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Abstract

Risk-averse total-reward Markov Decision Processes (MDPs) offer a promising
framework for modeling and solving undiscounted infinite-horizon objectives.
Existing model-based algorithms for risk measures like the entropic risk measure
(ERM) and entropic value-at-risk (EVaR) are effective in small problems, but
require full access to transition probabilities. We propose a Q-learning algorithm to
compute the optimal stationary policy for total-reward ERM and EVaR objectives
with strong convergence and performance guarantees. The algorithm and its
optimality are made possible by ERM’s dynamic consistency and elicitability. Our
numerical results on tabular domains demonstrate quick and reliable convergence
of the proposed Q-learning algorithm to the optimal risk-averse value function.

1 Introduction

Risk-averse reinforcement learning (RL) is an essential framework for practical and high-stakes
applications, such as self-driving, robotic surgery, healthcare, and finance [6, 12, 16, 17, 19, 22,
25, 26, 29, 30, 34, 41, 42, 45, 47]. A risk-averse policy prefers actions with more certainty even
if it means a lower expected return [30, 38]. The goal of risk-averse RL is to compute risk-averse
policies. To this end, risk-averse RL specifies the objective using monetary risk measures, such
as value-at-risk (VaR), conditional value-at-risk (CVaR), entropic risk measure (ERM), or entropic
value-at-risk (EVaR). These risk measures penalize the variability of returns interpretably and yield
policies with stronger guarantees on the probability of catastrophic losses [14].

A major challenge in deriving practical RL algorithms is that the model of the environment is often
unknown. This challenge is even more salient in risk-averse RL because computing the risk of random
return involves evaluating the full distribution of the return rather than just its expectation [17, 40].
Traditional definitions of risk measures assume a known discounted [6, 18, 19, 22, 25, 26, 29] or
transient [44] MDP model and use learning to approximate a global value or policy function [32].
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Recent works have presented model-free methods to find optimal CVaR policies [23, 27] or optimal
VaR policies [17], where the optimal policy may be Markovian or history-dependent. Another recent
work derives a risk-sensitive Q-learning algorithm, which applies a nonlinear utility function to the
temporal difference (TD) residual [38].

In RL domains formulated as Markov Decision Processes (MDPs), future rewards are handled
differently based on whether the model is discounted or undiscounted. Most RL formulations assume
discounted infinite-horizon objectives in which future rewards are assigned a lower value than present
rewards. Discounting in financial domains is typically justified by interest rates and inflation, which
make earlier rewards inherently more valuable [20, 36]. However, many RL tasks, such as robotics or
games, have no natural justification for discounting. Instead, the domains have absorbing terminal
states, which may represent desirable or undesirable outcomes [4, 15, 28].

Total reward criterion (TRC) generalizes stochastic shortest and longest path problems and has gained
more attention [1, 9, 12, 13, 21, 31, 43, 44]. TRC has absorbing goal states and does not discount
future rewards. A common assumption is that the MDP is transient and guarantees that any policy
eventually terminates with positive probability. While this assumption is sufficient to guarantee finite
risk-neutral expected returns, it is insufficient to guarantee finite returns with risk-averse objectives.
For example, given an ERM objective, the risk level factor must also be sufficiently small to ensure a
finite return [35, 44].

This paper derives risk-averse TRC model-free Q-learning algorithms for ERM-TRC and EVaR-TRC
objectives. There are three main challenges to deriving these risk-averse TRC Q-learning algorithms.
First, generalizing the standard Q-learning algorithm to risk-averse objectives requires computing the
full return distribution rather than just its expectation. Second, the risk-averse TRC Bellman operator
may not be a contraction. The absence of a contraction property precludes the direct application of
model-free methods in an undiscounted MDP. Third, instead of the contraction property, we need to
rely on other properties of the Bellman operator and an additional bounded condition to prove the
convergence of the risk-averse TRC Q-learning algorithms.

As our main contribution, we derive a rigorous proof of the ERM-TRC Q-learning algorithm and the
EVaR-TRC Q-learning algorithm converging to the optimal risk-averse value functions. We also show
that the proposed Q-learning algorithms compute the optimal stationary policies for the ERM-TRC
and EVaR-TRC objectives, and the optimal state-action value function can be computed by stochastic
gradient descent along the derivative of the exponential loss function.

The rest of the paper is organized as follows. We define our research setting and preliminary concepts
in Section 2. In Section 3, we leverage the elicitability of ERM, define a new ERM Bellman operator,
and propose Q-learning algorithms for the ERM and EVaR objectives. In Section 4, we give a rigorous
convergence proof of the proposed ERM-TRC Q-learning and EVaR-TRC Q-learning algorithms.
Finally, the numerical results presented in Section 5 illustrate the effectiveness of our algorithms.

2 Preliminaries for Risk-aversion in Markov Decision Processes

We first introduce our notations and overview relevant properties for monetary risk measures. We then
formalize the MDP framework with the risk-averse objective and summarize the standard Q-learning
algorithm.

Notation We denote by R and N the sets of real and natural (including 0) numbers, and R :=
R U {—00, 00} denotes the extended real line. We use R, and R, ; to denote non-negative and
positive real numbers, respectively. We use a tilde to indicate a random variable, suchas z: 2 — R
for the sample space €2. The set of all real-valued random variables is denoted as X := R, Sets are
denoted with calligraphic letters.

Monetary risk measures Monetary risk measures generalize the expectation operator to account
for the uncertainty of the random variable. In this work, we focus on two risk measures. The first one
is the entropic risk measure (ERM) defined for any risk level 5 > 0 and & € X as [14]

ERMg [7] := —B ' -logEexp (8- %), 1

and can be extended to 3 € [0, co] as ERM[Z] = limg_,o+ ERMp [Z] = E[Z] and ERM[Z] =
limg_, o ERMg [Z] = essinf[Z]. ERM is popular because of its simplicity and its favorable proper-



ties in multi-stage optimization formulations [17-19, 44]. In particular, dynamic decision-making
with ERM allows for the existence of dynamic programming equations and Markov or stationary
optimal policies. In addition, in this work, we leverage the fact that ERM is elicitable, which means
that it can be estimated by solving a linear regression problem [7, 11].

The second risk measure we consider is entropic value-at-risk (EVaR), which is defined for a given
risk level o € (0,1) and & € X as

EVaR,, [Z] := sup -3 'log (oflE exp (fﬂi’)) = sup ERMg [#] + 87 ' log e, )
B>0 £>0

and is extended to EVaRg [Z] = essinf[Z] and EVaR; [Z] = E[] [2]. It is important to note that the
supremum in (2) may not be attained even when Z is a finite discrete random variable [3]. EVaR
addresses several important shortcomings of ERM [17-19, 44]. In particular, EVaR is coherent

and closely approximates popular and interpretable quantile-based risk measures, like VaR and
CVaR [2, 19].

Risk-Averse Markov Decision Processes We formulate the decision process as a Markov Decision
Process (MDP) (S, A,p,r, u) [36]. The set S = {1,2,...,5, e} is the finite set of states and e
represents a sink state. The set A = {1,2,..., A} is the finite set of actions. The transition function
p: S x A — Ag represents the probability p(s, a, s’) of transitioning to s’ € S after taking a € A
in s € S. The function r: S x A x S — R represents the reward (s, a, s’) € R associated with
transitioning from s € S and a € Ato s’ € S. The vector . € Ag is the initial state distribution.

As the objective, we focus on computing stationary deterministic policies T1 := AS that maximize
the total reward criterion (TRC):

t—1
: N 3. G 3
?rl?%tlinio Risk LZO T(Sk,ak,5k+1)] ) 3

where Risk represents either ERM or EVaR risk measures. The limit in (3) exists for stationary
policies 7 but may be infinite [44]. The superscript 7 indicates the policy that guides the actions’
probability, and the  indicates the distribution over the initial states.

Recent work has shown that an optimal policy in (3) exists, is stationary, and has bounded return for
a sufficiently small 3 as long as the following assumptions hold [44]. The sink state e satisfies that
p(e,a,e) = 1and r(e,a,e) =0 foreach a € A, and p, = 0. It is crucial to assume that the MDP is
transient for any 7 € 1I:

Z]P’”’s (5. =5] < o0, Vs,s' € S\ {e}. )
=0

Intuitively, this assumption states that any policy eventually reaches the sink state and effectively
terminates. We adopt these assumptions in the remainder of the paper.

With a risk-neutral objective, transient MDPs guarantee that the return is bounded for each policy.
However, that is no longer the case with the ERM objective. In particular, for some (3 it is possible
that the return is unbounded. The return is bounded for a sufficiently small 3 and there exists an
optimal stationary policy [44]. In contrast, the return of EVaR is always bounded, and an optimal
stationary policy always exists regardless of the risk level « [39].

Standard Q-learning To help with the exposition of our new algorithms, we now informally
summarize the Q-learning algorithm for a risk-neutral setting [4]. Q-learning is an essential compo-
nent of most model-free reinforcement learning algorithms, including DQN and many actor-critic
methods [10, 24, 46]. Its simplicity and scalability make it especially appealing.

Q-learning iteratively refines an estimate of the optimal state-action value function ¢;: S X A —
R, ¢ € N such that it satisfies

Gi+1(8i,a;) = Gi (85, a3) — iZiy,  Z = r(8i, 4, 8;) + glg§§i(§§7 a') = Gi(8;,a;). (5)

Here, Z; is also known as the TD residual. The algorithm assumes a stream of samples (8, d;, 5, )i=1,...
sampled from the transition probabilities and appropriately chosen step sizes 7); to converge to the



optimal state-action value function. Note that ¢; is random because it is a function of a random
variable. We restate lemma C.13 from [17] as the following lemma because it shows the connection
between Q-learning and gradient descent.

Lemma 2.1 (Lemma C.13 in [17]). Suppose that f: R — R is a differentiable y—strongly convex
Sfunction with an L—Lipschitz continuous gradient. Consider x; € R and a gradient update for any
step size & € (0,1/L] :

Tip1 = x; — & f(2q).
Then 3l € [1/L,1/ ] such that £/1 € (0,1] and

Tiy1 = (1 —=&/1) - + /127,

where x* = argmin, cp f(x) is unique from the strong convexity of f.

The standard Q-learning algorithm can be seen as a stochastic gradient descent on the quadratic loss
function f [5, 17, 38]. We leverage this property to build our algorithms.

3 Q-learning Algorithms: ERM and EVaR

In this section, we derive new Q-learning algorithms for the ERM and EVaR objectives. First, we
propose the Q-learning algorithm for ERM in Section 3.1, which requires us to introduce a new ERM
Bellman operator based on the elicitability of the ERM risk measure. Then, we use this algorithm in
Section 3.2 to propose an EVaR Q-learning algorithm. The proofs for this section are deferred to
Appendix A.

3.1 ERM Q-learning Algorithm

The algorithm we propose in this section computes the state-action value function for multiple values
of the risk level 5 € B for some given non-empty finite set B C R, ;. The set B may be a singleton
or may include multiple values, which is necessary to optimize EVaR in the next section.

Before describing the Q-learning algorithm, we define the ERM risk-averse state-action value function
and describe the Bellman operator that can be used to compute it. We define the ERM risk-averse
state-action value function gg: S X A x B — R for each 5 € B as

t—1
¢"(s,a,8) = lim ERMj"" [Z r(ék,dk,ékﬂ)] » @'(s,a,8) == maxq"(s,a,5).  (6)
k=0

foreach s € S,a € A, 8 € B. The limit in this equation exists by [43, lemma D.5].

The superscript (s, a) in (6) indicates the initial state and action are §y = s, dg = a, and the policy
7 determines the actions henceforth. We use Q := RS*4 to denote the set of possible state-action
value functions.

To facilitate the computation of the value functions, we define the following ERM Bellman operator
Bg: RS*A — RS*4A a5

(Bgq)(s,a) :== ERMR® |r(s,a,51) + max q(31,d',B8)|, VseS,ae A, BeB,qge Q. (7)

Note that the Bellman operator B applies to the value functions ¢(-, -, 3) for a fixed value of 3. We
abbreviate Bg to B when the risk level (3 is clear from the context.

The following result, which follows from Theorem A.1, shows that the ERM state-action value
function can be computed as the fixed point of the Bellman operator.

Theorem 3.1. Assume some 3 € B and suppose that g5(s,a, 3) > —o0,Vs € S,a € A. Then a5
in (6) is the unique solution to

a5 = Bpas, where q5=q" (-, B). ®

Although the Bellman operator defined in (8) can be used to compute the value function when the
transition probabilities are known, it is inconvenient in the model-free reinforcement learning setting
where the state-action value function must be estimated directly from samples.
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We now turn to an alternative definition of the Bellman operator that can be used to estimate the
value function directly from samples. To develop our ERM Q-learning algorithm, we need to define a
Bellman operator that is amenable to computing its fixed point using stochastic gradient descent. For
this purpose, we use the elicitability property of risk measures [7]. ERM is known to be elicitable
using the following loss function £g: R — R:

lg(2) =B (exp(=B-2)—1)+z, (€5(z)=1—exp(—B-2), Lj3(z)=p-exp(—B-2). (9

The functions ¢ and ¢” are the first and second derivatives, which are important in constructing and
analyzing the Q-learning algorithm.

The following proposition summarizes the elicitability property of ERM, which we need to develop
our Q-learning algorithm. Elicitable risk measures can be estimated using regression from samples in
a model-free way.

Proposition 3.2. For each & € X and 8 > 0:
ERMg [Z] = arg min E[{g(Z — y)], (10)
yER

where the minimum is unique because {3 is strictly convex.

Using the elicitability property, we define the Bellman operator B[g :Q — Qfor e Bas

(Bgq)(s,a) := arg min E** {Z@ (r(s,a,él) + Ir/lgﬁq(él,a’,ﬁ) — y)} , VseS,ae A. (11)
yeR a

Following Proposition 3.2, we get the following equivalence of the Bellman operator, which implies
that their fixed points coincide.

Theorem 3.3. For each § > 0 and q € Q, we have that

Bsq = Bgq.

We can introduce the ERM Q-learning algorithm in Algorithm 1 using the results above. This
algorithm adapts the standard Q-learning approach to the risk-averse setting. Intuitively, it works as
follows. Each iteration ¢ processes a single transition sample to update the optimal state-action value
function estimate ¢;. The value function estimates are random because the samples are random. The
value function estimates are updated following a stochastic gradient descent along the derivative of
the loss function ¢z defined in (9). Each sample is used to simultaneously update the state-action
value function for multiple values of 8 € B.

Algorithm 1: ERM-TRC Q-learning algorithm
Input: Risk levels B C R, samples: (§;, a;, 3
Output: Estimate state-action value function §;
do(s,a,B) <0, VseS,aeA;
fori cN,seS,ae A, B € Bdo
if s = 57;/\0, = CNLZ then
21(18) — T(Sa a, g;) + maXg e 61(527 a/7 B) - (jT (57 a, ﬁ) ;
a,B)=
-1

), step sizes 7;, ¢ € N, bounds Zmin, Zmax

ifﬁ(Zmin < 21(6) < Zmax) then return (ji+1(872 6) —00;
Qi+1(saa7ﬂ) HQl(Saavﬂ)iﬁl(exp(iﬂgl(ﬂ)) ) >
else qi+1(s7a7ﬁ) — @(57(176) 5

There are three main differences between Algorithm 1 and the standard Q-learning algorithm de-
scribed in Section 2. First, standard Q-learning aims to maximize the expectation objective, and the
proposed algorithm maximizes the ERM-TRC objective. Second, the state-action value function
update follows a sequence of stochastic gradient steps, but it replaces the quadratic loss function with
the exponential loss function £3 in (9). Third, ¢ values in the proposed algorithm need an additional
bounded condition that the TD residual Z; () is in [2min, Zmax)-

Remark 1. The ¢ value can be unbounded for two main reasons. First, as the value of 3 increases,
the ERM value function does not increase, as shown in Lemma A.2, and can reach —oo, as shown in
Theorem A.1. Second, the agent has some probability of repeatedly receiving a reward for the same
action, leading to an uncontrolled increase in the g value for that action.



Note that if Z;() is outside the [2min, Zmax] range, it indicates that the value of the risk level £ is so
large that g is unbounded. This aligns with the conclusion that the value function may be unbounded
for a large risk factor [35, 44]. Detecting unbounded values of ¢ caused by random chance is useful
but is challenging and beyond the scope of this work.

Remark 2. We now discuss how to estimate zy,i, and 2, ax in Algorithm 1. Assume that the sequences
{1:}520 and {(5;, @;, §;) }52, used in Algorithm 1, 5 > 0, we have

Zmin(B) = =2max{|c — B -d|, ||} = [[7llc,  Zmax(B) = 2max{lc = 5 -d|,[e]} + [|7]|oo-

Where ||7]|cc = maxs ses,aca |7(S, a,s")|. The constants ¢ and d can be estimated by Algorithm 3
in the appendix. For more details on the derivation, we refer the interested reader to Appendix A.4.

Now we explain how to leverage the elicitability and monotonicity of ERM to design Algorithm 1
as a stochastic gradient descent. Let b = (s,a,f),s € S,a € A, § € B, and £ > 0, and define
operators G and H as

0 - -
(Gq)(b) = any“’s [fﬂ (7“(57 a,51) + max q(31,d',8) — yﬂ ly=q(s,a,8)> (12)
0
(Gsq)(b) == @E [55 (7’(8, a,s') + max q(s',d’, B) — y)} ly=q(s,a.8) (13)

The operation (Gq)(b) can be interpreted as the average gradient step where 5 is a random variable
representing the next state. The operation (G q)(b) can be interpreted as the individual gradient step
for a specific next state s’.

(Hq)(b) :=q(b) =&+ (Gq)(b),  (Hyq)(b) :=q(b) — & (Gwq)(b). (14)
The operation (Hq)(b) can be interpreted as the q-update for a random variable §; representing the

next state. (Hy q)(b) can be interpreted as the g-update a specific next state s’.

Lemma 3.4. Letb = (s,a,83),s € S,a € A, € B, 1 € R™ is the vector with all components equal
to 1, and g > 0, then the H operator defined in (14) satisfies the monotonicity property such that

z(b) <y(b) = (Hz)(b) < (Hy)(b) (a)
(Hg*)(b) = q*(b) (b)
(Hq)(b) —1-g < H(q(b) —1-g) < H(q(b)+1-g) < (Hgq)(b)+1-g. (c)

The proof has two main steps. First, rewrite (H¢)(b) in terms of the ERM Bellman operator in (11).
Second, prove the monotonicity property of (Hq)(b), which is necessary for the convergence analysis
of Algorithm 1. Fix 8 > 0 and some b = (s,a, 8),s € S,a € A, fix ¢ and define

)

Fly) =B [ls(r(s, a,51) + maxq(51,a’, §) - y)]. (15)
The function f is ¢-strongly convex with an L-Lipschitz-continuous gradient from Lemma 4.4. Let
y* = argminyeg f(y) = (Bq)(b) and 3 € [1/L,1/€] such that
(Hq)(b) = (q — £Ga)(b) 2 q(b) — £/ (g(b) 2 (1 = &/1)q(b) + &/1 - y*
2 (1 - &/Dab) +&/1- (Ba)(b).

Step (a) follows by algebraic manipulation from the definitions in (12) and (15). Step (b) follows

from Lemma 2.1. Step (c) follows from the fact that B is the ERM Bellman operator defined in (11)
and y* is the unique solution to (10).

(16)

3.2 EVaR Q-learning Algorithm

In this section, we adapt our ERM Q-learning algorithm to compute the optimal policy for the static
EVaR-TRC objective in (3). As mentioned in Section 2, EVaR is preferable to ERM because it is
coherent and closely approximates VaR and CVaR. The construction of an optimal EVaR policy
follows the standard methodology proposed in prior work [19, 44]. We only briefly summarize it in
this paper.
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The main challenge in solving (3) is that EVaR is not dynamically consistent, and the supremum
in (2) may not be attained. We show that the EVaR-TRC problem can be reduced to a sequence of
ERM-TRC problems, similarly to the discounted case [19] and the undiscounted case [44]. We define
the objective function h: IT x Ry, — R:

h(m,B) = ERMZ" [¢" (50, a0, B)] + B~ log(a)
t—1
= lim ERM" Lz%r(gk,ak,gkﬂ)

17
+ 5~ log(a). an

Recall that 5 is distributed according to the initial distribution p and ag is the action distributed
according to the policy 7. The equality in the equation above follows directly from the definition of
the value function in (6).

We now compute a d-optimal EVaR-TRC policy for any § > 0 by solving a sequence of ERM-TRC
problems. Following prior work [44], we replace the supremum over continuous £ in the definition
of EVaR in (2) with a maximum over a finite set B(/3y, 0) of discretized 3 values chosen as

B(ﬁOaé) = {507ﬁ1)"'75K}7 (183)
where 0 < By < 1 < -+ < Bk, and

B log L log L log(0)
= 0 > @ > — 18b
Pr log = — Bi6 br 2 5 log(1 — 6) (18b)
for § := —PBo-9/10g(a), and the minimal K that satisfies the inequality. Note that the construction

in (18) differs in the choice of 3y from B(fg, d) in [19].
The following theorem summarizes the fact that the EVaR-TRC problem reduces to a sequence of
ERM-TRC optimization problems.
Theorem 3.5 (Theorem 4.2 in [43]). For any § > 0 and a sufficiently small 5y > 0, let
(7%, B*) € argmax  h(m,f).
(m,B)ENIXB(Bo,0)
Then, the limits below exist and satisfy that

t—1

lim EVaR] *
t—oo

r(§k,dk,§k+1)] > sup lim sup h(m, B) — 6. (19)

o Tl %0 g0

Algorithm 2: EVaR-TRC Q-learning algorithm

Data: desired precision ¢ > 0, risk level a € (0, 1), initial 8y > 0, samples: (5;,a;, §;), ¢ € N
Result: §-optimal policy 7* € I1

Construct B(Sy, d) as described in (18) ;

Compute (75, h*()) by Algorithm 1 for each 8 € B(fo, §) where h*(3) = maxren h(, B);
Let B* € arg maXBeB(ﬂM;) h*(ﬁ),

return 7.

Algorithm 2 summarizes the procedure for computing a §-optimal EVaR policy. Note that the value
of h(m, 8) may be —oo, indicating either that the ERM-TRC objective is unbounded for § or that the
Q-learning algorithm diverged by random chance.

Remark 3. Note that Algorithm 2 assumes a small Sy as its input. The derivation of 3y is shown in
A.S5. Tt is unclear whether obtaining a prior bound on 3y without knowing the model is possible. We,
therefore, employ the heuristic outlined in Algorithm 3 that estimates a lower bound z,;,, and an
upper bound .« on the random variable of returns. Then, we set By := 85/ (zmax—2min)>-

4 Convergence Analysis

This section presents our main convergence guarantees for the ERM-TRC Q-learning and EVaR-TRC
Q-learning algorithms. The proofs for this section are deferred to Appendix B.



We require the following standard assumption to prove the convergence of the proposed Q-learning
algorithms. The intuition of Assumption 4.1 is that each state-action pair must be visited infinitely
often. Note that when an individual episode terminates upon reaching the sink state, the agent restarts
a new episode from a random initial state.

Assumption 4.1. The input to Algorithm 1 and Algorithm 2 satisfies that
P[gi = Sl | gi_l,éi,di,ﬁi] = p(§i,di,s/), VS/ S S, VZ S N,
almost surely, where G; 1 := (i, (81, a1, 3,))i_g-

The following theorem shows that the proposed ERM-TRC Q-learning algorithm enjoys convergence
guarantees comparable to standard Q-learning. As Remark 2 states, 2z, and zyax are chosen to
ensure that ¢ values are bounded.

Theorem 4.2. For 3 € B, assume that the sequence (7}; ).~ and (3;,a;, ;)32 used in Algorithm 1
satisfies Assumption 4.1 and step size condition

o) %)
Zﬁl = 00, Zﬁ? < 00,
i=0 1=0

where i € {i € N| (8;,a;) = (s,a)}, if Zi € [Zmin, Zmax| almost surely, then the sequence (G;)32,,
produced by Algorithm I convergences almost surely to qoo such that oo = Bgqso.

The proof of Theorem 4.2 follows an approach similar to that in the proofs of standard Q-learning [8]
with three main differences. First, the algorithm converges for an undiscounted MDP, and B 5 is not
a contraction captured by [8, assumption 4.4], which is restated as Assumption B.2. Instead, we
show that Bg satisfies monotonicity in Lemma 4.3. Second, Assumption B.2 leads to a convergence
result somewhat weaker than the results for a contraction. Then, a separate boundedness condition [8,
proposition 4.6] is imposed. Third, using the exponential loss function £g in (9) requires a more
careful choice of step-size than the standard analysis.

Lemma 4.3. For 3 € B, let 1 € R"™ represent the vector of all ones. Then the ERM Bellman operator

defined in (11) satisfies the monotonicity property if for some g > 0 and ¢* : RS*4 — RS*A and
for all g: RS*A — RS*A it satisfies that

r<y = DBgxr<Bgy (@)
Bsq* = ¢ (b)
Bsg—g-1 < Bslg—g-1) < Bslg+g-1) < Bag+g-1 (©)

Here, the relations hold element-wise.

The following lemma shows that the loss function £z in (9) is strongly convex and has a Lipschitz-
continuous gradient. These properties are instrumental in showing the uniqueness of our value
functions and analyzing the convergence of our Q-learning algorithms by analyzing them as a form
of stochastic gradient descent.

Lemma 4.4. The function £3: [Zmin, #max] — R defined in (9) is l-strongly convex with | =
Bexp (=B - zmax) and its derivative %(z) is L-Lipschitz-continuous with L = 3 - exp (= * Zmin)-

Corollary 4.5, which follows immediately from Theorem 3.5, shows that Algorithm 2 enjoys conver-
gence guarantees and converges to a J-optimal EVaR policy.

Corollary 4.5. For o € (0,1) and § > 0, assume that the sequence (1;)5°, and (3;, a;, §;)5°, used
in Algorithm 1 satisfies Assumption 4.1 and step size condition

) o0
§ ~ § ~2

1 = 00, ; < 0,
i=0 =0

where i € {i € N | (§;,a;) = (s,a)}, if Zi € [Zmin, Zmax)- Then Algorithm 2 converges to the
d-optimal stationary policy 7* for the EVaR-TRC objective in (3) almost surely.

The proof of Corollary 4.5 follows a similar approach to the proofs of Theorem 4.2. However, we
also need to show that one can obtain an optimal ERM policy for an appropriately chosen [ that
approximates an optimal EVaR policy arbitrarily closely.
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5 Numerical Evaluation

In this section, we evaluate our algorithms on two tabular domains: cliff walking (CW) [4] and
gambler’s ruin (GR) [44]. The source code is available at https://github.com/suxh2019/ERM_
EVaR_Q. First, we evaluate Algorithm 2 on the CW domain. In this problem, an agent starts with a
random state (cell in the grid world) that is uniformly distributed over all non-sink states and walks
toward the goal state labeled by g shown in Figure 1. At each step, the agent takes one of four actions:
up, down, left, or right. The action will be performed with a probability of 0.91, and the other three
actions will also be performed separately with a probability of 0.03. If the agent hits the wall, it
will stay in its place. The reward is zero in all transitions except for the states marked with ¢, d, and
g. The agent receives 2 in state g, 0.004 in state d, —0.5, —0.6, —0.7, —0.8 and —0.9 in cliff region
marked with ¢ from the left to the right. If an agent steps into the cliff region, it will immediately be
returned to the state marked with b. Note that the agent has unlimited steps, and the future rewards
are not discounted.

We use Algorithm 3 to compute ¢ and d in Remark 2 and estimate the bounds of Z;(5) in Algorithm 1.
Figure 1 and Figure 2 show the optimal policies for EVaR with risk level &« = 0.2 and a = 0.6
separately. Since the optimal policy is stationary, it can be analyzed visually. The arrow direction
indicates the optimal action to take in that state. Note that the optimal actions for states ¢ and g are
the same and are omitted. In Figure 1, the agent moves right to the last column of the grid world and
then moves down to reach the goal. When the agent is close to the cliff region, it moves up to avoid
risk. In Figure 2, different optimal actions are highlighted in blue. As we can see, for different risk
levels «, when the agent is near the cliff region, it exhibits consistent behaviors to avoid falling off
the cliff. For the remaining states, the agent behaves differently.

Second, to understand the impact of risk aversion on the structure of returns, we simulate the two
optimal EVaR policies over 48, 000 episodes and display the distribution of returns in Figure 3. The
x-axis represents the possible return the agent can get for each episode, and the y-axis represents the
probability of getting a certain amount of return. For each episode, the agent takes 20, 000 steps and
collects all rewards during the path. When o = 0.6, the return is in (—1, 2], and its mean value is
—0.074, and its standard deviation is 0.228. When o = 0.2, the return is in (0, 2], its mean value is
1.92, and its standard deviation is 0.228. Overall, Figure 3 shows that for the lower value of «, the
agent has a higher probability of avoiding falling off the cliff.
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Third, to assess the stability of Algorithm 2, we use six random seeds to generate samples, compute
the optimal policies, and calculate the EVaR values on the CW domain. In Figure 4, the risk level
a is 0.2, the x axis represents the number of samples, and the y axis represents the mean value
and standard deviation of the EVaR values. The standard deviation is 0.015, and our Q-learning
algorithm converges to similar solutions across different numbers of samples. Note that our Q-
learning algorithm could converge to a different optimal EVaR policy depending on the learning rate
and the number of samples.

Finally, we evaluate the convergence of Algorithm 2, which approximates the EVaR value calculated
from the linear programming(LP) [44] on CW and GR domains. The x axis represents the number
of samples, the y axis represents the difference in EVaR values computed by LP and Q-learning
algorithms, and the risk level « is 0.2. Figure 5 and Figure 6 show that the EVaR value difference
decreases to zero when the number of samples is around 20,000 on the CW and GR domains. We
illustrate the convergence results for o = 0.2, but the conclusion applies to any « value. Overall, our
Q-learning algorithm converges to the optimal value function.

6 Conclusion and Limitations

In this paper, we proposed two new risk-averse model-free algorithms for risk-averse reinforcement
learning objectives. We also proved the convergence of the proposed algorithm under mild assump-
tions. To the best of our knowledge, these are the first risk-averse model-free algorithms for the
TRC criterion. Studying the TRC criterion in risk-averse RL is essential because it has dramatically
different properties in risk-averse objectives than the discounted criterion.

An important limitation of this work is that our algorithms focus on the tabular setting and do not
analyze the impact of value function approximation. However, the proposed algorithm is not limited
to tabular representations. It is a general model-free gradient-based method that can be combined with
any differentiable value function approximators. This work lays out solid foundations for building
scalable approximation reinforcement learning algorithms. In particular, a strength of Q-learning
is that it can be coupled with general value function approximation schemes, such as deep neural
networks. Although extending convergence guarantees to such approximate settings is challenging,
our convergence results show that our Q-learning algorithm is a sound foundation for scalable,
practical algorithms.

Our theoretical analysis has two main limitations that may preclude its use in some practical settings.
First, we must choose the limits zy,in, Zmax- If these limits are set too small, the algorithms may fail
to compute a good solution, and if they are too large, the algorithms may be excessively slow to
detect the divergence of the TRC criterion for large values of 5. It may be possible to use existing
TD algorithms to improve how quickly we detect the divergence. The second limitation is the need to
select the parameter 3 that guarantees the existence of a J-optimal EVaR solution. A natural choice
for 3y, proposed in [44], requires several runs of Q-learning just to establish an appropriate (3.
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A Proofs of Section 3

A.1 Standard Results

For the model-based approach, Theorem A.1 shows that for an infinite horizon, the optimal expo-
nential value function w®* is attained by a stationary deterministic policy and is a fixed point of
the exponential Bellman operator. Following this theorem, we show that the ERM state-action value
function can be computed as the fixed point of the Bellman operator shown in Theorem 3.1 in the
main paper.
Theorem A.1 ( [44], Theorem 3.3). Whenever w* > —oo there exists 7 = (d*) oo € llgp such
that

WP — woo(ﬂ,*) _ Ld* W
and w®* is the unique value that satisfies this equation.

Lemma A.2 ( [18], Lemma A.7). The function 3 — ERMg [X] for any random variable X € X
and 3 > 0 is continuous and non-increasing

Lemma A.3 ([18], Lemma A.8). Let X € X be a bounded random variable such that x,,;, < X <
Tmaz a.5. Then, for any risk level B > 0, ERMg [-] can be bounded as

)

ﬂ(xmaa: - xmin)
8

E[X] — C < ERM; [X] < E[X]

A.2 Proof of Theorem 3.1

Proof. The exponential value function w*(s) is the unique solution to the exponential Bellman
equation [44, theorem 3.3]. Therefore, for a state s € S and the optimal policy 7, state value function
v™(s), and the exponential state value function w™(s), 8 € B, we have that

v (s) = =B log(—w"(s)) (20)

Because of the bijection between w*(s) and v*(s), we can conclude that v*(s) is the unique solution
to the regular Bellman equation.

The optimal state value function can be rewritten in terms of the optimal state-action value function
in (21)
v*(s) = maxq*(s,a, 3) 2
acA

Then ¢* (s, a, 8) exists. The value ¢*(s, a, ) is unique directly from the uniqueness of v*.

A.3 Proof of Proposition 3.2

Proof. The proof is broken into two parts. First, we show that £z(Z — y) is strictly convex, and
a minimum value of ¢z exists. Second, we show that the minimizer of E[¢s(Z — y)] is equal to
ERM3 [Z].

Take the first derivative of £5(Z — y) with respect to y.

og(E—y) (BN PV 1)+ (@ —y)

oy B oy -
Gl) = 57 EV) -1 22
Uy(y) = e B@-y) _q
Take the second derivative of £3(Z — y) with respect to y
Plg  O(e P @v) 1)
oy Oy
(23)

Uily) =e 7@ .3
hy) = e P > 0
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Therefore, {3 is strongly convex with respect to y, and the minimum value of {3 exists.
Second, take the first derivative of E[¢z(Z — y)] with respective to y

R[S (e 70 —1) + (7 — y)]

dy =0

Therefore, the minimizer of E[¢g(Z — y)] is equal to ERMg [Z]. O

A.4 Derivation of Remark 2

Algorithm 3: A heuristic algorithm for computing z bounds

Input: Risk levels 8. = 1719, samples: (3;, a;, 8%), step sizes 7;,i € N

Qutput: Estimated expectation value ¢, Zip, and T ax
do(s,a, Be) < 0,%(s,a,8.) « 0, VseS,aeA;
fori e N,se S,a e Ado
if s = §i/\a: Ezi then
2z(ﬁc) — T(Sv a, g;) + maXg’e A qz(gga alv BC) - (ji(sv a, /BC) N
Qi+1(8a awBC) < Qi(sa a)/BC) - ’f)b : (exp (_/8 : QZ(BC)) - 1) 5
Z(s,a, B.) + Z(s,a,B:) +7(s,a)
else Qi+1(57aaﬁ0) — Qi(87a750) 5
¢ < max {(s,a,8.),s € S,a € A;
Zmin ¢ MInZ(s,a,8:),s € S,a € A;
Tmax < Max Z(s,a,f.),s € S,a € A;
d < (Tmax — Tmin)?/8.

From line 4 of Algorithm 1, we have

Zi(B) < r(s,a,s,) + Ir/lgﬁ(ji(gg,a/,ﬂ) —Gi(s,a,8),s €S,a€ A, € B,ieN

Do some algebraic manipulation,

| Zi(B) | < lI7lloo + [¢lmax + |qlmax
| Z:(B) | < lI7lloo + 2lq|max
_ ’ - ~ .
where [|7]|co = (02X |r(s,a,s’)| and |¢|max = jlnax |Gi(s,a,B)],i € N.

Let us estimate |¢|max. For any random variable Z, for any risk level 5 € B, ERMg [Z] is non-
increasing in Lemma A.2 and satisfies monotonicity in Lemma A.3,

E[j] - /B(-rmax - xmin)2/8 < ERM@ [.i‘] < E[.’ft]

That is,
E[Z] — B(Tmax — Tmin)*/8 < Goo(s,a,8) < E[F],s € S,a € A

Then, for any 8 € B,
|tlmax = max  [doo(s, 0, )l

= max{|E[Z] — B(Zmax — Tmin)?/8], |E[Z]|}
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As mentioned in Section 2,
ERMy[z] = lim ERMg [7] = E[Z]
B—0t

Then

7] 5 +
FITR g T 07)

We estimate E[Z], Zmax, Zmin DY setting 8. = 1710 4n Algorithm 3. Therefore, for any 5 € B,

Zmin(B) = —||rllec — 2max{lc — B - d[,|c[},  2max(B8) = [|r[|oc +2max{lc — B -d|, [c[}
where ¢ = max §oo (5, a, Bc), s € S,a € Aand d = (Tmax — Tmin)?/8.

A.5 [y Derivation
Let us derive fy. For a desired precision § > 0, Sy is chosen such that
E™" #[z] — ERM}, * [7] < § (24)
From Lemma A.3, for a random variable z and 3 > 0, we have
E[#] — ERMg [Z] < B (Tmax — Tmin)?/8

Then we have . .
E™ #[Z] — ERMj " [Z] < Bo - (Tmax — Tmin)>/8 (25)

When the equality conditions in (24) and (25) hold, we have
ﬁO : (mmax - xmin)2/8 = (5

86
Bo =

(mmax - xmin)z

where Tp,,x and x,;, are estimated in Algorithm 3.

B Proofs of Section 4

B.1 Standard Convergence Results

Our convergence analysis of Q-learning algorithms is guided by the framework [8, section 4]. We
summarize the framework in this section. Consider the following iteration for some random sequence
7 : Q — RN where N = {1,2,--- ,n}, then Q-learning is defined as

Fig1(b) = (1= 0;(b)) - 74(b) + 0;(b) - (H7:)(b) + ¢:(b)), i=0,1,-- 26)
= 74(b) + 0:(b) - (HF)(b) + ¢i(b) — 75(b)), i =0,1,-

for all b € N, where H : RV — RVis some possibly non-linear operator, 0, : QO — Ryt isa

step size, and ¢; : @ — RV is some random noise sequence. The random history J; at iteration
i =1,--- is denoted by

‘Fi:(fof" afiaa)()v"' 7(237;—1’507"' 101)-

The following assumptions will be needed to analyze and prove the convergence of our algorithms.
Assumption B.1. [assumption 4.3 in [8]]

(a) Forevery ¢ and b, we have .
Elp(b)|Fi] =0

(b) There exists a norm || - || on R and constants A and B such that
E[¢(b)?|Fi] < A+ BJJi|?
Assumption B.2. [assumption 4.4 in [8]]
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(a) The mapping H is monotone: that is, if » < 7, then Hr < HT.
(b) There exists a unique vector r* satisfying Hr* = r*.
(c) If e € R™ is the vector with all components equal to 1, and if 7} is a positive scalar, then

Hr—n-e<H(r—n-e)<H(r+n-e)<Hr+n-e

Note that Assumption B.2 leads to a convergence result somewhat weaker than the results for weighted
maximum norm pseudo-contraction. Then we need a separate boundedness condition [8, proposition
4.6], which is restated here as Proposition B.3.

Proposition B.3 (proposition 4.6 in [8]). Let r; be the sequence generated by the iteration shown in
Equation (26). We assume that the bth component 7(b) of T is updated according to Equation (26),

with the understanding that 6;(b) = 0 if #(b) is not updated at iteration i. ¢;(b) is a random noise
term. Then we assume the following:

(a) The step sizes éz(b) are nonnegative and satisfy

o0 oo
Bi(b) =00, Y 6 (b) <,
i=0 i=0
(b) The noise terms gzgl(b) satisfies Assumption B.1,
(c¢) The mapping H satisfies Assumption B.2.

If the sequence 7; is bounded with probability 1, then 7; converges to r* with probability 1.

B.2 Proof of Theorem 4.2
B.2.1 Operator Definitions

Letb = (s,a,8),s € S,a € A, B € B, and £ > 0, we use some operators G defined in (12) and
(13), and H defined in (14) for the convergence analysis of Algorithm 1 and Algorithm 2.

a a,s ~ ~
(Ca)b) = 5B [t (r(s,0.81) + maxa(1,' 8) = )] lygion

= E%S [(%/g (r(s, a, 1) + glgﬁ q(51,d",8) — q(s,a, 5))}

§1 is a random variable representing the next state. When s; is used in an expectation with a
superscript, such as E*°, then it does not represent a sample s; with ¢ = 1. Still, instead it represents
the transition from §y to §; distributed as p(s, a, -).

(Gerq)(b) := %E[% (T(S’ a,s') + max q(s',d’, B) — y)} ly=q(s,a.8)
=E {(%5 (r(s, a,s’) + max q(s',d’, B) — q(s,a, ﬁ))}

(Hq)(b) :=q(b) =& - (Gq)(b),  (Hyq)(b) :=q(b) — & (Gsq)(b)
Consider a random sequence of inputs (3;, ;)52 in Algorithm 1. We can define a real-valued random
variable ¢(s, a) fors € S,a € A, > 0in (27).

7 (Hsqi)(s,a) = (Hgi)(s, a), i (85, a:) = (s, a)
i\9y Uy = ’ . 27
9i(s,a.5) {0, otherwise @7
(ZSi can be interpreted as the random noise.
5 /g it (8i,a:) = (s,a)
bi(s,0,58) = {O, otherwise 28)
We denote by F; the history of the algorithm until step 7, which can be defined as
Fi={do, -+ a0, $i-1,60, - ,0:} (29)

17



Lemma B.4. The random sequences of iterations followed by Algorithm I satisfies
Qi+1(85 a, B) = di(87 a, B) +éi(8a a, B) . (H61+$1 _qi)(sa a, B),VS S 87 ac -’4’ ﬁ S B,’L S Na a.s.,
where the terms are defined in Equations (12) to (14), (27) and (28).

Proof. We prove this claim by induction on ¢. The base case holds immediately from the definition.
To prove the inductive case, suppose that ¢ € N and we prove the result in the following two cases.

Case 1: suppose that b = (3,d, ) = (s, a, 3) = b, then by algebraic manipulation

Gi+1(b) = Gi(b) + 6 () (HG)(b) + di(b) — (b))
= G;(b) + 0;(0) (Hq@;) (b) + (HzGi) (b) — (HGi)(b) — (b))
= 4i(b) + 6:(b) ((Hz i) (b) — Gi(b))
= @i(b) + 6:(b) (G — £G5;Gi)(b) — Gi(b))
= Gi(b) — i ((G&,G) (D))
= 4i(b) = 71:(0s(r (s, a, 8) + max Gi(3;, a’', 5) — Gi(0)))

Case 2: suppose that b = (8,a,B) # (s,a,B) = b, then by algebraic manipulation, the algorithm
does not change the ¢:

Git1(b) = G (b) + 0:(b) ((Has) (b
0

)+ é() G:(b))
~((H@)(b) + $i(b) — Gi(b

B.2.2 Random Noise Analysis

We restate Lemma C.16 in [17] here as Lemma B.5, which is useful for proving properties of the
random noise.

Lemma B.5 (Lemma C.16 in [17]). Under Assumption 4.1:
P[8, = '|Gi_1, s, &, Fi] = p(3i, 04,5, a.s.,
foreach s’ € Sandi € N.
Lemma B.6. The noise (;31 defined in (27) satisfies
E¢i(s,a,8)|Fi] =0,Vs € S,a € A,B € B,i € N
almost surely, where F; is defined in (29).

Proof. Letb := (s,a,f), b; = (8i,a;,8) and i € N. We decompose the expectation using the law
of total expectation to get

El$i(B) | Fil = E[Gi(b) | Fi,by # 0] - Blbi # b | Fi] + Eldu(b) | Fivby = b - Blb = b| F] (30)
From the definition in (27), we have
E[¢i(b) | Fisbi # 8] - Pbi # b | Fi] =0
Then
E[$:(b) | Fi, b = b] = E[(Hz G:)(b) — (HG;)(b) |
= & E[—(Gxd)(b) + (Gqi)(b) | Fi,bi = b]
-E[E[~(Ga@)(b) | Fi,bi = b,75i, Gi 1] + (Gai) (b) | Fi, bs = b]
)

§-E[

2 ¢ EE“*[~(G5,:)(0)] + (Ga:)(b) | Fi, bi = b]
§-E[
0

Firbi = 1]

-E[~(GGi)(b) + (Ga@i)(b) | Fi, by = b]



When 3; is used in an expectation with subscript, such as E%*, then it does not represent a sample
3; with ¢ = 1, but instead it represents the transition from §; = s to §; distributed as p(s, a, -).
Step (a) follows the fact the randomness of (G ¢;)(b) only comes from 5] when conditioning on

fial;i = ba ﬁi7 and gi—l-

Then, we have

E[¢i(b) | Fi] = E[gi(b) | Fi,bs # 8] - Plbi # b | Fi] + E[6i(b) | Fi, by = 8] - Plb; = b | Fi]

=040 Pl =b|F]
=0

Lemma B.7. The noise (;51 defined in (27) satisfies
E[(in(svaa 5))2”:7] <A+ B”(L”gov Vs€S,ace A,BeB,ieN
almost surely for some A, B € R, F; is defined in (29).

Proof. Letb := (s,a,f), b; = (8i,ai,8) and i € N. We decompose the expectation using the law
of total expectation to get

E[¢:(b)? | Fi] = E[gi(b)? | Fi,b; # b] - P[b; # b | Fi] + E[¢s(b)? | Fi, b = b] - Plb; = b | Fi
= E[¢;(b)? | Fi, bi = b] - Plb; = b | Fi]

This is because E[¢;(b)2 | F;, b; # b] = 0. Let us evaluate E[¢; (b)? | Fi, b; = b).

EG(0)? | F.by =) = E[ ((Hd)®) - (Ha)0)) | Fibi =]
= E[(~€ (qa)0) + £ CaIW) | Fibi =]

=¢.E

E[(~(Cqa)®) + (Ca)®) | Fubi=b.Gi] | Fubi = b}

Let us define 52-(3’7 B) in (31).

8i(s',B) =r(s,a,s) + maxq,(s a,B) —qg(s,a,B) 31

§-E _E[(wgf.qz)(b) FOE0) | Fobi= b G | Firbi = b]
o g[e »[((G5.3)0) - (Ga) b >)2}fi,@=bl

e[ [(0ta(6 51,80 | 1~ B 005 i1 ) ] | 7o = )
Q€Z-E(E“[ 003561, 00) | 81)°] — (E*<105 G ) ]) 1 72,5 =)
<¢-B[E** [(E[%(&('s‘l,ﬁ)) ENIEAEY

d [ ~ =
<& .E maxt%ﬁ(@(s',ﬂ))Q | Fi,bi = b]
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. max({—5——:-
s max(Cr

<¢?. (L)2 -]E{max((i—(sﬂﬂ))2 | Fiybi = b}

e/BZmin

B

eBzmin

(€] B
<€ ( )2 (2 Irll5e + 8- 11Gill30)

Step (a) follows Lemma B.5 given that the randomness of —(Gq;)(b) + (G§;)(b) only comes
from &, when conditioning on F;, b; = b, 7; and G;_,. Step (b) follows by substituting (G #Gi)(b)
with (12), substituting (G¢;)(b) with (13), and replacing by using 8; defined in (31). The equality

in step (c¢) holds because for a random variable £ = E[0¢g(6;(51, 3)) | §1], the variance satisfies
E[(Z — E[2])?] = E[#?] — (E[Z])2. Step (d) upper bounds the expectation by a maximum. Step
(e) uses 9¢3(0) = 0 from the definition in (9). Step (f) uses Lemma 4.4 to bound the derivative
difference as a function of the step size. Step (g) derives the final upper bound since

—_ / - — -~
e = max_ [r(s,a.8)l, @il = max [d(s,a.5)]
g}gg&(#,ﬁf < ([I7lloo + 201Gillo0)?
< (I7lloo + 201Gilloo)® + (I lloe — 201Gilloo)? (32)
=2[|r|1% +8[lGl%
Then, we have
E(¢;(b)? | Fi] = E[¢i(b)* | F;,b; = b] - Plb; = b | Fi]

B -
< (P - e+ 8- )
Therefore, A = £2 . (6,32%)2 (2 ||r]|2,) and B = 8¢2 - (6,32%)2 O

B.2.3 Monotonicity of Operator H

Let us prove that the operator H defined in (14) satisfies monotonicity.

Proof of Lemma 3.4. First, we prove part (a): fix 8 > 0 and some b = (s,a,8),s € S,a € A. Fix
q and define

Fly) =B [ls(r(s, a,51) + max q(31,d', ) — y)] (33)

The function f is strongly convex with a Lipschitz-continuous gradient with parameters ¢ and L
based on Lemma 4.4. Let y* = arg min,eg f(y) and 3] € [1/L, 1/¢] such that

(Hq)(b) = (¢ — £Gq)(b)
(@)
= q(b) — £f'(q(b))
(b) N (34)
=1 -¢&/Dab)+&/1-y
©) D
=1 =¢/Da(b) +&/1- (Bq)(b)
Step (a) follows the replacement with (12) and (33). Step(b) follows the Lemma 2.1. Step(c) follows
the fact that B is the ERM Bellman operator defined in (11) and y* is the unique solution to (10).

Given z(b) < y(b), let us prove that (Hz)(b) < (Hy)(b). Since the ERM Bellman operator B is
monotone, we have

2(b) —y(b) < 0= (Bx)(b) — (By)(b) <0
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Then we have

(Ha)(b) — (Hy)(b) = (1= &/)a(b) + /1 (Ba)(b) — (1= &/1)y(b) + &/1- (By) (b))

( (b
(1= &/D)((b) = y(b) +&/1- ((Bx)(b) — (By)(b))
0

IA

Second, let us prove part (b): (Hq)(b) can be written as follows.

(Hq)(b) = (1 = £/1)a(b) +&/1- (Bq)(b)

From [44, theorem 3.3], we know that ¢* (b) is a fixed point of B. Then ¢*(b) is also a fixed point of
H. Thatis, (Hg*)(b) = ¢*(b).

Third, let us prove part (c), we omit b in the (H¢)(b) and rewrite it as follows.
Hg=(1-¢/lq+¢/1- By
Given e € R" is the vector with all components equal to 1 and if c is a positive scalar, we show that

Hq—c-e=H(g—c-e)<H(g+c-e)=Hqg+c-e

1) Letusprove Hg—c-e=H(qg—c-e)

Hqg—c-e=(1-¢&/)-q+(&/1)-Bg—c-e
=(1-¢/1)-q (1—£/Z>-c-e+<f/l>-Bq—(s/l»ce
=(1—¢/)(g—c-e)+ (&/1)(Bg—c-e)
)

Q1 —€/)(g—c-e)+ (E/)(Blg—c-e))
=H(qg—c-e)

Step (a) follows from the law invariance property of ERM [19].

2) Letus prove H(g—c-e) < H(qg+c-e)

Because ¢ — ¢+ e < g + ¢ - e and the part (a) of the operator H, we have
H(g—c-e)<H(qg+c-e)

3)Letusprove H(g+c-e)=H(q)+c-e
H(qg+c-e)

)
(g
L—¢/l)(q+c-e)+ (€/0B(q) + (&/1) -
—(L—€/Dg+ (L —€/1) - (c-) + (§/) -c-e+ (E/Z)B(q)
)

=(1—¢/q+c-e+(/)Blg
=H(q)+c-e

Step (a) follows from the law invariance of ERM. Then we have

Hq—c-e<H(g—c-e)<H(qg+c-e)<Hg+c-e

B.2.4 Proof of Theorem 4.2

Proof. Proof of Theorem 4.2 We verify that the sequence of our Q-learning iterates satisfies the
properties in Proposition B.3. The step size condition in Theorem 4.2 guarantees that we satisfy
property (a) in Proposition B.3. Lemma B.6 and Lemma B.7 show that we satisfy property (b) in
Proposition B.3. Lemma 3.4 shows that we satisfy property (c¢) in Proposition B.3. O
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B.3 Proof of Lemma 4.3

Proof. First, from Theorem 3.3, we have

BBQ = Bﬂq
J
ERM7* [T(S, a, 31) + max q(51,a’, B)} = arg min E** [Eﬁ (r(s,a,51) + maxq(51,d, B) — y)}
a’'cA yeR a’'cA

For the part (a), ERM is monotone [19]. That is, for some fixed 8 € B value, if z < y, then
Bgx < Bgy.

For the part (b), {3 is a strongly convex function because £5(y) = 3 - e~ (F=¥) > (. Then there will
be a unique y* value such that [E%-* [Eﬁ (r(s,a,51)+maxqecaq(5,a, B)— y)} attains the minimum
value, and the y* value is equal to ¢* (s, a, 3), which follows from Proposition 3.2. So Bﬁq* =q*

For the part (¢), ERM is monotone and satisfies the law-invariance property [19].

“ (CON 2 . 3) .
Bs(q)—1-9<Bglg—1-9) <Bglg+1-9) <Bglg)+1-g

Steps (1) and (3) follow from the law-invariance property of ERM. Step (2) follows from the
mononotone property of ERM. O

B.4 Proof of Lemma 4.4

Proof. We use the fact that /g is twice continuously differentiable and prove the I-strong convexity
from [33, theorem 2.1.11]:

l= inf l5(z) = inf Bexp(—Bz) = fexp (—LBzmax) -

2€[Zmin,Zmax] 2€[Zmin,Zmax

To prove L-Lipschitz continuity of the derivative, using [37, Theorem 9.7], we have that
L= sup 105(2)| = sup |Bexp (—Bz) | = Bexp (—S2Zmin) -

2€[Zmin,Zmax] 2€[Zmin,Zmax

B.5 Proof of Corollary 4.5

Proof. From Theorem 4.2, for some S € B, ERM-Q learning algorithm converges to the optimal
ERM value function. Theorem 3.5 shows that there exists J—optimal policy such that it is an ERM-
TRC optimal for some 3 € B. It is sufficient to compute an ERM-TRC optimal policy for one of those
[ values. This analysis shows that Algorithm 2 converges to its optimal EVaR value funciton. [

C Additional Material of Section 5

The machine used to conduct all experiments referenced in Section 5 is a single machine with the
following specifications:

* AMD Ryzen Thread ripper 3970X 32-Core (64) @ 4.55 GHz
* 256 GB RAM
e Julia 1.11.5

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Answer:[Yes]

Justification: The authors believe that the abstract and the introduction represent the contri-
butions accurately and precisely.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the work are discussed in the “Conclusion and Limitations”
section and after Remark 1 in Section 3.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: assumptions include the equation (4) in Section 2 and Assumption 4.1 in
section 4. The proofs are in the appendix.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment is based on two data files. One data file is available online,
and the parameters of the other data file are described in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: The code and data files are submitted as supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 5 includes the experimental setting and details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]
Justification: Section 5 includes the standard deviations for multiple runs of the algorithms.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that their
research conforms to it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Because of the theoretical focus of this work, the authors have no reason to
suspect that their work it poses any immediate societal impact good or bad. The purpose of
this work is to develop tools and techniques for risk averse decision making in reinforcement
learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The authors do not foresee any safety risks associated with this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: One data file from prior work is properly cited in this paper. All unattributed
work is original to the authors’ best knowledge.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]
Justification: Our work does not release any significant new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve any research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:|[NA]
Justification: The core contributions of our work did not involve LLMs use.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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