the policy input. Novel policy inputs, that may compromise the quality of output actions,553
can be detected using the Mean Squared Error (MSE) reconstruction loss. A higher MSE indicates554
that the input is likely novel or anomalous, suggesting the input differs significantly from the training555
distribution and could lead to an unreliable policy action.556

Lrecon(ϕ)
.
= − ln pϕ(zt, ht | encoder(zt, ht)) (S2)

Value function The expected discounted return—the cumulative sum of future rewards, as shown557
in Eq. (1).558

The additional metrics are calculated as follows unless specified otherwise: (1) Every 5K environment559
steps, we roll out the agent’s policy for a total of 4 episodes. (2) We compute the policy input560
reconstruction loss across the 4 episodes. For the value function, we calculate it at the initial state of561
each episode trajectory and then average these values across the 4 episodes.562

7.4 Discrepancy between Imagination and Real Rollouts563

As outlined in Sec. 2.1, the agent’s policy utilizes an actor-critic framework, with the critic predicting564
the value function V (s) for each given state. Since the critic is trained in the imagination of the world565

Under review for RLC 2025, to be published in RLJ

G
ro

un
dt

ru
th

Es
tim

at
io

n
Er

ro
r

Active Passive Tandem

Figure S2: Value function estimation of each agent. The value function V (s) is calculated on the initial state
of each agent’s trajectory, which should reflect the actual discounted rewards accumulated across the entire
trajectory. The ground truth value is computed using Monte Carlo estimation from one sample trajectory. The
error is computed by subtracting the ground truth value from the estimated value.

model and will subsequently be used to train the actor, it is essential that its value estimates accurately566
reflect the agent’s real rollout conditions. If the actual rollout performs poorly, a correctly low-value567
estimate from the critic can guide the actor’s updates in a direction that improves performance.568
However, in Fig. S2, we show that both Passive and Tandem agents consistently wrongly predict569
their value functions, assigning high values even when their actual trajectories yield low rewards.570
Throughout training, the value function estimation error for these offline agents remains significantly571
higher than that of the Active agent, showing consistent statistical differences across time scales. This572
finding highlights that, without the self-correction mechanism, offline agents exhibit a substantial573
discrepancy between imagined and real rollouts, evident in the differences between estimated and574
ground truth value functions. This misalignment can lead to suboptimal actor updates, ultimately575
resulting in unstable or degraded performance.576

7.5 Per-step Analysis of Performance Degradation577

7.5.1 Impact of Novel States during Evaluation578

Novel states disrupt world model output and therefore agent performance during evaluation.579
After the agent enters into novel states, the world model will output inaccurate estimations and latent580
embeddings. Since the policy network relies on these inaccurate latent states as input, this can start581
the catastrophic cycle where each compromised action leads to further novel states and additional582
inaccuracies until the episode ends or the agent accidentally re-enters into a familiar state. In Fig. S3,583
we provide for two test times trajectories the reward, world model loss, and policy reconstruction loss584
across two tasks. A low task reward is typically accompanied by a high world model loss. A high585
world model loss typically indicates a high policy input reconstruction loss, meaning the policy is586
unfamiliar with such inputs, leading to compromised actions. For task (a) Point Mass Maze - Vision,587
the agent never returns to a familiar region once it hits a wall. Similarly, in the task (b) Cheetah Run588
- Vision, the Passive and Tandem agents turning over also reaches such OOD states; however, the589
Passive agent can recover from the OOD state - the task setting and the environment dynamics allow590
to recover more easily, temporarily ending the catastrophic cycle. This is evident from the intervals591
of successful actions between failure periods in the Passive agents.592

World model can sometimes hallucinate and mislead policy in novel states. We observe unex-593
pected instances where the policy input reconstruction loss remains low even when the world model594
loss is high, as seen between timestep 300 and 400 in the Tandem agent of the Point Mass Maze -595
Vision task in Fig. S3. With closer examination in Fig. S4, the decoded image by the world model596

Under review for RLC 2025, to be published in RLJ

(a) (b)

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Wall hitting Bad gait

Turnover
Active Passive Tandem Active Passive Tandem

Oscillating

Figure S3: Stepwise analysis within a single test episode of the Point Mass Maze - Vision and Cheetah
Run - Vision tasks from DMC. The plots show the progression of reward, world model loss, and policy input
reconstruction loss at each step as the agent executes actions given by its own policy. Timesteps, where agents
exhibit abnormal behavior, are highlighted with yellow and grey regions. Each episode consists of 500 steps,
with the environments initialized identically across agents. The agents are the fully trained version after 1M
environment steps.

Groundtruth Decoded

Figure S4: World model misinterprets the novel states. In the decoded image (step 324 in Fig. S3) from the
world model of the Tandem agent in task Point Mass Maze - Vision, the ball appears at the goal position while in
the ground truth observation, it is actually in a novel region to the world model.

shows the agent has already reached the target position while, in fact, it is still far away from the597
target. It indicates that the world model hallucinates in the novel states and produces an incorrect598
mapping of the latent state during that period. In this case, the latent state is no longer novel to599
the policy, which makes the policy input reconstruction loss ineffective in detecting performance600
degradation and misleads the policy to output inadequate actions.601

7.6 Detailed Results of Considerations in Practical Applications602

Advantage of training agents offline Although the performance degradation caused by the OOD603
issue is prominent in Passive agents, they show potential for faster convergence and more efficient604
training, as seen in tasks like Quadruped Run - Vision and Pick-Place - Proprio in Fig. 3. This is605
because Passive agents have access to high-quality trajectories from the beginning, while Active606
agents must wait until later in training to encounter those trajectories. We validate this hypothesis in607
Fig. S7, where Passive agents trained on suboptimal data generally perform worse than those trained608
on mixed data. It indicates that mixing expert trajectories into suboptimal data helps the performance,609
which matches the case between the Active (suboptimal data) vs. Passive (mixed data) agent in the610

Under review for RLC 2025, to be published in RLJ

Active Passive-diff TandemPassive-same

Figure S5: Model initialization matters not in Passive agents. Performance comparison when initializing the
world model and policy network of Passive agents with the same and different seed w.r.t. the Active agents.

early training stage. Therefore, addressing the OOD issue in Passive agents is crucial, as solving611
it could unlock the potential for highly efficient agent training. However, we do not observe such612
advantages in Tandem agents.613

Different model initialization In this section, we answer the question whether the model initializa-614
tion affects the performance degradation. In particular, if we initialize the world model and policy615
network of a Passive agent using the same seed as the Active one, will the performance differ from616
the independently initialized Passive agent? In Fig. S5, we show that no significant difference in the617
task performance can be observed with initialization seeds among Passive agents. We also investigate618
the sensitivity of task performance to the initialization of weights in model networks of Tandem619
agents. By mixing weights of the identically initialized networks as the Active and those of an620
independent initialization with different ratios α, it allows us to observe whether a tiny difference in621
the initialization will cause a big difference in task performance.622

w
.
= (1− α) · wActive + α · wTandem (S3)

Tandem-weightsdiff 0.01
Tandem-weightsdiff 0.001
Tandem-weightsdiff 0.0001

Active

Figure S6: Performance comparison
of the world model and policy net-
work of Tandem agents initialized
with mixed weights. Results shown
for different α values (indicated in run
name) as defined in Eq. (S3). Results
for one seed.

623

In Fig. S6, we observe that even a small deviation from the624
weights of the Active agent eventually causes a large difference625
in task performance when training on the identical sequence of626
training batches each training step.627

World model overfitting on expert dataset Another popular628
practice to facilitate training a capable agent is to train the agent629
on an expert dataset (Kumar et al., 2022). However, in Fig. S7,630
we find that training on expert data leads to an even worse per-631
formance degradation in Passive agents. It is also indicated by632
the high world model loss with a growing tendency. However,633
according to the performance of Passive-mixed agents, mix-634
ing expert data with suboptimal trajectories can help mitigate635
this issue. The expert dataset primarily consists of monotonic636
task-solving trajectories, which implies extremely limited state-637
space coverage. Incorporating suboptimal data expands this638
coverage during training and reduces the OOD issue during policy rollouts in evaluation. This639
highlights the importance of broad state-space coverage during training and the need to include640
exploration-equivalent data to ensure a capable agent. This finding matches results from previous641
research (Gulcehre et al., 2021; Mediratta et al., 2024; Suau et al., 2023).642

World model overfitting on low-dimensional inputs In the Basketball - Proprio and Pick-Place -643
Proprio tasks, the performance of the Passive agent declines as the world model loss increases in644
the second half of the training process. A similar issue is observed in proprioceptive versions of645
DMC tasks in Appendix 7.7.2. It indicates that the world model begins to overfit on the fixed data646
distribution in the replay buffer, given that the Passive agent is not allowed to add its own interaction647

Under review for RLC 2025, to be published in RLJ

Active Passive Passive-expert Passive-suboptimal Passive-mixed

Figure S7: Performance comparison when training Passive agents on different halves of the replay buffer
from the Active. We split the replay buffer (red bucket) at the 500K environment steps, as shown in the
schematic illustration on the Point Mass Maze - Vision. The first half (purple bucket) represents the suboptimal
data, while the second half (yellow bucket) mainly contains high-reward expert data. Therefore, Passive-expert,
Passive-suboptimal, and Passive-mixed have a halved replay buffer compared to the normal Passive agent. The
replay buffer of the mixed agent (turquoise bucket) is uniformly sampled from the whole replay buffer.

data and cannot change the data distribution progressively in the same way as the Active agent. This648
tendency is pronounced in the proprioceptive version because of a lower input dimension for the649
world model than image-based observation, more prone to overfitting.650

7.7 Complete Results651

7.7.1 Results of Agents with Different Exploration Bonus652

In Fig. S8, we show all three analyzed tasks with comparison among different exploration bonus653
values. The optimal exploration bonus wexpl is 0.5 for task Quadruped Run - Vision, 0.9 for tasks654
Point Mass Maze - Vision and Pick-Place - Proprio.655

7.7.2 Results of Task-oriented Agents656

In Fig. S9 and Fig. S10, we show the complete results in 31 tasks corresponding to the discussion657
in Sec. 3.4 and Sec. 3.5. The Passive agent initialized using the same seed for the world model658
and policy network as the Active agent is marked with a suffix “-same”, while the different model659
initialization is marked with “-diff”.660

7.7.3 Results of Adding Self-generated Data661

In Fig. S11, Fig. S12, and Fig. S13, we show the complete results in 31 tasks, where we allow the662
Passive agents utilize the self-generated data from environmental interaction, corresponding to the663
discussion in Sec. 4.2. In Tab. S2, we show how many self-generated data is added to the replay buffer664
by Passive+Auto interact agents. The percentage is calculated using the number of additionally added665
steps divided by the total number of steps in the original replay buffer. In Fig. S14, we also show that666
our adaptive agent Passive+Auto interact can converge fast and require minimal interaction data to667
recover the performance.668

7.7.4 Results of Explorative Agents669

In Fig. S15 and Fig. S16, we show the complete results in 31 tasks using agents with pure exploration670
rewards, corresponding to the discussion in Sec. 4.1. The Passive agent initialized using the same671

Under review for RLC 2025, to be published in RLJ

Active Passive Tandem

Expl. bonus 0.0 Expl. bonus 0.1 Expl. bonus 0.5 Expl. bonus 0.9 Expl. bonus 1.0

Figure S8: Different task has different optimal exploration bonus values. Performance comparison when
assigning different exploration bonuses wexpl in the reward function. The black dashed lines represent pure
task-oriented policy without any exploration bonus.

Table S2: Percentage of added self-generated data by Passive+Auto interact agents

Task Percentage (%) Task Percentage (%)

cheetah_run-proprio 10.44% walker_walk-proprio 18.27%
cheetah_run-vision 6.53% walker_walk-vision 7.87%
cup_catch-proprio 0.67% assembly-proprio 8.04%
cup_catch-vision 9.47% basketball-proprio 7.16%
finger_turn_hard-proprio 2.53% button-press-proprio 4.04%
finger_turn_hard-vision 3.47% lever-pull-proprio 1.20%
hopper_hop-proprio 4.31% peg-insert-side-proprio 2.31%
hopper_hop-vision 4.00% pick-place-proprio 9.82%
humanoid_walk-proprio 17.78% soccer-proprio 14.93%
humanoid_walk-vision 3.60% window-open-proprio 1.47%
point_mass_maze-proprio 0.00% asterix-vision 2.68%
point_mass_maze-vision 4.62% breakout-vision 1.86%
quadruped_run-proprio 2.53% freeway-vision 0.00%
quadruped_run-vision 2.93% seaquest-vision 0.07%
reacher_hard-proprio 2.27% spaceinvaders-vision 0.47%
reacher_hard-vision 20.31% Average 5.67%

seed for the world model and policy network as the Active agent is marked with a suffix “-same”,672
while the different model initialization is marked with “-diff”.673

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive-diff TandemPassive-same

Figure S9: Episode score of 31 tasks. The first 18 tasks are from DMC, the subsequent 8 tasks are from
Metaworld, and the last 5 are from the MinAtar domain. We also output a normalized mean score across tasks.
The Passive-same is Passive agents initialized identically as the Active agents while Passive-diff is independently
initialized.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive-diff TandemPassive-same

Figure S10: World model loss of 31 tasks. In the last subplot, we show an additional normalized mean result
across tasks.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S11: Episode score of 31 tasks. In the last subplot, we show an additional normalized mean result across
tasks.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S12: World model loss of 31 tasks. In the last subplot, we show an additional normalized mean result
across tasks.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S13: OOD ratio of 31 tasks. In the last subplot, we show an additional mean result across tasks.

Under review for RLC 2025, to be published in RLJ

30%
100%

Training progress

N
or

m
al

iz
ed

 s
co

re

Interactions

Average over 31 tasks

Active
Passive
Passive+0.01 interact
Passive+0.1 interact
Passive+0.5 interact
Passive+Auto interact

Figure S14: Performance comparison between different Passive agents allowed environment interaction.
The y-axis is the average normalized episode score across 31 tasks. The x-axis shows how many self-generated
interaction data are added to the replay buffer. Generally, an agent with markers closest to the top left corner is
the best, having the fastest convergence speed and highest score, and requires minimal self-generated interaction
data.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active-task (final) Active-expl. Passive-expl.-diffPassive-expl.-same Tandem-expl.

Figure S15: Episode score of 31 tasks using agents with pure exploration rewards. We also show the final
performance of a task-oriented Active agent as the baseline in black dashed horizontal lines. In the last subplot,
we show an additional normalized mean result across tasks.

Under review for RLC 2025, to be published in RLJ

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active-expl. Passive-expl.-diffPassive-expl.-same Tandem-expl.

Figure S16: World model loss of 31 tasks using agents with pure exploration rewards. In the last subplot,
we show an additional normalized mean result across tasks.

