
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONDITIONAL LORA PARAMETER GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models have achieved remarkable success in image, video, and text
domains. Inspired by this, researchers have explored utilizing generative models to
generate neural network parameters. However, these efforts have been limited by
the parameter size and the practicality of generating high-performance parameters.
In this paper, we propose COND P-DIFF, a novel approach that demonstrates
the feasibility of controllable high-performance parameter generation, particu-
larly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process.
Specifically, we employ an autoencoder to extract efficient latent representations
for parameters. We then train a conditional latent diffusion model to synthesize
high-performing model parameters from random noise based on specific task
conditions. Experimental results in both computer vision and natural language
processing domains consistently demonstrate that COND P-DIFF can generate
high-performance parameters conditioned on the given task. Moreover, we observe
that the parameter distribution generated by COND P-DIFF exhibits differences
compared to the distribution obtained through normal optimization methods, in-
dicating a certain level of generalization capability. Our work paves the way for
further exploration of condition-driven parameter generation, offering a promising
direction for task-specific adaptation of neural networks.

1 INTRODUCTION

Recent advancements in generative models Rombach et al. (2022); Ramesh et al. (2022); Saharia
et al. (2022); Brown et al. (2020) have marked substantial progress across several domains of artificial
intelligence. In the computer vision domain, generative adversarial networks Goodfellow et al.
(2014), diffusion models Ho et al. (2020), and other approaches Dinh et al. (2014); Rezende et al.
(2014) have shown impressive results in image synthesis and manipulation. Notably, models such
as Stable Diffusion Rombach et al. (2022), DALL-E 2 Ramesh et al. (2022), and Imagen Saharia
et al. (2022) have set new benchmarks in the quality and resolution of generated images. Moreover,
video generation models like Sora OpenAI (2024) have shown promising results in producing
coherent and high-quality video sequences, opening new avenues for applications in entertainment
and media. In the natural language processing domain Radford et al. (2019); Kaplan et al. (2020);
Wei et al. (2022), autoregressive models like GPT Brown et al. (2020) and Llama Touvron et al.
(2023) have demonstrated promising generation capabilities and alignment with human preference Jin
et al. (2024); Ouyang et al. (2022); Rafailov et al. (2024); Kadavath et al. (2022), which underscore
the potential of generative models.

Inspired by these achievements, recent studies Peebles et al. (2022); Wang et al. (2024) have begun
to explore the application of generative models in novel areas, generating high-performing model
parameters. These studies focus on directly generating novel model parameters to accelerate the
training process, uncovering parameters that achieve comparable performance with those obtained
through conventional optimization methods.

By harnessing the power of generative models, it is possible to substantially reduce the computational
cost and time required for model optimization Peebles et al. (2022); Ruder (2016); Kingma & Ba
(2014). Besides, examining the latent relationships between model parameters and performance
provides valuable insights into the behavior and characteristics of neural networks Ha et al. (2016).

However, previous works on parameter generation Wang et al. (2024); Peebles et al. (2022); Soro
et al. (2024); Schürholt et al. (2022); Knyazev et al. (2021) face several limitations. On the one hand,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the scale of parameters generated by prior methods Soro et al. (2024); Peebles et al. (2022); Wang
et al. (2024) is insufficient for practical applications. For example, G.pt Peebles et al. (2022) has been
evaluated only on relatively simple datasets such as MNIST and CIFAR-10, which may not sufficiently
demonstrate its generalization ability when applied to more complex tasks, and p-diff (Wang et al.,
2024) can generate small-scale high-performance parameters for simple architectures. Besides,
Schürholt et al. (2022) learn a hyper-representation on model zoos for generative use to sample
new small-scale model weights. On the other hand, previous methods do not support conditional
high-performance parameter generation. P-diffWang et al. (2024) lacks support for conditional
parameter generation, a crucial feature for real-world applications. Although G.pt Peebles et al.
(2022) enables controllable parameter generation as an optimizer, it can hardly exhibit comparable
performance compared to networks trained by conventional optimization methods.

Therefore, despite their promising potential, these methods grapple with constraints about parameter
size, practicality, and overall performance, which yield the primary question to be explored in this
paper: (Q) Can we synthesize high-performance parameters conditioned on the given task practically?

C
O
N
D
-PD

IFF

Image style

Task description

Few-shot examples

Vision
Language

+
LoRA 2

LoRA 1

Figure 1: High-performance LoRA parameters
generation process by COND P-DIFF in vision
and language domains.

To enhance the practicality of parameter gen-
eration, two main challenges exist. First, pa-
rameter generation for complex models entails
significant data preparation costs. For exam-
ple, G.pt Peebles et al. (2022) requires training
23 million models, which is infeasible for large
models. Second, controllable parameter gener-
ation is challenging due to the difficulty in mod-
eling the distribution of parameters, making full
parameter generation highly complex. Conse-
quently, we focus on the conditional generation
of fine-tuned LoRA (Low-Rank Adaptation) pa-
rameters in various domains as LoRA improves
downstream task performance with few param-
eters and a relatively more stable distribution.
Specifically, LoRA Hu et al. (2021) is a parameter-efficient fine-tuning technique that adapts
pre-trained models to specific tasks by learning low-rank matrices that modify the model’s weights.

To achieve high-performance controllable conditional parameter generation, we propose Conditional
Parameter Diffusion, named COND P-DIFF, which utilizes a standard latent diffusion model to
perform conditional generation, synthesizing a new set of parameters tailored to specific conditions.
Specifically, we use an autoencoder and a conditional latent diffusion model to capture the distribution
of network weights. First, the autoencoder is trained on a selected set of parameters from models
optimized with normal optimization methods, e.g., SGD Ruder (2016), on different datasets, creating
latent representations of these parameters. Second, we utilize a domain-specific condition, e.g., text,
style image, projector to encode the condition information and train a conditional diffusion model
to reconstruct latent representations. Finally, as shown in Figure 1, the trained conditional latent
diffusion model COND P-DIFF generates latent representations from random noise in the inference
process based on specific task conditions. Then, the decoder of the trained autoencoder processes
these generated representations to produce new, high-performing model parameters.

Our method has the following characteristics: i) It demonstrates comparable or superior performance
relative to models trained with conventional methods, spanning various datasets and architectures.
ii) The parameters generated by our approach significantly differ from the parameters obtained
during normal training, highlighting its capability to synthesize novel parameters rather than merely
replicating the training examples. iii) Extensive evaluations demonstarte the robustness of our
approach. Our method COND P-DIFF also shows generalizability in generated high-performance
model weights space. We hope that our findings will provide new insights into the potential of
applying conditional diffusion models to parameter generation and highlight a promising direction
for task-specific parameter generation of neural networks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

2.1 PRELIMINARIES OF LORA

Low-Rank Adaptation (LoRA) Hu et al. (2021) enhances the efficiency of fine-tuning large pre-trained
language models by minimizing the computational demands usually required for full model retraining.
LoRA introduces two trainable matrices, B ∈ Rd×r and A ∈ Rr×k, to each transformer layer. These
matrices, where r is much smaller than hidden layer dimension d and task-specific dimension k,
perform a low-rank approximation of the typical updates made during fine-tuning. The core idea is
that the necessary adjustments for task-specific adaptation have a low "intrinsic dimension," allowing
significant reductions in trainable parameters while maintaining performance. The pretrained weight
matrix W0 remains unchanged, with only B and A being optimized, thus speeding up training and
decreasing memory and computational needs. The modified forward pass in LoRA is represented as:

W0x+∆Wx = W0x+B(Ax) (1)

where ∆W = BA is the update. Initially, B is zero, ensuring no changes to W0, and A starts with a
small random Gaussian distribution. In deployment, the learned low-rank matrices B and A can be
integrated into W0. In this work, we aim to synthesize LoRA parameters because of the practicality
and effective LoRA fusion that show the continuous distribution in LoRA parameter space.

2.2 PRELIMINARIES OF CONDITIONAL DIFFUSION MODELS

Conditional diffusion models Ho et al. (2020); Rombach et al. (2022); Zhang et al. (2023) extend the
standard diffusion model by incorporating conditions into both the forward and reverse processes.
This conditional information defined by c allows the model to generate data tailored to specific
attributes or requirements.

Conditional forward process: The forward process in conditional models involves adding noise
to an initial sample while conditioning on c. The probability of transitioning from xt−1 to xt under
condition c is modeled as a Gaussian distribution:

q(xt|xt−1, c) = N (xt;
√

1− βtxt−1, βtI) (2)

where βt are the timestep-dependent noise levels, and I represents the identity matrix. The complete
forward process conditioned on c is given by:

q(x1:T |x0, c) =

T∏
t=1

q(xt|xt−1, c) (3)

Conditional Reverse Process: The reverse process aims to reconstruct the original sample from its
noisiest state xT conditioned on c. It is formulated by:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)) (4)

In this process, µθ and Σθ are functions estimated by a neural network, which also processes the
condition c, ensuring that the recovery of data respects the conditional constraints.

Optimization and Inference with Conditions: The training procedure involves minimizing the
Kullback-Leibler(KL) divergence between the forward and reverse conditional distributions, specifi-
cally:

Ldm = Eq(x0,c) [DKL(q(xt−1|xt, x0, c)∥pθ(xt−1|xt, c))] (5)
During inference, the model generates new samples by conditioning on c and sequentially applying
the learned reverse transitions from a noise distribution, enabling the generation of data that closely
adheres to the specified conditions.

3 METHODOLOGY

3.1 OVERVIEW

We propose conditional parameter generation to synthesize new parameters tailored to specific task
conditions. Fig 2 illustrates our proposed COND P-DIFF framework. First, given a training dataset of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

model parameters, we use an autoencoder Kingma & Welling (2013) to extract latent representations
of the parameters and reconstruct the latent vectors by decoder. Then, inspired by Wang et al. (2024),
we train a conditional latent diffusion model to generate high-performance parameters conditioned on
specific task information. Finally, after training, we employ COND P-DIFF by feeding random noise
and task-specific conditions into a conditional parameter diffusion model to generate the desired
parameters.

𝑤

𝑤

ෝ𝑤

Conditional PDM

ෝ𝑤

Autoencoder training

ℰ 𝒟

𝒟

ℰ Diffusion Process

𝓏 𝜉𝓏

Denoising Net

𝓏𝑇𝓏

Conditional parameter diffusion model

𝓏 𝓏𝑇

Conditional parameter generation

Task
condition

Image style

Text
∙ Task description
∙ Few-shot examples

Trainable

Frozen

𝒟 Generated LoRA parameters

Random noise 𝝐

𝜏

𝜏

ℰ Encoder of AE

Decoder of AE𝒟

𝜏 Condition Projector

𝓏 Latent Vector

𝑤 Parameter

Figure 2: The framework of COND P-DIFF. The autoencoder is employed to extract the
latent representation of LoRA parameters and reduce memory consumption. The conditional
parameter diffusion model aims to synthesize high-performance parameters based on specific
task conditions.

3.2 PARAMETER AUTOENCODER

Dataset preparation. In this work, we focus on synthesizing LoRA learnable matrix parameters of
fine-tuned models by default. To obtain the training dataset for the parameter autoencoder, we fine-
tune the pre-trained model using LoRA on the dataset for task q and collect N different checkpoints
in the last N steps. We denote the training dataset as Θ = [θ1, . . . , θn, . . . , θN], where θk represents
the weights of LoRA for the model at a specific fine-tuning stage. Because the training dataset for
COND P-DIFF contains model parameters rather than conventional image or language datasets, we
propose task normalization. Specifically, we employ Z-Score normalization on the parameters of
each task individually Ioffe & Szegedy (2015).

Training procedure. Given a training sample θn, we flatten parameter matrix θn to a one-
dimensional vector wn ∈ RK×1, which K is the total number of parameter weights of wn. Then,
we utilize an auto-encoder to obtain meaningful and robust latent representations. Specifically, we
formulate the process as Equation 6, where E and D represent the encoder and decoder functions,
respectively. zn is the latent representation of the parameter matrix. ŵn is the reconstruction of
parameter wn. To enhance the generalization and robustness of the autoencoder, we introduce
Gaussian noise ξz to the latent vector. The final auto-encoder process is formulated as follows:

zn = E(wn) = Encoder(wn) (6a)
ŵn = D(zn) = Decoder(zn + ξz) (6b)

We train the autoencoder function by minimizing loss function below.

L =
1

N

N∑
n=1

∥wn − ŵn∥2 (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 CONDITIONAL PARAMETER GENERATION

We utilize a conditional latent diffusion model to synthesize high-performance parameters based
on conditions y such as text and image. To handle different tasks and modalities, we adopt the
domain-specific encoder, which is denoted as τdomain(y; ρ), where y represents the input condition
and ρ denotes the encoder parameters. For example, in the NLP experiments of this work, we employ
the text decoder in CLIPRadford et al. (2021). Inspired by in-context learning, the input condition
y consists of a task description and two-shot examples to capture the task information. Besides,
we utilize stylized images as conditions in style transfer tasks and adopt ResNet He et al. (2016)
to extract style latent representations as the condition vector. More details about the condition are
shown in Appendix 6.1. Regarding the U-Net architecture, we apply one-dimensional convolutions
in denoising autoencoders because the weight matrix parameters do not show strong positional
relationships different from images where pixels have two-dimensional spatial relationships.

Therefore, given the condition and training parameters samples, we train the conditional latent
diffusion model through

LLDM := Eϵ∼N (0,1),t

[
∥ϵ− ϵθ(pt, t, τdomain,ρ(y))∥2

]
, (8)

where ϵθ is learned via Eq. 8. Finally, after conditional diffusion model training, we feed specific
conditions corresponding to tasks and random noise to reverse the inference process to obtain
high-performing weights for specific tasks.

4 EXPERIMENT

In this section, we first show the experiment setup. Then, we present the evaluation results, ablation
studies, and analysis of COND P-DIFF.

4.1 EXPERIMENT SETUP

Datasets and metrics. We evaluate our method across various domains. Specifically, in NLP
experiments, we test on the language understanding GLUE benchmark Wang et al. (2018). In CV
experiments, we focus on the style-transfer tasks. We use the SemArt and WikiArt datasets Garcia
& Vogiatzis (2018); Saleh & Elgammal (2015), which contain diverse artistic images, and evaluate
them using the Fréchet Inception Distance (FID, Heusel et al. (2017), as employed by StyleGAN
Karras et al. (2019), with lower scores indicating better performance.

Dataset collecting and training procedures. In NLP experiments, we collect 150 training samples
for models, including BERT, Roberta, GPT-2 by default. For instance, in the case of BERT, we
fixed pre-trained parameters and fine-tuned the network using LoRA. Specifically, we conduct the
hyperparameter search for fixed values of r and α and select the fine-tuning hyperparameters that
yield the best average performance. During the fine-tuning process, we save the checkpoints of the
last 150 steps as the training dataset, which includes the LoRA learnable matrix weights. In the
framework of COND P-DIFF, the autoencoder includes 1D CNN-based encoders and decoders. We
utilize the text encoder from CLIP as the condition text encoder. In image style transfer tasks, we
fine-tune attention modules of a popular text-to-image model, PIXART-α model Chen et al. (2024)
using LoRA and collected the last 64 LoRA checkpoints of the training process once in 10 steps. In
the framework of COND P-DIFF, we used pre-trained ResNet18 to extract style latent as the condition
vector. All experiments were conducted on the Linux server with four NVIDIA A100 GPUs. The
noise ξz is Gaussian noise with an amplitude of 0.001 by default. Detailed training hyperparameters
for LoRA fine-tuning and COND P-DIFF framework are provided in Appendix B.

Inference procedures. In NLP tasks, we generate 20 LoRA parameters for each task using a
conditional diffusion model through random noise and merge these generated parameters into the
pre-trained model. We select the model that exhibits the best performance on the training dataset
and report its performance on the validation dataset. In style-transfer tasks, we synthesize LoRA
parameters of the corresponding styles by feeding the conditional diffusion model with images in
various styles as conditions. We then merge parameters with PIXART-α’s and utilize them to generate
images using a set of prompts. Finally, we compute the FID score of the generated images.

Baselines. 1) original: The best validation performance among the originally trained models. 2)
model soup: The validation performance of the model whose weight is the average of the training

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

dataset. Because Mitchell et al. Wortsman et al. (2022) shows averaging the weights of fine-tuned
models with different hyperparameter configurations often improves accuracy and robustness. In
style-transfer experiments, we introduce an additional baseline no-lora: we directly employ the
predefined PIXART-α model to demonstrate the effectiveness of LoRA fine-tuning in style-transfer
tasks.

4.2 EXPERIMENT RESULTS

COND P-DIFF can generate high-performance parameters based on task conditions. Table 1
presents comparison results of COND P-DIFF and baseline methods across language understanding
GLUE benchmark for three models with different LoRA configurations. We observe that COND
P-DIFF consistently yields comparable performance in most scenarios, demonstrating it learns
conditional parameter distributions effectively and stably. Besides, we note that the baseline average’s
performance in some cases surpasses the baseline, validating the potential of model averaging to
enhance performance Wortsman et al. (2022).

Table 2 illustrates the results of COND P-DIFF and the baseline in the image style transfer task
for different styles. We employ the FID Heusel et al. (2017) to quantitatively assess the quality of
style-conditioned image generation. Lower FID represents better image generation quality. Based
on our findings, COND P-DIFF efficiently synthesizes specific style-adapted LoRA parameters to
generate high-quality images. Additional visual results are shown in Figure ??. This demonstrates
that COND P-DIFF can practically generate high-performance model parameters based on specific
conditions.

Table 1: Results of COND P-DIFF on GLUE. We present results in the format of ’COND P-DIFF/ orginal / model
soup’. COND P-DIFF obtains comparable or even better performance than baselines. ’Size’ is the parameter size
of LoRA. ’Rank’ is the parameter r in LoRA. Full’ represents fully fine-tuning results.

Model Rank Size SST2 RTE MRPC COLA QNLI STSB Average

BERT

1 73728 91.6 / 91.6 / 90.8 57.4 / 58.9 / 57.9 87.2 / 83.4 / 83.9 52.4 / 52.6 / 52.1 88.7 / 88.7 / 88.1 81.8 / 81.4 / 81.7 76.5 / 76.1 / 75.8
2 147456 91.4 / 91.4 / 91.5 57.5 / 59.9 / 60.1 87.3 / 85.1 / 85.5 51.4 / 51.3 / 50.7 88.6 / 88.1 / 87.4 82.6 / 81.6 / 81.7 76.5 / 76.2 / 76.2
4 294912 91.6 / 91.9 / 92.0 62.7 / 63.2 / 62.8 85.4 / 85.4 / 85.5 53.7 / 53.4 / 52.5 89.8 / 89.6 / 88.9 80.6 / 80.9 / 80.7 77.3 / 77.4 / 77.1
16 1179648 92.1 / 91.6 / 91.5 64.2 / 64.3 / 64.5 87.4 / 87.0 / 86.8 56.9 / 57.0 / 57.5 89.8 / 90.1 / 90.2 83.8 / 83.3 / 82.3 79.0 / 78.9 / 78.8

Full 109482240 93.5 66.4 88.9 52.1 90.5 85.8 79.5

RoBERTa

1 73728 93.3 / 93.7 / 94.1 65.6 / 68.6 / 68.0 86.9 / 84.7 / 85.0 49.8 / 50.2 / 50.5 92.4 / 92.0 / 91.4 87.3 / 87.5 / 86.9 79.2 / 79.4 / 79.3
2 147456 93.5 / 93.7 / 93.8 63.2 / 68.2 / 68.3 87.7 / 85.0 / 84.6 50.3 / 50.7 / 50.6 92.8 / 92.5 / 92.2 86.8 / 87.3 / 87.6 79.0 / 79.6 / 79.5
4 294912 93.8 / 93.5 / 93.1 69.8 / 69.7 / 69.5 87.9 / 88.3 / 87.9 54.1 / 54.0 / 54.1 92.0 / 92.4 / 92.9 88.3 / 88.2 / 88.6 81.0 / 81.0 / 81.0

Full 124645632 94.8 78.7 90.2 63.6 92.8 91.2 85.2

DeBERTa
1 92160 94.4 / 94.4 / 94.7 61.4 / 61.0 / 61.5 84.0 / 84.0 / 83.2 56.8 / 57.0 / 56.1 92.4 / 92.8 / 92.1 87.4 / 87.8 / 87.0 79.4 / 79.5 / 79.1
2 184320 94.9 / 94.8 / 94.0 62.2 / 62.1 / 62.0 86.2 / 85.8 / 86.2 58.6 / 58.3 / 57.4 92.1 / 92.0 / 92.1 85.2 / 85.2 / 84.5 79.9 / 79.4 / 79.4
4 368640 94.6 / 94.5 / 94.7 63.2 / 62.8 / 61.9 87.1 / 86.9 / 86.2 60.3 / 60.3 / 59.9 93.4 / 93.5 / 93.1 88.7 / 88.7 / 88.7 81.2 / 81.1 / 80.7

Table 2: FID results of image-transfer tasks. Lower
FID is better. Best results are bolded.

Style original model soup no-Lora COND P-DIFF

Van Gogh 27.92 28.08 102.95 28.03
Edvard 27.10 27.13 96.18 26.98
Chalk 36.22 36.00 171.82 36.18
Charcoal 40.80 40.19 132.76 40.60

Average 33.01 32.86 125.93 32.94

Table 3: Ablation results of training dataset size
N . Larger N can enhance performances.

N SST2 STSB MRPC

1 90.23 80.71 82.71
100 91.63 80.91 83.52
200 91.63 81.81 87.24
500 91.63 81.80 87.25

4.3 ABLATION STUDY

In this section, we conduct multiple ablation studies to report the characteristics of COND P-DIFF.
We focus on the performance of generated LoRA parameters(rank r = 1) of BERT on SST2, RTE,
and MRPC datasets. The training setting is the same as experiments Table 1.

Size of the training dataset As described in Section 3.2, we collect N different checkpoints in the
last N steps as a training dataset for task q using LoRA. We explore the relationship between dataset
size N and performance in Table 3. We observe that the performance improves as the size of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies of COND P-DIFF. We ablate the normalization methods in the training
process, the condition representation, and the location of employing COND P-DIFF. The default
settings in COND P-DIFF are marked in gray . Bold entries are best results.

a Comparison among no
norm., batch norm.,
and task norm.. task
norm. can improve perfor-
mance.

Norm. SST2 STSB MRPC

no norm. 55.67 49.07 47.01
batch norm. 90.60 80.90 82.50
task norm. 91.63 81.81 87.24

b Few-shot examples boost
COND P-DIFF capability with
task information description.

Condition SST2 STSB MRPC

one-hot 90.05 77.12 80.34
learnable vector 90.10 80.03 81.81
task info 90.25 80.32 81.98
task info+few-shot 91.63 81.81 87.24

c COND P-DIFF is effective
in certain blocks but can boost
performance on whole LoRA
parameters.

LoRA layers SST2 STSB MRPC

0-1 91.63 81.43 83.45
0-4 91.63 81.45 83.61
0-8 91.63 81.80 85.61
0-11 91.63 81.81 87.24

training dataset increases. Specifically, a larger training dataset can provide a broader exploration
space, thereby enabling COND P-DIFF to generate higher performance parameters. For instance,
performance on the MRPC task improved by 4.53%.

Normalization approach As described in Section 3.2, we use task normalization method. Table 4a
shows the impacts of different normalization strategies on performance, including no norm., batch
norm., and task norm.. Specifically, task norm. refers to normalizing the parameters corresponding to
each task individually. batch norm. represents batch normalization. The experimental setup in Table
4a is consistent with that of the experiment in Table 1. We find that task norm. consistently yields the
best average performance. no norm. leads to the worst performance because the wide variance in
weight distributions across different tasks and outliers hinders the convergence of the autoencoder.
Besides, batch norm. performed inferior to task norm., as it introduces spurious correlations among
parameters across different tasks.

Condition information The representation of the condition critically affects generation results. We
explore how to represent the task condition effectively to guide conditional parameter generation, as
detailed in Table 4b. Our approach categorizes representations into four types: using one-shot vectors,
using only the task description, using only two-shot examples, and using both the task description and
two-shot examples. Table 4b shows that combining the task description with examples yields better
outcomes, suggesting that in-context learning can provide more information to establish relationships
with the weight parameters.

Which part of parameters to synthesis We generate LoRA parameters for all blocks by default in
Table 1. To explore the effectiveness of COND P-DIFF on different blocks, we present the performance
when generating LoRA parameters for only certain blocks. The experiments in Table 4c illustrate
that the method is more effective when generating parameters for all blocks. We hypothesize that as
the number of synthesized parameters increases, the model has a larger exploration space, thereby
boosting performance. Conversely, performance is constrained by the exploration space and original
parameters when focusing on only a subset of parameters.

4.4 ANALYSIS

In this section, we conduct a detailed analysis of COND P-DIFF. Specifically, we explore two
critical questions: First, does COND P-DIFF merely replicate training data, or can it generate high-
performance model parameters that are distinct from the originals? Second, does the generated
parameter space of COND P-DIFF have generalizability?

COND P-DIFF is not merely cloning model parameters.

Similarity vs. Performance First, we calculate the L2 distance between the generated and original
parameters. Figure ?? illustrates the relationship between the similarity of the generated parameters
and performance. We observe that COND P-DIFF attains various similarities and achieves better
performance compared to original fine-tuned weights across various datasets.

Parameter distribution We employ t-SNE Van der Maaten & Hinton (2008) to analyze the distribu-
tions of generated parameters and original weights of fine-tuned models on datasets COLA, QNLI,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and STSB, as shown in Figures ??. We observe that the distribution of generated parameters by COND
P-DIFF significantly differs from the original parameters. The distribution of the original parameters
can be viewed as following the trajectory of the optimization process. In contrast, COND P-DIFF
generates novel high-performance parameters by learning the distribution of parameters. Besides, the
high-performance parameters generated by COND P-DIFF are dispersed more broadly, underscoring
the generative model’s potential to identify novel high-performance parameters beyond traditional
optimization pathways. Interestingly, the high-performance parameter distributions generated by
COND P-DIFF for the three datasets are very similar, demonstrating the necessity of exploring the
high-performance parameter space.

Trajectories of COND P-DIFF process. Figure ?? visualizes the generated parameters at different
time steps during the inference stage using t-SNE Van der Maaten & Hinton (2008) to explore the
generation process in the image style-transfer tasks. We display five trajectories initialized from
five different random noises and present the model soup and the original model parameters. The
parameters derived from the model soup are located near the original parameters. We observe that
the generated parameters gradually approach the original parameters but ultimately maintain some
distance from them, indicating that COND P-DIFF generates high-performance parameters that
are distributed differently from the original parameters rather than directly replicating them. The
variations in the trajectories also demonstrate the robustness of COND P-DIFF.

Generalizability We examine the generalization of the generated parameter space in the task of
image style transfer. We select parameters, θstyle1 and θstyle2, generated by COND P-DIFF conditioned
two distinct styles, style1 and style2. To interpolate between these styles, we compute a new set
of parameters θinterp as θinterp = (1− λ)θstyle1 + λθstyle2, where λ ∈ [0, 1] is the interpolation factor.
Subsequently, we evaluate the effectiveness of θinterp in style transfer. Figure ?? illustrates the
visualization of images generated by interpolated parameters between Style-1 and Style-2. As λ
increases from left to right, the style gradually shifts towards Style-2. The continuous style change
demonstrates the generalization of the generated parameter space. We also explore the generalization
of the condition space in the Appendix C

5 RELATED WORK

Diffusion models Diffusion models Ho et al. (2020); Dhariwal & Nichol (2021); Peebles & Xie (2023)
have recently emerged as a powerful class of generative models, enabling high-fidelity synthesis
of complex data distributions. The research on the diffusion model can be generally classified into
four categories. The first category aims to enhance image synthesis quality Rombach et al. (2022);
Ramesh et al. (2022); Saharia et al. (2022) Second, researchers focus on accelerating the sampling
process Song et al. (2022); Lu et al. (2022). Third, recent research has also focused on reevaluating
diffusion models through the lens of continuous analysis like score-based generative modeling Feng
et al. (2023). Fourth, the success of diffusion models has sparked their application in various domains,
Kong et al. (2021); Luo & Hu (2021); Wolleb et al. (2022). In this work, we explore the conditional
diffusion model in the parameter generation domain.

Conditional generation Conditional generation has gained significant attention in computer vision
and natural language processing. Three prominent frameworks have emerged: conditional GANs
Mirza & Osindero (2014); Isola et al. (2018); Zhu et al. (2020), conditional VAEs Sohn et al. (2015);
Yan et al. (2016), and conditional diffusion models xwRombach et al. (2022); Ho et al. (2020), which
incorporate conditions to guide the generation process, enabling the creation of visually coherent and
semantically meaningful data samples. Conditional GANs incorporate condition information into
GAN to generate images conditioned on specific attributes or labels. Conditional diffusion models
take this further by generating visually coherent and semantically meaningful images from the textual
description, demonstrating superior image synthesis quality compared to GANs. Building upon the
success of conditional diffusion models, we propose to extend this approach to generating neural
network parameters based on specific conditions.

Parameter generation The field of parameter generation has seen significant progress in recent
years, with HyperNetworks ((Ha et al., 2016) and generative models of neural network checkpoints
Peebles et al. (2022) emerging as promising approaches. Ha et al. (2016) introduced HyperNetworks,
which uses a hypernetwork to learn the parameters for another neural network. Finn et al. (2017)
proposes Model-Agnostic Meta-Learning, which learns an initialization for efficient fine-tuning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Peebles et al. (2022) introduce the model G.pt to predict the distribution over parameter updates
given an initial input parameter vector and a prompted loss or error. Schürholt et al. (2022) trained
autoencoder on a model zoo to learn a hyper-representation for generative use to sample new model
weights Knyazev et al. (2021) use a GNN-based model to sample network parameters. Erkoç et al.
(2023) directly leverages MLP weights and generates neural implicit fields encoded by synthesized
MLP weights. Wang et al. (2024) uses a diffusion model to generate high-performing neural network
parameters across various architectures and datasets. Different from the previous works, we focus
on conditional parameter generation to generate high-performing weights based on specific task
conditions practically.

6 CONCLUSION

In this work, we proposed an approach COND P-DIFF for high-performance controllable parameter
generation, specially for LoRA parameters. We utilize an autoencoder and a conditional latent
diffusion model to capture the distribution of high-performing parameters and perform conditional
generation, synthesizing a new set of parameters tailored to specific conditions. We show that
our method can efficiently synthesize novel and high-quality model parameters. The parameter
distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained
through conventional optimization methods, indicating a certain level of generalization capability.

6.1 LIMITATION AND FUTURE WORK

Nonetheless, it is essential to recognize that diffusion in parameter generation is still largely unex-
plored despite the significant advances in the realm of image and video synthesis. In this work, we
present a preliminary methodology for conditional parameter diffusion. However, several challenges
remain unresolved, including reducing memory demands for large model architectures, enhancing
the generalizability of generation techniques, and improving the representation of dataset conditions.
Furthermore, integrating knowledge graphs with conditional diffusion offers promising directions for
controlling conditional generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Md. Bahadur Badsha, Evan A Martin, and Audrey Qiuyan Fu. Mrpc: An r package for accurate
inference of causal graphs, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Sts benchmark.
https://paperswithcode.com/dataset/sts-benchmark, 2017. ACL.

Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis. In ICLR, 2024. URL https://openreview.net/
forum?id=eAKmQPe3m1.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis, June 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. In ICCV, pp. 14300–14310, 2023.

Berthy T. Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L. Bouman, and
William T. Freeman. Score-Based Diffusion Models as Principled Priors for Inverse Imaging,
August 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks, July 2017.

Noa Garcia and George Vogiatzis. How to Read Paintings: Semantic Art Understanding with
Multi-Modal Retrieval, October 2018.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer Using Convolutional
Neural Networks. In CVPR, pp. 2414–2423, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 27, 2014.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456. pmlr, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image Translation with
Conditional Adversarial Networks, November 2018.

Xiaolong Jin, Zhuo Zhang, and Xiangyu Zhang. Multiverse: Exposing large language model
alignment problems in diverse worlds. arXiv preprint arXiv:2402.01706, 2024.

10

https://paperswithcode.com/dataset/sts-benchmark
https://openreview.net/forum?id=eAKmQPe3m1
https://openreview.net/forum?id=eAKmQPe3m1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative
Adversarial Networks, March 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero-Soriano. Parameter
Prediction for Unseen Deep Architectures, October 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A Versatile
Diffusion Model for Audio Synthesis, March 2021.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast
ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps, October 2022.

Shitong Luo and Wei Hu. Diffusion Probabilistic Models for 3D Point Cloud Generation, June 2021.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Com-
puters & Geosciences, 19(3):303–342, 1993. ISSN 0098-3004. doi: https://doi.org/10.
1016/0098-3004(93)90090-R. URL https://www.sciencedirect.com/science/
article/pii/009830049390090R.

Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets, November 2014.

OpenAI. Sora, 2024. URL https://openai.com/index/sora. Accessed: 2024-05-08.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 35:27730–27744, 2022.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers, March 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
Learn with Generative Models of Neural Network Checkpoints, September 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PMLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. NeurIPS,
36, 2024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-
Conditional Image Generation with CLIP Latents, April 2022.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML, pp. 1278–1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models, April 2022.

11

https://www.sciencedirect.com/science/article/pii/009830049390090R
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://openai.com/index/sora

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/1505.
04597.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding, May 2022.

Babak Saleh and Ahmed Elgammal. Large-scale Classification of Fine-Art Paintings: Learning The
Right Metric on The Right Feature, May 2015.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. NeurIPS, 35:27906–27920, 2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. ACL. URL https:
//www.aclweb.org/anthology/D13-1170.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using
Deep Conditional Generative Models. In NeurIPS, volume 28. Curran Associates, Inc., 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models, October
2022.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based neural network weights generation. arXiv preprint arXiv:2402.18153, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(11), 2008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural
network diffusion. arXiv preprint arXiv:2402.13144, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

Julia Wolleb, Florentin Bieder, Robin Sandkühler, and Philippe C. Cattin. Diffusion Models for
Medical Anomaly Detection, October 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, pp. 23965–23998. PMLR, 2022.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2Image: Conditional Image
Generation from Visual Attributes, October 2016.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, pp. 3836–3847, 2023.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks, August 2020.

12

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

	Introduction
	Preliminary
	Preliminaries of LoRA
	Preliminaries of Conditional Diffusion Models

	Methodology
	Overview
	Parameter autoencoder
	Conditional parameter generation

	Experiment
	Experiment setup
	Experiment results
	Ablation study
	Analysis

	Related work
	Conclusion
	Limitation and future work

	Detailed related work
	Experiment setup
	Style transfer experiments
	Language experiments
	Datasets
	LoRA configurations
	Condition

	Explorations of Cond P-Diff generalizability

