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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
Tool-Integrated Reasoning (TIR). However, the practical application is often hin-
dered by frequent errors in tool invocation, such as incorrect parameters or mal-
formed formats. Prevailing training paradigms like Supervised Fine-Tuning (SFT)
and Reinforcement Learning (RL) can mitigate these issues but demand sub-
stantial computational resources. To address the limitation, we propose a novel,
resource-efficient refinement framework that enhances the tool-use capabilities of
large-scale LLMs without directly training on them. We introduce a small-scale
model, termed the Tool-use Refiner, which operates as a post-processing module.
This Refiner takes the initial tool-integrated reasoning from an upstream LLM
and the user’s task as input, then performs its own reasoning to correct and en-
hance the invocation. The Refiner is trained using an advanced RL algorithm,
Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO), to ensure
efficient and stable policy learning. On a diverse set of tool-use and reasoning
benchmarks, our Refiner improves task completion rates and invocation accuracy
over the raw outputs of various upstream LL.Ms. This highlights our Refiner as
a lightweight, plug-and-play solution for improving the operational reliability of
LLM-based agents. We release our code and model to facilitate future research.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have enabled them to perform complex rea-
soning and interact with external tools (Schick et al.| [2023; Wang et al.l 2024). Techniques such
as Tool-Integrated Reasoning (TIR) allow LLMs to dynamically invoke tools during conversations,
significantly enhancing their problem-solving capabilities in areas like knowledge retrieval, program
design, and agent task execution (Yao et al., 2023} [Qin et al.l 2024)).

However, even state-of-the-art (SOTA) models frequently produce erroneous tool invocations, in-
cluding incorrect tool names, invalid parameters, wrong tool-call order, or malformed invocation
formats (Liu et al., [2024; Qian et al., 2025). These errors may arise from misinterpretations of user
queries, failure to maintain context, or insufficient reasoning depth. Such inaccuracies can propagate
through downstream applications, leading to inefficiencies or failures in real-world deployments.

Training LLMs for TIR tasks has primarily relied on Supervised Fine-Tuning (SFT) or Reinforce-
ment Learning (RL) (Zeng et al.||2023; |[Feng et al.,|2025). While these methods have shown promis-
ing results, they require considerable computational resources, as they involve direct training on
large-scale LLMs. Moreover, when updates or corrections are needed, retraining becomes neces-
sary, further consuming time and resources. Given these limitations, a compelling research question
arises: Is it possible to enhance large-scale LLMs on TIR tasks without directly training them, while
using only minimal training resources?

Inspired by self-refinement and model cascading techniques (J1 et al., 2024; Ngweta et al., [2024)), we
propose a novel refinement paradigm that introduces a small-scale LLM as a Tool-use Refiner. This
model is designed to correct and enhance tool-invocations from a larger upstream LLM. Specifically,
when a user submits a task, the upstream model generates an initial tool invocation. Our Refiner then
processes both the user’s task and the upstream model’s output, performing its own tool-integrated
reasoning to identify and rectify potential errors. The refined output is expected to align more closely
with the user’s intent and the constraints of the available tools.
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To train the Refiner, we employ an enhanced reinforcement learning algorithm called Decoupled
Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025), an extension of Group
Relative Policy Optimization (GRPO) Shao et al.|(2024) that supports more efficient and stable pol-
icy learning in complex reasoning. After the training, we evaluate our approach on several tool-use
benchmarks covering general invocation, sequence ordering, and search invocation, demonstrating
that the refined outputs lead to significant performance improvements over the raw outputs from the
upstream model. Moreover, the Tool-use Refiner can be seamlessly attached to various upstream
LLMs, offering plug-and-play versatility. These results validate that even a small Refiner, trained
with minimal resources, effectively enhances tool invocation accuracy and task completion rates.
This approach avoids the need for extensive modifications to the upstream LLM, substantially re-
ducing the required resource.

The main contributions of this work are as follows:

* We propose a refinement-based pipeline that employs a small-scale Tool-use Refiner to
correct and improve tool invocations generated by a larger upstream LLM.

* We construct training data and reward functions tailored for tool invocation correction, and
then employ the DAPO RL algorithm to train our Refiner, which circumvents the need for
resource-intensive fine-tuning on the upstream LLMs.

* We demonstrate that our plug-and-play approach effectively rectifies tool invocation errors
(e.g., format, sequencing) for diverse upstream LLMs, yielding consistent performance
gains across benchmarks and surpassing several direct fine-tuning methods.

This work highlights the potential of a small-scale, specialized LLM to correct larger LLMs in tool-
integrated scenarios, providing a plug-and-play solution for deploying reliable LLM-agent systems.
Our code is available at https://anonymous.4open.science/r/Tool-use-Refiner-8§C2D.

2 RELATED WORKS

Tool-Integrated Reasoning. Tool-Integrated Reasoning enables LLMs to perform reasoning and
acting through tool invocation. Specifically, FreshLLMs (Vu et al., 2023) and Search-R1 (Jin et al.,
2025) empower LLMs to utilize search engines, boosting their ability to handle general knowledge
and domain-specific questions. ToRL (Li et al.| [2025) and PoT (Chen et al., 2022) strengthen the
programming capabilities of LLMs, allowing them to execute code for task completion. MAmmoTH
(Yue et al., 2023) and MathCoder (Wang et al., [2023)) leverage multiple tools to address complex
mathematical problems. Furthermore, frameworks such as xLAM (Zhang et al.,[2024) and ToolACE
(Liu et al., [2024])) explore the use of LLLMs as central controllers capable of orchestrating a wide array
of tool calls, facilitating the construction of Al agent systems.

Self-Refinement. LLMs struggle to generate flawless outputs for complex tasks in a single at-
tempt. Drawing inspiration from how humans refine their written text, a paradigm known as Self-
Refinement has emerged, which enhances LLMs’ outputs through successive iterations. Specifi-
cally, Self-Refine (Madaan et al., 2023)) directs an LLM to critique its own generation, leading to
performance gains in areas such as dialogue generation, mathematical reasoning, and programming
tasks. Idea2Img (Yang et al.,|2024) utilizes feedback loops to refine text-to-image prompts, resulting
in images that more faithfully adhere to design instructions. Self-Debugging (Chen et al., 2023b)
empowers LLMs to rectify their own programs by inspecting execution outcomes and the code’s
logic. Furthermore, self-correction has also been applied to e-commerce platforms, achieving better
product attribute extraction by refining LLMs’ outputs (Brinkmann & Bizer, 2025).

From a methodological standpoint, beyond having an LLM generate its own feedback, an alternative
involves using an external, powerful critic model (Hu et al.,|2024). More recently, Aligner (J1 et al.,
2024) introduces an additional, small-scale LLM specifically fine-tuned for refinement tasks, which
is used to correct the outputs of upstream LLMs. Our method is conceptually aligned with this
approach by introducing a small-scale LLM for refinement. This ensures low training and inference
overhead and allows for “plug-and-play” integration with various upstream LLMs.

Reinforcement Learning for LLMs. Reinforcement learning (RL) has become a cornerstone for
aligning LL.Ms with human preferences and downstream tasks. Early approaches primarily utilized
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Figure 1: (Left) Workflow of the Tool-Use Refiner. The refiner receives a system prompt, a user
query, and an upstream LLM’s output (containing potentially wrong tool invocations) as input, and
outputs the refined tool invocations. (Right) Comparison of semantic gap for refinement and
conventional generation. The refiner’s task is to navigate the short path from flawed tool invoca-
tions to their corrected version, whereas the conventional generation must bridge the much larger
gap from the user query to the correct tool invocations. This makes the refiner easier to train.

Proximal Policy Optimization (PPO) (Schulman et al,[2017)), an actor-critic framework that employs
a separate critic network to estimate the advantage of generated actions. While effective, PPO
introduces significant computational overhead, as the value function is a model comparable in size
to the policy itself. To address the limitation, Group Relative Policy Optimization (GRPO)
was proposed as a streamlined alternative. It eliminates the value model by estimating
advantages in a group-relative manner, thereby improving training efficiency.

Building upon GRPO, Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO)
et al., [2025)) introduces four key refinements: First, it employs an asymmetric clipping range (1 —
€lows 1 + €nign), Which better prevents policy entropy collapse by allowing more flexibility for
policy improvement. Second, DAPO incorporates dynamic sampling, which filters out samples that
provide no learning signal. Third, it introduces a soft penalty on overlong responses to discourage
verbosity without harsh truncation. Finally, DAPO adopts a token-level loss, averaging the loss
across all tokens in a batch rather than assigning an equal weight for each sample.

LLM Training in Tool Use Area. The predominant approach for training LLLMs on tool use tasks
has been Supervised Fine-Tuning (SFT) (Chen et al., 20234, [Zeng et al} 2023}, [Chen et al., 2024}
Schick et al, 2023). In this paradigm, models are trained on a static dataset of expert-annotated
trajectories, using a language modeling loss to determine which API call actually helps in predicting
future tokens or generating better results. However, SFT-trained models tend to overfit to demon-
strated trajectories and lack the dynamic capacity for trial-and-error learning or error recovery. To
surmount the challenges, a growing body of work has shifted towards RL to refine the decision-
making policies of LLMs. RL allows the model to explore the vast action space of possible tool
invocations and learn directly from feedback signals that correlate with task success. To this end,
researchers employ algorithms such as PPO and GRPO to train the model’s tool-calling policy
let all 2025} [Li et al.} 2025}, Jin et al. 2025} [Song et al.| [2025)). These RL-based approaches foster
greater generalization and robustness, enabling the model to perform more reliably in dynamic and
open-ended scenarios where optimal solutions cannot be easily enumerated. Following this trajec-
tory, our paper also adopts an RL framework and employs the DAPO algorithm to train a small-scale
Refiner specifically designed to rectify erroneous tool invocations.

3 METHODOLOGY

3.1 TOOL-USE REFINER

Given that direct fine-tuning of large-scale LLMs is computationally expensive, we propose a more
efficient alternative by introducing a small-scale Tool-use Refiner, where Qwen3-1.7B
20235)) serves as the foundational model for our main experiments. This specialized module is exclu-
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sively trained to correct erroneous tool invocations generated by diverse larger, upstream LLMs. It
functions as a post-processing step, enhancing the final output quality while keeping the upstream
models frozen, ensuring both efficiency and generalizability.

As illustrated in Figure[T] the Refiner takes three inputs: the original system prompt, the user query,
and the tool-integrated reasoning produced by the upstream LLM (including the tool invocations).
Its sole task is to process these inputs and perform its own reasoning to generate the correct tool
invocations. The detailed prompt structure used to guide the Refiner is provided in Appendix [A]

Furthermore, as shown in Figure|l| the Refiner is trained within a Self-Refinement paradigm. This
paradigm presents an easier learning problem (Ji et al., [2024), since the semantic distance between
a flawed tool invocation and its corrected version is considerably shorter than that between a high-
level user query and the final tool invocation. The Refiner’s task is simplified to learning a corrective
mapping from a nearly-correct state to a correct one.

3.2 TRAINING DATA CONSTRUCTION

This section details the construction methodology for our training data. The dataset is composed
of two primary categories: conventional tool-calling datasets and nested tool-calling datasets. The
conventional category comprises the glaive (All 2023) , ToolACE (Liu et al., |2024)), and xLAM
(Zhang et al., [2024) datasets. The typical task in these datasets is to select the correct tool from
a given list based on a user query. In addition, the nested category utilizes the NesTools (Han
et al.| [2024) dataset, whose task is more complex, requiring the model to manage a sequence of tool
invocations where the output of one tool becomes the input for the next. Detailed examples from
these datasets are provided in Appendix

To create a suitable training dataset for our Tool-use Refiner, which is designed to correct tool
invocations, we structure the data into a (The Original Task, Upstream LLM Output, Correct Tool
Invocation) triplet format. Accordingly, we generate four types of training data, categorized based
on the type of upstream LLM outputs:

* Erroneous Invocations: This data contains incorrect tool invocations. We generate them
by using five different LLMs (varying in scale and performance) to introduce errors into
the ground-truth invocations. Each model is specifically instructed to introduce formatting
errors, incorrect tool names, and erroneous tool parameters.

* Correct Invocations: These are the original, ground-truth tool invocations, which are used
to train the Refiner not to alter correct tool invocations into incorrect ones.

¢ Shuffled Nested Invocations (Full Format): This data consists of nested tool calls from
the NesTools dataset with the execution order randomized, while retaining the complete
tool call format including parameters.

¢ Shuffled Nested Invocations (Simplified Format): Similar to the third type, this data also
features randomized tool call orders but simplifies the task by requiring the model to output
only the tool names, excluding any parameters (Ablation Study in Appendix [H).

The final dataset is composed of 2,250 instances of Type 1 and 450 instances of Type 2, created by
sampling equally from the three source datasets. For Type 3 and Type 4, we generate 1,000 instances
each. The detailed construction procedures are available in Appendix [C|

3.3 RULE-BASED REWARD FUNCTION

Rule-based reward functions have shown strong empirical performance and are widely employed in
recent RL training (Shao et al., 2024). Our training with the DAPO algorithm also incorporates a
multi-faceted rule-based reward function, where the total reward assigned to a given model output
is an aggregate of several components, each targeting a specific aspect of correctness, as follows:

Format Reward. Format reward assesses the structural integrity and syntactic correctness of the
tool invocation. It verifies two primary conditions: (1) the presence of all required special tags, and
(2) the adherence to a predefined, resolvable format as specified in the system prompt (e.g., a JSON-
like dictionary or a Python function signature). The validation is performed recursively, inspecting
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each element within nested structures like lists and dictionaries to ensure complete compliance.
Ryormat 1s set to 1 only when all criteria are satisfied, and to 0 otherwise.

Tool Name Reward. Tool Name reward evaluates the accuracy of the tool names invoked by the
model. Let O represent the set of tool calls generated by the model and G be the set of ground-truth.
We define O,, as the set of tool names in O, and G,, as the set of tool names in G. RryoiName 1S
calculated based on the Jaccard similarity between these two sets, scaled to the range [—2, 2]:
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Tool Parameter Accuracy Reward. This reward is divided into two distinct yet complementary
components: the accuracy of parameter names and the correctness of their corresponding values.
First, the parameter name reward measures the recall of parameter names, ensuring all necessary
parameters are identified. Let O,,, be the set of all unique parameter names present in the model’s
generated output, and G, be the set from the ground-truth. Second, the parameter content reward
assesses the fidelity of the parameter values. It also employs a recall-based formulation. Let Oy, be
the multiset of parameter values in the model’s output and G/, be the multiset from the ground-truth.
Both rewards are scaled to the range [—2, 2]:
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Tool Order Reward. For tasks where the sequence of tool invocations is critical, this reward
assesses the ordinal correctness. Let S¢ = (g1, 92, - .-, gm) be the ground-truth sequence of the
tool invocation and So = (01,04, ...,0,) be the model-generated sequence. The reward is based
on the proportion of tools that are correctly placed in the sequence relative to maximum length
between ground-truth sequence and model-generated sequence, scaled to the range [—2, 2]:

S (g = 04)
maz(m,n)

ROrder =4- -2

where () is the indicator function, which returns 1 if the condition is true and 0 otherwise.

Penalty for Refinement Regression. To prevent the refinement process from degrading a correct
tool invocation, we introduce a targeted penalty mechanism. Let Rpr.refine be the total reward for the
model’s output before refinement, and Rposirefine be the total reward after refinement. If Rjoserefine <
Rpre-refine» the final reward for the sample will be overridden and set to the minimum possible value
of the reward function. This mechanism strongly discourages “regressive” refinements.

Reward Normalization. Given the heterogeneity of our training data, where different samples
may require different subsets of the aforementioned reward components (e.g., some tasks are order-
agnostic and thus do not use Roer), the theoretical minimum and maximum achievable reward
can vary per sample. To ensure a consistent reward scale for the learning algorithm, we normalize
the final aggregated reward. For each sample, the calculated total reward R 1S mapped from its
specific theoretical range [min_reward;, max_reward;] to a normalized range of [0, 1].

3.4 RL TRAINING WITH DAPO

We train our Tool-use Refiner via reinforcement learning (RL) using the DAPO algorithm (see Sec-
tion [2] for algorithm details). During training, the Refiner processes inputs comprising a system
prompt, a user query, and the potentially flawed tool invocations from an upstream LLM, structured
as per Section The model’s goal is to output a corrected version of these tool invocations. To
guide the process, we use the rewards defined in Section [3.3] as the training signal and compute the
group relative advantages for the Refiner’s outputs to update the model. The hyperparameters and
training details are available in Appendix [D]
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Table 1: Results on API-Bank Benchmark (General-Purpose)

Model Overall Acc. A Level 1 Level2 Level3
Qwen?2.5-3B-Instruct (Raw) 51.59 - 59.65 32.84 36.64
Qwen2.5-3B-Instruct (SFT) 52.76 +2.27% 59.65 50.75 32.82
Qwen?2.5-3B-Instruct (SFT+PPO) 65.16 +26.30%  67.92 55.22 61.83
Qwen2.5-3B-Instruct (SFT+GRPO) 62.48 +21.11%  68.67 58.21 45.80
Qwen?2.5-3B-Instruct (PPO Cold Start) 57.62 +11.69% 64.66 59.70 35.11
Qwen2.5-3B-Instruct (ToolRL) 67.00 +29.87%  73.43 67.16 47.33
Qwen2.5-3B-Instruct (Ours, w/ Refiner) 68.84 +33.44 % 73.18 67.16 56.49
Qwen?2.5-7B-Instruct (Raw) 62.48 - 70.68 49.25 44.27
Qwen?2.5-7B-Instruct (SFT) 50.59 -19.03% 55.89 50.75 34.35
Qwen2.5-7B-Instruct (SFT+PPO) 63.15 +1.07% 72.43 58.21 37.40
Qwen2.5-7B-Instruct (SFT+GRPO) 54.10 -13.41% 61.40 52.24 32.82
Qwen2.5-7B-Instruct (PPO Cold Start) 61.64 -1.34% 68.67 44.78 48.85
Qwen2.5-7B-Instruct (ToolRL) 64.66 +3.49% 73.93 61.19 38.17
Qwen2.5-7B-Instruct (Ours, w/ Refiner) 73.70 +17.96%  78.70 67.16 61.83
Llama-3.2-3B-Instruct (Raw) 40.54 - 44.86 29.85 32.82
Llama-3.2-3B-Instruct (SFT) 52.76 +30.14%  60.65 35.82 37.40
Llama-3.2-3B-Instruct (SFT+PPO) 57.79 +42.55%  63.16 47.76 46.56
Llama-3.2-3B-Instruct (SFT+GRPO) 56.78 +40.06%  63.60 41.79 43.51
Llama-3.2-3B-Instruct (PPO Cold Start) 55.78 +37.59%  60.65 41.79 48.09
Llama-3.2-3B-Instruct (ToolRL) 59.13 +45.86%  65.66 52.24 42.75
Llama-3.2-3B-Instruct (Ours, w/ Refiner) 64.15 +58.24%  66.17 68.66 55.73
Llama-3.1-8B-Instruct (Raw) 67.17 - 71.93 62.69 54.96
Llama-3.1-8B-Instruct (Ours, w/ Refiner) 68.51 +1.99% 71.93 67.16 58.78
Qwen3-1.7B (Raw) 60.13 - 61.40 43.28 64.89
Qwen3-1.7B (Ours, w/ Refiner) 70.18 +16.71%  73.43 65.67 62.60
Qwen3-8B (Raw) 70.85 73.43 65.67 65.65

Qwen3-8B (Ours, w/ Refiner) 74.37 +4.97 % 77.19 64.18 70.99

4 EVALUATION

4.1 OVERVIEW

To comprehensively evaluate the capability of our Tool-use Refiner in correcting erroneous tool
invocations, we assess its performance on several benchmarks across a diverse range of tasks:

* Refinement of General-Purpose Tool Invocation: We use a general-purpose tool invoca-
tion benchmark called API-bank, which comprises 73 diverse API tools (L1 et al., 2023)),
to assess the Refiner’s ability to correct fundamental invocation errors in general scenario,
including incorrect formats, tool names, and parameter names or contents (Section |4.2).

* Refinement of Sequential Errors: We choose a nested tool-use benchmark called NEST-
FUL, which requires sequential tool calls to solve mathematical problems (Basu et al.|
2024), to evaluate the correction of tool invocation order (Section [@4.3).

* Refinement of Search Tool Invocations: We use two out-domain question-answering
benchmarks, Musique and Bamboogle (Trivedi et al.,2022; |Press et al.,[2022), to assess the
Refiner’s ability to enhance search tool invocations in the retrieval scenario (Section [@.4)).

* Quantitative Analysis of Format and Content Correction: As the Bamboogle dataset is
suitable for quantitative analysis, we adapt it to specifically evaluate the model’s effective-
ness in format and content correction (Section [4.5).

4.2 REFINEMENT OF GENERAL-PURPOSE TOOL INVOCATION

Experiment Settings. To evaluate our Refiner’s capability in refining general-purpose tool invo-
cation, we use the API-Bank benchmark. We adopt the evaluation script from ToolRL and compare
our method with the baselines reported therein. The dataset and baseline details are in Appendix [E. ]
The results are shown in Table[I} A indicates the percentage improvement over a Raw baseline.

Significant Performance Gains by Correcting Format Errors. As demonstrated in Table
our Tool-use Refiner outperforms the methods that directly finetune the upstream LLMs. The im-
provement is particularly pronounced for weaker raw models, such as Qwen2.5-3B-Instruct and
Llama-3.2-3B-Instruct. Upon reviewing the cases, we observe that these weaker models are prone
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to generating format errors, including the omission of special tags and the use of incomplete or
unmatched parentheses. The Refiner proves highly effective at rectifying these structural issues.
Conversely, for stronger base models that inherently produce fewer format errors, the performance
gains are more modest.

Analysis of Semantic Error Correction. We also investigate the Refiner’s ability to correct se-
mantic errors, which include incorrect tool names and invalid parameters. We observe that weaker
raw models often generate conspicuous semantic errors (e.g., calling a wrong tool). Our Refiner
is highly effective at rectifying these conspicuous mistakes. However, its performance diminishes
when faced with more nuanced errors. While some semantic mistakes are rectified, the Refiner still
struggles to resolve them comprehensively, highlighting a key area for future improvement. Nev-
ertheless, by leveraging the Refiner’s combined format and semantic correction, upstream LLMs
achieve significant gains, outperforming all direct training methods in the table.

Impact of Chain-of-Thought Quality on Refinement Efficacy. In our methodology, the Refiner
is also provided with the Chain-of-Thought (CoT) trace from the upstream LLM. We discover this
to be a critical component, as the Refiner can use this to inform its refinement process. As shown in
Table[I} an example arises when comparing Qwen3-1.7B and Llama-3.1-8B-Instruct. Although the
latter has a stronger baseline performance, the former generates a higher-quality CoT. As a result,
the Refiner delivers a more significant improvement to Qwen3-1.7B, underscoring that the quality
of the intermediate reasoning path is a key determinant of the final refined output’s accuracy.

4.3 REFINEMENT OF SEQUENTIAL ERRORS

Experiment Settings. We assess the Refiner’s efficacy in correcting tool invocation order using
the NESTFUL benchmark. This benchmark tasks models with executing a logical sequence of tool
invocations (e.g., mathematical calculations) and storing intermediate results in temporary variables
(e.g., var_0) for subsequent use. Details are shown in Appendix[E.2} Performance is measured across
three key metrics: (1) Part. Acc.: The average ratio of correct tool invocations within each sample.
(2) Full Acc.: The percentage of samples with entirely correct tool invocations. (3) Win Rate: The
percentage of samples achieving both perfect tool format and a correct final answer.

Table [2| presents the evaluation results. We report the performance improvements for six evaluated
models, comparing their raw and CoT versions after being augmented by our Refiner (scores are
presented in the “Raw / CoT” format). For a broader context, we also include results from other
leading tool-calling models, such as Granite (Abdelaziz et al., [2024)), Mixtral (Jiang et al.| [2024),
DeepSeek-V3 (Guo et al.,|2024), and GPT-40 (Hurst et al., 2024)).

Consistent Performance Gains. As demonstrated in Table 2] our Refiner yields consistent per-
formance gains for both the raw models and the CoT enhanced models. Specifically, after the re-
finement, the enhanced models outperform nearly all other tool-calling models listed in the table,
despite the latter having a markedly larger number of parameters.

Further case analysis demonstrates that our Refiner can perform a range of sophisticated correc-
tions. Specifically, it is capable of rectifying format errors in tool invocations, inserting intermediate
variables, and eliminating redundant parameter outputs. Moreover, it can optimize the overall exe-
cution plan by reordering the sequence of tool invocations and supplementing it with necessary but
previously omitted ones.

Robustness to Flawed Reasoning. Table [2] reveals a counter-intuitive finding: enabling CoT
causes a performance drop for some models. The case study indicates that this issue stems from
the generation of low-quality reasoning chains, which misguide the models’ tool invocation deci-
sions and reduce final accuracy. However, our Refiner proves highly effective in mitigating this
problem. While the Refiner improves both raw and CoT-enabled models, the performance gains are
more pronounced for the latter. As a result, their final performance reaches a comparable level, with
the CoT-enhanced versions occasionally outperforming their raw counterparts. This demonstrates
the robustness of our Refiner, as it effectively rectifies tool-calling errors without being misled by
the preceding faulty reasoning chains.
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Table 2: Results on NESTFUL Benchmark (Sequential Errors). Scores are reported as “Raw / CoT”.

Model #Parameters Part. Acc. Full Acc.  Win Rate
xLAM-1b-fc-r 1B 0.09 0.03 0.02
xLAM-7b-fc-r 7B 0.23 0.15 0.14
Hammer2.0-7b 7B 0.29 0.22 0.25
Tool ACE-8B 8B 0.13 0.00 0.00
Granite-20B-FunctionCalling 20B 0.26 0.21 0.20
Mixtral-8x7B-Instruct-v0.1 46.7B 0.14 0.09 0.09
Mixtral-8x22B-Instruct-v0.1 141B 0.28 0.21 0.23
xLAM-8x22b-fc-r 141B 0.25 0.17 0.06
Llama-3-1-405B-Instruct-fp8 405B 0.13 0.07 0.14
DeepSeek-V3 685B 0.37 0.29 0.60
GPT-40 (2024-08-06) UNK 0.38 0.28 0.60
Llama-3.2-3B-Instruct 3B 0.13/0.11  0.04/0.03  0.04/0.04
Llama-3.2-3B-Instruct (OQurs, w/ Refiner) 3B 0.19/0.21  0.09/0.12 0.13/0.17
Llama-3.1-8B-Instruct 8B 0.22/0.21  0.16/0.15  0.11/0.09
Llama-3.1-8B-Instruct (Ours, w/ Refiner) 8B 0.27/0.27  0.19/0.20  0.25/0.25
Qwen?2.5-3B-Instruct 3B 0.15/0.10  0.09/0.04 0.11/0.13
Qwen2.5-3B-Instruct (Ours, w/ Refiner) 3B 0.21/0.19  0.13/0.10 0.21/0.23
Qwen2.5-7B-Instruct 7B 0.24/0.25 0.19/0.18  0.25/0.18
Qwen2.5-7B-Instruct (Ours, w/ Refiner) 7B 0.27/0.28  0.21/0.22  0.29/0.31
Qwen3-1.7B 1.7B 0.17/0.15  0.11/0.12  0.12/0.20
Qwen3-1.7B (Ours, w/ Refiner) 1.7B 0.21/0.22  0.13/0.15 0.19/0.31
Qwen3-8B 8B 0.29/0.25 0.23/0.21  0.25/0.33
Qwen3-8B (Ours, w/ Refiner) 8B 0.30/0.29  0.23/0.22  0.29/0.41

Table 4: Quantitative evaluation of correc-

Table 3: Result h benchmark
avle esulls Off search benchmarks tion efficacy (with Bamboogle*)

Musique Afusique  Bamboogle  Apamboogl

Qwen2.5-3B-Instruct Model Accpul  AcCToolname  ACCParameter
RAG 0.047/0.094 - 0.080/0.324 - Qwen2.5-3B-Instruct
Search-R1 0.103 +119.15% 0.264 +230.00 % CoT 0.00 54.27 5227
Ours w/ Refiner 0.103 +9.57% 0.352 +8.64% Ours, w/ Refiner ~ 48.13 79.67 79.47

Qwen?2.5-7B-Instruct QOwen2.5-7B-Instruct
RAG 0.058/0.129 0.208/0.376 CoT 20.87 60.40 60.40
Search-R1 0.146 +151.72% 0.368 +76.92 % Olll‘S, w/ Refiner 49.13 79.47 79.47
Ours w/ Refiner 0.144 +11.63% 0.408 +8.51% 7 LR

ama-3.2-3B-Instruct

Llama-3.2-3B-Instruct CoT 1.60 54.20 4570
RAG 0.052 ; 0.212 : Ours, w/ Refiner ~ 36.53 74.73 73.80
Ours w/ Refiner 0.060 +15.38% 0.232 +9.43% i - . .

Llama-3.1-8B-Instruct

L -3.1-8B-1
a3 -8B nstruct . 0324 . CoT 43.07 64.80 60.67
Ours w/ Refiner  0.130 +9.24% 0328 +123% Ours, w/ Refiner  60.27 72.20 72.00

Qwen3-1.7B Qwen3-1.7B
RAG 0.144 R 0216 - CoT 16.70 62.27 59.40
Ours w/ Refiner 0.183 +27.08% 0.224 +3.70% Ours, w/ Refiner  39.67 68.60 66.80

Qwen3-8B Qwen3-8B
RAG 0.125 - 0.400 - CoT 80.33 86.87 86.80
Ours w/ Refiner 0.150 +20.00 % 0.408 +2.00% Ours, w/ Refiner  86.60 87.13 87.13

4.4 REFINEMENT OF SEARCH TOOL INVOCATIONS

Experiment Settings. To assess whether our Refiner enhances the upstream LLM in retrieval-
augmented scenarios, we conduct evaluations on the Musique and Bamboogle benchmarks. For a
rigorous comparison, we adopt the evaluation protocol of Search-R1, where models generate an-
swers using multi-turn retrieved content. Further details are provided in Appendix [E.3]

Nevertheless, we identify a limitation in the original evaluation script, which relies on exact match
(EM) for assessing correctness. Upon manual inspection, we find that numerous model outputs,
while not identical to the ground-truth, are semantically correct (i.e., one is a substring or superset
of the other). Consequently, we modify the evaluation script to use a containment-based metric.

The final results are presented in Table [3} Scores are reported in the format of “original / revised”,
representing the performance under the EM and our modified metric, respectively. A indicates
the percentage improvement over a RAG baseline, with each comparison being made under its
corresponding evaluation metric.
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Performance Enhancement Constrained by the Upstream Model.  As shown in Table |3} our
Refiner yields performance gains for upstream LLMs across various scales, which validates its ef-
ficacy in correcting the upstream LLM’s output to generate well-formatted <search> call requests
and extract more effective search queries. However, the performance gains are less pronounced com-
pared to Search-R1, a method that fine-tunes the upstream LLM itself for search engine utilization.
We attribute this performance gap to their different training objectives. Search-R1 not only trains the
model to generate superior search queries but also to effectively utilize the retrieved information. In
contrast, our Refiner focuses solely on improving the quality of the search invocation, while the up-
stream LLM remains unoptimized. Consequently, even when provided with higher-quality retrieved
information, the upstream LLM can not leverage this information well.

4.5 QUANTITATIVE ANALYSIS OF FORMAT AND CONTENT CORRECTION

Experiment Settings. Given the well-structured nature of the Bamboogle benchmark, which fea-
tures predefined retrieval categories and queries limited to celebrity birth information (dates or
places), we reformulate its search queries into a tool-calling format, yielding the Bamboogle*
dataset. This modified dataset enables a quantitative assessment of the model’s tool invocation
accuracy, which we dissect by individually analyzing the correctness of the tool format, name, and
parameters. Detailed specifications for this evaluation are provided in Appendix

The evaluation results are presented in Table ] We report three key metrics: (1) Accpyy: The per-
centage of predictions where the tool names, parameters, and format are all correct.(2)AcCrooiname:
The percentage of predictions that contain the correct tools, regardless of its parameters or format.
(3) Accpyrameter: The percentage of predictions that contain the correct tools and the correct pa-
rameters, irrespective of the format.

Validating the Refiner’s Contribution to Format and Content Accuracy. As shown in Table
integrating the Refiner leads to a substantial improvement in Accp,;;, demonstrating its high
effectiveness in format correction. Moreover, AcCrooiname aNd ACCparameter also show significant
gains, which validates that the Refiner can extract more effective information from the user query
and context, enhancing the overall tool-calling capability of the upstream LLM.

5 OVERVIEW OF TECHNICAL SUPPLEMENT

The appendices provide a comprehensive technical supplement to our work. We first detail the input
prompt design of our Refiner, the training data curation process, and the complete training and eval-
uation configurations (Appendix [Al [B] [Cl [Dl [E). Subsequently, we present rigorous ablation studies
to demonstrate that the Refiner’s strong performance stems from our proposed training strategy and
data choices, specifically by: comparing performance against an untrained baseline, ablating the
overlong penalty, and ablating the use of simplified call sequence data (Appendix [F [G| [H). Finally,
we include a disclosure on the use of LLM and provide case studies to substantiate our findings

(Appendix Il ).

6 CONCLUSION

We introduce a novel refinement paradigm centered on a small-scale Tool-use Refiner, designed
to correct tool invocations generated by larger, upstream LLMs. This approach directly addresses
the pervasive issue of invocation errors in Tool-Integrated Reasoning while circumventing the high
computational costs and inflexibility associated with directly fine-tuning large-scale LLMs. We
demonstrate that by training this lightweight refiner using the DAPO algorithm, it can effectively
learn to identify and rectify a range of invocation errors, including incorrect formats, parameters,
and sequences. Our comprehensive evaluations across multiple tool-use benchmarks reveal that
this plug-and-play approach leads to consistent performance gains for various upstream models.
Notably, the refined outputs not only surpass the raw LLM generations but also outperform several
direct fine-tuning methods, validating the efficacy of our refinement strategy. This work highlights
the potential of using smaller, specialized models to augment the capabilities of larger ones, paving
the way for more robust, adaptable, and deployable Al systems in real-world applications.
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REPRODUCIBILITY STATEMENT
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anonymously available in https://anonymous.4open.science/r/Tool-use-Refiner-8C2D. Descriptions
of our methodology, the datasets, and the benchmarks, including all preprocessing procedures, can
be found in the main text and the appendix. Further details on the experimental setup required to
reproduce our results are also provided in the appendix.
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APPENDIX

We present further details and experimental results in the appendix, organized as follows:

1. Supplementary Model Details and Data Curation:

* Appendix |A] Crafting the Input Prompt for Tool-use Refiner: We present the template
and format of the input prompt for our Tool-use Refiner.

* Appendix |B| Examples from the Source Tool-calling Datasets: We present examples
from the source tool-calling datasets, including Glaive, ToolACE, xLAM, and NesTools.

* Appendix[C|] Crafting the Training Datasets for Tool-use Refiner: We detail the process
of creating the training datasets for our Tool-use Refiner.

2. Experimental Setup and Training Details:

* Appendix [D] Training Details: We present the training configurations for the Tool-use
Refiner used in our main experiment, along with its reward and response length curves
during the training process.

* Appendix[E] Evaluation Setup: We present our evaluation setup, detailing our assessments
on refining general-purpose tool invocations, sequential errors, and search tool invocations,
alongside a quantitative correction analysis.

3. Model Performance and Ablation Studies:

* Appendix [} Performance Comparison with an Untrained Refiner: We compare our
Tool-use Refiner against an untrained counterpart (Qwen3-1.7B), demonstrating that its
strong performance is attributable to our RL training for tool invocation correction, rather
than the inherent capabilities of the base model.

* Appendix |G} An Ablation Study of the Overlong Penalty: We conduct an ablation study
on the overlong penalty, highlighting its necessity for guiding the Refiner to produce con-
cise yet effective reasoning.

* Appendix [H An Ablation Study of the Simplified Call Sequence Data: We conduct
an ablation study on the simplified call sequence data, demonstrating that this data yields
a more stable Refiner with improved performance on both general tool-use and specific
tool-order correction tasks.

4. Supplementary Materials and Disclosure:

* Appendix [I, The Use of Large Language Models (LLMs): We disclose the use of LLM
within our writing process.

* Appendix [J] Case Studies: We present representative case studies to substantiate the find-
ings from our comparative evaluation.

A CRAFTING THE INPUT PROMPT FOR TOOL-USE REFINER

This section outlines the structure of the input prompt for our Tool-use Refiner.

The input begins with a comprehensive system prompt designed to define the Refiner’s role and
operational parameters. First, the system prompt explicitly instructs the Tool-use Refiner that its
primary function is to identify and rectify errors within tool invocations generated by other models.
Furthermore, it details the expected input prompt format and enumerates the potential categories
of errors the refiner may encounter. The complete System Prompt utilized in our experiments is
presented below:

Your role is a highly professional tool-calling instruction corrector. Your primary task is to identify
and fix errors in tool-calling instruction generated by other models. Note that the original tool-
calling instruction from another model may already be entirely correct - in such cases, you do not
need to make any modifications. You will be provided with: the list of available tools, the user’s
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original query and the tool-calling instruction generated by another model. Your responsibility is
to carefully analyze this information and output only the corrected, properly formatted tool-calling
instruction and the special tags. When identifying format inaccuracies, character errors, special
token mistakes, or tool-calling order errors, confidently implement corrections. If you identify any
errors in the tool-calling instruction from another model, correct it and output only the fixed, correct
tool-calling instruction and the special tags.

Subsequently, for each call of the Refiner, we provide the system prompt for the current task, the
user query for the current sample, and the potentially erroneous tool invocations generated by the
upstream LLMs. The specific input is structured as follows:

The original system prompt and the list of available tools are: “SYSTEM”. The user’s original query
is: “QUERY”. The tool-calling instruction generated by another model is: “UPSTREAM”. Please
correct the instruction from another model and output only the correct tool-calling instruction.

Within this template, the placeholders are defined as follows: SYSTEM refers to the original system
prompt of the task, QUERY contains the user query for the current sample, and UPSTREAM holds
the tool invocations from the upstream LLM. It is important to note that while this structured format
is strictly adhered to during the training phase, we allow for minor modifications during inference.
Such adjustments, tailored to specific scenarios, can be implemented to obtain optimal performance.

B EXAMPLES FROM THE SOURCE TOOL-CALLING DATASETS

B.1 GLAIVE

The tool invocation format of the glaive dataset is: <functioncall> { “name”: function_name,
“arguments”: ‘{param_name: param_value, param_name2: param_value2, ...}’} < |endoftext| >.
Each invocation typically calls only one tool at a time.

An example of a system prompt is: You are a helpful assistant with access to the following func-
tions. Use them if required - { “name”: “generate_password”, “description”: “Generate a random
password”, “parameters”: { “type”: “object”, “properties”: {“length”: {“type”: “integer”,
“description”: “The length of the password”}, “include_symbols”: {“type”: “boolean”, “de-
scription”: “Whether to include symbols in the password”}}, “required”: [ “length”]}} { “name”:
“create_task”, “description”: “Create a new task in a task management system”, “parameters”:
{“type”: “object”, “properties”: {“title”: {“type”: “string”, “description”: “The title of the
task”}, “due_date”: { “type”: “string”, “format”: “date”, “description”: “The due date of the
task”}, “priority”: { “type”: “string”, “enum”: [“low”, “medium”, “high”], “description”: “The
priority of the task”}}, “required”: [“title”, “due_date”, “priority”]}}.

An example of a user query (including conversations) is: USER: I need a new password. Can
you generate one for me? ASSISTANT: Of course. How long would you like your password to be?
And would you like it to include symbols? < |endoftext| > USER: I would like it to be 12 characters

long and yes, please include symbols.

An example of a correct tool invocation is: <functioncall> {“name”: “generate_password”,
“arguments”: ‘{ “length”: 12, “include_symbols”: true}’} < |endoftext| >

B.2 TooLACE

The tool invocation format of the ToolACE dataset is: [funcl(params_name=params_value,
params_name2=params_value?2...), func2(params)]. This is a list containing Python functions. It’s
worth noting that some function names in the dataset contain spaces, which could not be properly
parsed. Such samples are filtered out during preprocessing.

To train the Refiner to reconstruct missing special tags, we enclose the ToolACE format with the
tags <function_list> and < /function_list> at the beginning and end, respectively.

An example of a system prompt is: You are an expert in composing functions. You are given
a question and a set of possible functions. Based on the question, you will need to make one or
more function/tool calls to achieve the purpose. If none of the function can be used, point it out.
If the given question lacks the parameters required by the function, also point it out. You should
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only return the function call in tools call sections. Here is a list of functions in JSON format that
you can invoke: [{“name”: “Financial Fundamentals_API”, “description”: “Retrieves the prof-
itability (ROA ratio) for a specified financial year of a specific share.”, “parameters”: {“type”:
“dict”, “properties”: {“shareuid”: {“description”: “Unique identifier for the share searched”,
“type”: “int”}, “from”: {“description”: “Start string of the searched period in American nota-
tion year-month-day with leading 07, “type”: “string”}, “to”: {“description”: “End string of
the searched period in American notation year-month-day with leading 07, “type”: “string”}},
“required”: [“shareuid”, “from”, “to”]}, “required”: null}, {“name”: “Get Supported Cur-
rencies”, “description”: “Retrieve a list of supported currencies by Coinbase.”, “parameters”:
{“type”: “dict”, “properties”: {}, “required”: []}, “required”: null}, {“name”: “watchlists”,
“description”: “Returns a list of private watchlists for the authenticating user.”, “parameters”:
{“type”: “dict”, “properties”: {“callback”: {“description”: “Define your own callback func-
tion name, add this parameter as the value.”, “type”: “string”, “default”: “”}}, “required”:
[“callback” ]}, “required”: null}]. Should you decide to return the function call(s). Put it in the
Jormat of [funcl(params_name=params_value, params_name2=params_value?...), func2(params)].
NO other text MUST be included.

An example of a user query is: Can you please provide the ROA ratio for the company with
shareuid 6789 for the last financial year?

“«

An example of a correct tool invocation is: [{“name”: “Financial _Fundamentals_ API”, “re-
sults”: {“roa_ratio”: 0.123, “financial _year”: “2025”}}]

B.3 XLAM

The tool invocation format of the XLAM dataset is: [{“name”: functio_name, “arguments”:
{params_name: params_value, params_name2: params_value2...}}, ...]. This is a list containing
multiple Python dictionaries.

To train the Refiner to reconstruct missing special tags, we enclose the XLAM format with the tags
<func_call> and < /func_call> at the beginning and end, respectively.

An example of a available tool list is: [{“name”: “live_giveaways_by_type”, “description”:
“Retrieve live giveaways from the GamerPower API based on the specified type.”, “parameters”:

{“type”: {“description”: “The type of giveaways to retrieve (e.g., game, loot, beta).”, “type”:
“str”, “default”: “game”}}}].

An example of a user query is: Where can I find live giveaways for beta access and games?

» o«

An example of a correct tool invocation is: [{ “name”: “live_giveaways_by_type”, “arguments”:
”» “

{“type”: “beta”}}, { “name”: “live_giveaways_by_type”, “arguments”: { “type”: “game”}}].

B.4 NEsSTooOLS

The tool invocation format of the NesTools dataset is:

[{“api.name”: __ “parameters”: {“arg0”: “value0”, “argl”: ‘“valuel”,...}, “responses”:

[“API_call 07, ... ,“API_call.n”J},{ “api_name”: __, “parameters”: {“arg0”: “value0”, “argl”:
“valuel”,...}, “responses”: [“API_call {n+1}",...]}, ...].

This format captures sequential information, with the “step” field indicating the order in which the
tool is called. Additionally, the output of each tool invocation is represented using API_call_x.

To train the Refiner to reconstruct missing special tags, we enclose the NesTools format with the
tags <nested_function> and < /nested_function>> at the beginning and end, respectively.

An example of a available tool list is: [ { “api_name”: “scan_isbn”, “api_description”: “Scan
the ISBN of a book to retrieve information.”, “parameters”: {“isbn”: {“type”: “str”, “descrip-
tion”: “the ISBN code of the book”}}, “required”: [“isbn”], “responses”: {“book_details”:
{“type”: “str”, “description”: “detailed information about the book”}, “availability”: {“type”:
“bool”, “description”:  “availability status of the book in the library”}}}, {“api_name”:
“locate_book”, “api_description”: “Locate the physical book in the library.”, “parameters”:
{“book_info”: {“type”: “str”, “description”: “detailed information about the book”}}, “re-

15



Under review as a conference paper at ICLR 2026

“« ”»

quired”: [“book_info”], “responses”: {“location_desc”: {“type”: “str”, “description”: “de-
scription of the exact location within the library”}}}, {“api_name”: “engage_ar_experience”,
“api_description”: “Activate an augmented reality experience related to the book.”, “param-
eters”: {“availability”: {“type”: “bool”, “description”: “availability status of the book”},
“exact_location”: {“type”: “str”, “description”: “exact location of the book”}}, “required”:
[ “availability”, “exact_location”], “responses”: {“ar_message”: {“type”: “str”, “description”:
“message to explain the AR experience”}, “ar_duration”: {“type”: “int”, “description”: “esti-
mated duration of the AR experience in minutes”}}}].

”»”

An example of a user query is: Scan the ISBN “978-3-16-148410-0" of a book to extract compre-
hensive data and verify its presence in the library. Upon identifying the book situated, launch an
augmented reality interaction correlating to the book.

An example of a correct tool invocation is: [ {“api_name”: “scan_isbn”, “parameters”:
{“isbn”: “978-3-16-148410-0"}, “responses”: [“API_call 0", “API_call_.1"]}, {“api_name”:
“locate_book”, “parameters”: {“book_info”: “API_call.0”}, “responses”: [“API_call2”]},
{“api_name”: “engage_ar_experience”, “parameters”: {“availability”: “API_call_1”, “ex-
act_location”: “API_call 2"}, “responses”: [“API_call 3", “API_call 4”]}].

C CRAFTING THE TRAINING DATASETS FOR TOOL-USE REFINER

C.1 GENERATION OF ERRONEOUS TOOL INVOCATIONS

To construct a training dataset of erroneous tool invocations for our Tool-use Refiner, we systemati-
cally generate flawed data by leveraging five LLMs with diverse scales and performance character-
istics: Qwen3-1.7B, Qwen3-8B, Qwen3-14B (Team) 2025), Llama-3.1-8B-Instruct, and Llama-3.2-
3B-Instruct (Al@Meta, 2024). The core strategy is to instruct these models to deliberately introduce
errors into tool invocations, focusing on three specific types of corruption: incorrect formatting, in-
correct tool or parameter names, and incorrect parameter content.

Our generation pipeline involves a two-step process. In the first step, we have each LLM generate
an initial response to the original problem, yielding a set of tool invocations which we refer to as
the “original answer.” These initial generations might be correct or faulty, reflecting the natural
capabilities of each model. In the second step, we reframe the task. Instead of generating a correct
answer, the models are prompted to intentionally modify the “original answer” to introduce a specific
error. The instructions provided are as follows, wherein the term “refined answer” refers to correct
tool invocations:

* For Incorrect Format: Your task is to modify the ‘original answer’ below so that the tool
call format differs from the ‘refined answer’ and becomes incorrect. The ‘original answer’
is: “ORIGINAL”. You only need to output your modified ‘original answer’.

* For Incorrect Tool/Parameter Name: Your task is to modify the ‘original answer’ below
so that the tool names or tool call parameter names differ from the ‘refined answer’ and
become incorrect. The ‘original answer’ is: “ORIGINAL”. You only need to output your
modified ‘original answer’.

* For Incorrect Parameter Content: Your task is to modify the ‘original answer’ below so
that the tool call parameter content differs from the ‘refined answer’ and becomes incorrect.
The ‘original answer’ is: “ORIGINAL”. You only need to output your modified ‘original
answer’.

This process yields a collection of tool invocations with intentionally injected errors from each of the
five LLMs. From this collection, we curate our final dataset by randomly sampling 150 instances
for each of the three error types from each model. To ensure diversity, each set of 150 samples
is composed of 50 instances originating from the glaive dataset, 50 from ToolACE, and 50 from
xLAM. This strategy produces a total of 2,250 erroneous tool invocation samples, which simulate
the outputs of an upstream LLM in our training framework.
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C.2 GENERATION OF RANDOMIZED CALL SEQUENCES

To train the Refiner’s capability in correcting tool call sequences, we leverage nested tool data
(NesTools) and generate a training set of randomized call sequences by permuting the ground-truth
solutions. We create two distinct batches of this data: one in a full format and another in a simplified
format.

The full-format batch adheres to the original NesTools data structure, requiring the model to output
the tool name, its parameters, and a temporary placeholder for the output (e.g., API_call x). Con-
versely, the simplified-format batch only requires the model to output the name of the tool to be
called at each step, omitting parameters and placeholders. The introduction of the simplified for-
mat constitutes a form of curriculum learning, enabling the model to first master the simpler task of
sequence correction before progressing to the more complex task.

Specifically, to generate the full-format randomized call sequences, we employ Qwen3-14B to inject
sequential errors into the original NesTools data using the following prompt:

Your task is to modify the “original answer” below so that the tool call order becomes incorrect.
The ‘original answer’ is: “ORIGINAL”. You only need to output your modified ‘original answer’.

For the simplified-format randomized call sequences, we first convert the NesTools data into a
streamlined structure: <order_func>[{“step”: 1, “toollist”: [tool namel, tool name2, ...J},
{“step”: 2, “tool.list”: [tool-name3, tool_named, ...J}, ...]J< [order_func>. Subsequently, we
utilize Qwen3-14B to introduce errors into this simplified data with the following prompt:

Your task is to modify the “original answer” below so that the tool call order and the number of
steps becomes incorrect. This involves either splitting tools from a single step into multiple steps
(e.g., converting [{ “step”: 1, “tool_list”: [tool_namel, tool_name2]}] into [{“step”: 1, “tool_list”:
[tool namel]}, {“step”: 2, “tool_list”: [tool_name2]}]) or merging/redistributing tool names from
different steps into incorrect step groupings. The ‘original answer’ is: “ORIGINAL”. You only need
to output your modified ‘original answer’.

A key outcome of this generation process is that the synthesized data inherently includes a mix of
correct sequences, incorrect sequences, and malformed instances. This diverse composition per-
fectly suits our requirement for a challenging training corpus. Each of the two resulting datasets
contains a total of 1,000 samples.

D TRAINING DETAILS

D.1 TRAINING CONFIGURATIONS

For the training phase, we configure the following hyperparameters. The learning rate is set to
le-6, and the Refiner is trained for a single epoch. We use a maximum context window of 4096
tokens. The clipping ratio for the optimization algorithm is configured with a lower clipping range
(clip_ratio_low) of 0.2 and a higher clipping range (clip_ratio_high) of 0.28.

The training batch size is set to 16. For each sample in a batch, 16 corresponding responses are
generated. To ensure the quality of training instances, DAPO employ a dynamic sampling strategy
that filters out samples providing no learning signal. Following this, to form a complete batch of 16
qualified samples, the trainer could perform up to 48 sampling attempts.

Furthermore, an overlong response punishment mechanism is implemented to discourage exces-
sively long generations. Responses exceeding 1024 tokens are penalized, with the penalty value
increasing linearly from O (at 1024 tokens) to a maximum of 1 (at 4096 tokens).

D.2 TRAINING TIME AND RESOURCE CONSUMPTION

We trained the Tool-use Refiner (for our main experiments) on four NVIDIA RTX A5000 GPUs.
The entire training process lasted for 6 hours and occupied 22GB of VRAM on each GPU.
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D.3 TRAINING RESULTS

Figure [2] illustrates the training dynamics of the Tool-use Refiner used in our main experiments,
plotting the changes in reward and average response length.
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Figure 2: Training dynamics of the Tool-use Refiner.

As shown in Figure [J[a), the reward score exhibits a consistent upward trend, rising from 0.4 and
stabilizing at approximately 0.9. This serves as strong evidence that our proposed reward function
successfully guides the Refiner to improve its proficiency in correcting tool invocations.

Furthermore, Figure 2Jb) highlights a substantial reduction in output verbosity. The average re-
sponse length, inclusive of the reasoning tokens, drops from 741 to around 400. This trend towards
more succinct outputs is crucial as it mitigates the risk of exceeding the context window limit.

E EVALUATION SETUP

E.1 EVALUATION SETUP FOR REFINING GENERAL-PURPOSE TOOL INVOCATION

E.1.1 API-BANK BENCHMARK SPECIFICATION

API-Bank is a tool invocation benchmark featuring three levels of difficulty: Level 1 (tool name is
apparent in the dialogue), Level 2 (tool name requires retrieval from an available tool list), and Level
3 (sustained tool calls are required).

For our evaluation, we utilize the API-bank dataset provided by the official ToolRL repository. This
dataset has been pre-processed into a multi-turn dialogue format. In this setup, the model’s objective
is to select the appropriate tools to address the user’s final request at the conclusion of the dialogue.
The list of available tools is provided to the model within the system prompt. The difficulty of
each task is stratified based on two factors: (1) the number of tools available in the prompt, and (2)
the presence of hints or cues provided to the model during the conversational turns. We measure
performance using exact match accuracy, which requires the model’s predicted tool invocations to
be identical to the ground truth.

E.1.2 BASELINES FOR COMPARISON

In this subsection, we detail the training procedures for the various baselines compared in our eval-
uation on API-bank, following the experimental setup proposed in the ToolRL (Qian et al.| [2025).

First, a balanced training dataset is curated to ensure exposure to a wide range of tasks. Specifically,
2,000 samples are extracted from the ToolACE (Liu et al.l 2024) dataset, and 1,000 samples are
drawn from each of the Hammer (Lin et al., 2024) and xLAM (Zhang et al [2024) datasets. This
combination yields a total of 4,000 training instances, creating a balanced dataset that spans diverse
levels of complexity and tool use.
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The methods listed in Table [T| represent different stages and strategies of model training. The Raw
method serves as our baseline, representing the original model’s performance without any task-
specific fine-tuning or reinforcement learning (RL). The SFT model is an instruction-tuned model
that has been further fine-tuned on 400 data points randomly sampled from the aforementioned
training data. Building upon this, the SFT+PPO and SFT+GRPO methods take the SFT model as
a starting point and apply the PPO or GRPO RL algorithms, respectively, using the entire training
dataset. In contrast, the PPO Cold Start method bypasses the SFT step, applying the PPO algorithm
directly to the original model. Finally, the ToolRL method involves training the original model from
scratch with the GRPO algorithm on all available training data.

E.1.3 ADAPTING THE REFINER FOR THE API-BANK BENCHMARK

The API-Bank benchmark presents a unique formatting requirement where models must simul-
taneously generate reasoning (<think>), tool invocations (<tool_call>), and a final response
(<response>). This multi-part structure is inconsistent with our Refiner’s original training objec-
tive, creating ambiguity regarding the placement of the final response. To address this, we re-task
the Refiner to focus exclusively on correcting tool calls. We provide it with a specific instructional
prompt:

¢

As a tool-calling instruction corrector, you do not need to output the information related to “;re-
sponse;”. Please correct the instructions from another model and output only the correct tool-

calling instructions. Your output must strictly follow this format: ‘<tool_call>{“name”: “Tool
name”, “parameters {“Parameter name”: “Parameter content”, “.. ..”: “.. .. "HH “name”:
“ ”, “parameters”: {“.. .7: “L. .. v Vel " < /tool call>". If the original

mstructlons from another LLM are correct do not make any modifications and directly output these
instruction. If you determine that additional instructions are necessary, append them directly after
the original instructions from another LLM.

Furthermore, we identify a logic error in the benchmark’s ground truth: for certain samples, the task
requires the model to generate parameters of int or float types, whereas the ground-truth parameters
are formatted as string type. This inconsistency leads to an inaccurate assessment, so we have
rectified this issue in our evaluation. We add an instruction to align the Refiner’s output with the
ground truth format: “For any numeric parameters you generate (including int and float types),
please enclose them in quotes to output them as strings.” These adjustments align the Refiner’s
behavior with the benchmark’s specific requirements, ensuring a more accurate evaluation.

E.2 EVALUATION SETUP FOR REFINING SEQUENTIAL ERRORS

Our evaluation is conducted on the NESTFUL benchmark (Basu et al., 2024)), which is designed to
assess the ability to execute a logical sequence of tool invocations for multi-step problem-solving.
A core challenge within this benchmark is the management of intermediate results: models are
required to store the output of a tool call in a temporary variable (e.g., var_0) and subsequently use
this variable as an argument in a later tool call. This process tests the model’s capacity for multi-
step reasoning and planning, mirroring complex tasks that involve sequential manipulation, such as
chained mathematical calculations.

Following the NESTFUL paper, we employ a standardized prompt format: “SYSTEM'
You are a helpful assistant with access to the following function -calls.
[function_call_library| >{TOOLJJBRARY} Here are some examples:{ICL_LEXAMPLES} USER
{QUERY} ASSISTANT:”

Each prompt begins with a system message defining the model’s role as an assistant with ac-
cess to a specific function library, which is provided under the {TOOL_LIBRARY} placeholder.
Consistent with the NESTFUL paper, we include three in-context learning examples, denoted by
{ICL_LEXAMPLES}, to guide the model’s response generation (Dong et al., [2022). The prompt
concludes with the specific user task, presented as the {QUERY}. The model is then expected to
generate the response which contains the sequence of tool calls required to fulfill the user’s request.

The model’s output is a JSON-formatted list of tool calls, where each call specifies the tool name,
its arguments, and a critical label parameter (e.g., $var_1) that assigns the tool’s return value to a
variable. Our evaluation protocol rigorously verifies the correctness of this entire execution chain.
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We sequentially execute each tool call generated by the model, computing the value of each interme-
diate variable in the specified order. The final computed result is then compared against the ground
truth answer for the sample. Performance is measured by the Win Rate, which is the percentage of
tasks where the model’s final result exactly matches the ground truth.

E.3 EVALUATION SETUP FOR REFINING SEARCH TOOL INVOCATIONS

Following the Search-R1 paper, we first deploy a search engine that utilizes the 2018 Wikipedia
dump (Karpukhin et al.,[2020) as the knowledge corpus and ES (Wang et al., 2022) as the retriever.
During inference, the model can iteratively issue a “<search>" tag to query the corpus when it
deems more information is necessary. In response, the search engine returns the top-3 most rele-
vant documents. This process repeats until the model has sufficient information to generate a final
response, which is then enclosed within an “<answer>" tag.

All tasks are structured using the following prompt format: Answer the given question. You must
conduct reasoning inside <think> and < /think> first every time you get new information. After
reasoning, if you find you lack some knowledge, you can call a search engine by <search> query <
/search>, and it will return the top searched results between <information> and < /information>.
You can search as many times as you want. If you find no further external knowledge needed, you
can directly provide the answer inside <answer> and < [answer> without detailed illustrations.
For example, <answer> xxx < [answer>. Question: question.

Building on the paradigm of the Search-R1 paper, we implement an evaluation framework that
facilitates multi-turn retrieval, with a maximum of three turns allowed per sample. Our Tool-use
Refiner is activated when the upstream LLM fails to produce a conclusive “<answer>" tag, either
by generating a new “<search>" tag or by exceeding the context window limit: (1) If the upstream
LLM generates a “<search>" tag, the Refiner processes the full generation history and the current
output to produce a revised search query. (2) If the upstream LLM exceeds the context limit, the
Refiner is given the history concatenated with the first 500 tokens of the current output to generate
an appropriate search query.

E.4 EVALUATION SETUP FOR QUANTITATIVE CORRECTION ANALYSIS

This evaluation is conducted on the Bamboogle benchmark, which comprises 17 distinct retrieval
tasks. A key characteristic of this benchmark is that all queries revolve around retrieving temporal
or geographical information based on the birth dates or birthplaces of celebrities. Leveraging this
structure, we reformulate the retrieval tasks into a tool-calling framework. This involves converting
each of the 17 retrieval tasks into a distinct API. Additionally, we create foundational APIs to first
retrieve a celebrity’s birth date or birthplace. Consequently, the model’s task is transformed from
direct question-answering to generating the correct sequence of API calls to solve the problem.

For instance, a foundational API to retrieve a celebrity’s birthplace is defined as: {“name”:
“find_birthplace”, “description”: “Returns the birthplace information of a celebrity.”, “parame-
ters”: {“celebrity-name”: {“type”: “string”, “description”: “One of the input parameters: the
name of the celebrity.”}}, “output_name”: “output_birthplace”}.

An example of a secondary tool that requires the output of the above api is find_capital: {“name”:
“find_capital”, “description”: “Returns a country’s capital.”, “parameters”: { “information_type”:

{“type”: “string”, “description”: “One of the input parameters, applicable information for
search, limited to either ‘birthplace’, ‘birthdate’ or ‘birthyear’.”}, “information_content”: { “type”:
“string”, “description”: “Stores the specific content provided to the tool (can use codes starting

with ‘output_’).”}}, “output_name”: “output_capital”}.

Furthermore, to assess the model’s ability to adhere to specific formatting instructions, we introduce
three distinct tool invocation formats. For each sample, the model is randomly prompted to generate
its response in one of the following formats:

o <tool_call> [{“name”: “tool-namel”, “arguments”: {“parameter_namel”: “pa-
rameter_contentl”, “parameter_name2”: “parameter_content2”, ..}}, {“name”:
“tool_name2”, “arguments”: {“parameter_name3”: ‘“parameter_content3”, ..}}, ...]

< /tool_call>.
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* [funcl(params_name=params_value, params_name2=params_value2...), func2(params)].

o [{“type”: “tool_use”, “name”: “tool_namel”, “input”: { “parameter_namel”: “param-
eter_contentl”, “parameter_name2”: “parameter_conteni2”, ...} }, {“type”: “tool_use”,
“name”: “tool-name2”, “input”: {“parameter_name3”: “parameter_content3”, ...}},

]

This controlled setup, where the required format, tool names, and parameter contents are all pro-
grammatically parsable from the model’s output, enables a quantitative, multi-faceted assessment
of a model’s ability to generate syntactically valid and semantically correct tool invocations under
diverse constraints. Moreover, this framework provides an ideal testbed for evaluating the correction
capabilities of our Tool-use Refiner.

F PERFORMANCE COMPARISON WITH AN UNTRAINED REFINER

In this section, we present an ablation study to isolate the contribution of our RL training process.
We evaluate the performance of upstream models when using the original Qwen3-1.7B as a tool-use
corrector. This allows us to disentangle the improvements stemming from our RL training from the
pre-existing capabilities of Qwen3-1.7B itself.

Following the protocol of our main evaluations, we quantitatively evaluate the corrected tool in-
vocations. Specifically, we use the modified Bamboogle benchmark to assess accuracy across three
metrics: ACCruyil, ACCToolnamer ACCParameter- Furthermore, we employ the NESTFUL benchmark
to evaluate the sequential accuracy (with CoT). The detailed results are presented in Table 3]

Table 5: Performance comparison with an untrained Refiner (w/ Raw Refiner)

Bamboogle* NESTFUL
Acc.  AcCToolname ACCparameter Part. Acc.  Full Acc.  Win Rate
QOwen2.5-3B-Instruct

Model

CoT 0.00 54.27 52.27 0.10 0.04 0.13

w/ Raw Refiner 14.13 56.33 55.53 0.15 0.08 0.22

Ours, w/ Refiner 48.13 79.67 79.47 0.19 0.10 0.23
QOwen2.5-7B-Instruct

CoT 20.87 60.40 60.40 0.25 0.18 0.18

w/ Raw Refiner 8.67 57.53 57.47 0.24 0.19 0.27

Ours, w/ Refiner 49.13 79.47 79.47 0.28 0.22 0.31
Llama-3.2-3B-Instruct

CoT 1.60 54.20 45.70 0.11 0.03 0.04

w/ Raw Refiner 22.13 53.13 50.40 0.17 0.09 0.12

Ours, w/ Refiner  36.53 74.73 73.80 0.21 0.12 0.17
Llama-3.1-8B-Instruct

CoT 43.07 64.80 60.67 0.21 0.15 0.09

w/ Raw Refiner 31.40 59.47 58.67 0.22 0.16 0.21

Ours, w/ Refiner  60.27 72.20 72.00 0.27 0.20 0.25
Qwen3-1.7B

CoT 16.70 62.27 59.40 0.15 0.12 0.20

w/ Raw Refiner 22.47 64.40 62.73 0.15 0.11 0.24

Ours, w/ Refiner  39.67 68.60 66.80 0.22 0.15 0.31
Qwen3-8B

CoT 80.33 86.87 86.80 0.25 0.21 0.33

w/ Raw Refiner 56.53 81.80 81.67 0.25 0.20 0.36

Ours, w/ Refiner  86.60 87.13 87.13 0.29 0.22 0.41

As demonstrated in Table[5] our trained Tool-use Refiner comprehensively outperforms the origianl
Qwen3-1.7B on both the Bamboogle* and NESTFUL benchmarks. The superior performance is
evident across all evaluated aspects, including the correction of tool invocation format, selection,
parameters, and order. On certain metrics, the original Qwen3-1.7B even leads to a decrease in
scores. This result indicates that the strong performance of our refiner in the main evaluation stems
from our specialized RL training for the tool invocation correction task, rather than the inherent
capabilities of the base model, validating the effectiveness of our proposed training methodology.
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G AN ABLATION STUDY OF THE OVERLONG PENALTY

To validate the effectiveness of the overlong penalty, we conduct an ablation study by removing it
from the training objective. Our hypothesis is that without this penalty, the Refiner would be more
prone to generating outputs that exceed the context window, impairing its performance. We evaluate
both our full Refiner (w/ Refiner) and the ablated Refiner (w/o Overlong Penalty) on the modified
Bamboogle dataset (Bamboogle*) and the API-Bank benchmark.

Table 6: Ablation study on the overlong penalty (w/o Overlong Penalty)

Bamboogle*

Model API-bank
Acc. AcCToolname  ACCparameter
Llama-3.2-3B-Instruct
CoT 1.60 54.20 45.70 39.03
w/o Overlong Penalty  35.13 73.60 70.67 55.28
Ours, w/ Refiner 36.53 74.73 73.8 64.15
Llama-3.1-8B-Instruct
CoT 43.07 64.80 60.67 67.17
w/o Overlong Penalty  63.80 68.13 68.00 57.45
Ours, w/ Refiner 60.27 72.20 72.00 68.51
Qwen3-1.7B
CoT 16.70 62.27 59.40 60.13
w/o Overlong Penalty  38.67 70.66 69.00 60.30
Ours, w/ Refiner 39.67 68.60 66.80 70.18
Qwen3-8B
CoT 80.33 86.87 86.80 70.85
w/o Overlong Penalty  86.60 87.33 87.33 60.47
Ours, w/ Refiner 86.60 87.13 87.13 74.37

The results, summarized in Table @, confirm our hypothesis. On the API-Bank benchmark, the full
Refiner significantly outperforms the ablated version. Error analysis further reveals that the ablated
model exhibits a high incidence of context window violations, with overlong outputs occurring in
13.5% of cases on average. This finding underscores the crucial role of the overlong penalty. In con-
trast, on the Bamboogle* dataset, both models deliver comparable performance, with no instances
of overlong generation observed.

This performance difference can be attributed to the complexity and diversity of the tasks in each
benchmark. API-Bank, as a general-purpose tool-use dataset, features a wide array of distinct tools,
often demanding intricate and lengthy reasoning chains. The ablated model, lacking the length
constraint, tends to over-analyze, leading to context window breaches. Bamboogle*, however, is
constrained to 17 similar sub-tasks (see Section focused on generating search queries from
celebrity data. The similarity of these tasks necessitates a less complex reasoning process, which
remains well within the context limits for both models.

Ultimately, this study demonstrates that the overlong penalty is a critical component for ensuring that
the Refiner produces concise yet effective reasoning, particularly in complex scenarios. It effectively
mitigates the risk of generating excessively long outputs that break the context window, confirming
its value in our training methodology.

H AN ABLATION STUDY OF THE SIMPLIFIED CALL SEQUENCE DATA

The introduction of the simplified call sequence data serves three primary strategic purposes in our
training methodology. First, it functions as a form of curriculum learning, reducing the initial task
complexity by decoupling sequence ordering from parameter generation. This allows the model to
master the foundational logic of tool dependency first, ensuring a more stable and efficient training
convergence. Second, it enhances model generalization. By introducing a novel structure (i.e.,
a sequence of steps, each potentially containing concurrent calls), we intentionally diverge from
standard flat-list formats. This structural variance compels the model to learn the abstract principles
of tool coordination rather than overfitting to a specific data schema. Finally, and most critically,
this format enables targeted, high-quality negative sampling. By deliberately placing tools with
sequential dependencies into a single concurrent step, we create explicit, instructive error cases. This
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efficiently teaches the model the crucial distinction between parallelizable and sequential operations,
a fundamental aspect of complex tool use.

In this section, we conduct an ablation study on the simplified call sequence data, investigating
the performance change of the Refiner when this data is excluded from the training process. We
perform evaluations on the modified Bamboogle dataset (Bamboogle*), API-bank, and NESTFUL
benchmarks. The results are presented in Table

Table 7: Ablation study on the simplified call sequence data (w/o Simplified Order Data)

Model NESTFUL APL-bank Bamboogle*
Part. Acc. Full Acc. Win Rate Acc.  AcCTooiname ACCparameter
Qwen2.5-3B-Instruct
CoT 0.10 0.04 0.13 40.54 0.00 54.27 5227
w/ Refiner (No simplified order data) 0.18 0.09 0.22 65.83 40.86 72.93 72.60
Ours, w/ Refiner 0.19 0.10 0.23 68.84 48.13 79.67 79.47
Qwen2.5-7B-Instruct
CoT 0.25 0.18 0.18 68.34 20.87 60.40 60.40
w/ Refiner (No simplified order data) 0.26 0.20 0.28 71.36 21.6 59.80 59.80
Ours, w/ Refiner 0.28 0.22 0.31 73.70 49.13 79.47 79.47
Llama-3.2-3B-Instruct
CoT 0.11 0.03 0.04 39.03 1.60 54.20 45.70
w/ Refiner (No simplified order data) 0.19 0.11 0.14 63.17 26.73 59.67 58.00
Ours, w/ Refiner 0.21 0.12 0.17 64.15 36.53 74.73 73.80
Llama-3.1-8B-Instruct
CoT 0.21 0.15 0.09 67.17 43.07 64.80 60.67
w/ Refiner (No simplified order data) 0.28 0.20 0.28 70.18 58.73 67.00 66.73
Ours, w/ Refiner 0.27 0.20 0.25 68.51 60.27 72.20 72.00
Qwen3-1.7B
CoT 0.15 0.12 0.20 60.13 16.70 62.27 59.40
w/ Refiner (No simplified order data) 0.19 0.15 0.25 73.70 42.53 72.27 70.33
Ours, w/ Refiner 0.22 0.15 0.31 70.18 39.67 68.60 66.80
Qwen3-8B
CoT 0.25 0.21 0.33 70.85 80.33 86.87 86.80
w/ Refiner (No simplified order data) 0.26 0.21 0.35 73.87 83.93 86.40 86.40
Ours, w/ Refiner 0.29 0.22 0.41 74.37 86.60 87.13 87.13

As shown in Table [/} on the NESTFUL benchmark, which specifically evaluates tool sequencing,
our full Refiner slightly outperforms the version trained without simplified call sequence data. This
confirms that the introduction of simplified call sequence data effectively enhances the Refiner’s
ability to correct tool invocation sequences.

Furthermore, the performance gap between the two versions becomes more pronounced on bench-
marks that use conventional tool-calling formats (Bamboogle*, API-bank). On these tasks, our
full model demonstrates significantly better performance. In contrast, the ablated Refiner not only
yields lower scores across the board but, when paired with certain upstream LLMs, its performance
is merely on par with the CoT baseline, indicating a minimal improvement. This degradation is
particularly evident in scenarios where the upstream LLM produces convoluted or ambiguous rea-
soning chains. The ablated model’s inability to identify these failures suggests a lack of stability and
poorer generalization.

In conclusion, training with simplified call sequence data leads to a more stable Refiner, enhancing
its proficiency in both general tool-use correction and specific tool order correction.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilize the Large Language Model (LLM) Gemini 2.5
Pro (Comanici et al., 2025)) for language refinement and polishing.
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J CASE STUDIES

J.1 CORRECTION OF FORMATTING ERRORS

The following case demonstrates our Refiner’s proficiency in fixing formatting errors. Here, the
Refiner first validates the semantic correctness of the tool invocation but then pinpoint a formatting
issue. The error is then resolved through a precise modification targeted solely at the structure.

The Original System Prompt: You are a helpful multi-turn dialogue assistant capable of leveraging tool calls to solve user tasks
and provide structured chat responses.\n\n**Available Tools**\nIn your response, you can use the following tools:\n1.
GetOccupationSalary: API for querying the salary of a given occupation.\nParameters: {'occupation': {'type': 'str', 'description':
'The occupation to query.'}\n\n**Steps for Each Turn**\n1. **Think:** Recall relevant context and analyze the current user
goal.\n2. **Decide on Tool Usage:** If a tool is needed, specify the tool and its parameters.\n3. **Respond Appropriately:**
If a response is needed, generate one while maintaining consistency across user queries.\n\n**Output
Format**\n""plaintext\n<think> Your thoughts and reasoning </think>\n<tool_call>\n{\"name\": \"Tool name\",
\"parameters\": {\"Parameter name\": \"Parameter content\", \"... ... AL\ "name\": . L \", \"parameters\":
A N\ A\ o\ \"H\n...\n</tool_call>\n<response> Al's final response </response>\n""\n\n**Important
Notes**\n1. You must always include the ‘<think>" field to outline your reasoning. Provide at least one of ‘<tool_call>" or
‘<response>". Decide whether to use "<tool_call>" (possibly multiple times), ‘<response>’, or both.\n2. You can invoke
multiple tool calls simultaneously in the ‘<tool_call>" fields. Each tool call should be a JSON object with a \"'name\" field and an
\"parameters\" field containing a dictionary of parameters. If no parameters are needed, leave the \"parameters\" field an
empty dictionary.\n3. Refer to the previous dialogue records in the history, including the user's queries, previous ‘<tool_call>",
‘<response>’, and any tool feedback noted as "<obs>" (if exists).

The User Query: **Dialogue Records History**\n<user>Calculate the monthly salary after taxes for a Data
Scientist</user>\n\n<user> Based on our conversation above, please only make one tool call to solve my need.</user>\n

Ground Truth: : <tool_call>\n{\"name\": \"GetOccupationSalary\", \"parameters\": {\"occupation\": \"Data
Scientist\"}\n</tool_call>

Upstream LLM’s Thought: The user wants to know the monthly salary of a Data Scientist after taxes. We need to use the
GetOccupationSalary tool to fetch the salary information for a Data Scientist and then calculate the salary after taxes.
However, the tool does not provide tax information, so we will assume a standard tax rate for the calculation.

Upstream LLM’s Answer: <tool_call>\n{\"name\": \"GetOccupationSalary\", \"parameters\": {\"occupation\": \"Data
Scientist\"}\n<response>Al will fetch the salary information for a Data Scientist and then calculate the salary after taxes.
Please wait.</response>\n<tool_call>

Refiner’s Thought: Okay, let's see. The user wants to calculate the monthly salary after taxes for a Data Scientist. The available
tool is GetOccupationSalary, which queries the salary of a given occupation. The user's query is about calculating the monthly
salary after taxes, so the tool call should be to GetOccupationSalary with the occupation \"Data Scientist\". The parameters
are correct as the occupation is provided. The user also mentioned that only one tool call is needed. The original instruction
from the model is correct, so no corrections are needed. The output should include the tool call with the parameters. The
response is not needed here because the user wants only the tool call. So the correct instruction is the one provided by the
model.

Refiner’s Answer: <tool_call>\n{\"name\": \"GetOccupationSalary\", \"parameters\": {\"occupation\": \"Data
Scientist\"}\n</tool_call>

Figure 3: Correction of formatting errors.
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J.2  PRESERVING A CORRECT TOOL INVOCATION

The following case shows our Refiner’s response to a correct tool invocation from the upstream
LLM. The output shows that our Refiner correctly recognizes the tool invocation as valid and pre-
serves it without modification.

The Original System Prompt: You are a helpful multi-turn dialogue assistant capable of leveraging tool calls to solve user tasks
and provide structured chat responses.\n\n**Available Tools**\nIn your response, you can use the following tools:\n1. Name:
QueryHealthData\nDescription: This API queries the recorded health data in database of a given user and time
span.\nParameters: {'user_id": {'type": 'str', 'description': 'The user id of the given user. Cases are ignored.'}, 'start_time'":
{'type": 'str', 'description': 'The start time of the time span. Format: %Y-%m-%d %H:%M:%S'}, 'end_time": {'type': 'str',
'description': 'The end time of the time span. Format: %Y-%m-%d %H:%M:%S'}}\n2. Name: CancelRegistration\nDescription:
This API cancels the registration of a patient given appointment ID.\nParameters: {'appointment_id": {'type': 'str', 'description":
'The ID of appointment.'}}\n3. Name: ModifyRegistration\nDescription: This API modifies the registration of a patient given
appointment ID.\nParameters: {'appointment_id": {'type": 'str', 'description': 'The ID of appointment.'},
'new_appointment_date': {'type": 'str', 'description’: 'The new appointment date. Format: %Y-%m-%d.'},
'new_appointment_doctor": {'type': 'str', 'description': 'The new appointment doctor.'}}\n\n**Steps for Each Turn**\n1.
**Think:** Recall relevant context and analyze the current user goal.\n2. **Decide on Tool Usage:** If a tool is needed,
specify the tool and its parameters.\n3. **Respond Appropriately:** If a response is needed, generate one while maintaining
consistency across user queries.\n\n**QOutput Format**\n""plaintext\n<think> Your thoughts and reasoning
</think>\n<tool_call>\n{\"name\": \"Tool name\", \"parameters\": {\"Parameter name\": \"Parameter content\", \"... ...\
\"... .. \"H\n{\"name\": \"... ... \", \"parameters\": {\"... .\":\"... ... A\ AL N \n</tool _call>\n<response> Al's
final response </response>\n""\n\n**Important Notes**\n1. You must always include the “<think>" field to outline your
reasoning. Provide at least one of "<tool_call>" or ‘<response>". Decide whether to use "<tool_call>" (possibly multiple times),
‘<response>", or both.\n2. You can invoke multiple tool calls simultaneously in the ‘<tool_call>" fields. Each tool call should be
a JSON object with a \"name\" field and an \"parameters\" field containing a dictionary of parameters. If no parameters are
needed, leave the \"parameters\" field an empty dictionary.\n3. Refer to the previous dialogue records in the history,
including the user's queries, previous ‘<tool_call>", ‘<response>", and any tool feedback noted as ‘<obs>" (if exists).

The User Query: **Dialogue Records History**\n<user>Can you please modify my appointment scheduled for March 25th
with Dr. Kim to March 26th with Dr. Lee?</user>\n<response>Sure, | can help you with that. Please provide me with the
appointment ID and the new appointment date and doctor's name.</response>\n\n<user>The appointment ID is 34567890
and the new date is March 26th with Dr. Lee.</user>\n<response>Alright. I'll modify your appointment
now.</response>\n\n<user> Based on our conversation above, please only make one tool call to solve my need.</user>

Ground Truth: : <tool_call>\n {\"name\": \"ModifyRegistration\", \"parameters\": {\"appointment_id\": \"34567890\",
\"new_appointment_date\": \"2023-03-26\", \"new_appointment_doctor\": \"Dr. Lee\"}} \n</tool_call>

Upstream LLM’s Thought: The user needs their appointment modified. They have provided the appointment ID, the new
appointment date, and the new doctor's name. | need to use the ModifyRegistration API to perform this action.

Upstream LLM’s Answer: <tool_call>\n {\"name\": \"ModifyRegistration\", \"parameters\": {\"appointment_id\":
\"34567890\", \"new_appointment_date\": \"2023-03-26\", \"new_appointment_doctor\": \"Dr. Lee\"}} \n</tool_call>

Refiner’s Thought: Okay, let's see. The user wants to modify their appointment from March 25th with Dr. Kim to March 26th
with Dr. Lee. The original tool-calling instruction uses \"ModifyRegistration\" with parameters \"appointment_id\":
\"34567890\", \"new_appointment_date\": \"2023-03-26\", \"new_appointment_doctor\": \"Dr. Lee\". \n\nWait, the user's
original query says \"March 26th with Dr. Lee\". The parameter for the new appointment date is \"new_appointment_date\"
and the doctor's name is \"new_appointment_doctor\". The user provided the appointment ID as 34567890, which is correct.
The date format is \"2023-03-26\" which is in the correct format. The doctor's name is \"Dr. Lee\" which is correct. \n\nBut
wait, the user wrote \"March 26th with Dr. Lee\" which is a bit ambiguous. The date is March 26th, so the format should be
\"2023-03-26\" and the doctor's name is \"Dr. Lee\". The parameters in the tool-calling instruction are correct. The only thing
I notice is that the user might have intended the date to be in the format \"2023-03-26\" instead of \"2023-03-26\" (without
the hyphen). But the user's input is already in the correct format. So the tool-calling instruction is correct. The user might have
made a typo, but the parameters are correct. Therefore, the tool-calling instruction is correct and no corrections are needed.

Refiner’s Answer: <tool_call>\n {\"name\": \"ModifyRegistration\", \"parameters\": {\"appointment_id\": \"34567890\",
\"new_appointment_date\": \"2023-03-26\", \"new_appointment_doctor\": \"Dr. Lee\"}} \n</tool_call>

Figure 4: Preserving a correct tool invocation.
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J.3 CORRECTION OF CONTENT ERRORS.

The following case demonstrates how our Refiner addresses erroneous content in tool calls generated
by an upstream LLM. As shown, our Refiner correctly identifies an error in the tool invocation (i.e.,
in this case, the presence of an extraneous parameter), and accurately rectifies the call.

The Original System Prompt: You are a helpful multi-turn dialogue assistant capable of leveraging tool calls to solve user tasks
and provide structured chat responses.\n\n**Available Tools**\nIn your response, you can use the following tools:\n1.
Accountinfo: API for retrieving and updating user account information.\nParameters: {'username': {'type': 'str', 'description":
'Name of the user.'}, 'password": {'type': 'str', 'description': 'Password of the user.'}}\n\n**Steps for Each Turn**\n1.
**Think:** Recall relevant context and analyze the current user goal.\n2. **Decide on Tool Usage:** If a tool is needed,
specify the tool and its parameters.\n3. **Respond Appropriately:** If a response is needed, generate one while maintaining
consistency across user queries.\n\n**Output Format**\n"""plaintext\n<think> Your thoughts and reasoning
</think>\n<tool_call>\n{\"name\": \"Tool name\", \"parameters\": {\"Parameter name\": \"Parameter content\", \"... ... \":
\".. ... \"Mn{\"name\": \"... ... \", \"parameters\": {\"... .\":\"... ... A\ "\ \"I\n...\n</tool_call>\n<response> Al's
final response </response>\n"""\n\n**Important Notes**\n1. You must always include the ‘<think>" field to outline your
reasoning. Provide at least one of ‘<tool_call>" or "<response>". Decide whether to use “<tool_call>" (possibly multiple times),
‘<response>', or both.\n2. You can invoke multiple tool calls simultaneously in the “<tool_call>" fields. Each tool call should be
a JSON object with a \"name\" field and an \"parameters\" field containing a dictionary of parameters. If no parameters are
needed, leave the \"parameters\" field an empty dictionary.\n3. Refer to the previous dialogue records in the history,
including the user's queries, previous "<tool_call>", ‘<response>", and any tool feedback noted as "<obs>" (if exists).

The User Query: **Dialogue Records History**\n<user>Update John's personal information and address. Password is 123456.
Address is 123 Main St.</user>\n\n<user> Based on our conversation above, please only make one tool call to solve my
need.</user>\n

Ground Truth: : <tool_call>\n{\"name\": \"Accountinfo\", \"parameters\": {\"username\": \"John\", \"password\":
\"123456\"}\n</tool_call>

Upstream LLM’s Thought: Okay, let's see. The user wants to update John's personal information and address. They provided
the password as 123456 and the new address as 123 Main St.\n\nFirst, | need to check which tool to use. The available tool is
Accountinfo, which is for retrieving and updating user account info. The parameters required are username, password, and
possibly other fields like address.\n\nWait, the parameters listed for Accountinfo are username and password. But the user is
mentioning an address. Hmm, maybe the tool allows updating address through the Accountinfo API. Maybe the address is
part of the account information. But according to the tool's parameters, the only parameters are username and password.
That's confusing. \n\nWait, maybe the tool's parameters are just the username and password for authentication, but the
actual update fields (like address) are part of the account info that can be modified. So, the final answer is to call the
Accountinfo tool with username John, password 123456, and address 123 Main St. Even though the tool's parameters are
listed as only username and password, the user's request requires including the address. Therefore, the tool call should
include those parameters.

Upstream LLM’s Answer: <tool_call>\n{\"name\": \"AccountInfo\", \"parameters\": {\"username\": \"John\", \"password\":
\"123456\", \"address\": \"123 Main St\"}}\n</tool_call>

Refiner’s Thought: Okay, let's see. The user wants to update John's personal information and address. The password is
123456, and the address is 123 Main St. The tool-calling instruction provided is using the Accountinfo tool with username
John, password 123456, and address 123 Main St. \n\nWait, the AccountInfo tool's parameters are username and password.
The address is supposed to be part of the parameters. Let me check the tool's parameters again. The Accountinfo tool's
parameters are username and password. The address is not part of the parameters. So the user is trying to include the
address in the parameters, but according to the tool's definition, it's not allowed. \n\nSo the correct approach would be to
only use the username and password. The address is not part of the parameters for Accountinfo. Therefore, the tool-calling
instruction is incorrect because it includes the address in the parameters. The address should be part of the user's request,
but the tool doesn't accept it. So the correct tool call would only include username and password. \n\nTherefore, the
corrected tool-calling instruction should only include username and password, and the address should be handled elsewhere,
maybe in a separate tool or by the user. So the correct instruction would be to call Accountinfo with username John and
password 123456, and the address is not included in the parameters. So the original instruction is incorrect because it includes
the address in the parameters. The correct one would exclude the address.

Refiner’s Answer: <tool_call>\n{\"name\": \"Accountinfo\", \"parameters\": {\"username\": \"John\", \"password\":
\"123456\"}}\n</tool_call>

Figure 5: Correction of content errors.
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J.4 CORRECTION OF SEQUENTIAL ERRORS.

The following case demonstrates our Refiner’s ability to rectify flawed tool invocation sequences.
Specifically, it identifies and corrects both parameter and sequential errors in the output from the

upstream LLM.

The Original System Prompt: You are an expert in composing functions. You are given a question and a set of possible
functions.\nBased on the question, you will need to make one or more function/tool calls to achieve the purpose.\nIf none of
the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out.
You should only return the function call in tools call sections.\n\nIf you decide to invoke any of the function(s), you MUST put
it in the format of \"<think> Your thoughts and reasoning </think>\n [{{\"name\": \"func_name1\", \"arguments\":
{{\"argument1\": \"value1\", \"argument2\": \"value2\"}}, \"label\": \"Svar_1\"}}, ... (more tool calls as required)]\"\n\nYou
SHOULD NOT include any other text in the response.\n\nHere is a list of functions in JSON format that you can
invoke.\n\n{FUNCTION_STR}\n\nHere are some examples:\n{ICL_EXAMPLES}.

The User Query: The average age of 15 students of a class is 15 years. Out of these, the average age of 4 students is 14 years
and that of the other 10 students is 16 years. The age of the 15th student is

Ground Truth: [{"name": "multiply", "arguments": {"arg_0": 4, "arg_1": 14}, "label": "Svar_1"}, {"name": "multiply",
"arguments": {"arg_0": 10, "arg_1": 16}, "label": "Svar_2"}, {"name": "add", "arguments": {"arg_0": "Svar_1.result$", "arg_1":
"Svar_2.result$"}, "label": "Svar_3"}, {"name": "multiply", "arguments": {"arg_0": 15, "arg_1": 15}, "label": "Svar_4"}, {"name":

"subtract", "arguments": {"arg_0": "Svar_4.result$", "arg_1": "Svar_3.result$"}, "label": "Svar_5"}]

Upstream LLM’s Thought: To find the age of the 15th student, we need to first find the total age of all 15 students, then
subtract the total age of the first 14 students. We can find the total age of the first 14 students by finding the total age of the
4 students with an average age of 14 and the total age of the 10 students with an average age of 16. We can use the 'multiply’
function to find the total age of each group and then add them together. We can use the 'add' function to find the total age of
all 15 students. We can then use the 'subtract' function to find the age of the 15th student.

Upstream LLM’s Answer: [{"name": "multiply", "arguments": {"arg_0": 15, "arg_1": 15}, "label": "Svar_1"}, {"name":
"multiply", "arguments": {"arg_0": 4, "arg_1": 14}, "label": "Svar_2"}, {"name": "subtract", "arguments": {"arg_0":
"Svar_1.result$", "arg_1": "Svar_2.result$"}, "label": "Svar_3"}, {"name": "multiply", "arguments": {"arg_0": 4, "arg_1":
"Svar_2.result$"}, "label": "Svar_4"}, {"name": "multiply", "arguments": {"arg_0": 10, "arg_1": 16}, "label": "Svar_5"}, {"name":

"add", "arguments": {"arg_0": "Svar_4.resultS$", "arg_1": "Svar_5.result$"}, "label": "Svar_6"}, {"name": "subtract",
"arguments": {"arg_0": "Svar_1.result$", "arg_1": "Svar_6.result$"}, "label": "Svar_7"}]

Refiner’s Thought: Okay, let's see. The user is asking about the age of the 15th student in a class. The average age of 15
students is 15 years. Then, the average age of 4 students is 14, and the other 10 students is 16. So, the total age for the 4
students is 4*14 = 56, and for the 10 students is 10*¥16 = 160. The total age for all 15 students is 15*15 = 225. The 15th
student's age is the total age minus the sum of the other 14 students. Wait, but the user says the average age of 15 students is
15, so total age is 15*15 = 225. Then, the 4 students have 56 and 10 students have 160. So, the total is 56 + 160 = 216. Then,
the 15th student's age is 225 - 216 = 9. So, the answer should be 9. The tool-calling instruction has some errors. The multiply
functions are called with arg_0 and arg_1, but the parameters are not correct. The user might have intended to call the add
function with the sum of the 4 and 10 students' ages. So, the correct approach is to call multiply for 4 and 14, multiply for 10
and 16, add them, then subtract from the total. The original instruction has the multiply function called with the result of the
multiply functions, but the parameters are incorrect. The correct instruction should call multiply, add, and subtract in the right
order.

Refiner’s Answer: [{"name": "multiply", "arguments": {"arg_0": 4, "arg_1": 14}, "label": "Svar_1"}, {"name": "multiply",
"arguments": {"arg_0": 10, "arg_1": 16}, "label": "Svar_2"}, {"name": "add", "arguments": {"arg_0": "Svar_1.result$", "arg_1":
"Svar_2.result$"}, "label": "Svar_3"}, {"name": "multiply", "arguments": {"arg_0": 15, "arg_1": 15}, "label": "Svar_4"}, {"name":

subtract”, "arguments": {"arg_0": "Svar_4.resultS$", "arg_1": "Svar_3.result$"}, "label": "Svar_5"}]

Figure 6: Correction of sequential errors.
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