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ABSTRACT

We develop a method for few-shot semantic parsing of instructional texts. The
system takes long-form instructional texts as input and produces sequences of ac-
tions in a formal language that enable execution of the instructions. This task
poses unique challenges since input texts may contain long context dependencies
and ambiguous and domain-specific language. Valid semantic parses also require
sequences of steps that constitute an executable plan. We build on recent progress
in semantic parsing by leveraging large language models to learn parsers from
small amounts of training data. During decoding, our method employs planning
methods and domain information to rank and correct candidate parses. To vali-
date our method, we investigate recipe interpretation in two cooking domains. We
present results for few-shot semantic parsing using leave-one-out cross-validation.
We show that utilizing planning domain information improves the quality of gen-
erated plans. Through ablations we also explore the effects of our decoder design
choices and model size.

1 INTRODUCTION

We develop an approach for few-shot semantic parsing of long-form instructional texts. We map in-
structional texts to formal action sequences and validate our method on two recipe semantic-parsing
datasets (Bollini et al., 2013; Tasse & Smith, 2008). Semantic parsing of instructional texts with few-
shot learning poses several challenges to natural language processing (NLP) techniques. Current
NLP methods are dominated by large language models (LLMs). These are based on Transformer
(Vaswani et al., 2017) architectures and leverage large scale pretraining to enable high, few-shot
and zero-shot task performance (Brown et al., 2020). Building on work from Shin et al. (2021), we
investigate semantic parsing in the few-shot setting using OpenAI’s Codex language and code LLM
Chen et al., 2021; Shin & Van Durme, 2021. Learning occurs in-context, by prompting the LLM
with a few input-output task examples. Pretrained LLM representations allow for more sample effi-
cient learning than non-pretrained methods; but data scarcity still introduces performance limitations
(Brown et al., 2020). Data efficiency is advantageous when working with long-form instructional
texts. The datasets we consider are small and the cost of annotating long texts with ground-truth
semantic parses is high.

In many semantic parsing tasks, context dependencies, input natural language strings, and output
parses are relatively short. These tasks fit easily within the available context size of LLM models
and consist of at most several input and output statements. Modeling long input-output dependencies
poses a number of challenges for current models, as shown by their degraded performance on tasks
designed to leverage long contexts (Tay et al., 2020). Semantic parsing of long-form instructional
texts, like the recipe datasets we evaluate, can require learning representations for hundreds of words,
and outputting tens of steps, each with multiple arguments and complex syntax.

Instructional texts also exist within an implicit planning domain. These texts describe plans for
achieving a goal by manipulating objects that comprise a world-state. Executable semantic parse-
plans must consist of valid transitions within this world-state. For example, to bake an item the
oven must be on and preheated. These requirements constitute preconditions for the bake action.
Long-context dependencies pose challenges to generating executable sequences of actions that are
also relevant to the task instructions. To form a valid parse-plan, instructions must be translated into
a sequence of executable actions. All requisite actions must be represented in the plan, potentially
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including actions not explicitly mentioned. Complicating matters, the common-sense knowledge
needed to reason about valid plan sequences in a domain is only very implicitly represented within
the LLM and few-shot examples.

To address these challenges, we propose Planning Augmented Semantic Parsing. Our method lever-
ages a formal symbolic planning representation to rank and correct candidate plans. Plans are cor-
rected by searching for sequences of actions that satisfy the preconditions of all output actions.
Ranking selects plans which best meet the domain’s planning and syntactic constraints by ranking
plans highly if they have fewer inadmissible actions, require fewer additional actions to correct, and
have fewer steps with invalid syntax. After ranking, planning errors are fixed using symbolic plan-
ning methods. The result is an effective neuro-symbolic approach that combines the strengths of
deep-learned LLMs and classical AI planning.

We validate our approach using leave-one-out cross validation across each dataset and provide ab-
lations for various aspects of our model choices. Results show that using Planning Augmented Se-
mantic Parsing results in more valid plan sequences that still maintain high relevance to the natural
language task instructions.

Overall we make the following contributions:

• Develop a novel method for using symbolic planning to improve semantic parsing with
large language models.

• Demonstrate improvements in the executability of generated plans on two datasets, in a
low-data, few-shot setting.

2 BACKGROUND

2.1 PLANNING

We consider these instructional text semantic parses to be plans in a symbolic task planning setting.
A task planning domain defines a world-state, actions that modify the world-state, and transition
function specifying the effect of actions on the world-state Ghallab et al. (2016). The world state
is composed of a collection of Boolean values defining the existence and state of various kitchen
objects and planning actions are implemented as STRIPs-style operators (Fikes & Nilsson, 1971).
Each action has logical preconditions that must be satisfied for its execution. For any state, the
admissible actions are all actions with satisfied preconditions. Upon execution the action changes
the values of the variables which define the world-state. A planning task is specified by an initial
state and a goal state. The resulting plan (if it exists) comprises a sequence of actions that can be
taken to reach the goal state.

2.2 IN-CONTEXT LEARNING

In-context learning allows LLMs to perform novel tasks specified in terms of a small number of sam-
ple input-output pairs (Brown et al., 2020). These examples are provided as part of the generation
context to condition the language model. Typically these examples are drawn from the training split
of a dataset and prepended to a test example. Few-shot prompted learning differs from other LLM
learning paradigms including the zero-shot inference utilized in the evaluations of GPT-2 (Radford
et al., 2019) and fine-tuning used to transfer pretrained model weights to novel tasks as in Radford
et al. (2018), Peters et al. (2018) and Devlin et al. (2018).

3 RELATED WORK

Branavan et al. (2009) develops a reinforcement learning-based method for semantic parsing of
instructional texts and Branavan et al. (2010) additionally learns to fill in low-level steps from high-
level instructions using environment interaction. Previous work also formulates semantic parsing as
a text-to-text machine translation task Wong & Mooney (2006). Our work builds on the few-shot
semantic parsing of Shin et al. (2021) and Shin & Van Durme (2021) that establishes OpenAI’s
Codex model (Chen et al., 2021) as a high performing LLM for few-shot semantic parsing. Bollini
et al. (2013) and Tasse & Smith (2008) introduce the recipe-semantic parsing datasets we use for
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evaluation but learn semantic parsers using shallow features and classification-based approaches.
Other work investigates semantic parsing of recipes Malmaud et al. (2014) including using modern
deep-learning methods Papadopoulos et al. (2022). Recent work uses few-shot learning and large
language models to map single commands Huang et al. (2022) and short sequences of commands
Brohan et al. (2022) to executable plans. However, to our knowledge, ours is the first work to use
symbolic planning to improve semantic parsing of instructional texts.

4 METHODS

For the LLM we use Davinci Codex (Chen et al., 2021) based on the GPT-3 architecture (Brown
et al., 2020). Like GPT-3, the model was trained on a large web-sourced text corpus, but includes
code in the dataset. While OpenAI does not publish the sizes of the Codex models available through
their API, Gao (2021) empirically estimate the size of text-only Davinci at 175B parameters.
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Figure 1: Our method takes task instructions as input and uses an LLM to produce a set of candidate
parses. These are ranked by their probability and executability according to the planner. The top
ranked plan is selected, and actions are inserted into the plan to satisfy the preconditions of inadmis-
sible steps.

4.1 DATASETS

We evaluate our method on two recipe semantic parsing datasets from (Tasse & Smith, 2008) and
Bollini et al. (2013). Tasse & Smith (2008) contains 260 recipes with corresponding semantic parses
in the Minimal Instruction Language for the Kitchen (MILK) syntax. Each statement in the language
corresponds to a plan step with an action and arguments. Some plan steps produce new variables
(ingredients or tools) which are consumed by subsequent steps. The recipes in this dataset cover
a wide range of cuisines, ingredients, techniques, and tools. Each step also contains an optional
human-readable description of the step. The original dataset uses variables as arguments to action
steps. We replace these with their literal values to make the generation problem easier for the LLM.
The 60 recipes of Bollini et al. (2013) were selected to be executed by a cooking robot. The recipes
are mainly limited to baking and contain a small fixed set of tools and actions. This dataset also
contains planning domain definitions in the form of STRIPs-style operator actions (Fikes & Nilsson,
1971). Recipe steps that require tools or techniques outside of this fixed vocabulary are mapped to
a NO-OP. Examples from both datasets are included in Table 1 and action signatures are defined in
Table 6.

4.2 PLANNING DOMAIN

Bollini et al. (2013) contains planning domain definitions that specify the state of the kitchen, in-
gredients, and tools used in each recipe. These were developed to facilitate recipe execution on a
real-world cooking robot. We utilize these definitions for planning in this domain. The domain
also provides a successor state function that given a starting state and a search depth, returns all
valid sequences of actions up to the search depth. This is used in Algorithm 1. The Tasse & Smith
(2008) dataset does not provide planning definitions. We construct planning definitions where the
existence of ingredients and tools are the only predicates and transitions in the environment involve
either creating or destroying these objects. Therefore the only preconditions in this domain involve
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Tasse & Smith (2008)
A Very Intense Fruit Smoothie

1 (10 ounce) package frozen mixed
berries
1 (15 ounce) can sliced peaches,
drained
2 tablespoons honey
In a blender, combine frozen fruit,
canned fruit and honey.
Blend until smooth.

create ing(“1 (10 ounce) package frozen mixed berries”)
create ing(“1 (15 ounce) can sliced peaches, drained”)
create ing(“2 tablespoons honey”)
create tool(“blender”)
combine(“1 (10 ounce) package frozen mixed berries”, “1
(15 ounce) can sliced peaches, drained”, “2 tablespoons
honey”, “fruit and honey”, “”)
put(“fruit and honey”, “blender”)
mix(“fruit and honey”, “blender”, “smoothie”, “blend”)
chefcheck(“smoothie”, “smooth”)

Bollini et al. (2013)
Easy Cake Mix Cookies

1 (18 1/4 ounce) box chocolate cake
mix
1/3 cup vegetable oil
2 eggs
Combine cake mix, oil and eggs.
Mix well.
Bake at 350F for about 10 minutes.
Remove from oven and let cool on pan
for several minutes before removing to
rack to finish cooling.

ingredient([“cake mix”], “1 (18 1/4 ounce) box”,
homogenous=True)
ingredient([“oil”], “1/3 cup”, homogenous=True)
ingredient([“eggs”], “2”, homogenous=True)
pour(cake mix), pour(oil), pour(eggs), mix()
mix()
scrape(), preheat(350), bake(10)
noop()

Table 1: Example recipes from the (Tasse & Smith, 2008) and (Bollini et al., 2013) datasets. These
examples are the second shortest and shortest for each dataset respectively.

the existence of objects. Actions are considered valid if their objects have been instantiated by prior
steps, otherwise the their preconditions are considered unsatisfied.

4.3 PROMPT DESIGN

To generate a plan for a test example using few-shot learning, we prompt the model with sample
recipes and parses taken from the held-out examples. Following Liu et al. (2021), prompt examples
are selected using nearest-neighbor search using the cosine distance between their embeddings as
computed by a text embedding model, specifically the “all-mpnet-base-v2” model from the Sen-
tenceTransformers library (Reimers & Gurevych, 2019) based on the MPNet model (Song et al.,
2020). Due to the limited length of the input context for the Codex models (8, 000 and 2, 048 to-
kens) and API request limits, the number of training examples is limited to a maximum of five for
the recipes of Bollini et al. (2013) and one for Tasse & Smith (2008). The selection of few-shot train-
ing examples reduces to Equation 1, where a is a training example, X denotes the set of held-out
examples, and E represents the recipe embedding function.

P (a) = argmin
x∈X

{cos sim(E(x), E(a))} (1)

The full prompt is formed by concatenating the training example instructions with their semantic
parses, and the instructions for the test example. Each component of the prompt is separated by new
line characters, and a special delimiter “###” which is also appended to the end of the prompt. Be-
cause of the in-context learning, the model learns to append the delimiter to the end of the generated
parse. Thereby, the delimiter is used to identify the end of the model’s sequence completion.

4



Under review as a conference paper at ICLR 2023

4.4 PLANNING-AUGMENTED DECODING

Given a prompt sequence, the LLM defines a distribution over next token continuations. Due to
utilization limits of the Codex API, our method samples a fixed number of plan completions for each
recipe. For sampling next tokens, we use nucleus sampling introduced by Holtzman et al. (2020),
which offers improvements over other sampling methods. These are then ranked using a scoring
function based on the generation probability and a planning score which factors in the number of
precondition errors and syntax errors in the plan and the sequence probability of the plan.

The planning score is calculated by combining measures of plan executabilty: the number of pre-
condition errors, syntax errors, and additional planning steps. Precondition errors occur when a plan
step’s preconditions are not satisfied. For example when the step references non-existent ingredients
or the world state does not allow the action to occur. Syntax errors occur when the plan contains
malformed steps that cannot be parsed by the plan interpreter. The syntax error score (SE) is the
number of plan steps which contain syntax violations. The precondition error score (PE) is the
number of plan steps which cannot be executed because their preconditions are not satisfied. Fi-
nally, (AS) is the number of steps added to the plan by planning in order to maximize the number of
plan steps with valid preconditions. Steps with errors are counted as opposed to counting all errors
in each step. This allows for computation of a score in the interval [0, 1] to match the sequence
probability score. In general identifying multiple syntax errors in a given step is not possible, as the
presence of even a single syntax error may result in an undefined grammatical context.

These counts are normalized by the plan length (N ) so as not to penalize longer plans. The natu-
ral log is taken to re-scale the planning score for addition with the sequence log-probability. ϵ is
added to avoid taking the logarithm of zero in cases where the plan contains no errors and requires
no additional steps to be valid. The planning score is added to the mean log-probability of the to-
ken sequence representing the plan. This scoring function results in plans with a higher sequence
probability and fewer planning errors being selected.

score = ln(1.0− SE + PE +AS

N
+ ϵ) +

1

T

T∑
t=1

lnPt (2)

The plan that maximizes the score function is passed to a planning module. For each inadmissible
step where the preconditions are not satisfied, it searches for sequences of admissible actions to
insert into the plan, such that those actions lead to valid preconditions for that step. To limit the
search space, the planning module only searches in the space of plans that can be inserted before an
existing inadmissible plan step.

4.5 CORRECTING PLANS

While the ranking procedure ensures that high probability and low-error plans will be surfaced,
these plans may still contain precondition errors. The planning domain information and a planning
algorithm together form a planning module that can attempt to correct these precondition errors. The
ranking procedure incorporates this planning module to calculate the additional steps AS that can
be inserted into a plan to fix precondition errors. These steps are also included in the total number
of steps N . Therefore fixable plans will receive a better planning score.

Algorithm 1 describes the procedure for finding steps to insert into a plan to ensure that each step’s
preconditions are satisfied. As input, it takes the world state after executing some number of plan
steps, and computes the sequence of actions needed to ensure the preconditions of the next plan step
A are met. The algorithm returns the shortest number of actions required to satisfy the step’s precon-
ditions. Aside from producing more valid plans, this method should produce plans which correspond
more closely to the ground truth semantic parse annotations. However because the planning module
only inserts steps into a plan before an inadmissible step, and does not change the existing steps,
it cannot necessarily fix all precondition errors in a plan. Utilizing planning and likelihood based
decoding balances the desire for plans with valid preconditions while ensuring that plans contain
relevant steps to the recipe. These two requirements may compete in some cases. In the simplest
case, an empty plan, there are no potential precondition errors, but the plan also contains no relevant
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plan steps. In practice there exists a trade-off between plan executability and correctness as noted
by Huang et al. (2022).

Algorithm 1: The planning algorithm inserts steps before actions with unmet preconditions.
Input: A starting state S, desired action A, transition function T , and search depth N .
Output: The shortest sequence of actions P which ends in action A or null if none exists.
sequences = successors(S, T, depth=N);
best = null;
for s in sequences do

if A in s then
/* truncate the plan until the action A or false if no

such prefix exists */
plan = prefix(s, A);
if plan && length(plan) < length(best) then

best = plan;
end

end
end

5 EXPERIMENTS

We use leave-one-out cross-validation to evaluate performance of various models on our two recipe
datasets. For the shorter recipes in the Bollini et al. (2013) dataset, we evaluate using both one and
five training plans in the prompt. We evaluate the longer recipes of the Tasse & Smith (2008) dataset
using only a single prompt example due to context length limitations.

To evaluate the correctness of each output plan we compare the generated plan to the ground truth
annotation from the dataset. We use metrics that measure the similarity between the output and
ground truth plans. However for each recipe there are potentially many admissible plans and sub-
jective judgements about the level of detail of the annotation and about which attributes to include.
To address these potential ambiguities, we evaluate models using several diverse metrics to capture
different aspects of plan accuracy.

5.1 BASELINES

We evaluate three baseline methods for ranking the generated plans: Random, Rank (PPL), and
Rank. Our full ranking method with partial planning is denoted Rank+Plan. Random simply selects
a random plan from the set of generated completions. Rank (PPL) selects the plan with the lowest
perplexity (PPL) (the highest sequence probability), providing a baseline where no planning domain
information is utilized. Finally, Rank ranks the plans by the scoring function in Equation 2, but does
not correct precondition errors through planning like Rank + Plan does.

5.2 LONGEST COMMON SUBSEQUENCE (LCS)

Prior work evaluates plan correctness in terms of the LCS between generated and ground truth plans
(Puig et al., 2018). We normalized LCS by the length of the longer plan. LCS evaluates the textual
overlap between plans; computing common subsequences which may contain interwoven unequal
sequences. It therefore does not strongly penalize erroneous injected subsequences. This metric
ranges from [0.0, 1.0] where 0.0 indicates no sequence overlap and 1.0 indicates identical plans.

5.3 PLAN STEPS F1

LCS reflects the order and content of the generated plan steps compared to the ground truth. We
also report an F1 measure (the harmonic mean of precision and recall) that quantifies the quality of
the individual plan steps without regard to their sequencing. Steps in the generated and ground truth
plans are compared based on string equality. In many plans, steps are often repeated. For example a
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recipe from Bollini et al. (2013) may have many mix() steps after pouring different ingredients. We
choose to treat each of these repetitions as a unique step when computing the precision and recall.
We also exclude NO-OP steps from these calculations for the Bollini et al. (2013) dataset as they do
not change the plan’s results.

5.4 PRECONDITION AND SYNTAX ERRORS (PE & SE)

The previous metrics assess similarity to the ground truth plan and do not explicitly reflect the
executability of generated plans. Therefore, we also measures the frequency of precondition and
syntax errors in plans. Errors are counted on a per-step basis. If a step contains more than one error
or more than one type of error these are quantified as a single error and type for the step.

5.5 HYPER-PARAMETERS

We utilize Davinci Codex 1 for all experiments due to its large context size of 8, 000 tokens which is
sufficient for all prompts and completions across both datasets. Our method samples ten completions
up to a fixed length of 1, 500 tokens or until the special delimiter sequence is reached. The decoding
length was chosen to be longer than the longest recipe parse in either of the datasets. We generate
ten completions for each recipe to offer a diversity of plans to rank and correct through planning. We
also utilize a nucleus sampling top-p value of 0.5. This value was selected because it maximizes the
performance of the Random baseline with respect to LCS. We perform ten trials to compute means
and confidence intervals.

6 RESULTS

Models Bollini et al. (2013)
LCS↑ PE↓ SE↓ F1 ↑

Random
Davinci Codex, E=1 0.908± 0.007 0.737± 0.067 0.065± 0.025 0.784± 0.002
Davinci Codex, E=5 0.950± 0.001 0.277± 0.020 0.000± 0.000 0.859± 0.002

Rank (PPL)
Davinci Codex, E=1 0.897± 0.008 0.962± 0.685 0.042± 0.008 0.784± 0.004
Davinci Codex, E=5 0.949± 0.005 0.198± 0.009 0.002± 0.004 0.863± 0.003

Rank
Davinci Codex, E=1 0.901± 0.008 0.382± 0.037 0.025± 0.008 0.798± 0.002
Davinci Codex, E=5 0.952± 0.005 0.120± 0.015 0.002± 0.004 0.868± 0.002

Rank + Plan
Davinci Codex, E=1 0.903± 0.008 0.143± 0.033 0.025± 0.008 0.807± 0.002
Davinci Codex, E=5 0.952± 0.005 0.033± 0.000 0.002± 0.004 0.870± 0.002

Table 2: Results and ablations for the Bollini et al. (2013) dataset, reported as means over the leave-
one-out cross validation. 95% confidence intervals are computed using a t-distribution over ten
trials. Results using one (E=1) and five (E=5) training examples in each prompt are shown. All
plans are generated using a nucleus sampling top-p value of 0.5.

We report results for the Bollini et al. (2013) dataset in Table 2 and the Tasse & Smith (2008) dataset
in Table 3. Mean cross-validation results are reported with 95% confidence intervals computed using
a t-distribution for ten trials. For both datasets, the number of precondition errors are reduced by
ranking using our scoring metric and corrective planning. The Rank method results in a decrease
in the precondition error rate, and by adding corrective planning (Rank + Plan), the error rate is
again reduced significantly. This results in more valid, executable plans. Even as the precondition
error rate is reduced, the LCS remains constant for the Bollini et al. (2013) dataset and only slightly
reduced for the Tasse & Smith (2008) dataset. This indicates that the plans maintain high agreement

1The OpenAI API name for the model is “code-davinci-002”.
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Models Tasse & Smith (2008)
LCS↑ PE↓ SE↓ F1 ↑

Random
Davinci Codex, E=1 0.707± 0.002 0.805± 0.029 0.940± 0.134 0.448± 0.001

Rank (PPL)
Davinci Codex, E=1 0.692± 0.003 0.827± 0.086 0.875± 0.199 0.443± 0.002

Rank
Davinci Codex, E=1 0.695± 0.004 0.293± 0.016 0.226± 0.024 0.446± 0.001

Rank + Plan
Davinci Codex, E=1 0.695± 0.003 0.000± 0.000 0.237± 0.018 0.446± 0.001

Table 3: Results and ablations for the Tasse & Smith (2008) dataset, reported as means over the
leave-one-out cross validation. 95% confidence intervals are computed using a t-distribution over ten
trials. Results using one (E=1) training example in each prompt are shown. All plans are generated
using a nucleus sampling top-p value of 0.5.

with the ground truth plans while steps are added. For the Bollini et al. (2013) dataset the F1 score
also improves through ranking and corrective planning indicating that highly ranked plans contain
more accurate selections of recipe steps. The F1 score does not improve for the Tasse & Smith
(2008) dataset and the Rank + Plan method results in no precondition errors. However, these results
are not surprising because the for this dataset the planning module can only insert ingredient and
tool definitions into the plan. These inserted actions could result in lower LCS by lengthening the
generated plan and may not match ingredient definitions in the ground truth plan. Because of the
presence of free-text descriptions and specifications in the Tasse & Smith (2008) dataset and the
difficulty of parsing longer plans, both the LCS and F1 are lower than for the Bollini et al. (2013)
dataset. Finally providing more in-context examples for the Bollini et al. (2013) dataset improves
performance for all measured metrics.

Bollini et al. (2013)
Rank Rank + Plan Ground Truth

pour(nuts)
mix()
scrape()
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

Tasse & Smith (2008)
Rank Rank + Plan Ground Truth

combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “dough”,
“stir in”)

create ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup
all-purpose flour”, “1 egg”,
“1 tablespoon chopped fresh
parsley”, “1/2 teaspoon salt”,
“1/4 teaspoon freshly ground
nutmeg”, “mashed potatoes”,
“dough”, “stir in”)

create ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup
all-purpose flour”, “1 egg”,
“1 tablespoon chopped fresh
parsley”, “1/2 teaspoon salt”,
“1/4 teaspoon freshly ground
nutmeg”, “mashed potatoes”,
“mashed potato mixture”,
“stir in”)

Table 4: Excerpted examples of improved parsing for recipes using the Rank + Plan method. The
parses were selected by randomly selecting recipe where the Rank + Plan method resulted in an
improvement in the number of precondition errors over the baseline methods. NO-OP actions are
omitted for brevity.
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Table 4 contains qualitative examples of the Rank + Plan performance. For the example from
the Bollini et al. (2013) dataset, in the generated plan the oven is not preheated before baking. The
corrected plan adds a preheat() action to satisfy the preconditions of the bake() action, which requires
a heated oven. In the example from the Tasse & Smith (2008) dataset, a recipe that uses certain
ingredients to make dough. In the generated plan these ingredients are not instantiated. However
the planning module inserts actions to instantiate the ingredients which improves the validity of the
generated plan. An additional example for the Bollini et al. (2013) dataset is included in Table 5

7 DISCUSSION

Evaluations show that our method improves plan validity as measured by the mean number of pre-
condition errors, syntax errors, accuracy of steps returned (F1) in each plan. LCS remains the same
across our evaluations and ablations. The LCS metric reflects both the content of planning steps and
their sequencing. In contrast the F1 measure only assesses the accuracy of steps in the generated
plans. Perhaps there exists a trade-off wherein the process of inserting corrective plan steps reduces
the amount of alignment of the generated and ground truth plans (lowering LCS), but increases the
accuracy of included steps (raising F1). Of all the metrics considered, our method results in largest
improvement in the number of precondition errors (PE). We achieve these improvements without
reductions in LCS and with an increase in F1. This is an important validation for our method, as
Huang et al. (2022) finds that there exists a trade-off between the executability and semantic cor-
rectness (measure by LCS) of generated plans. It is straightforward to increase executability (fewer
precondition errors) by ignoring the instructional text content and only outputting valid actions. For
any downstream applications, plans must be executable and while also reflecting the content of the
instructions. Therefore is is important to reduce the number of precondition errors while maintaining
content similarity to ground-truth plans.

7.1 LIMITATIONS AND FUTURE WORK

Our approach requires access to planning domain information for each instructional text. In general
creating these domains requires programming and domain knowledge to formally specify the plan-
ning constraints. However for high-value applications the effort associated with generating these
planning domain definitions may be justified by their potential to help in generating more valid
plan-semantic parses. Having this knowledge is also crucial to allowing an agent or robot to execute
the resulting plan and may be naturally available in many domains as part of the execution com-
ponent. In the course of developing our semantic parsing model, we discovered that Codex could
generate valid planning domain definitions in a variety of output formats including the Planning
Domain Definition Language (Fox & Long, 2003). This may provide a path towards automatically
generating planning domain definitions for novel environments or reducing the need for human an-
notators. Future work could also evaluate our method in other planning domains that contain tasks
beyond cooking such as VirtualHome (Puig et al., 2018) or ALFRED (Shridhar et al., 2020).

8 CONCLUSION

We develop an approach to semantic parsing for long-form instructional texts that leverages plan-
ning domain information to generate more valid plans in a low-data, few-shot setting. Our method
significantly reduces the number of precondition errors present in semantically parsed plans for two
recipe datasets. These results highlight the benefit of a neuro-symbolic approach that utilizes the
state-of-the-art code-generation LLM Codex to produce relevant steps for recipe execution and re-
fines these plans using classical symbolic planning. In quantitative and qualitative evaluations, our
approach generates plans that reflect the relevant steps of the natural language recipe. The symbolic
planning component corrects precondition errors that arise from omitted or implied instructional
steps and the challenges of learning with long context-dependencies from limited examples.
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A EXAMPLES & ACTION DEFINITIONS

Bollini et al. (2013)
Rank Rank + Plan Ground Truth

pour(flour)
mix()
mix()
preheat(350)
bake(20)

pour(flour)
mix()
mix()
preheat(350)
scrape()
bake(20)

pour(flour)
mix()
scrape()
preheat(350)
bake(20)

Table 5: Additional excerpted generation examples for the Bollini et al. (2013) dataset.
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Bollini et al. (2013)
ingredient(contains : string, amount : string, homogenous : bool)
pour(ingredient : string)
scrape()
preheat(temperature : string)
bake(time : string)
noop()

Tasse & Smith (2008)
create tool(name : string)
create ing(name : string)
chefcheck(name : string, description : string)
cut(item : string, tool : string, result : string, description : string)
combine(item : string, tool : string, result : string, description : string)
cook(item : string, tool : string, result : string, description : string)
do(item : string, tool : string, result : string, description : string)
leave(item : string, description : string)
mix(item : string, tool : string, result : string, description : string)
put(item : string, tool : string)
remove(item : string, tool : string)
separate(item : string, result1 : string, result2 : string, description : string)
serve(item : string, description : string)
set(item : string, description : string)

Table 6: Action definitions for the cooking recipe domains. The actions of Bollini et al. (2013)
operate on a world-state definition that includes the state of the ingredients, a mixing bowl, a baking
pan, and the oven. In contrast Tasse & Smith (2008) provides no planning domain definitions and
employs qualitative descriptions of state transformations in the action annotations. We build a sim-
ple planning domain where the state consists only the existence of objects as state variables. The
preconditions for an action are met if the items used in the action have been instantiated.
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