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ABSTRACT

Generative models have achieved remarkable success in image, video, and text
domains. Inspired by this, researchers have explored utilizing generative models to
generate neural network parameters. However, these efforts have been limited by
the parameter size and the practicality of generating high-performance parameters.
In this paper, we propose COND P-DIFF, a novel approach that demonstrates
the feasibility of controllable high-performance parameter generation, particu-
larly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process.
Specifically, we employ an autoencoder to extract efficient latent representations
for parameters. We then train a conditional latent diffusion model to synthesize
high-performing model parameters from random noise based on specific task
conditions. Experimental results in both computer vision and natural language
processing domains consistently demonstrate that COND P-DIFF can generate
high-performance parameters conditioned on the given task. Moreover, we observe
that the parameter distribution generated by COND P-DIFF exhibits differences
compared to the distribution obtained through normal optimization methods, in-
dicating a certain level of generalization capability. Our work paves the way for
further exploration of condition-driven parameter generation, offering a promising
direction for task-specific adaptation of neural networks.

1 INTRODUCTION

Recent advancements in generative models Rombach et al. (2022); Ramesh et al. (2022); Saharia
et al. (2022); Brown et al. (2020) have marked substantial progress across several domains of artificial
intelligence. In the computer vision domain, generative adversarial networks Goodfellow et al.
(2014), diffusion models Ho et al. (2020), and other approaches Dinh et al. (2014); Rezende et al.
(2014) have shown impressive results in image synthesis and manipulation. Notably, models such
as Stable Diffusion Rombach et al. (2022), DALL-E 2 Ramesh et al. (2022), and Imagen Saharia
et al. (2022) have set new benchmarks in the quality and resolution of generated images. Moreover,
video generation models like Sora OpenAI (2024) have shown promising results in producing
coherent and high-quality video sequences, opening new avenues for applications in entertainment
and media. In the natural language processing domain Radford et al. (2019); Kaplan et al. (2020);
Wei et al. (2022), autoregressive models like GPT Brown et al. (2020) and Llama Touvron et al.
(2023) have demonstrated promising generation capabilities and alignment with human preference Jin
et al. (2024); Ouyang et al. (2022); Rafailov et al. (2024); Kadavath et al. (2022), which underscore
the potential of generative models.

Inspired by these achievements, recent studies Peebles et al. (2022); Wang et al. (2024) have begun
to explore the application of generative models in novel areas, generating high-performing model
parameters. These studies focus on directly generating novel model parameters to accelerate the
training process, uncovering parameters that achieve comparable performance with those obtained
through conventional optimization methods.

By harnessing the power of generative models, it is possible to substantially reduce the computational
cost and time required for model optimization Peebles et al. (2022); Ruder (2016); Kingma & Ba
(2014). Besides, examining the latent relationships between model parameters and performance
provides valuable insights into the behavior and characteristics of neural networks Ha et al. (2016).

However, previous works on parameter generation Wang et al. (2024); Peebles et al. (2022); Soro
et al. (2024); Schürholt et al. (2022); Knyazev et al. (2021) face several limitations. On the one hand,
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the scale of parameters generated by prior methods Soro et al. (2024); Peebles et al. (2022); Wang
et al. (2024) is insufficient for practical applications. For example, G.pt Peebles et al. (2022) has been
evaluated only on relatively simple datasets such as MNIST and CIFAR-10, which may not sufficiently
demonstrate its generalization ability when applied to more complex tasks, and p-diff (Wang et al.,
2024) can generate small-scale high-performance parameters for simple architectures. Besides,
Schürholt et al. (2022) learn a hyper-representation on model zoos for generative use to sample
new small-scale model weights. On the other hand, previous methods do not support conditional
high-performance parameter generation. P-diffWang et al. (2024) lacks support for conditional
parameter generation, a crucial feature for real-world applications. Although G.pt Peebles et al.
(2022) enables controllable parameter generation as an optimizer, it can hardly exhibit comparable
performance compared to networks trained by conventional optimization methods.

Therefore, despite their promising potential, these methods grapple with constraints about parameter
size, practicality, and overall performance, which yield the primary question to be explored in this
paper: (Q) Can we synthesize high-performance parameters conditioned on the given task practically?

C
O
N
D
-PD

IFF

Image style

Task description 

Few-shot examples

Vision
Language

+
LoRA 2

LoRA 1

Figure 1: High-performance LoRA parameters
generation process by COND P-DIFF in vision
and language domains.

To enhance the practicality of parameter gen-
eration, two main challenges exist. First, pa-
rameter generation for complex models entails
significant data preparation costs. For exam-
ple, G.pt Peebles et al. (2022) requires training
23 million models, which is infeasible for large
models. Second, controllable parameter gener-
ation is challenging due to the difficulty in mod-
eling the distribution of parameters, making full
parameter generation highly complex. Conse-
quently, we focus on the conditional generation
of fine-tuned LoRA (Low-Rank Adaptation) pa-
rameters in various domains as LoRA improves
downstream task performance with few param-
eters and a relatively more stable distribution.
Specifically, LoRA Hu et al. (2021) is a parameter-efficient fine-tuning technique that adapts
pre-trained models to specific tasks by learning low-rank matrices that modify the model’s weights.

To achieve high-performance controllable conditional parameter generation, we propose Conditional
Parameter Diffusion, named COND P-DIFF, which utilizes a standard latent diffusion model to
perform conditional generation, synthesizing a new set of parameters tailored to specific conditions.
Specifically, we use an autoencoder and a conditional latent diffusion model to capture the distribution
of network weights. First, the autoencoder is trained on a selected set of parameters from models
optimized with normal optimization methods, e.g., SGD Ruder (2016), on different datasets, creating
latent representations of these parameters. Second, we utilize a domain-specific condition, e.g., text,
style image, projector to encode the condition information and train a conditional diffusion model
to reconstruct latent representations. Finally, as shown in Figure 1, the trained conditional latent
diffusion model COND P-DIFF generates latent representations from random noise in the inference
process based on specific task conditions. Then, the decoder of the trained autoencoder processes
these generated representations to produce new, high-performing model parameters.

Our method has the following characteristics: i) It demonstrates comparable or superior performance
relative to models trained with conventional methods, spanning various datasets and architectures.
ii) The parameters generated by our approach significantly differ from the parameters obtained
during normal training, highlighting its capability to synthesize novel parameters rather than merely
replicating the training examples. iii) Extensive evaluations demonstarte the robustness of our
approach. Our method COND P-DIFF also shows generalizability in generated high-performance
model weights space. We hope that our findings will provide new insights into the potential of
applying conditional diffusion models to parameter generation and highlight a promising direction
for task-specific parameter generation of neural networks.
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2 PRELIMINARY

2.1 PRELIMINARIES OF LORA

Low-Rank Adaptation (LoRA) Hu et al. (2021) enhances the efficiency of fine-tuning large pre-trained
language models by minimizing the computational demands usually required for full model retraining.
LoRA introduces two trainable matrices, B ∈ Rd×r and A ∈ Rr×k, to each transformer layer. These
matrices, where r is much smaller than hidden layer dimension d and task-specific dimension k,
perform a low-rank approximation of the typical updates made during fine-tuning. The core idea is
that the necessary adjustments for task-specific adaptation have a low "intrinsic dimension," allowing
significant reductions in trainable parameters while maintaining performance. The pretrained weight
matrix W0 remains unchanged, with only B and A being optimized, thus speeding up training and
decreasing memory and computational needs. The modified forward pass in LoRA is represented as:

W0x+∆Wx = W0x+B(Ax) (1)

where ∆W = BA is the update. Initially, B is zero, ensuring no changes to W0, and A starts with a
small random Gaussian distribution. In deployment, the learned low-rank matrices B and A can be
integrated into W0. In this work, we aim to synthesize LoRA parameters because of the practicality
and effective LoRA fusion that show the continuous distribution in LoRA parameter space.

2.2 PRELIMINARIES OF CONDITIONAL DIFFUSION MODELS

Conditional diffusion models Ho et al. (2020); Rombach et al. (2022); Zhang et al. (2023) extend the
standard diffusion model by incorporating conditions into both the forward and reverse processes.
This conditional information defined by c allows the model to generate data tailored to specific
attributes or requirements.

Conditional forward process: The forward process in conditional models involves adding noise
to an initial sample while conditioning on c. The probability of transitioning from xt−1 to xt under
condition c is modeled as a Gaussian distribution:

q(xt|xt−1, c) = N (xt;
√

1− βtxt−1, βtI) (2)

where βt are the timestep-dependent noise levels, and I represents the identity matrix. The complete
forward process conditioned on c is given by:

q(x1:T |x0, c) =

T∏
t=1

q(xt|xt−1, c) (3)

Conditional Reverse Process: The reverse process aims to reconstruct the original sample from its
noisiest state xT conditioned on c. It is formulated by:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)) (4)

In this process, µθ and Σθ are functions estimated by a neural network, which also processes the
condition c, ensuring that the recovery of data respects the conditional constraints.

Optimization and Inference with Conditions: The training procedure involves minimizing the
Kullback-Leibler(KL) divergence between the forward and reverse conditional distributions, specifi-
cally:

Ldm = Eq(x0,c) [DKL(q(xt−1|xt, x0, c)∥pθ(xt−1|xt, c))] (5)
During inference, the model generates new samples by conditioning on c and sequentially applying
the learned reverse transitions from a noise distribution, enabling the generation of data that closely
adheres to the specified conditions.

3 METHODOLOGY

3.1 OVERVIEW

We propose conditional parameter generation to synthesize new parameters tailored to specific task
conditions. Fig 2 illustrates our proposed COND P-DIFF framework. First, given a training dataset of
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model parameters, we use an autoencoder Kingma & Welling (2013) to extract latent representations
of the parameters and reconstruct the latent vectors by decoder. Then, inspired by Wang et al. (2024),
we train a conditional latent diffusion model to generate high-performance parameters conditioned on
specific task information. Finally, after training, we employ COND P-DIFF by feeding random noise
and task-specific conditions into a conditional parameter diffusion model to generate the desired
parameters.

𝑤

𝑤

ෝ𝑤

Conditional PDM

ෝ𝑤

Autoencoder training

ℰ 𝒟

𝒟

ℰ Diffusion Process
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Denoising Net

𝓏𝑇𝓏

Conditional parameter diffusion model

𝓏 𝓏𝑇

Conditional parameter generation

Task 
condition

Image style

Text
∙ Task description 
∙ Few-shot examples

Trainable

Frozen

𝒟 Generated LoRA parameters

Random noise 𝝐

𝜏

𝜏

ℰ Encoder of AE

Decoder of AE𝒟

𝜏 Condition Projector

𝓏 Latent Vector

𝑤 Parameter

Figure 2: The framework of COND P-DIFF. The autoencoder is employed to extract the
latent representation of LoRA parameters and reduce memory consumption. The conditional
parameter diffusion model aims to synthesize high-performance parameters based on specific
task conditions.

3.2 PARAMETER AUTOENCODER

Dataset preparation. In this work, we focus on synthesizing LoRA learnable matrix parameters of
fine-tuned models by default. To obtain the training dataset for the parameter autoencoder, we fine-
tune the pre-trained model using LoRA on the dataset for task q and collect N different checkpoints
in the last N steps. We denote the training dataset as Θ = [θ1, . . . , θn, . . . , θN ], where θk represents
the weights of LoRA for the model at a specific fine-tuning stage. Because the training dataset for
COND P-DIFF contains model parameters rather than conventional image or language datasets, we
propose task normalization. Specifically, we employ Z-Score normalization on the parameters of
each task individually Ioffe & Szegedy (2015).

Training procedure. Given a training sample θn, we flatten parameter matrix θn to a one-
dimensional vector wn ∈ RK×1, which K is the total number of parameter weights of wn. Then,
we utilize an auto-encoder to obtain meaningful and robust latent representations. Specifically, we
formulate the process as Equation 6, where E and D represent the encoder and decoder functions,
respectively. zn is the latent representation of the parameter matrix. ŵn is the reconstruction of
parameter wn. To enhance the generalization and robustness of the autoencoder, we introduce
Gaussian noise ξz to the latent vector. The final auto-encoder process is formulated as follows:

zn = E(wn) = Encoder(wn) (6a)
ŵn = D(zn) = Decoder(zn + ξz) (6b)

We train the autoencoder function by minimizing loss function below.

L =
1

N

N∑
n=1

∥wn − ŵn∥2 (7)
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3.3 CONDITIONAL PARAMETER GENERATION

We utilize a conditional latent diffusion model to synthesize high-performance parameters based
on conditions y such as text and image. To handle different tasks and modalities, we adopt the
domain-specific encoder, which is denoted as τdomain(y; ρ), where y represents the input condition
and ρ denotes the encoder parameters. For example, in the NLP experiments of this work, we employ
the text decoder in CLIPRadford et al. (2021). Inspired by in-context learning, the input condition
y consists of a task description and two-shot examples to capture the task information. Besides,
we utilize stylized images as conditions in style transfer tasks and adopt ResNet He et al. (2016)
to extract style latent representations as the condition vector. More details about the condition are
shown in Appendix 6.1. Regarding the U-Net architecture, we apply one-dimensional convolutions
in denoising autoencoders because the weight matrix parameters do not show strong positional
relationships different from images where pixels have two-dimensional spatial relationships.

Therefore, given the condition and training parameters samples, we train the conditional latent
diffusion model through

LLDM := Eϵ∼N (0,1),t

[
∥ϵ− ϵθ(pt, t, τdomain,ρ(y))∥2

]
, (8)

where ϵθ is learned via Eq. 8. Finally, after conditional diffusion model training, we feed specific
conditions corresponding to tasks and random noise to reverse the inference process to obtain
high-performing weights for specific tasks.

4 EXPERIMENT

In this section, we first show the experiment setup. Then, we present the evaluation results, ablation
studies, and analysis of COND P-DIFF.

4.1 EXPERIMENT SETUP

Datasets and metrics. We evaluate our method across various domains. Specifically, in NLP
experiments, we test on the language understanding GLUE benchmark Wang et al. (2018). In CV
experiments, we focus on the style-transfer tasks. We use the SemArt and WikiArt datasets Garcia
& Vogiatzis (2018); Saleh & Elgammal (2015), which contain diverse artistic images, and evaluate
them using the Fréchet Inception Distance (FID, Heusel et al. (2017), as employed by StyleGAN
Karras et al. (2019), with lower scores indicating better performance.

Dataset collecting and training procedures. In NLP experiments, we collect 150 training samples
for models, including BERT, Roberta, GPT-2 by default. For instance, in the case of BERT, we
fixed pre-trained parameters and fine-tuned the network using LoRA. Specifically, we conduct the
hyperparameter search for fixed values of r and α and select the fine-tuning hyperparameters that
yield the best average performance. During the fine-tuning process, we save the checkpoints of the
last 150 steps as the training dataset, which includes the LoRA learnable matrix weights. In the
framework of COND P-DIFF, the autoencoder includes 1D CNN-based encoders and decoders. We
utilize the text encoder from CLIP as the condition text encoder. In image style transfer tasks, we
fine-tune attention modules of a popular text-to-image model, PIXART-α model Chen et al. (2024)
using LoRA and collected the last 64 LoRA checkpoints of the training process once in 10 steps. In
the framework of COND P-DIFF, we used pre-trained ResNet18 to extract style latent as the condition
vector. All experiments were conducted on the Linux server with four NVIDIA A100 GPUs. The
noise ξz is Gaussian noise with an amplitude of 0.001 by default. Detailed training hyperparameters
for LoRA fine-tuning and COND P-DIFF framework are provided in Appendix B.

Inference procedures. In NLP tasks, we generate 20 LoRA parameters for each task using a
conditional diffusion model through random noise and merge these generated parameters into the
pre-trained model. We select the model that exhibits the best performance on the training dataset
and report its performance on the validation dataset. In style-transfer tasks, we synthesize LoRA
parameters of the corresponding styles by feeding the conditional diffusion model with images in
various styles as conditions. We then merge parameters with PIXART-α’s and utilize them to generate
images using a set of prompts. Finally, we compute the FID score of the generated images.

Baselines. 1) original: The best validation performance among the originally trained models. 2)
model soup: The validation performance of the model whose weight is the average of the training
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dataset. Because Mitchell et al. Wortsman et al. (2022) shows averaging the weights of fine-tuned
models with different hyperparameter configurations often improves accuracy and robustness. In
style-transfer experiments, we introduce an additional baseline no-lora: we directly employ the
predefined PIXART-α model to demonstrate the effectiveness of LoRA fine-tuning in style-transfer
tasks.

4.2 EXPERIMENT RESULTS

COND P-DIFF can generate high-performance parameters based on task conditions. Table 1
presents comparison results of COND P-DIFF and baseline methods across language understanding
GLUE benchmark for three models with different LoRA configurations. We observe that COND
P-DIFF consistently yields comparable performance in most scenarios, demonstrating it learns
conditional parameter distributions effectively and stably. Besides, we note that the baseline average’s
performance in some cases surpasses the baseline, validating the potential of model averaging to
enhance performance Wortsman et al. (2022).

Table 2 illustrates the results of COND P-DIFF and the baseline in the image style transfer task
for different styles. We employ the FID Heusel et al. (2017) to quantitatively assess the quality of
style-conditioned image generation. Lower FID represents better image generation quality. Based
on our findings, COND P-DIFF efficiently synthesizes specific style-adapted LoRA parameters to
generate high-quality images. Additional visual results are shown in Figure ??. This demonstrates
that COND P-DIFF can practically generate high-performance model parameters based on specific
conditions.

Table 1: Results of COND P-DIFF on GLUE. We present results in the format of ’COND P-DIFF/ orginal / model
soup’. COND P-DIFF obtains comparable or even better performance than baselines. ’Size’ is the parameter size
of LoRA. ’Rank’ is the parameter r in LoRA. Full’ represents fully fine-tuning results.

Model Rank Size SST2 RTE MRPC COLA QNLI STSB Average

BERT

1 73728 91.6 / 91.6 / 90.8 57.4 / 58.9 / 57.9 87.2 / 83.4 / 83.9 52.4 / 52.6 / 52.1 88.7 / 88.7 / 88.1 81.8 / 81.4 / 81.7 76.5 / 76.1 / 75.8
2 147456 91.4 / 91.4 / 91.5 57.5 / 59.9 / 60.1 87.3 / 85.1 / 85.5 51.4 / 51.3 / 50.7 88.6 / 88.1 / 87.4 82.6 / 81.6 / 81.7 76.5 / 76.2 / 76.2
4 294912 91.6 / 91.9 / 92.0 62.7 / 63.2 / 62.8 85.4 / 85.4 / 85.5 53.7 / 53.4 / 52.5 89.8 / 89.6 / 88.9 80.6 / 80.9 / 80.7 77.3 / 77.4 / 77.1
16 1179648 92.1 / 91.6 / 91.5 64.2 / 64.3 / 64.5 87.4 / 87.0 / 86.8 56.9 / 57.0 / 57.5 89.8 / 90.1 / 90.2 83.8 / 83.3 / 82.3 79.0 / 78.9 / 78.8

Full 109482240 93.5 66.4 88.9 52.1 90.5 85.8 79.5

RoBERTa

1 73728 93.3 / 93.7 / 94.1 65.6 / 68.6 / 68.0 86.9 / 84.7 / 85.0 49.8 / 50.2 / 50.5 92.4 / 92.0 / 91.4 87.3 / 87.5 / 86.9 79.2 / 79.4 / 79.3
2 147456 93.5 / 93.7 / 93.8 63.2 / 68.2 / 68.3 87.7 / 85.0 / 84.6 50.3 / 50.7 / 50.6 92.8 / 92.5 / 92.2 86.8 / 87.3 / 87.6 79.0 / 79.6 / 79.5
4 294912 93.8 / 93.5 / 93.1 69.8 / 69.7 / 69.5 87.9 / 88.3 / 87.9 54.1 / 54.0 / 54.1 92.0 / 92.4 / 92.9 88.3 / 88.2 / 88.6 81.0 / 81.0 / 81.0

Full 124645632 94.8 78.7 90.2 63.6 92.8 91.2 85.2

DeBERTa
1 92160 94.4 / 94.4 / 94.7 61.4 / 61.0 / 61.5 84.0 / 84.0 / 83.2 56.8 / 57.0 / 56.1 92.4 / 92.8 / 92.1 87.4 / 87.8 / 87.0 79.4 / 79.5 / 79.1
2 184320 94.9 / 94.8 / 94.0 62.2 / 62.1 / 62.0 86.2 / 85.8 / 86.2 58.6 / 58.3 / 57.4 92.1 / 92.0 / 92.1 85.2 / 85.2 / 84.5 79.9 / 79.4 / 79.4
4 368640 94.6 / 94.5 / 94.7 63.2 / 62.8 / 61.9 87.1 / 86.9 / 86.2 60.3 / 60.3 / 59.9 93.4 / 93.5 / 93.1 88.7 / 88.7 / 88.7 81.2 / 81.1 / 80.7

Table 2: FID results of image-transfer tasks. Lower
FID is better. Best results are bolded.

Style original model soup no-Lora COND P-DIFF

Van Gogh 27.92 28.08 102.95 28.03
Edvard 27.10 27.13 96.18 26.98
Chalk 36.22 36.00 171.82 36.18
Charcoal 40.80 40.19 132.76 40.60

Average 33.01 32.86 125.93 32.94

Table 3: Ablation results of training dataset size
N . Larger N can enhance performances.

N SST2 STSB MRPC

1 90.23 80.71 82.71
100 91.63 80.91 83.52
200 91.63 81.81 87.24
500 91.63 81.80 87.25

4.3 ABLATION STUDY

In this section, we conduct multiple ablation studies to report the characteristics of COND P-DIFF.
We focus on the performance of generated LoRA parameters(rank r = 1) of BERT on SST2, RTE,
and MRPC datasets. The training setting is the same as experiments Table 1.

Size of the training dataset As described in Section 3.2, we collect N different checkpoints in the
last N steps as a training dataset for task q using LoRA. We explore the relationship between dataset
size N and performance in Table 3. We observe that the performance improves as the size of the
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Table 4: Ablation studies of COND P-DIFF. We ablate the normalization methods in the training
process, the condition representation, and the location of employing COND P-DIFF. The default
settings in COND P-DIFF are marked in gray . Bold entries are best results.

a Comparison among no
norm., batch norm.,
and task norm.. task
norm. can improve perfor-
mance.

Norm. SST2 STSB MRPC

no norm. 55.67 49.07 47.01
batch norm. 90.60 80.90 82.50
task norm. 91.63 81.81 87.24

b Few-shot examples boost
COND P-DIFF capability with
task information description.

Condition SST2 STSB MRPC

one-hot 90.05 77.12 80.34
learnable vector 90.10 80.03 81.81
task info 90.25 80.32 81.98
task info+few-shot 91.63 81.81 87.24

c COND P-DIFF is effective
in certain blocks but can boost
performance on whole LoRA
parameters.

LoRA layers SST2 STSB MRPC

0-1 91.63 81.43 83.45
0-4 91.63 81.45 83.61
0-8 91.63 81.80 85.61
0-11 91.63 81.81 87.24

training dataset increases. Specifically, a larger training dataset can provide a broader exploration
space, thereby enabling COND P-DIFF to generate higher performance parameters. For instance,
performance on the MRPC task improved by 4.53%.

Normalization approach As described in Section 3.2, we use task normalization method. Table 4a
shows the impacts of different normalization strategies on performance, including no norm., batch
norm., and task norm.. Specifically, task norm. refers to normalizing the parameters corresponding to
each task individually. batch norm. represents batch normalization. The experimental setup in Table
4a is consistent with that of the experiment in Table 1. We find that task norm. consistently yields the
best average performance. no norm. leads to the worst performance because the wide variance in
weight distributions across different tasks and outliers hinders the convergence of the autoencoder.
Besides, batch norm. performed inferior to task norm., as it introduces spurious correlations among
parameters across different tasks.

Condition information The representation of the condition critically affects generation results. We
explore how to represent the task condition effectively to guide conditional parameter generation, as
detailed in Table 4b. Our approach categorizes representations into four types: using one-shot vectors,
using only the task description, using only two-shot examples, and using both the task description and
two-shot examples. Table 4b shows that combining the task description with examples yields better
outcomes, suggesting that in-context learning can provide more information to establish relationships
with the weight parameters.

Which part of parameters to synthesis We generate LoRA parameters for all blocks by default in
Table 1. To explore the effectiveness of COND P-DIFF on different blocks, we present the performance
when generating LoRA parameters for only certain blocks. The experiments in Table 4c illustrate
that the method is more effective when generating parameters for all blocks. We hypothesize that as
the number of synthesized parameters increases, the model has a larger exploration space, thereby
boosting performance. Conversely, performance is constrained by the exploration space and original
parameters when focusing on only a subset of parameters.

4.4 ANALYSIS

In this section, we conduct a detailed analysis of COND P-DIFF. Specifically, we explore two
critical questions: First, does COND P-DIFF merely replicate training data, or can it generate high-
performance model parameters that are distinct from the originals? Second, does the generated
parameter space of COND P-DIFF have generalizability?

COND P-DIFF is not merely cloning model parameters.

Similarity vs. Performance First, we calculate the L2 distance between the generated and original
parameters. Figure ?? illustrates the relationship between the similarity of the generated parameters
and performance. We observe that COND P-DIFF attains various similarities and achieves better
performance compared to original fine-tuned weights across various datasets.

Parameter distribution We employ t-SNE Van der Maaten & Hinton (2008) to analyze the distribu-
tions of generated parameters and original weights of fine-tuned models on datasets COLA, QNLI,
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and STSB, as shown in Figures ??. We observe that the distribution of generated parameters by COND
P-DIFF significantly differs from the original parameters. The distribution of the original parameters
can be viewed as following the trajectory of the optimization process. In contrast, COND P-DIFF
generates novel high-performance parameters by learning the distribution of parameters. Besides, the
high-performance parameters generated by COND P-DIFF are dispersed more broadly, underscoring
the generative model’s potential to identify novel high-performance parameters beyond traditional
optimization pathways. Interestingly, the high-performance parameter distributions generated by
COND P-DIFF for the three datasets are very similar, demonstrating the necessity of exploring the
high-performance parameter space.

Trajectories of COND P-DIFF process. Figure ?? visualizes the generated parameters at different
time steps during the inference stage using t-SNE Van der Maaten & Hinton (2008) to explore the
generation process in the image style-transfer tasks. We display five trajectories initialized from
five different random noises and present the model soup and the original model parameters. The
parameters derived from the model soup are located near the original parameters. We observe that
the generated parameters gradually approach the original parameters but ultimately maintain some
distance from them, indicating that COND P-DIFF generates high-performance parameters that
are distributed differently from the original parameters rather than directly replicating them. The
variations in the trajectories also demonstrate the robustness of COND P-DIFF.

Generalizability We examine the generalization of the generated parameter space in the task of
image style transfer. We select parameters, θstyle1 and θstyle2, generated by COND P-DIFF conditioned
two distinct styles, style1 and style2. To interpolate between these styles, we compute a new set
of parameters θinterp as θinterp = (1− λ)θstyle1 + λθstyle2, where λ ∈ [0, 1] is the interpolation factor.
Subsequently, we evaluate the effectiveness of θinterp in style transfer. Figure ?? illustrates the
visualization of images generated by interpolated parameters between Style-1 and Style-2. As λ
increases from left to right, the style gradually shifts towards Style-2. The continuous style change
demonstrates the generalization of the generated parameter space. We also explore the generalization
of the condition space in the Appendix C

5 RELATED WORK

Diffusion models Diffusion models Ho et al. (2020); Dhariwal & Nichol (2021); Peebles & Xie (2023)
have recently emerged as a powerful class of generative models, enabling high-fidelity synthesis
of complex data distributions. The research on the diffusion model can be generally classified into
four categories. The first category aims to enhance image synthesis quality Rombach et al. (2022);
Ramesh et al. (2022); Saharia et al. (2022) Second, researchers focus on accelerating the sampling
process Song et al. (2022); Lu et al. (2022). Third, recent research has also focused on reevaluating
diffusion models through the lens of continuous analysis like score-based generative modeling Feng
et al. (2023). Fourth, the success of diffusion models has sparked their application in various domains,
Kong et al. (2021); Luo & Hu (2021); Wolleb et al. (2022). In this work, we explore the conditional
diffusion model in the parameter generation domain.

Conditional generation Conditional generation has gained significant attention in computer vision
and natural language processing. Three prominent frameworks have emerged: conditional GANs
Mirza & Osindero (2014); Isola et al. (2018); Zhu et al. (2020), conditional VAEs Sohn et al. (2015);
Yan et al. (2016), and conditional diffusion models xwRombach et al. (2022); Ho et al. (2020), which
incorporate conditions to guide the generation process, enabling the creation of visually coherent and
semantically meaningful data samples. Conditional GANs incorporate condition information into
GAN to generate images conditioned on specific attributes or labels. Conditional diffusion models
take this further by generating visually coherent and semantically meaningful images from the textual
description, demonstrating superior image synthesis quality compared to GANs. Building upon the
success of conditional diffusion models, we propose to extend this approach to generating neural
network parameters based on specific conditions.

Parameter generation The field of parameter generation has seen significant progress in recent
years, with HyperNetworks ((Ha et al., 2016) and generative models of neural network checkpoints
Peebles et al. (2022) emerging as promising approaches. Ha et al. (2016) introduced HyperNetworks,
which uses a hypernetwork to learn the parameters for another neural network. Finn et al. (2017)
proposes Model-Agnostic Meta-Learning, which learns an initialization for efficient fine-tuning.
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Peebles et al. (2022) introduce the model G.pt to predict the distribution over parameter updates
given an initial input parameter vector and a prompted loss or error. Schürholt et al. (2022) trained
autoencoder on a model zoo to learn a hyper-representation for generative use to sample new model
weights Knyazev et al. (2021) use a GNN-based model to sample network parameters. Erkoç et al.
(2023) directly leverages MLP weights and generates neural implicit fields encoded by synthesized
MLP weights. Wang et al. (2024) uses a diffusion model to generate high-performing neural network
parameters across various architectures and datasets. Different from the previous works, we focus
on conditional parameter generation to generate high-performing weights based on specific task
conditions practically.

6 CONCLUSION

In this work, we proposed an approach COND P-DIFF for high-performance controllable parameter
generation, specially for LoRA parameters. We utilize an autoencoder and a conditional latent
diffusion model to capture the distribution of high-performing parameters and perform conditional
generation, synthesizing a new set of parameters tailored to specific conditions. We show that
our method can efficiently synthesize novel and high-quality model parameters. The parameter
distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained
through conventional optimization methods, indicating a certain level of generalization capability.

6.1 LIMITATION AND FUTURE WORK

Nonetheless, it is essential to recognize that diffusion in parameter generation is still largely unex-
plored despite the significant advances in the realm of image and video synthesis. In this work, we
present a preliminary methodology for conditional parameter diffusion. However, several challenges
remain unresolved, including reducing memory demands for large model architectures, enhancing
the generalizability of generation techniques, and improving the representation of dataset conditions.
Furthermore, integrating knowledge graphs with conditional diffusion offers promising directions for
controlling conditional generation.
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