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Abstract

Accurately evaluating the capabilities of large language models is critical for both
machine learning research and society alike, but is undermined by leakage of
benchmark test data into pretraining corpora. Circumstantial and causal evidence
alike demonstrate that benchmark performance increases with model size and with
the number of benchmark replicas in pretraining corpora. However, recent work by
Bordt et al. (2025) demonstrated that test set contamination has little-to-no impact
in the “overtrained” regime common to frontier Al systems, raising an apparent
paradox of how test set leakage can be both potent and negligible. We resolve this
paradox with a simple explanation: a language model memorizes a benchmark test
set based on its capacity (number of parameters) and its incentive (the relative train-
ing loss reduction from memorizing test data). We introduce a novel dose-response
framework to quantitatively relate how the “response” of benchmark performance
depends on the “dose" of the proportion of benchmark tokens contaminating the
pretraining data, mediated by model size. This allows us to extract precise scaling
relationships that clarify the effect of test set contamination on model performance.

1 Introduction

Accurately evaluating large language models (LLMs) is increasingly difficult because benchmark test
sets leak into web-scale pretraining corpora (Brown et al., 2020; Du et al., 2022; Wei et al., 2022;
Chowdhery et al., 2022; Touvron et al., 2023). A growing body of work provides both circumstantial
and causal evidence that contamination boosts performance (see Related Work in Appendix A).
In particular, memorization rises predictably with model capacity and with the number of times
an example is seen (Carlini et al., 2023; Tirumala et al., 2022; Biderman et al., 2023; Duan et al.,
2024; Morris et al., 2025), and controlled pretraining experiments show measurable performance
improvements (Magar & Schwartz, 2022; Jiang et al., 2024; Yao et al., 2024; Kocyigit et al., 2025).

However, this understanding was recently complicated by Bordt et al. (2025), who found that when
models are overtrained—trained on far more tokens than Chinchilla compute-optimal (Hoffmann
et al., 2022)—the effect of contamination can diminish or even vanish. Because frontier Al systems
are oftentimes pretrained precisely in that regime (Touvron et al., 2023; Sardana et al., 2024; Gadre
et al., 2024), the field now faces a paradox: how can contamination be both potent and negligible?

We argue these seemingly inconsistent observations can be unified by a single principle: language
models memorize when they are able (i.e., sufficient model capacity by the number of parameters) and
incentivized (i.e., relative loss reduction from memorizing benchmarks test sets) to do so. We make
this quantitatively precise using a dose-response relationship, where the “dose” is the percentage of
benchmark tokens in the pretraining corpus and the “response” is the pretrained model’s accuracy.
Fitting this relationship to the controlled scaling suit of Bordt et al. (2025) yields simple scaling laws:
larger models require smaller doses to realize the same contamination-driven gains, while in the limit
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Figure 1: A Dose-Response Model of Test Set Memorization. We propose that language models
memorize benchmark test sets based on their capacity (number of parameters) and incentive (relative
loss reduction) to do so, a relationship we quantitatively capture as a dose-response relationship
(Eqn. 2). We fit a functional relationship between the proportion of benchmark tokens in the
pretraining data (the “dose”) and the average benchmark accuracy (the “response”) for different
model sizes using the scaling suite from Bordt et al. (2025). These curves unify prior work: larger
models have a steeper response and thus require a smaller dose of contaminated data to achieve high
accuracy, but in the limit of infinite unique pretraining data (e.g., with overtrained models), the dose
falls to 0% and thus test set contamination has little-to-no effect, as shown by Bordt et al. (2025).
Note: The kink to the left of 10~ is an artifact from symlog scaling the x-axis, not the fit response.

of unlimited unique data, the dose becomes vanishingly small and thus contamination has a negligible
effect, clarifying why contamination can appear both potent and negligible.

2 Experimental Setup: Bordt et al. (2025)’s Scaling and Contamination

We study Bordt et al. (2025)’s GPT-3-like (Brown et al., 2020) language models pretrained on
FineWeb-Edu (Penedo et al., 2024) in three regimes:

1. Parameter Scaling: Four model sizes (N € {124M, 350M, 774M, 1.6B}) are pretrained on a
fixed amount of data (D = 7B tokens).

2. Data Scaling: One model size (124M) is pretrained on increasing data sizes (D € {5B, 10B, 20B,
37B}, referred to respectively as 2x, 4x, 8x and 15x Chinchilla tokens).

3. Simultaneous Parameter & Data Scaling: Models (N € {124M, 350M, 774M, 1.6B}) are pre-
trained on Chinchilla compute-optimal data (D € {2.5B, 7B, 15.5B, 32B} tokens, respectively).

“Chinchilla” refers to compute-optimal scaling (Hoffmann et al., 2022), taken as 20 pretraining tokens
per model parameter. Each model’s pretraining corpus is contaminated uniformly at random with
test sets taken from 7 different multiple-choice question-answering benchmarks: ARC-Easy (Clark
et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2021), PiQA (Bisk et al., 2020), Social-I-QA (Sap et al., 2019) and WinoGrande (Sakaguchi et al.,
2021). For each combination of regime, parameters, and tokens, Bordt et al. (2025) trained five
models, increasing the number of test set replicas R € {0 (uncontaminated), 4, 12, 32 or 144}. We
report macro-average accuracy across the seven benchmarks using EleutherAl’s Language Model
Evaluation Harness (Gao et al., 2024). We also re-visualize the average accuracy scores from Bordt
et al. (2025) here in Fig. 2 for the following reasons: (i) to provide the information conveniently to
the reader, (ii) to remove the confounder introduced by Bordt et al. (2025) plotting differences of
accuracies, and (iii) to show trends from complementary perspectives: number of test set replicas and
the scaling quantity of interest (parameters, tokens, or parameters and tokens).
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Figure 2: Average Accuracy of Pretrained Models from Bordt et al. (2025). We re-visualize
the performance of language models pretrained by Bordt et al. (2025). Left: Model Scaling. Four
increasing model sizes (124M, 350M, 774M, 1.6B) are pretrained on a fixed amount of data (7B
tokens). Center: Data Scaling: One model size (124M) is pretrained on increasing data sizes (4.96B,
9.92B, 19.84B and 37.2B, referred to respectively as 2x, 4x, 8x and 15x Chinchilla tokens). Right:
Chinchilla Scaling: Four increasing model sizes (124M, 350M, 774M, 1.6B) are pretrained on their
corresponding Chinchilla compute-optimal data (2.48B, 7B, 15.48B, 32B tokens). Key Takeaway:
When test set contamination is viewed as a function of multipliers of compute-optimal scaling,
multiple complicated trends exist; once we reparameterize test set contamination as a function of the
ratio of benchmark tokens to pretraining tokens, trends become cleaner (Fig. 1).

3 A Dose-Response Model of Test Set Memorization

To quantitatively understand how benchmark contamination affects model performance, we adopt the
lens of dose-response relationships. In this framework, the “dose” is the proportion of contaminated
test set tokens in each model’s pretraining data, and the “response” is the model’s resulting accuracy
on the contaminated benchmarks. For each pretrained model ¢, we consider its number of parameters
N, its average accuracy across the 7 benchmarks a; € [0, 100] and the proportion of tokens in the
pretraining corpus p; € [0, 1] that originate from the benchmarks’ test sets. We model the accuracy as
ai = p(pi, Ni; 0) + e, )]
where () is the mean function and &; is zero-mean noise. For the mean function, we adopt the most
commonly used dose-response equation called the “Ey,.x equation” (Hill, 1910; Macdougall, 2006):
. ph@)
pMN) + pso(N) M)

p“(pa Na 0) déf amin(N) + (amax(N) - amin(N))

@
This relationship has four intuitive components:

(1) @min(NN): The baseline accuracy of a model with no test set contamination (p = 0).
(ii) amax(N): The maximum achievable accuracy as the dose of contamination dominates the
pretraining corpus (p — 100);
(iii) pso(IN): The proportion of contamination necessary to achieve 50% of the accuracy gain.
(iv) h(N) > 0: A parameter that controls the curvature or steepness of the dose-response curve.

We parameterize these components as functions of model size N to ensure the relationships are
interpretable and well-behaved (i.e., 0 < amin (V) < @max(N) <100, pso(N) > 0, and h(N) > 0):

100 o(ag + ajlogN),

E 4min(N) + (100 = amin(N)) - o(bo + by log N) ,

def

(V)
p50(N) def exp(co + ¢1log N)
(N) = exp(ho + hilog N),
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Figure 3: Fitted Dose-Response Parameters Exhibit Predictable Scaling Laws with Model Size.
Each panel displays a parameter of our dose-response relationship (Eqn. 2) as a function of the number
of model parameters N. The baseline accuracy without contamination, @i, (IN), trends upward with
model size, consistent with normal scaling without contamination. The maximum achievable accuracy,
amax(IN), is consistently at 100%, which suggests that any model can achieve perfect accuracy with
sufficient test set contamination in its training data. The proportion of contamination needed to
achieve half of the possible accuracy gain scales as a power law log pso(N) = 9.71 - N—0-881
showing that larger models need a smaller proportion of benchmark data to achieve a significant
accuracy boost. The steepness parameter also scales as a power law log h(N) = 4.63 - N~0-214,
indicating that the accuracy of larger models increases more sharply in response to contamination.

where o(x) = 1/(1 4+ e~*) is the sigmoid function. The power—law form for pso(XN) and h(N)
are based on the ansatz that larger models need less benchmark proportion to reach a given fraction
of the attainable improvement (Kaplan et al., 2020; Hoffmann et al., 2022). We estimate § =
{ag,a1,bo,b1, co, 1, ho, h1 } by robust nonlinear least squares over all points {(p;, N;, a;)} using
the “soft-¢1” loss to reduce sensitivity to outliers. The fit parameters are ag = —0.8877, a1 = 0.0392,

bo = —35.7432, by = 17.0654, ¢o = 9.7100, &, = —0.8807, ho = 4.6277, and hy = —0.2145.

Fig. 1 includes all models from all three scaling regimes and all number of test set replicas
({0,4,12,32,144}). The fitted curves capture the key qualitative pattern visible in the underly-
ing measurements: as the “dose” of benchmark contamination increases, accuracy approaches ceiling
performance, and larger models achieve the same accuracy at markedly smaller doses. In contrast
with Bordt et al. (2025), who find different test set memorization relationships depending on the
scaling regime, Fig. 1 demonstrates that a single unifying relationship appears once one instead
considers the test set dosage, i.e., the ratio of benchmark tokens to total pretraining tokens.

Fig. 3 demonstrates how dose-response parameters change with model size: The baseline accuracy
with no contamination G, (/V) increases gently with model size, reflecting normal scaling without
contamination. The maximum achievable accuracy under heavy contamination is estimated near
the upper bound (@max(IN) 2 100% for all sizes), indicating near-perfect recall is attainable when
contaminated tokens dominate pretraining. Our ansatz for sensitivity and curve steepness of power

law scaling with respect to model size fit the data well: pso(N)oc N =281 and h(N)oc N~0-214, For
practical intuition, the dose needed to realize 50% of the attainable gain is tiny and shrinks with model
size: for a 1.6B parameter model, having ~ 0.01% of pretraining tokens originate from benchmarks
captures 50% of the attainable performance improvements, and (assuming the relationship holds for
larger models) for a 30B parameter model, a dose of ~ 0.001% benchmark tokens captures 50% of
the attainable performance improvements.

4 Discussion

This work introduces a dose-response framework that resolves seemingly paradoxical findings on
test set contamination within a single curve family: minor contamination can yield large gains for
high-capacity models, while overtraining with unique new data reduces the dose to zero, thereby
rendering contamination negligible. Moreover, our insights (1) yields actionable contamination
thresholds (e.g., pso) for auditors, and (2) clarifies why contamination matters most when capacity is
high and unique data are scarce (Villalobos et al., 2024).

Future Directions: (1) Future work should test the generalizability of these scaling laws across
different tasks and different notions of memorization (Tirumala et al., 2022; Carlini et al., 2023;
Hayes et al., 2025; Duan et al., 2025). (2) Because frontier models are often pretrained on multiple
epochs (Muennighoff et al., 2023), future work should study how multiple epochs complicates this



picture. (3) This framework could also be developed into a practical tool for evaluators to predict and
potentially correct for performance inflation caused by contamination.
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A Related Work

Data contamination and its consequences. A growing body of evidence shows that leakage
of benchmark material into pretraining corpora can inflate reported performance and compromise
evaluation validity. Position and survey papers argue that contamination should be routinely audited
and reported for each benchmark, and they document the breadth of leakage modes and impacts
(Sainz et al., 2023, 2024; Deng et al., 2024a; Xu et al., 2024a; Reuel et al., 2025). Empirical audits
of large web corpora show nontrivial train—test overlap and duplication (Dodge et al., 2021), and
work on systematizing benchmark integrity highlights ways LMs can “cheat” on evaluations if
contamination is not addressed (Zhou et al., 2023; Dong et al., 2024). Measurements on widely used
math benchmarks indicate likely leakage and overfitting signals (Zhang et al., 2024a). Community
reports and open-source audits provide broader, ongoing measurements across models and datasets
(Li et al., 2024). Beyond evaluation leakage, scaling studies indicate that poisoning risks increase with
model size: across dozens of frontier LLMs, larger models learn harmful behaviors from tiny poisoned
fractions substantially faster than smaller models, underscoring the need for robust curation and
safeguards (Bowen et al., 2025). As a cautionary illustration, Schaeffer (2023) shows that pretraining
on the test set trivially yields strong benchmark results, motivating rigorous decontamination and
auditing.

Controlled contamination during pretraining. Several studies causally probe memorization by
deliberately inserting evaluation items into the pretraining mix and varying exposure. Magar &
Schwartz (2022) interleave task datasets with general text during masked-LM pretraining, system-
atically varying duplication; they distinguish storing examples (‘“memorization”) from using them
to improve test accuracy (“‘exploitation”), and show that both model size and repetition amplify
exploitation on leaked items. Jiang et al. (2024) pretrain GPT-2—style models from scratch on
clean corpora augmented with either fexz-only (inputs) or ground-truth (input—output) benchmark
injections, sweeping contamination frequency; they find sizable gains under ground-truth insertion
and show that paraphrases and partial leaks can evade simple n-gram decontamination. Moving
beyond monolingual settings, Yao et al. (2024) demonstrate a cross-lingual channel: continuing
pretraining on non-English translations of English benchmarks yields material improvements on
the original English tests, revealing contamination undetectable by string-overlap audits. At larger
scale, Bordt et al. (2025) vary (i) repetition of leaked examples, (ii) model size (up to ~1.6B), and
(iii) the total token budget from compute-optimal to >>optimal; they recover predictable scaling
with size and repeats, and also show that sufficiently long training on abundant unique data (with
regularization) can attenuate or erase contamination measured earlier. Kocyigit et al. (2025) study
machine translation, injecting held-out source—target pairs at controlled times and frequencies during
pretraining of 1B- and 8B-parameter models; they quantify large BLEU overestimation for full-pair
leakage (with weaker effects for source-only/target-only), and observe stronger inflation for larger
models and lower-resource settings. Together, these pretraining-time interventions provide causal
evidence that LMs will memorize and exploit benchmark material.

Repeated data and memorization dynamics. A complementary line of work isolates the effect of
repeated training examples. Hernandez et al. (2022) train families of LMs where a small fraction
of data is repeated many times, finding strong double descent (Advani et al., 2020; Belkin et al.,
2019; Adlam & Pennington, 2020; Bordelon et al., 2020; Schaeffer et al., 2024) and showing that
repeating even 0.1% of tokens 100x can substantially degrade generalization. Tirumala et al. (2022)
track exact-sequence memorization through training and across scales, showing that larger models
memorize faster, memorize more, and forget less. Carlini et al. (2023) quantify log-linear relationships
between verbatim emission and (i) model capacity, (ii) duplication count, and (iii) prompt length.
Biderman et al. (2023) study forecasting whether a specific string will be memorized, showing that
reliable prediction often requires using a sizable fraction of the target model’s pretraining compute
and providing preliminary scaling recommendations for forecast design. Beyond explicit repetition,
Duan et al. (2025) uncover latent memorization: many memorized sequences persist and can be
revealed later (e.g., by weight perturbations) even if not obviously memorized at the final checkpoint,
posing privacy risks. Finally, memorization appears task-dependent: Wang et al. (2025) find stronger
memorization in knowledge-intensive QA, while machine translation and mathematical reasoning
show comparatively greater novelty/“true” generalization. Memorization also interacts with logical
reasoning: using dynamically generated Knights & Knaves puzzles, Xie et al. (2025) show that LLMs
can interpolate and memorize training puzzles to near perfection after fine-tuning yet remain brittle
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to slight perturbations; importantly, fine-tuning also improves true generalization, revealing a shifting
balance between reasoning and memorization. These results provide mechanistic and scaling context
for the pretraining-injection studies above.

Detecting and proving contamination. Many papers focus on a complementary problem: detecting
and/or proving test set contamination. Oren et al. (2023) and Ni et al. (2025) propose statistical
tests with provable false-positive control by exploiting exchangeability: without contamination,
canonical orderings should not be privileged relative to shuffles. Shi et al. (2024) introduce Min-k%-
Prob to determine if a sequence likely appeared in pretraining using only black-box probabilities.
Two complementary lines from Golchin & Surdeanu (2023, 2024), respectively, frame detection as
a multiple-choice “Data Contamination Quiz” (estimate contamination by asking models to pick
the original among perturbations) and use temporal information about model training windows
vs. benchmark releases (as well as Roberts et al. (2024)). Broader audits quantify leakage and
decontamination across tasks and models (Xu et al., 2024b; Deng et al., 2024b; Li et al., 2024),
while Yang et al. (2023) show that rephrasing can evade n-gram filters, underscoring the limits
of surface-overlap heuristics. Riddell et al. (2024) quantify contamination across popular code
suites and link overlap to performance deltas. Matton et al. (2024) catalog leakage channels (direct,
synthetic-pipeline, and model-selection overfitting) and release a dataset (LBPP) to mitigate them.
Complementing these audits, Yang et al. (2025) systematically test fine-grained contamination
scenarios in code intelligence (input-only, output-only, unpaired, paired) across pretrained language
models (RoBERTa, GPT-2) and LLMs (LLaMA, StarCoder), finding that paired contamination has
limited effect under the pretrain—finetune—inference pipeline, but substantially affects LLMs under a
pretraining-plus-inference paradigm, while other scenarios often have minimal impact. Work tracing
the origins of chain-of-thought style sequences provides additional detection instruments (e.g., Li
et al., 2025).

Preventing test set contamination Concerns with test-set contamination have led to new ap-
proaches to benchmark creation, including dynamically updating benchmarks (Jain et al., 2025;
Xia et al., 2024; Zhang et al., 2025; Qian et al., 2024) and private or restricted-access benchmarks
(Zhang et al., 2024a; Glazer et al., 2025). Nie et al. (2025) recently released a benchmark of unsolved
questions, which, while perhaps not the main motivation, has the nice benefit of preventing models
from being trained on the solutions.

Retrieval-/agent-time contamination. As evaluations move from static prompting to tool-
augmented agents, contamination risks expand to include search-time. Han et al. (2025) introduce
search-time contamination, where an agent retrieves benchmark Q&A pages during evaluation,
thereby artificially inflating scores.

Membership Inference Attacks Membership inference attacks (MIA) focus on the idea of de-
termining whether an example has been trained on by a model based on (white-box or black-box)
access to the model alone (Shokri et al., 2017). It relates to test set contamination in that detecting
contamination can be cast as a membership inference problem. The MIA literature spans computer
vision (e.g., Yeom et al. (2018); Salem et al. (2018); Sablayrolles et al. (2019); Jagielski et al. (2024))
and more recently to language modeling (e.g., Carlini et al. (2021); Zarifzadeh et al. (2023); Shi et al.
(2024); Mattern et al. (2023); Li et al. (2023)). Despite these attempts, progress of sequence-level
MIA on language models is hindered by flawed evaluations (Meeus et al., 2024; Zhang et al., 2024b;
Jiang et al., 2025). Duan et al. (2024) argue that membership can be inherently blurry for natural
language. Das et al. (2024) and Meeus et al. (2024) report that existing MIA testbeds suffer from
distribution shifts. Kong et al. (2023) refute MIAs using a theoretical gradient-space attack. Liu et al.
(2025) demonstrates the fundamental limitations of n-gram based membership definitions which
hinder downstream tests, with Mangaokar et al. (2025) providing a concrete of exploit of existing
MIA tests via poisoning. Due to these challenges, recent work also explore enhancing membership
signals by leveraging multiple correlated sequences as inputs (Maini et al., 2021; Kandpal et al.,
2023; Maini et al., 2024), which are closely related to detecting contamination of an entire test set
rather than individual test examples (Golchin & Surdeanu, 2023; Oren et al., 2023).

Dose-response relationships. Most similar to our idea of a dose-response relationship is Hernan-
dez et al. (2022), which argued that highly repetitive data can be severely damaging if the number
of repeats incentivizes memorizing that data and if doing so consumes a meaningful fraction of
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the model’s capacity. Our framework connects this incentive perspective with model capacity and
observed contamination effects.

Positioning. Relative to prior work that asks whether models are contaminated and how to detect or
mitigate it, our contribution is a unified dose—response framing that quantifies how much performance
can be attributed to contamination-driven memorization as a function of exposure (e.g., repeats, para-
phrases) and training trajectory. Our measurements and fits operationalize this principle across model
sizes and token budgets, connecting the controlled injections above with scaling-law regularities.
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