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ABSTRACT

Most community detection algorithms assume the number of communities, K, to
be known a priori. Among various approaches that have been proposed to esti-
mate K, the non-parametric methods based on the spectral properties of the Bethe
Hessian matrices have garnered much popularity for their simplicity, computa-
tional efficiency, and robust performance irrespective of the sparsity of the input
data. Recently, one such method has been shown to estimate K consistently if the
input network is generated from the (semi-dense) stochastic block model, when
the average of the expected degrees (d̃) of all the nodes in the network satisfies
d̃ � log(N) (N being the number of nodes in the network). In this paper, we
prove some finite sample results that hold for d̃ = o(log(N)), which in turn show
that the estimation of K based on the spectra of the Bethe Hessian matrices is
consistent not only for the semi-dense regime, but also for the sub-logarithmic
sparse regime when 1 � d̃ � log(N). Thus, our estimation procedure is a ro-
bust method for a wide range of problem settings, regardless of the sparsity of the
network input.

1 INTRODUCTION

Statistical analysis of network data has now become an extensively studied field within statistics
and machine learning (see (Goldenberg et al., 2010; Kolaczyk & Csárdi, 2014; Newman, 2018) for
reviews). Network datasets show up in several disciplines. Examples include networks originating
from biosciences such as gene regulation networks (Emmert-Streib et al. (2014)), protein-protein
interaction networks (De Las Rivas & Fontanillo (2010)), structural (Rubinov & Sporns (2010)) and
functional networks (Friston (2011)) of brain and epidemiological networks (Reis et al. (2007));
networks originating from social media such as Facebook, Twitter and LinkedIn (Faloutsos et al.
(2010)); citation and collaboration networks (Lehmann et al. (2003)); information and technological
networks such as internet-based networks (Adamic & Glance (2005)), power networks (Pagani &
Aiello (2013)) and cell-tower networks (Isaacman et al. (2011)). There are several active areas
of research in developing statistical methodologies for network data analysis and also deriving the
theoretical properties of the statistical methods. In this paper, we focus on networks with community
structure and finding the number of communities in networks with arbitrary sparsity level.

The last two decades saw a resurgence of interest in a problem popularly known as “community
detection". A common problem definition is to partition N nodes in a graph into K communities
such that there are differences in edge densities between within and between communities, where
K is assumed to be known a priori. Estimating number of communities (K) has recently become
active in the literature. While the initial focus in the literature for estimating K has been devel-
oping algorithms and drawing support from domain-specific intuition and empirical studies using
the Stochastic Block Model (SBM), first proposed in Holland et al. (1983), (such as, Saade et al.
(2014a), Yan et al. (2018)), there has been recent progress on attaining theoretical understanding
of community numbers. Bickel & Sarkar (2015) and Lei et al. (2016) proposed hypothesis testing
approaches based on principal eigenvalues or singular values. Some likelihood-based methods us-
ing the BIC criterion were proposed by Wang et al. (2017) and Hu et al. (2019). From a Bayesian
perspective, Riolo et al. (2017) discussed priors for number of communities under the SBM and
designed an Markov Chain Monte Carlo algorithm, Kemp et al. (2006) presented a nonparametric
Bayesian approach for detecting concept systems, Xu et al. (2006) introduced an infinite-state latent
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variable as part of a Dirichlet process mixture model, and Cerqueira & Leonardi (2020) proposed an
estimator based on integrated likelihood for the SBM. Rosvall & Bergstrom (2007) introduced the
concept of the minimum description length (MDL) to describe network modularities in partitioning
networks, and Peixoto (2013) employed MDL to detect the number of communities. Chen & Lei
(2018) and Li et al. (2020) proposed cross-validation based approaches with theoretical guarantees
to estimate K. Yan et al. (2018) proposed a semi-definite programming approach, and Ma et al.
(2018) proposed an estimator based on the loss of binary segmentation using pseudo-likelihood ra-
tio. All of these approaches had theoretical guarantees. However, all the theoretical results were
obtained under the assumption that mean density of the networks is greater than log(N).

Methods based on the spectrum of a certain class of matrices have become increasingly popular in
recent years as non-parametric alternatives that are more computationally efficient and applicable to
a wider range of settings. Most notably the non-backtracking matrices (e.g., Krzakala et al. (2013),
Saade et al. (2014b), Coste & Zhu (2019), Bordenave et al. (2015), Saade et al. (2016)) and the Bethe
Hessian matrices (e.g., Saade et al. (2015b), Lelarge (2018), Dall’Amico et al. (2019), Saade et al.
(2015a), Dall’Amico et al. (2020), Saade et al. (2014a), Le & Levina (2015)) have received much
attention due to their non-parametric form and competitive performance in the presence of degree
heterogeneity and sparsity. In particular, unlike the non-backtracking operator, the Bethe Hessian is
a real symmetric operator and hence offers additional computational advantages. Through simula-
tions, Saade et al. (2014a) demonstrated that the Bethe Hessian outperformed the non-backtracking
operator, belief propagation, and the adjacency matrices on clustering on both accuracy and effi-
ciency. Le & Levina (2015) proved the consistency of the method based on the spectrum of the
Bethe Hessian operator in semi-dense regimes, i.e., with the expected degree d̃ � log(N) and the
scalar parameter chosen from the two values commonly used in the literature based on heuristics
for assortative and disassortative networks. However, other than the two candidate values and their
variations, there are no other known values for the scalar parameter to ensure the consistency result
in any regime. Furthermore, real-world networks are generally much more sparse and there is no
theoretical result in the literature that guarantees the effectiveness of the Bethe Hessian operator in
more sparse regimes.

Our contribution. In this paper, we contribute to the theoretical understanding of the Bethe Hessian
operator in estimating K for networks generated from the SBM in any regime regardless of the
sparsity. We have three main contributions.

• We show that the method of estimating K based on the spectral properties of the Bethe
Hessian matrix ("spectral method") is statistically consistent, even in regimes more sparse
than those previously considered in the literature, with the expected degree 1 � d̃ �
log(N). The precise definition of d̃ is given in §2.1.

• We provide the first-of-its-kind interval of values for the scalar parameter of the Bethe
Hessian operator that serves as a sufficient condition for the spectral method to correctly
estimate K asymptotically in network data.

• Through extensive simulations, we demonstrate that for any value chosen from the interval
for the scalar parameter, the spectral method correctly estimates K in networks regardless
of sparsity. We also consider the heuristics-based values commonly used in the literature
for the scalar parameter in the context of the interval.

The paper is arranged as follows. We present the definitions and a formal problem statement in
§2. We present our main theoretical result and a sketch of the proof in §3, followed by empirical
methods in §4. The simulation results and concluding remarks are given in §5 and §6, respectively.

2 PRELIMINARIES

2.1 NOTATION

An adjacency matrix, denoted by A, is a random matrix whose rows and columns are labeled by
nodes i, j ∈ [N ], where Aij = 1 if there is an edge between nodes i and j and 0 otherwise, and
[N ] denotes the set {1, . . . , N}. The mean observed degree is denoted by d̄ := 1

N 1TNA1N and the
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expected degree by d̃ := 1
N 1TNEA1N . λ↓` (A) denotes the `-th largest eigenvalue of A and λ↑` (A)

denotes the `-th smallest eigenvalue of A.

2.2 THE STOCHASTIC BLOCK MODEL

The stochastic block model (SBM) is a simple generative model for network data that embeds a
community structure in an adjacency matrix AN×N of the randomly generated network. SBM has
three parameters: (1) the number of communities K; (2) the membership vector z = (z1, ..., zN )
that assigns a community label zi ∈ [K] to each node i ∈ [N ]; and (3) the connectivity probability
matrix BK×K where the elementBab represents the probability of an edge between nodes belonging
to community a and b, where a, b ∈ [K].

Z ∈ ZN×K>0 is defined as the community membership matrix such that Zij = 1 if node i be-
longs to community j and 0 otherwise. We denote the maximum expected degree by dmax :=

N maxi
∑N
j=1[(ZBZT )ij − Diag(ZBZT )ij ] and the maximum entry in matrix B by d/N , where

d := N maxa,b∈[K] Bab. λ denotes the smallest eigenvalue of the normalized B matrix, λ :=

λ↓K
(
N
d B
)
. Ā is the expectation of A and is computed as Ā = ZBZT − Diag(ZBZT ). D̄ is a

diagonal matrix whose i-th diagonal entry is the sum of the i-th row of Ā. Let N be the vector
of true community sizes and Nmin denotes the number of nodes in the community with the lowest
number of nodes in it.

A network generated from the SBM with parameters K,B,Z is defined to be assortative if Baa >
Bab for all a, b ∈ [K] with a 6= b, and if B has all positive eigenvalues (i.e., B has full-rankK). The
existing works in the literature on the spectral method referenced above have considered assortative
networks, and we also consider assortative networks in this paper.

2.3 THE BETHE HESSIAN MATRIX

The Bethe Hessian matrix associated with an adjacency matrix A is defined as

Hζ := (ζ2 − 1)IN + D− ζA (2.1)

where ζ > 1 is a real scalar parameter, D := Diag(A1N ) is a diagonal matrix whose i-th diagonal
entry corresponds to the degree of the i-th node, and IN is an identity matrix of dimension N ×N .

As a real symmetric operator, Hζ is analytically tractable and computationally efficient, and has
a number of useful properties. Saade et al. (2014a) demonstrated that the community structure in
A can be recovered by applying a standard clustering algorithm (such as k-means clustering) to
the eigenvectors of Hζ corresponding to negative eigenvalues. In the spectral clustering literature,
those eigenvalues whose eigenvectors encode the community structure are known as the informative
eigenvalues and have been observed to be well-separated from the bulk of the spectrum. In Saade
et al. (2014a), ζ was set to be the square-root of the mean observed degree as a heuristic to render
informative (negative) eigenvalues of Hζ .

Le & Levina (2015) showed that the number of informative eigenvalues of Hζ directly estimateK in
the semi-dense regime (d̃� log(N)) when ζ is set to be either rm :=

(
d1+ · · ·+dN

)−1(
d21+ · · ·+

d2N
)
−1 or ra :=

√
(d1 + · · ·+ dN )/N . Both rm and ra are obtained based on heuristic arguments

and are commonly used in the literature to estimate the radius of the bulk of the spectra. ra was
considered in Saade et al. (2014a) and the choice of rm stems from the deep connection between
the spectrum of Hζ and that of another matrix which is known as the non-backtracking operator B.
Denoting by m the number of edges in A, B is a 2m× 2m matrix indexed by directed edges i→ j
and defined Bi→j,k→l = δjk(1− δil), where δ is the Kronecker delta and m is the number of edges.

As in Hζ , the informative eigenvalues of B are well-separated from the bulk of its spectrum and
are real, so it also has been used to develop many popular non-parametric methods for clustering
(see e.g., Saade et al. (2014b), Coste & Zhu (2019), Bordenave et al. (2015), Bruna & Li (2017),
Gulikers et al. (2016)). This deep connection between Hζ and B was noted in Krzakala et al. (2013)
and can be summarized by the phenomenon that, given any eigenvalue ν of B, the determinant
of Hν vanishes. However, unlike Hζ , B is non-symmetric and its dimension (2m × 2m) can get
quite large. These present analytical and computational challenges when using B, and in turn have
popularized Hζ as a tool for clustering. Le & Levina (2015) showed that in semi-dense regimes
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with expected degree d̃ � log(N), the number of negative eigenvalues of Hζ directly estimate K
for ζ ∈ {rm, ra}, where the methods were called BHm and BHa. In addition, it was noted that
the number of negative eigenvalues of Hζ tend to underestimate K when networks are unbalanced.
Hence, corrections for BHm and BHa were proposed, namely BHmc and BHac, which heuristically
estimate K̂ = max{k : tρn−k+1 6 ρn−k} where ρ1 > · · · > ρN are sorted eigenvalues and t > 0
is the hyperparameter. In light of this, we present the following problem we focus on in this paper:

Problem Definition: Suppose that we observe one network generated from the SBM, where the
parameters K,Z,B satisfy (i) assortativity, and (ii) the sparsity condition d̃ = o(log(N)). For
the appropriate choices of ζ, are the negative eigenvalues of the Bethe Hessian matrix Hζ still
informative for estimating K? If so, what are the appropriate choices for ζ? Can there be other
heuristic choices for ζ? Are the popular heuristic choices of ζ, i.e., rm and ra as defined above
(hereinafter “heuristic choices"), appropriate in the above sense?

3 THEORETICAL RESULTS

Our main contribution is twofold. First, we show that even in a sparse regime when 1 � d̃ �
log(N), the number of informative eigenvalues of Hζ directly estimates K consistently. Second,
we provide the first-of-its-kind interval, which serves conveniently as a sufficient condition, of ap-
propriate values for ζ for which the number of informative eigenvalues of the associated matrix Hζ

directly estimates K. Below, we formally state this twofold result and provide a sketch of the proof,
where we build intuition and provide key intermediate results. Precise statements and full proofs for
all of the intermediate results discussed below are presented in §1.2 in the Supplement, along with
statements and proofs of other relevant results in the literature.

Theorem 3.1. (Main Result) Let β := −d(λNmin − 1)/N . For any δ ∈ (0, 3/2), Hζ has exactly
K negative eigenvalues for all ζ ∈ 1

2

(
− β ±

√
β2 + 4− 4dmax

)
with probability at least 1 −

exp[−(ζ/
√
d)3/2−δ].

Sketch of the Proof In assessing the spectral properties of Hζ , it is more convenient to instead work
with the spectrum of the associated Laplacian matrix, since it would allow us to use some of the
important known results on the concentration of certain regularized adjacency matrix A around its
expectation. Indeed, we are allowed to do so due to Sylvester’s law of inertia (Theorem 1.4 in
Supplement §1.1), which gives us that Hζ and the associated Laplacian have the same inertia. Note
that the inertia of a real and symmetric matrix is a vector consisting of the number of positive,
negative, and zero eigenvalues of the matrix.

To be more precise, consider the Laplacian Lζ := 1
ζHζ = D̃ζ −A, where D̃ζ = (ζ − 1

ζ )IN + 1
ζD

and ζ > 1. Now take its symmetric normalized version L(Lζ) := D̃
−1/2
ζ LζD̃

−1/2
ζ . Then, by

Sylvester’s law of inertia, Hζ and L(Lζ) have the same number of negative eigenvalues (see Lemma
1.5 in Supplement §1.2).

Next, to make the problem more tractable, we show that L(Lζ) concentrates around its expec-
tation L(L̄ζ) such that the problem can be stated in terms of the latter, which is a deterministic
matrix, rather than the former, the random counterpart. More concretely, denote the expectation of
the Laplacian L(L̄ζ) := ˜̄D

−1/2
ζ L̄ζ

˜̄D
−1/2
ζ , where L̄ζ = ˜̄Dζ − Ā and ˜̄Dζ = (ζ − 1

ζ )IN + 1
ζ D̄.

Then, we decompose L(L̄ζ) into two parts. The first part is the difference between A and Ā, reg-
ularized by D̃

−1/2
ζ . The second part is the difference between Ā regularized by D̃

−1/2
ζ and Ā

regularized by the expectation of D̃−1/2ζ . In a regime satisfying d̃ = o(log(N)), the first part is

bounded by Cr2

ζ−1/ζ
(√
d + (ζ2 − 1)1/4

)
, where C is a constant, with probability at least 1 − 2N−r

(see Theorem 1.3 in Supplement §1.1) due to a concentration result in Le et al. (2017) where it is
shown that regularized A concentrates around its expectation. The second part is also bounded by

C′r4ζ2

ζ2−1

Å
d

ζ2−1

ã3Å
1 + d

ζ2−1

ã2
, where C ′ is a constant, with probability at least 1− e−2r due to the

properties of the Orlicz norm and Markov-Bernstein-type inequalities. Hence, for d̃ = o(logN),
the difference between the sample and its expected Laplacian,

∥∥L(Lζ)− L(L̄ζ)
∥∥, is finite. Note

4



Under review as a conference paper at ICLR 2021

that this is a finite-sample result. We can obtain an asymptotic result from it by considering appro-
priate relationships among d, ζ, and r, where r > 1 determines the probability (1 − e−r) for the
foregoing result. A sufficient condition for

∥∥L(Lζ)− L(L̄ζ)
∥∥ to be o(1) with high probability is

1� r1/3 � ζ√
d

(see Lemma 1.6 in Supplement §1.2).

As the last step in this proof sketch, we apply Weyl’s inequality to λK(−L̄ζ) and λK+1(−L̄ζ), and
readily see that only the K informative eigenvalues are negative, and hence the claimed result in the
theorem (see Proof of Theorem 3.1 in Supplement §1.2). �
Remark (Theorem 3.1). Note that Theorem 3.1 is a finite sample result. The sufficient condition√
d � ζ implies a high probability asymptotic result showing consistent estimation of the num-

ber of communities by the spectral method with ζ chosen from the interval given in the theorem.
Hereinafter, we refer to the interval for ζ stated in Theorem 3.1 as the “oracle interval".

A sufficient threshold for detecting K is presented below with a proof appearing in the Supplement.

Corollary 3.2. In the setup of Theorem 3.1, with high probability,K can be detected if the following
threshold is satisfied:

λ >
2N
√
dmax − 1

dNmin
+

1

Nmin
(3.1)

4 EMPIRICAL METHODS

4.1 ESTIMATION OF THE INTERVAL FOR BETHE HESSIAN SCALAR PARAMETER

One practical consideration that needs to be addressed when implementing Theorem 3.1 and Corol-
lary 3.2 is finding estimators of the parameters that are not directly observable in the data, namely
d, dmax, λ, and Nmin. Below, we propose an algorithm to compute the estimators for these oracle
values. We do so by first estimating community memberships Z̃ using regularized spectral cluster-
ing (Amini et al. (2013); Le et al. (2017)) and using maximum likelihood estimates to estimate the
rest of the parameters. Then, the desired estimators are computed in a straightforward way.

Procedure 4.1 PARAMS-ESTIMATION
Input: Adjacency matrix A; a candidate number of communities K0

Output: N̂K0
: estimator for N; B̂K0

: estimator for B; and Ẑ: estimator for Z
1: Obtain Ẑ using regularized spectral clustering of A with K0 communities B See Remark

(4.1)
2: N̂K0

← ẐT1N
3: B̂K0

← Diag(N̂K0
)−1ẐTAẐDiag(N̂K0

)−1.

Remark (4.1). In Step 1, we need an algorithm which can consistently recover communities from
A. Other standard clustering algorithms can also be used in Step 1 as long as it consistently recovers
community labels. The consistency of the estimators proposed in Algorithm 4.1 have already been
established in Le et al. (2017). The time complexity of the procedure is O(N3) driven by the
eigenvalue computation in Step 1. Hereinafter, we refer to the interval computed with the estimators
from this procedure as the “estimated interval" (recall that the interval in Theorem 3.1 is referred to
as the “oracle interval").

Procedure 4.1 outputs N̂K0
and B̂K0

with candidate number of communities K0 ∈ [1, ...,Kmax]
as an input, where Kmax is a tuning parameter. Then, the minimal community size is estimated
with N̂min = min{N̂2}. N̂min is an upper bound of Nmin with high probability and has shown in
simulations to be a good estimate of Nmin. Details on ad-hoc estimation of d, dmax, and λ using
N̂K0 and B̂K0 and tuning parameter K0 are given in the Supplement §1.3.

Figure 4.1 shows the simulation results on the performance of the oracle and estimated intervals
for ζ, and two popular heuristic choices rm and ra. Under the setting of a large network (N ) and
the assortativity condition, the estimated intervals computed with Procedure 4.1 appear to match
their oracle values well. It is shown that once the threshold in Corollary 3.2 is satisfied, rm and ra
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turn out to be sufficient, i.e., fall within the oracle interval. In §5, it is shown that values from the
interval other than rm and ra can improve the performance, especially when N is large in the sparse
regime. Further extensive simulation results based on other parameter settings are included in the
Supplement §1.3.

Figure 4.1: The oracle interval for ζ (Theorem 3.1) and its estimation (Procedure 4.1) are shown
with two popular heuristic choices for ζ (rm and ra) commonly used in literature. Network data
was simulated from the SBM with the parameter settings shown in Table 5.1 with K = 3 and
d̃ = 3

√
log(N), each simulated with 20 repetitions. Intervals are shown as zeros when the threshold

(3.1) is not met.

4.2 ESTIMATION OF THE NUMBER OF COMMUNITIES WITH THE BETHE HESSIAN

With a choice of ζ from the interval computed with the estimators from Procedure 4.1 above, we
now propose an algorithm below that uses a spectral method to directly estimate K.

Procedure 4.2 K-ESTIMATION
Input: Adjacency matrix A; scalar parameter ζ
Output: K̂: estimator of K

1: D← Diag(A1N )
2: Hζ ← (ζ2 − 1)IN + D− ζA
3: Obtain sorted eigenvalues λ↑1, ..., λ

↑
N of Hζ

4: K̂ ← max{k : λ↑k < 0}

Remark (4.2). Just as with Procedure 4.1, the time complexity of Procedure 4.2 is O(N3) driven by
the eigenvalue computation in Step 3.

Hereinafter, we refer to Procedures 4.1 and 4.2 as the “BHsparse" method.

5 EMPIRICAL STUDIES

We denote empirical accuracy rate (ACR) as the fraction of accurate estimates of K out of 20
repetitions per simulation. Recent literature (Le & Levina (2015), Yan et al. (2018), Cerqueira &
Leonardi (2020)) showed that methods based on the spectrum of the Bethe Hessian operator with
popular heuristic choices for ζ, i.e., {rm, ra}, are competitive in performance and computational
efficiency in the semi-dense regimes. However, the synthetic networks used in the above references
were relatively small (in terms of N ) and more dense (with d̃� O(log(N))) compared to the real-
world networks. Through extensive simulations, we compare the performance of BHsparse with
those based on the heuristic choices for ζ on large (N up to 35,000) and sparse (d̃ = o(log(N))
networks. It is shown that BHsparse outperforms those based on the heuristic choices, especially as
N gets large and networks become more assortative.
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5.1 DATA GENERATION AND SIMULATION SETTINGS

We simulate network data from the SBM under two different settings. In Simulation Setting
(1), we define B := ρB0 := ρ(η − 1)b[IK + 1

η−11K1TK ]. ρ controls the expected degree by

d̃ = ρ(1TN (ZB0Z
T − Diag(ZB0Z

T ))1N )/N . η is the in/out ratio based on B and determines the
degree of assortativity. b is the baseline value in B, which is set to 0.1. We first simulate the member-
ship vector Z ∼ Mult

(
1;
(

1
K , ...,

1
K

))
. We set d̃ ∈ {3

√
log(N), 0.165(log(N))2, 0.788(N)(1/3)}

by varying ρ, to assess the performance of the algorithms under different sparsity regimes. The con-
stants in the rates of d̃ are chosen in way that d̃ is same at N = 1000 for all the rates. With a fixed Z
and B, and given model parameters K, N , d̃, and η, we then generate A with 20 repetitions. Table
5.1 summarises the combinations of model parameter settings used in the simulations.

Table 5.1: Model Parameters for Simulation Setting (1)
K N d̃ η

3 {5000, 15000, 25000, 35000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {3, 4, ..., 8}
4 {5000, 15000, 25000, 35000} {3

√
log(N), 0.165(log(N))2, 0.788(N)(1/3)} {3, 4, ..., 8}

10 {5000, 15000, 25000, 35000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {16, 17, ..., 25}
25 {25000} {3

√
log(N), 0.165(log(N))2, 0.788(N)(1/3)} {41, 42, ..., 55}

50 {25000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {101, 102, ..., 110}

In Simulation Setting (2), we use a more general probability connectivity matrix as defined in equa-
tion 5.1, where η ∈ {2.5 + (m − 1)0.25 : m = 1, ..., 9}, and set other parameters as follows:
d̃ = 3

√
log(N); K = 3; and N ∈ {5000, 15000, 25000, 35000}.

B := ρ

(
1 + η 0.5 0.3
0.5 2 + η 0.1
0.3 0.1 0.5 + η

)
(5.1)

5.2 SIMULATION RESULTS

Figure 5.1 below shows ACR of BHsparse versus η, with varying values for ζ chosen from quantiles
of the oracle interval in Theorem 3.1. It is clear that there is a threshold value of η below which
detection of K fails and otherwise it succeeds. The top row (A) shows that this threshold decreases
as N increases from 5, 000 to 15, 000 while the bottom row (B) shows that the threshold increases
withK. Note that the threshold for λ in equation 3.1, which depends on η, decreases asN increases.

Figure 5.1: ACR of BHsparse with ζ set to quantiles (10%, 30%, 50%, 70%, 90%) of the oracle
interval in Theorem 3.1. Network data was generated from Simulation Setting (1) with fixed d̃ =
3
√

log(N). (A) shows ACR versus η for varying levels of N with K = 3. (B) shows ACR versus
η for varying levels of K with N = 25, 000.
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Figure 5.2: ACR of BHsparse versus η as K and N vary, using estimated intervals with ζ set
to quantiles (10%, 30%, 50%, 70%, 90%) of the estimated intervals using Procedure 4.1 based on
networks satisfying the threshold (3.2). Network data was generated from Simulation Setting (1)
with fixed d̃ = 3

√
log(N).

Figure 5.2 shows ACR of BHsparse with ζ set to different quantiles of the estimated intervals. Only
those cases where either interval exists are shown in the plot. It can be observed that the performance
becomes worse as ζ gets close to end-points of the intervals. Generally 30% to 50% quantiles within
the intervals appear to work the best.

In Figure 5.3 (Figure 5.4 resp.), we compare the performance of BHsparse using 30% and 50%
quantiles of oracle intervals (estiamted intervals resp.) with BHmc and BHac. Figure 5.3 and 5.4
show that when the threshold in Corollary 3.2 is satisfied, ζ ∈ {30%, 50%} quantiles of both the
oracle and estimated intervals perform better than the two heuristic choices in Le & Levina (2015).

The plots corresponding to Figures 5.1, 5.2, 5.3, and 5.4 for the other two density regimes of d̃ ∈
{0.165(log(N))2, 0.788(N)(1/3)} are given in the Supplement §1.3.

We also compare performances of BHsparse of ζ equals 30%, 50%, and 70% quantiles of the es-
timated intervals with BHmc and BHac with a more general setting of the probability connectivity
matrix as Equation 5.1. Figure 5.5 shows the ACR performances of our proposed method with
choices of ζ as 30% to 50% quantiles of the intervals over-perform the methods proposed in Le &
Levina (2015).

Figure 5.3: Row (A) shows ACR versus η using oracle intervals, with different values of N and
K = 3. Row (B) shows ACR versus η as K varies with fixed N = 25, 000. Both plots only include
cases where oracle thresholds in Corollary 3.2 are satisfied and are based on data generated from
Simulation Setting (1) with fixed d̃ = 3

√
log(N).
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Figure 5.4: ACR versus η asK varies using estimated intervals, based on data from Simulation Set-
ting (1) with fixed d̃ = 3

√
log(N) and only including cases where estimated thresholds in Corollary

3.2 are satisfied. For ζ, 30% and 50% quantiles of the estimated intervals are considered.

Figure 5.5: ACR versus η as N varies using estimated intervals, based on data from Simulation
Setting (2) with K = 3 and d̃ = 3

√
log(N), and only include cases where estimated thresholds in

Corollary 3.2 are satisfied. For ζ, 30% and 50% quantiles of the estimated intervals are considered.

5.3 REAL-WORLD NETWORK APPLICATION

We apply our proposed methods to a benchmark real-world network data set, the Polbooks network,
which also been used in previous works (Le & Levina (2015), Chen & Lei (2018)). The Polbooks
network (Rossi & Ahmed (2015)) represents books on politics published around the 2004 presiden-
tial election that were purchased together as a bundle from Amazon.com. The Polbooks network
has two natural communities (liberal and conservative), 105 nodes, and the mean observed degree
of 8.4. The estimated interval for ζ using Procedure 4.1 is [1.3, 7.3]. Using the 50th percentile of
the interval, Procedure 4.1 correctly estimates the number of communities, K, as K̂ = 2, while both
BHac and BHmc estimate the number of communities, K, as K̂ = 4. This result demonstrates that
Procedures 4.1 and 4.2 can correctly detect the number of communities in real-world networks too.

6 DISCUSSION

In this paper, we contribute theoretical results on the selection of Bethe Hessian scalar parameter,
ζ, for a consistent estimation of number of communities (K) in networks that are generated from
the SBM with arbitrary degree of sparsity. To the best of our knowledge, this is the first study to
theoretically prove the consistency of the Bethe Hessian spectral method to estimate K in sparse
regimes with d̃ = o(log(N)). We also rigorously derive the oracle interval and provide a convenient
way to empirically estimate the intervals for selecting ζ to construct the Bethe Hessian operator to
consistently estimate K. We support our theoretical results with simulation studies and real-world
network application too.

In this paper, we only prove an upper bound of the hypothesized threshold for estimation of number
of communities. An important future work will be to prove the lower bound results such that the
existence of the threshold can be properly established.

9
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