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Abstract

Accurately evaluating the capabilities of large language models is critical for both1

machine learning research and society alike, but is undermined by leakage of2

benchmark test data into pretraining corpora. Circumstantial and causal evidence3

alike demonstrate that benchmark performance increases with model size and with4

the number of benchmark replicas in pretraining corpora. However, recent work by5

Bordt et al. (2025) demonstrated that test set contamination has little-to-no impact6

in the “overtrained” regime common to frontier AI systems, raising an apparent7

paradox of how test set leakage can be both potent and negligible. We resolve this8

paradox with a simple explanation: a language model memorizes a benchmark test9

set based on its capacity (number of parameters) and its incentive (the relative train-10

ing loss reduction from memorizing test data). We introduce a novel dose-response11

framework to quantitatively relate how the “response” of benchmark performance12

depends on the “dose" of the proportion of benchmark tokens contaminating the13

pretraining data, mediated by model size. This allows us to extract precise scaling14

relationships that clarify the effect of test set contamination on model performance.15

1 Introduction16

Accurately evaluating large language models (LLMs) is increasingly difficult because benchmark test17

sets leak into web-scale pretraining corpora (Brown et al., 2020; Du et al., 2022; Wei et al., 2022;18

Chowdhery et al., 2022; Touvron et al., 2023). A growing body of work provides both circumstantial19

and causal evidence that contamination boosts performance (see Related Work in Appendix A).20

In particular, memorization rises predictably with model capacity and with the number of times21

an example is seen (Carlini et al., 2023; Tirumala et al., 2022; Biderman et al., 2023; Duan et al.,22

2024; Morris et al., 2025), and controlled pretraining experiments show measurable performance23

improvements (Magar & Schwartz, 2022; Jiang et al., 2024; Yao et al., 2024; Kocyigit et al., 2025).24

However, this understanding was recently complicated by Bordt et al. (2025), who found that when25

models are overtrained—trained on far more tokens than Chinchilla compute-optimal (Hoffmann26

et al., 2022)—the effect of contamination can diminish or even vanish. Because frontier AI systems27

are oftentimes pretrained precisely in that regime (Touvron et al., 2023; Sardana et al., 2024; Gadre28

et al., 2024), the field now faces a paradox: how can contamination be both potent and negligible?29

We argue these seemingly inconsistent observations can be unified by a single principle: language30

models memorize when they are able (i.e., sufficient model capacity by the number of parameters) and31

incentivized (i.e., relative loss reduction from memorizing benchmarks test sets) to do so. We make32

this quantitatively precise using a dose-response relationship, where the “dose” is the percentage of33

benchmark tokens in the pretraining corpus and the “response” is the pretrained model’s accuracy.34

Fitting this relationship to the controlled scaling suit of Bordt et al. (2025) yields simple scaling laws:35

larger models require smaller doses to realize the same contamination-driven gains, while in the limit36

of unlimited unique data, the dose becomes vanishingly small and thus contamination has a negligible37

effect, clarifying why contamination can appear both potent and negligible.38

Under Review at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle (“LLM-eval@NeurIPS”).
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Figure 1: A Dose-Response Model of Test Set Memorization. We propose that language models
memorize benchmark test sets based on their capacity (number of parameters) and incentive (relative
loss reduction) to do so, a relationship we quantitatively capture as a dose-response relationship
(Eqn. 2). We fit a functional relationship between the proportion of benchmark tokens in the
pretraining data (the “dose”) and the average benchmark accuracy (the “response”) for different
model sizes using the scaling suite from Bordt et al. (2025). These curves unify prior work: larger
models have a steeper response and thus require a smaller dose of contaminated data to achieve high
accuracy, but in the limit of infinite unique pretraining data (e.g., with overtrained models), the dose
falls to 0% and thus test set contamination has little-to-no effect, as shown by Bordt et al. (2025).
Note: The kink to the left of 10−4 is an artifact from symlog scaling the x-axis, not the fit response.

2 Experimental Setup: Bordt et al. (2025)’s Scaling and Contamination39

We study Bordt et al. (2025)’s GPT-3-like (Brown et al., 2020) language models pretrained on40

FineWeb-Edu (Penedo et al., 2024) in three regimes:41

1. Parameter Scaling: Four model sizes (N ∈ {124M, 350M, 774M, 1.6B}) are pretrained on a42

fixed amount of data (D = 7B tokens).43

2. Data Scaling: One model size (124M) is pretrained on increasing data sizes (D ∈ {5B, 10B, 20B,44

37B}, referred to respectively as 2x, 4x, 8x and 15x Chinchilla tokens).45

3. Simultaneous Parameter & Data Scaling: Models (N ∈ {124M, 350M, 774M, 1.6B}) are pre-46

trained on Chinchilla compute-optimal data (D ∈ {2.5B, 7B, 15.5B, 32B} tokens, respectively).47

“Chinchilla” refers to compute-optimal scaling (Hoffmann et al., 2022), taken as 20 pretraining tokens48

per model parameter. Each model’s pretraining corpus is contaminated uniformly at random with49

test sets taken from 7 different multiple-choice question-answering benchmarks: ARC-Easy (Clark50

et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,51

2021), PiQA (Bisk et al., 2020), Social-I-QA (Sap et al., 2019) and WinoGrande (Sakaguchi et al.,52

2021). For each combination of regime, parameters, and tokens, Bordt et al. (2025) trained five53

models, increasing the number of test set replicas R ∈ {0 (uncontaminated), 4, 12, 32 or 144}. We54

report macro-average accuracy across the seven benchmarks using EleutherAI’s Language Model55

Evaluation Harness (Gao et al., 2024). We also re-visualize the average accuracy scores from Bordt56

et al. (2025) here in Fig. 2 for the following reasons: (i) to provide the information conveniently to57

the reader, (ii) to remove the confounder introduced by Bordt et al. (2025) plotting differences of58

accuracies, and (iii) to show trends from complementary perspectives: number of test set replicas and59

the scaling quantity of interest (parameters, tokens, or parameters and tokens).60

3 A Dose-Response Model of Test Set Memorization61

To quantitatively understand how benchmark contamination affects model performance, we adopt the62

lens of dose-response relationships. In this framework, the “dose” is the proportion of contaminated63

2
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Figure 2: Average Accuracy of Pretrained Models from Bordt et al. (2025). We re-visualize
the performance of language models pretrained by Bordt et al. (2025). Left: Model Scaling. Four
increasing model sizes (124M, 350M, 774M, 1.6B) are pretrained on a fixed amount of data (7B
tokens). Center: Data Scaling: One model size (124M) is pretrained on increasing data sizes (4.96B,
9.92B, 19.84B and 37.2B, referred to respectively as 2x, 4x, 8x and 15x Chinchilla tokens). Right:
Chinchilla Scaling: Four increasing model sizes (124M, 350M, 774M, 1.6B) are pretrained on their
corresponding Chinchilla compute-optimal data (2.48B, 7B, 15.48B, 32B tokens). Key Takeaway:
When test set contamination is viewed as a function of multipliers of compute-optimal scaling,
multiple complicated trends exist; once we reparameterize test set contamination as a function of the
ratio of benchmark tokens to pretraining tokens, trends become cleaner (Fig. 1).

test set tokens in each model’s pretraining data, and the “response” is the model’s resulting accuracy64

on the contaminated benchmarks. For each pretrained model i, we consider its number of parameters65

Ni, its average accuracy across the 7 benchmarks ai ∈ [0, 100] and the proportion of tokens in the66

pretraining corpus pi ∈ [0, 1] that originate from the benchmarks’ test sets. We model the accuracy as67

ai = µ(pi, Ni; θ) + εi, (1)

where µ(·) is the mean function and εi is zero-mean noise. For the mean function, we adopt the most68

commonly used dose-response equation called the “Emax equation” (Hill, 1910; Macdougall, 2006):69

µ(p,N ; θ)
def
= amin(N) +

(
amax(N)− amin(N)

)
· ph(N)

ph(N) + p50(N)h(N)
. (2)

This relationship has four intuitive components:70

(i) amin(N): The baseline accuracy of a model with no test set contamination (p = 0).71

(ii) amax(N): The maximum achievable accuracy as the dose of contamination dominates the72

pretraining corpus (p → 100);73

(iii) p50(N): The proportion of contamination necessary to achieve 50% of the accuracy gain.74

(iv) h(N) > 0: A parameter that controls the curvature or steepness of the dose-response curve.75

We parameterize these components as functions of model size N to ensure the relationships are76

interpretable and well-behaved (i.e., 0≤amin(N) < amax(N)≤100, p50(N) > 0, and h(N) > 0):77

amin(N)
def
= 100 · σ(a0 + a1 logN) ,

amax(N)
def
= amin(N) +

(
100− amin(N)

)
· σ(b0 + b1 logN) ,

p50(N)
def
= exp(c0 + c1 logN) ,

h(N)
def
= exp(h0 + h1 logN) ,

where σ(x) = 1/(1 + e−x) is the sigmoid function. The power–law form for p50(N) and h(N)78

are based on the ansatz that larger models need less benchmark proportion to reach a given fraction79

3



Figure 3: Fitted Dose-Response Parameters Exhibit Predictable Scaling Laws with Model Size.
Each panel displays a parameter of our dose-response relationship (Eqn. 2) as a function of the number
of model parameters N . The baseline accuracy without contamination, amin(N), trends upward with
model size, consistent with normal scaling without contamination. The maximum achievable accuracy,
amax(N), is consistently at 100%, which suggests that any model can achieve perfect accuracy with
sufficient test set contamination in its training data. The proportion of contamination needed to
achieve half of the possible accuracy gain scales as a power law log p50(N) = 9.71 · N−0.881,
showing that larger models need a smaller proportion of benchmark data to achieve a significant
accuracy boost. The steepness parameter also scales as a power law log h(N) = 4.63 · N−0.214,
indicating that the accuracy of larger models increases more sharply in response to contamination.

of the attainable improvement (Kaplan et al., 2020; Hoffmann et al., 2022). We estimate θ =80

{a0, a1, b0, b1, c0, c1, h0, h1} by robust nonlinear least squares over all points {(pi, Ni, ai)} using81

the “soft-ℓ1” loss to reduce sensitivity to outliers. The fit parameters are â0 = −0.8877, â1 = 0.0392,82

b̂0 = −35.7432, b̂1 = 17.0654, ĉ0 = 9.7100, ĉ1 = −0.8807, ĥ0 = 4.6277, and ĥ1 = −0.2145.83

Fig. 1 includes all models from all three scaling regimes and all number of test set replicas84

({0, 4, 12, 32, 144}). The fitted curves capture the key qualitative pattern visible in the underly-85

ing measurements: as the “dose” of benchmark contamination increases, accuracy approaches ceiling86

performance, and larger models achieve the same accuracy at markedly smaller doses. In contrast87

with Bordt et al. (2025), who find different test set memorization relationships depending on the88

scaling regime, Fig. 1 demonstrates that a single unifying relationship appears once one instead89

considers the test set dosage, i.e., the ratio of benchmark tokens to total pretraining tokens.90

Fig. 3 demonstrates how dose-response parameters change with model size: The baseline accuracy91

with no contamination âmin(N) increases gently with model size, reflecting normal scaling without92

contamination. The maximum achievable accuracy under heavy contamination is estimated near93

the upper bound (âmax(N)≈100% for all sizes), indicating near-perfect recall is attainable when94

contaminated tokens dominate pretraining. Our ansatz for sensitivity and curve steepness of power95

law scaling with respect to model size fit the data well: p50(N)∝N−0.881 and h(N)∝N −̂0.214. For96

practical intuition, the dose needed to realize 50% of the attainable gain is tiny and shrinks with model97

size: for a 1.6B parameter model, having ∼ 0.01% of pretraining tokens originate from benchmarks98

captures 50% of the attainable performance improvements, and (assuming the relationship holds for99

larger models) for a 30B parameter model, a dose of ∼ 0.001% benchmark tokens captures 50% of100

the attainable performance improvements.101

4 Discussion102

This work introduces a dose-response framework that resolves seemingly paradoxical findings on103

test set contamination within a single curve family: minor contamination can yield large gains for104

high-capacity models, while overtraining with unique new data reduces the dose to zero, thereby105

rendering contamination negligible. Moreover, our insights (1) yields actionable contamination106

thresholds (e.g., p50) for auditors, and (2) clarifies why contamination matters most when capacity is107

high and unique data are scarce (Villalobos et al., 2024).108

Future Directions: (1) Future work should test the generalizability of these scaling laws across109

different tasks and different notions of memorization (Tirumala et al., 2022; Carlini et al., 2023;110

Hayes et al., 2025; Duan et al., 2025). (2) Because frontier models are often pretrained on multiple111

epochs (Muennighoff et al., 2023), future work should study how multiple epochs complicates this112

picture. (3) This framework could also be developed into a practical tool for evaluators to predict and113

potentially correct for performance inflation caused by contamination.114
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A Related Work456

Data contamination and its consequences. A growing body of evidence shows that leakage457

of benchmark material into pretraining corpora can inflate reported performance and compromise458

evaluation validity. Position and survey papers argue that contamination should be routinely audited459

and reported for each benchmark, and they document the breadth of leakage modes and impacts460

(Sainz et al., 2023, 2024; Deng et al., 2024a; Xu et al., 2024a; Reuel et al., 2025). Empirical audits461

of large web corpora show nontrivial train–test overlap and duplication (Dodge et al., 2021), and462

work on systematizing benchmark integrity highlights ways LMs can “cheat” on evaluations if463

contamination is not addressed (Zhou et al., 2023; Dong et al., 2024). Measurements on widely used464

math benchmarks indicate likely leakage and overfitting signals (Zhang et al., 2024a). Community465

reports and open-source audits provide broader, ongoing measurements across models and datasets466

(Li et al., 2024). Beyond evaluation leakage, scaling studies indicate that poisoning risks increase with467

model size: across dozens of frontier LLMs, larger models learn harmful behaviors from tiny poisoned468

fractions substantially faster than smaller models, underscoring the need for robust curation and469

safeguards (Bowen et al., 2025). As a cautionary illustration, Schaeffer (2023) shows that pretraining470

on the test set trivially yields strong benchmark results, motivating rigorous decontamination and471

auditing.472

Controlled contamination during pretraining. Several studies causally probe memorization by473

deliberately inserting evaluation items into the pretraining mix and varying exposure. Magar &474

Schwartz (2022) interleave task datasets with general text during masked-LM pretraining, system-475

atically varying duplication; they distinguish storing examples (“memorization”) from using them476

to improve test accuracy (“exploitation”), and show that both model size and repetition amplify477

exploitation on leaked items. Jiang et al. (2024) pretrain GPT-2–style models from scratch on478

clean corpora augmented with either text-only (inputs) or ground-truth (input–output) benchmark479

injections, sweeping contamination frequency; they find sizable gains under ground-truth insertion480

and show that paraphrases and partial leaks can evade simple n-gram decontamination. Moving481

beyond monolingual settings, Yao et al. (2024) demonstrate a cross-lingual channel: continuing482

pretraining on non-English translations of English benchmarks yields material improvements on483

the original English tests, revealing contamination undetectable by string-overlap audits. At larger484

scale, Bordt et al. (2025) vary (i) repetition of leaked examples, (ii) model size (up to ∼1.6B), and485

(iii) the total token budget from compute-optimal to ≫optimal; they recover predictable scaling486

with size and repeats, and also show that sufficiently long training on abundant unique data (with487

regularization) can attenuate or erase contamination measured earlier. Kocyigit et al. (2025) study488

machine translation, injecting held-out source–target pairs at controlled times and frequencies during489

pretraining of 1B- and 8B-parameter models; they quantify large BLEU overestimation for full-pair490

leakage (with weaker effects for source-only/target-only), and observe stronger inflation for larger491

models and lower-resource settings. Together, these pretraining-time interventions provide causal492

evidence that LMs will memorize and exploit benchmark material.493

Repeated data and memorization dynamics. A complementary line of work isolates the effect of494

repeated training examples. Hernandez et al. (2022) train families of LMs where a small fraction495

of data is repeated many times, finding strong double descent (Advani et al., 2020; Belkin et al.,496

2019; Adlam & Pennington, 2020; Bordelon et al., 2020; Schaeffer et al., 2024) and showing that497

repeating even 0.1% of tokens 100× can substantially degrade generalization. Tirumala et al. (2022)498

track exact-sequence memorization through training and across scales, showing that larger models499

memorize faster, memorize more, and forget less. Carlini et al. (2023) quantify log-linear relationships500

between verbatim emission and (i) model capacity, (ii) duplication count, and (iii) prompt length.501

Biderman et al. (2023) study forecasting whether a specific string will be memorized, showing that502

reliable prediction often requires using a sizable fraction of the target model’s pretraining compute503

and providing preliminary scaling recommendations for forecast design. Beyond explicit repetition,504

Duan et al. (2025) uncover latent memorization: many memorized sequences persist and can be505

revealed later (e.g., by weight perturbations) even if not obviously memorized at the final checkpoint,506

posing privacy risks. Finally, memorization appears task-dependent: Wang et al. (2025) find stronger507

memorization in knowledge-intensive QA, while machine translation and mathematical reasoning508

show comparatively greater novelty/“true” generalization. Memorization also interacts with logical509

reasoning: using dynamically generated Knights & Knaves puzzles, Xie et al. (2025) show that LLMs510

can interpolate and memorize training puzzles to near perfection after fine-tuning yet remain brittle511
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to slight perturbations; importantly, fine-tuning also improves true generalization, revealing a shifting512

balance between reasoning and memorization. These results provide mechanistic and scaling context513

for the pretraining-injection studies above.514

Detecting and proving contamination. Many papers focus on a complementary problem: detecting515

and/or proving test set contamination. Oren et al. (2023) and Ni et al. (2025) propose statistical516

tests with provable false-positive control by exploiting exchangeability: without contamination,517

canonical orderings should not be privileged relative to shuffles. Shi et al. (2024) introduce Min-k%-518

Prob to determine if a sequence likely appeared in pretraining using only black-box probabilities.519

Two complementary lines from Golchin & Surdeanu (2023, 2024), respectively, frame detection520

as a multiple-choice “Data Contamination Quiz” (estimate contamination by asking models to521

pick the original among perturbations) and use temporal information about model training windows522

vs. benchmark releases. Broader audits quantify leakage and decontamination across tasks and models523

(Xu et al., 2024b; Deng et al., 2024b; Li et al., 2024), while Yang et al. (2023) show that rephrasing524

can evade n-gram filters, underscoring the limits of surface-overlap heuristics. Riddell et al. (2024)525

quantify contamination across popular code suites and link overlap to performance deltas. Matton526

et al. (2024) catalog leakage channels (direct, synthetic-pipeline, and model-selection overfitting)527

and release a dataset (LBPP) to mitigate them. Complementing these audits, Yang et al. (2025)528

systematically test fine-grained contamination scenarios in code intelligence (input-only, output-529

only, unpaired, paired) across pretrained language models (RoBERTa, GPT-2) and LLMs (LLaMA,530

StarCoder), finding that paired contamination has limited effect under the pretrain–finetune–inference531

pipeline, but substantially affects LLMs under a pretraining-plus-inference paradigm, while other532

scenarios often have minimal impact. Work tracing the origins of chain-of-thought style sequences533

provides additional detection instruments (e.g., Li et al., 2025).534

Preventing test set contamination Concerns with test-set contamination have led to new ap-535

proaches to benchmark creation, including dynamically updating benchmarks (Jain et al., 2025;536

Xia et al., 2024; Zhang et al., 2025; Qian et al., 2024) and private or restricted-access benchmarks537

(Zhang et al., 2024a; Glazer et al., 2025). Nie et al. (2025) recently released a benchmark of unsolved538

questions, which, while perhaps not the main motivation, has the nice benefit of preventing models539

from being trained on the solutions.540

Retrieval-/agent-time contamination. As evaluations move from static prompting to tool-541

augmented agents, contamination risks expand to include search-time. Han et al. (2025) introduce542

search-time contamination, where an agent retrieves benchmark Q&A pages during evaluation,543

thereby artificially inflating scores.544

Membership Inference Attacks Membership inference attacks (MIA) focus on the idea of de-545

termining whether an example has been trained on by a model based on (white-box or black-box)546

access to the model alone (Shokri et al., 2017). It relates to test set contamination in that detecting547

contamination can be cast as a membership inference problem. The MIA literature spans computer548

vision (e.g., Yeom et al. (2018); Salem et al. (2018); Sablayrolles et al. (2019); Jagielski et al. (2024))549

and more recently to language modeling (e.g., Carlini et al. (2021); Zarifzadeh et al. (2023); Shi et al.550

(2024); Mattern et al. (2023); Li et al. (2023)). Despite these attempts, progress of sequence-level551

MIA on language models is hindered by flawed evaluations (Meeus et al., 2024; Zhang et al., 2024b;552

Jiang et al., 2025). Duan et al. (2024) argue that membership can be inherently blurry for natural553

language. Das et al. (2024) and Meeus et al. (2024) report that existing MIA testbeds suffer from554

distribution shifts. Kong et al. (2023) refute MIAs using a theoretical gradient-space attack. Liu et al.555

(2025) demonstrates the fundamental limitations of n-gram based membership definitions which556

hinder downstream tests, with Mangaokar et al. (2025) providing a concrete of exploit of existing557

MIA tests via poisoning. Due to these challenges, recent work also explore enhancing membership558

signals by leveraging multiple correlated sequences as inputs (Maini et al., 2021; Kandpal et al.,559

2023; Maini et al., 2024), which are closely related to detecting contamination of an entire test set560

rather than individual test examples (Golchin & Surdeanu, 2023; Oren et al., 2023).561

Dose–response relationships. Most similar to our idea of a dose–response relationship is Hernan-562

dez et al. (2022), which argued that highly repetitive data can be severely damaging if the number563

of repeats incentivizes memorizing that data and if doing so consumes a meaningful fraction of564
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the model’s capacity. Our framework connects this incentive perspective with model capacity and565

observed contamination effects.566

Positioning. Relative to prior work that asks whether models are contaminated and how to detect or567

mitigate it, our contribution is a unified dose–response framing that quantifies how much performance568

can be attributed to contamination-driven memorization as a function of exposure (e.g., repeats, para-569

phrases) and training trajectory. Our measurements and fits operationalize this principle across model570

sizes and token budgets, connecting the controlled injections above with scaling-law regularities.571
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