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ABSTRACT

Equivariant diffusion models have emerged as the prevailing approach for generat-
ing novel crystal materials due to their ability to leverage the physical symmetries
of periodic material structures. However, current models do not effectively learn
the joint distribution of atom types, fractional coordinates, and lattice structure
of the crystal material in a cohesive end-to-end diffusion framework. Also, none
of these models work under realistic setups, where users specify the desired char-
acteristics that the generated structures must match. In this work, we introduce
TGDMat, a novel text-guided diffusion model designed for 3D periodic material
generation. Our approach integrates global structural knowledge through textual
descriptions at each denoising step while jointly generating atom coordinates,
types, and lattice structure using a periodic-E(3)-equivariant graph neural network
(GNN). Through extensive experiments with popular datasets on benchmark tasks,
we first demonstrate that integrating textual knowledge significantly improves the
material generation capabilities of existing state-of-the-art models. Furthermore,
we show that TGDMat surpasses text-guided variants of existing baseline meth-
ods by a substantial margin, highlighting the effectiveness of our joint diffusion
paradigm. Additionally, incorporating textual knowledge reduces overall training
and sampling computational overhead while enhancing generative performance
when utilizing real-world textual prompts from experts.

1 INTRODUCTION

Screening 3D periodic structures and their atomic compositions to identify novel crystal materials with
specific chemical properties remains a long-standing challenge in the materials design community.
These materials have been fundamental to key innovations such as the development of batteries, solar
cells, semiconductors etc. (Butler et al., 2018} |Desirajul |2002). Historically, there have been attempts
to generate novel materials by conducting resource-intensive and time-consuming simulations based
on Density Functional Theory (DFT) (Kohn & Shaml {1965). Recently, the equivariant diffusion
models (Jiao et al., [2023} [Luo et al., 2023b; |Xie et al.,[2021]) have demonstrated great potential to
generate stable 3D periodic structures of new crystal materials.

However, these models possess several inherent limitations. 1) None of these existing SOTA models
learns the joint distribution of atom coordinates, types, and lattice structure of the material through
an end-to-end diffusion network. Existing models like CDVAE (Xie et al.|2021]) and SyMat (Luo
et al.l [2023b) learn lattice parameters and atom types separately using a VAE model and further
use a score network to learn the conditional distribution of atom coordinates given atom types and
lattice. DiffCSP (Jiao et al., [2023)), on the other hand, focuses primarily on structure prediction task
where it assumes atom types are given and predict the stable crystal structure (lattice and coordinates).
2) Furthermore, these models use SE(3)-equivariant GNNs as backbone denoising network, which
largely relies on messages passing around the local neighborhood of the atoms. Hence they fail to
incorporate global structural knowledge into the diffusion process, which can enhance the diffusion
performance. 3) Finally, these models are unconditional by design. From initial noisy structures
without any external constraints, they generate stable crystal structures, which are distributionally
similar to structures of the training dataset. This setup may have limited utility in real-world scenarios,
as it lacks a mechanism for users to specify a criteria for the material to be generated. In a realistic
setup, users would want to specify certain key details about the target material, like the chemical
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BaPd2 is Cubic structured and
crystallizes in the cubic Fd-3m space
group. Ba(1) is bonded in a
12-coordinate geometry to twelve
equivalent Pd(1) atoms. All
Ba(1)-Pd(1) bond lengths are 3.37 A.
Pd(1) is bonded to six equivalent
Ba(1) and six equivalent Pd(1) atoms
to form a mixture of face, edge, and
corner-sharing cuboctahedra. All
Pd(1)-Pd(1) bond lengths are 2.88 A.
Its formation energy per atom is
-0.578, band gap is 0.0, energy above
hull is 0.0. Generate the material

Detailed Description by

Below is a description of a bulk
material. The chemical formula is
BaPd2. The elements are Ba, Pd. The
formation energy per atom is
negative. The band gap is zero. The
energy above the convex hull is zero.
The space group number is 227. The
crystal system is cubic.Generate the
material

Short Prompt by Users

Unit Cell Structure

Robocrystallographer

Figure 1: Detailed textual description generated by Robocrystallographer, less-detailed prompts by
domain experts, and crystal unit cell structure of BaPd.

formula, space group, crystal symmetry, bond lengths, chemical properties, etc as input to the
diffusion model, which the generated structure must then match.

In this paper, we propose, TGDMat, a novel Text-Guided Diffusion Model for Material Generation
that mitigates the limitations mentioned above and enhances the generation capability. Though
Text Guided Diffusion Models (TGDMs) produce impressively high-quality data in the form of
images (Nichol et al.l [2021; [Ramesh et al., 2022; Rombach et al.l 2022} |Saharia et al., [2022]),
audio (Kreuk et al., 2022} |Yang et al.,|2022), video (Du et al.,|2024), molecules (Gong et al., [2024;
Luo et al, [2023al) etc, it remains largely unexplored in periodic material generation. Text-guided
diffusion for new material generation has some key benefits. First, we can leverage popular tools
like Robocrystallographer (Ganose & Jain, 2019) to generate a textual description of the material
which provides a rich and diverse set of global structural knowledge like chemical formula, lattice
constraint, space group number, crystal symmetry, chemical properties, etc. We believe this additional
information is helpful for diffusion models in learning underlying crystal geometry. Second, it
provides end users the flexibility to use custom prompts to guide the material generation process,
ensuring that the resulting material aligns with the user’s provided description. Towards that goal, we
first develop a diffusion model that jointly generates the atom coordinates, atom types, and lattice
structure of crystal materials using a periodic E(3)-equivariant denoising model, satisfying periodic
E(3) invariance properties of learned data distribution. Subsequently, we fuse textual information into
the reverse diffusion process, which guides the denoising process in predicting material structure as
specified by the textual description.

To sum up, our novel contributions in this work are as follows:

* To the best of our knowledge, we are the first to explore text-guided diffusion for material
generation. Our proposed TGDMat bridges the gap between natural language understanding
and material structure generation.

 Unlike prior models, TGDMat conducts joint diffusion on lattices, atom types, and co-
ordinates, enhancing its ability to accurately capture the crystal geometry. Additionally,
incorporating global structural knowledge through textual descriptions at each denoising step
improves TGDMat’s ability to generate plausible materials with valid and stable structures.

* Through extensive experiments using popular datasets on benchmark tasks we show that
text guidance can improve the generation capability of existing SOTA diffusion models
for crystal materials. Moreover, in the generation task, TGDMat outperforms text-fusion
variants of SOTA models with good margin, showcasing the effectiveness of the text guided
joint diffusion paradigm.

* Fusing textual knowledge reduces the overall computational cost for both training and infer-
ence of the diffusion model. Moreover, when applied to real-world custom text prompts by
experts, TGDMat demonstrates rich generative capability under general textual conditions.
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| DiffCSP | TGDMat
Tasks | Only CSP Task | Both CSP and Gen Tasks
Diffusion on Atom Type| - | Discrete Diffusion (D3PM)

the criteria required by the user| criteria required by the user (in
Text Format)

Text Guided Diffusion | No | Yes

Model Category Unconditional; unable to speciT Conditional; able to specify the

Table 1: Key Differences between TGDMat from DiffCSP

2 PRrRELIMINARIES

2.1 CRYSTAL STRUCTUREREPRESENTATION

Crystal material can be modeled by a minirnait cell, which gets repeated in nite times in 3D
space on a regular lattice to form the periodic crystal structure. Given a materidilwitimber

of atoms in its unit cell, we can describe the unit cell by two matricssim Type Matrix A)

and Coordinate Matrix K). Atom Type MatrixA = [ai;ay;::;an]” 2 RN K denotes set of
atomic type in one hot representation (k: maximum possible atom types). On the other hand,
Coordinate MatrixX = [xq;%2;:5%xv]T 2 RN 2 denotes atomic coordinate positions, where

xi 2 R® corresponds to coordinates i§f atom in the unit cell. Further, there is an additional
Lattice MatrixL = [I1;15;13]" 2 R® 3, which describes how a unit cell repeats itself in the 3D
space towardk ; I, andl3 direction to form the periodic 3D structure of the material. Formally, a
given material can Be de ned &8 = ( A; X; L) and we can represent its in nite periodic structure as

R=fajr=x+ 7 kljgA =1aja = agwhereki;kyks;i22Z;1 i N.

2.2 INVARIANCES IN CRYSTAL STRUCTURE

The basic idea of using generative models for crystal generation is to learn the underlying data
distribution of material structurng(M). Since crystal materials satisfy physical symmetry properties
(Dresselhaus et al., 2007; Zee, 2016), one of the major challenges here is the learned distribution
must satisfy periodic E(3) invariance i.e. invariance to permutation, translation, rotation, and periodic
transformations. A formal de nition of these invariance properties is provided in Appgndix C.

3 RELATED WORK: PERIODIC MATERIAL GENERATION

Recently, the majority of the research on material generation focuses on using popular generative mod-
els like VAEs [(Kingma & Welling; 2013), GANs (Goodfellow etlal., 2014) or Diffusion Models ($ong

& Ermon,[2019; 2020; Ho et &/., 2020) to generate 3D periodic structures of matérials (Hoffmann
et al/, 2019; Noh et al., 201L9; Ren et al., 2020; Kim ef al., 2020; Court &t al.| 2020; Long et al., 2021;
Zhao et al., 2021; Xie et al., 2021; Jiao et al., 2023; Luo et al., 2023b; Zeni et al., 2023; Yang et al.,
2023; Jiao et al., 2024; Miller et al., 2024). In speci c, state-of-the-art models like CDVAE (Xie

et al., 2021) and SyMat (Luo et al., 2023b) combine VAEs and score-based diffusion models to work
directly with atomic coordinates, ensuring euclidean and periodic invariance using equivariant graph
neural networks(GNNSs). Moreover, DiffCSP (Jiao et al., 2023) focuses on structure prediction, jointly
optimizing atom coordinates and lattice using a diffusion framework given atomic composition. We
provided a comprehensive literature review of other related works in Appendix B.

Key differences between Diff CSP and TGDMat.We report key differences between DiffCSP and
TGDMat in Table 1. The goal of this paper is not to introduce a new diffusion model to replace
existing models like DiffCSP or CDVAE for periodic material generation. Instead, we focus on
demonstrating that conditional models can outperform traditional unconditional models, such as
DiffCSP. Speci cally, we show that incorporating textual conditions through text-guided diffusion
leads to better performance compared to using unconditional models like DiffCSP. Additionally, we
enhance DiffCSP by integrating discrete diffusion over atom types in our proposed TGDMat.
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4 METHODOLOGY

4.1 PROBLEM FORMULATION

In this work, given the textual description, we focus on generating a stable crystal structure that aligns
with the provided textual description. Formally, given a datdset fM;; T; g, containing crystal
structureM; = (Aj; Xj; L) and its text descriptionT(), the goal of text guided crystal generation
problem is to capture the underlying conditional data distributivjT) via learning a generative
modelp (MjT), where is a set of learnable parameters. While training, we nedd ensure that

the learned distribution is invariant to different symmetry transformations mentioned in Section 2.2.
Once trained, given a text description of a plausible material, the learned generative model can sample
a valid and stable structure of the material, that is invariant to different symmetry transformations.

4.2 TEXTUAL DATASETS

Leveraging textual information to guide the reverse diffusion process remains unexplored in the
material design community. To the best of our knowledge, there is currently no text data available
for materials in benchmark databases (mentioned in Section 5.1). Hence, we rst curate the textual
data of these material databases. Speci cally, we propose two approaches for generating textual
descriptions of materials, which are easy to follow. First, we utilize a freely available utility tool,
RobocrystallographefGanose & Jain, 2019) to generate detailed textual descriptions about the
periodic structure of crystal materials. These descriptions encompass local compositional details
like atomic coordination, geometry, etc. as well as global structural aspects like crystal formula,
mineral type, space group information, etc. Secondly, we utilized shorter and less detailed prompts
that are more easily interpretable by users. We extend the prompt template proposed by (Gruver et al.,
2024), which encodes minimal information about the material like its chemical formula, constituent
elements, crystal system it belongs to, and its space group number. Further, we specify a few
chemical properties, and instead of mentioning their actual values, we provide generic information
like negative/positive formation energy, zero/nonzero band gaps, etc. Detailed information regarding
the two textual datasets, including their curation process is provided in Appendix D.

4.3 PROPOSEDMETHODOLOGY: TGDMAT

Our proposed model, TGDMat (Fig. 2), uses an equivariant diffusion model guided by contextual
representation of the textual descriptidi,) to generate a new crystal structive= ( A; X;L).

Unlike prior methods (Jiao et al., 2023; Luo et al., 2023b; Xie et al., 2021), our method jointly diffuses
A, X, L to learn the underlying data distribution of crystal structo(fejC,). Diffusion models (Ho

et al., 2020; Song & Ermon, 2019; 2020) are popular generative models that are formulated using
a T steps Markov Chain. Given an input crystal matdvlgl= ( Ag; Xo; Lo), the forward process
gradually add noise tdy; Xo; Lo independently over T steps and the reverse denoising process
samples a noisy structuMr = (At ; Xt;Lt) from a prior distribution and reconstruct balek

using some GNN model. At ea¢l step of denoisingd t T), the contextual representation of

the crystal textual descriptior©p) will guide the diffusion process so that the intermediate structure

M, aligns the target 3D structure constrained on textual conditions. Moreover, the learned distribution
of material structure must satisfy periodic E(3) invariance. It is well studied in the literature (Xu
et al., 2022) that if the prior distributiop(x) is invariant to a group and the transition probabilities

of a Markov chairy  p(yjx) exhibit equivariance, the marginal distribution of y at any given time
step also remains invariant to group transformations. Hence the learned distrifiiMighof the
denoising model will satisfy periodic E(3) invariance if the prior distributgM ) is invariant

and the neural network used to parameterize the transition probaiflity 1jM;) is equivariant to
permutational, translation, rotational, and periodic transformations. To satisfy that, we use periodic-
E(3)-equivariant GNN model as a backbone denoising network to guide the denoising process. Next
in this section, we rst explain diffusion oM in 4.3.1, then demonstrate the text-guided denoising
network in 4.3.2 and nally training details in 4.4.

4,3.1 DINT EQUIVARIANT DIFFUSION ONM

Diffusion on Lattice (L). Since the Lattice Matrix. = [I1;15;13]" 2 R® 2 is in continuous
space, we leverage the idea of the Denoising Diffusion Probabilistic Model (DDPM) for diffusion
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Figure 2: Model Architecture of our proposed text guided diffusion model TGDMat!"Adtep of
reverse diffusion, giveM; = ( A¢; X¢; L), we use periodic-E(3)-equivariant GNN model guided by
contextual representation of the textual promgg) to generaté; 1 = (Ac 1; Xt 1;L¢ 1)

on L. Speci cally, given input lattice matrio  p(L), at eacht™ step, the forward diffusion
process iterativele{ diffuses it through a transitiorbprobabit([ytho) which can be derived as
: t

g(L¢jLo) = N(L¢j. tLo; (1 gl)where, (= “,; « =1 andf {2 (0;1)g,
controls the variancs of diffu%on step following certain noise scheduler. By reparameterization,
we can rewritd; = (Lg+ 1 ¢ Y where, ! is noise sampled froml (0; 1), added with

Lo att™ step to generatk;. After T such diffusion steps, noisy lattice mattix N (0;1)
is generated. During reverse denoising process, given hgisyN (0;1) we reconstruct true
lattice structurd. thorough iterative denoising step via learning reverse conditional distribution,

which we formulate ap(L; 1jM¢;Cp) = Nf Ly 1j “(My; Cp); t(1(1 ‘t)l)lgwhere L(M¢; Cp) =
1

pl—T(Lt S A (My; Cpi 1)) Intuitively, M needs to be subtracted frdm to generaté; ; and
textual representatio@, will steer this reverse diffusion process. We use a text-guided denoising
network  (A¢; X; L; t; Cp) to model the noise terrt (My; Cp; t). Following the simpli ed training
objective proposed by (Ho et al., 2020), we train denoising model Ugilogs betweert- and -

Llattice = E Lty (1;T)k - ALkg (1)

Diffusion on Atom Types (A). Prior studies (Jiao et al., 2023; Xie et al., 2021) consider Atom

Type MatrixA as the probability distribution for k class2sRN ¥ (continuous variable) and apply

DDPM to learn the distribution. However for discrete data these models are inappropriate and

produce suboptimal results (Austin et al., 2021; Campbell et al., 2022). Hence we cadhsisler

N discrete variables belonging to k classes and leverage discrete diffusion model (D3PM) (Austin

et al., 2021) for diffusion orA. In speci ¢, with a as the one-hot representation of atanthe

transition probability for the forward processj&ja; 1) = Cat(a;p= a 1Q;), whereCat(a; p)

is a categorical distribution overwith probabilitiesp andQ; is the Markov transition matrix at

time step t, de ned afQ,];; = d(a; = ijay 1 = j). Different choices of), and corresponding

stationary distributions are proposed by (Austin et al., 2021) which provides exibility to control the

data corruption and denoising process. We adopted the absorbing state diffusion process, introducing

a new absorbing state [MASK] iQ,. At each time step t, an atom either stays in its type state with

probabilityl  ; or moves to [MASK] state with probability; and once it moves to [MASK]

state, it stays there. Hence, the stationary distribution of this diffusion process has all the mass

on the [MASK] state. During denoising process, given textual represen@gione rst sample

noisyar and obtaifso thorough iterative denoising step via learning reverse conditional transition

p (& ija; Cp) / & d(@& 1;ja0)p (ajar; Cp). We use the text-guided denoising network
(A¢; X¢; Ly ; t; Cp) to model this denoising process, which is trained using following loss function :

Lype = Lve + Lce )
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