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ABSTRACT

Equivariant diffusion models have emerged as the prevailing approach for generat-
ing novel crystal materials due to their ability to leverage the physical symmetries
of periodic material structures. However, current models do not effectively learn the
joint distribution of atom types, fractional coordinates, and lattice structure of the
crystal material in a cohesive end-to-end diffusion framework. Also, none of these
models work under realistic setups, where users specify the desired characteristics
that the generated structures must match. In this work, we introduce TGDMat, a
novel text-guided diffusion model designed for 3D periodic material generation.
Our approach integrates global structural knowledge through textual descriptions
at each denoising step while jointly generating atom coordinates, types, and lattice
structure using a periodic-E(3)-equivariant graph neural network (GNN). Extensive
experiments using popular datasets on benchmark tasks reveal that TGDMat out-
performs existing baseline methods by a good margin. Notably, for the structure
prediction task, with just one generated sample, TGDMat outperforms all baseline
models, highlighting the importance of text-guided diffusion. Further, in the genera-
tion task, TGDMat surpasses all baselines and their text-fusion variants, showcasing
the effectiveness of the joint diffusion paradigm. Additionally, incorporating textual
knowledge reduces overall training and sampling computational overhead while
enhancing generative performance when utilizing real-world textual prompts from
experts. Code is available at https://github.com/kdmsit/TGDMat

1 INTRODUCTION

Screening 3D periodic structures and their atomic compositions to identify novel crystal materials with
specific chemical properties remains a long-standing challenge in the materials design community.
These materials have been fundamental to key innovations such as the development of batteries, solar
cells, semiconductors etc. (Butler et al., 2018; Desiraju, 2002). Historically, there have been attempts
to generate novel materials by conducting resource-intensive and time-consuming simulations based
on Density Functional Theory (DFT) (Kohn & Sham, 1965). Recently, the equivariant diffusion
models (Jiao et al., 2023; Luo et al., 2023b; Xie et al., 2021) have demonstrated great potential to
generate stable 3D periodic structures of new crystal materials.

However, these models possess several inherent limitations. 1) None of these existing SOTA models
learns the joint distribution of atom coordinates, types, and lattice structure of the material through
an end-to-end diffusion network. Existing models like CDVAE (Xie et al., 2021) and SyMat (Luo
et al., 2023b) learn lattice parameters and atom types separately using a VAE model and further
use a score network to learn the conditional distribution of atom coordinates given atom types and
lattice. DiffCSP (Jiao et al., 2023), on the other hand, focuses primarily on structure prediction task
where it assumes atom types are given and predict the stable crystal structure (lattice and coordinates).
2) Furthermore, these models use SE(3)-equivariant GNNs as backbone denoising network, which
largely relies on messages passing around the local neighborhood of the atoms. Hence they fail to
incorporate global structural knowledge into the diffusion process, which can enhance the diffusion
performance. 3) Finally, these models are unconditional by design. From initial noisy structures
without any external constraints, they generate stable crystal structures, which are distributionally
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Short Prompt by Users

Figure 1: Detailed textual description generated by Robocrystallographer, less-detailed prompts by
domain experts, and crystal unit cell structure of BaPd2.

similar to structures of the training dataset. This setup may have limited utility in real-world scenarios,
as it lacks a mechanism for users to specify a criteria for the material to be generated. In a realistic
setup, users would want to specify certain key details about the target material, like the chemical
formula, space group, crystal symmetry, bond lengths, chemical properties, etc as input to the
diffusion model, which the generated structure must then match.

In this paper, we propose, TGDMat, a novel Text-Guided Diffusion Model for Material Generation
that mitigates the limitations mentioned above and enhances the generation capability. Though
Text Guided Diffusion Models (TGDMs) produce impressively high-quality data in the form of
images (Nichol et al., 2021; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022),
audio (Kreuk et al., 2022; Yang et al., 2022), video (Du et al., 2024), molecules (Gong et al., 2024;
Luo et al., 2023a) etc, it remains largely unexplored in periodic material generation. Text-guided
diffusion model for new material generation has some key benefits. First, we can leverage popular
tools like Robocrystallographer (Ganose & Jain, 2019) to generate a textual description of the material
which provides a rich and diverse set of global structural knowledge like chemical formula, lattice
constraint, space group number, crystal symmetry, chemical properties, etc. We believe this additional
information is helpful for diffusion models in learning underlying crystal geometry. Second, it
provides end users the flexibility to use custom prompts to guide the material generation process,
ensuring that the resulting material aligns with the user’s provided description. Towards that goal, we
first develop a diffusion model that jointly generates the atom coordinates, atom types, and lattice
structure of crystal materials using a periodic E(3)-equivariant denoising model, satisfying periodic
E(3) invariance properties of learned data distribution. Subsequently, we fuse textual information into
the reverse diffusion process, which guides the denoising process in predicting material structure as
specified by the textual description.
To sum up, our novel contributions in this work are as follows:

• To the best of our knowledge, we are the first to explore text-guided diffusion for material
generation. Our proposed TGDMat bridges the gap between natural language understanding
and material structure generation.

• Unlike prior models, TGDMat conducts joint diffusion on lattices, atom types, and co-
ordinates, enhancing its ability to accurately capture the crystal geometry. Additionally,
incorporating global structural knowledge through textual descriptions at each denoising step
improves TGDMat’s ability to generate plausible materials with valid and stable structures.

• Extensive experiments using popular datasets on benchmark tasks show TGDMat outper-
forms baseline models with a good margin. Notably, in CSP task, with just one generated
sample, TGDMat outperforms all baseline models, highlighting the importance of text-
guided diffusion. Moreover, in the generation task, TGDMat outperforms all baselines and
their text-fusion variants, showcasing the effectiveness of the joint diffusion paradigm.

• Fusing textual knowledge reduces the overall computational cost for both training and infer-
ence of the diffusion model. Moreover, when applied to real-world custom text prompts by
experts, TGDMat demonstrates rich generative capability under general textual conditions.
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2 PRELIMINARIES : CRYSTAL STRUCTURE REPRESENTATION

Crystal material can be modeled by a minimal unit cell, which gets repeated infinite times in
3D space on a regular lattice to form the periodic crystal structure. Given a material with N
number of atoms in its unit cell, we can describe the unit cell by two matrices: Atom Type Matrix
(A) and Coordinate Matrix (X). Atom Type Matrix A = [a1, a2, ..., aN ]T ∈ RN×k denotes
set of atomic type in one hot representation (k: maximum possible atom types). On the other
hand, Coordinate Matrix X = [x1, x2, ..., xN ]T ∈ RN×3 denotes atomic coordinate positions,
where xi ∈ R3 corresponds to coordinates of ith atom in the unit cell. Further, there is an
additional Lattice Matrix L = [l1, l2, l3]T ∈ R3×3, which describes how a unit cell repeats itself
in the 3D space towards l1, l2 and l3 direction to form the periodic 3D structure of the material.
Formally, a given material can be defined as M = (A,X,L) and we can represent its infinite periodic
structure as X̂ = {x̂i|x̂i = xi+

∑3
j=1 kj lj}; Â = {âi|âi = ai} where k1, k2, k3, i ∈ Z, 1 ≤ i ≤ N .

Invariances in Crystal Structure. The basic idea of using generative models for crystal
generation is to learn the underlying data distribution of material structure p(M). Since crystal
materials satisfy physical symmetry properties (Dresselhaus et al., 2007; Zee, 2016), one of the
major challenges here is the learned distribution must satisfy periodic E(3) invariance i.e. invariance
to permutation, translation, rotation, and periodic transformations. A formal definition of these
invariance properties is provided in Appendix C.

3 RELATED WORK: PERIODIC MATERIAL GENERATION

Recently, the majority of the research on material generation focuses on using popular generative
models like VAEs (Kingma & Welling, 2013), GANs (Goodfellow et al., 2014) or Diffusion
Models (Song & Ermon, 2019; 2020; Ho et al., 2020) to generate 3D periodic structures of
materials (Hoffmann et al., 2019; Noh et al., 2019; Ren et al., 2020; Kim et al., 2020; Court et al.,
2020; Long et al., 2021; Zhao et al., 2021; Xie et al., 2021; Jiao et al., 2023; Luo et al., 2023b; Zeni
et al., 2023; Yang et al., 2023; Jiao et al., 2024; Miller et al., 2024). In specific, state-of-the-art
models like CDVAE (Xie et al., 2021) and SyMat (Luo et al., 2023b) combine VAEs and score-based
diffusion models to work directly with atomic coordinates, ensuring euclidean and periodic invariance
using equivariant graph neural networks(GNNs). Moreover, DiffCSP (Jiao et al., 2023) focuses on
structure prediction, jointly optimizing atom coordinates and lattice using a diffusion framework
given atomic composition. We provided a comprehensive literature review of other related works in
Appendix B.

Relations with Prior Methods. Among existing models, DiffCSP comes close to our
methodology, however, our work differs in multiple ways. DiffCSP primarily focuses only on the
Structure Prediction (CSP) task and they didn’t explore the Random Generation (Gen) task, whereas
TGDMat focuses on both tasks. Moreover, unlike DiffCSP, TGDMat can leverage the informative
textual descriptions during the denoising process and can jointly learn lattices, atom types, and
coordinates, which makes TGDMat a more flexible and robust generative model for new material
generation.

4 METHODOLOGY

4.1 PROBLEM FORMULATION

In this work, given the textual description, we focus on generating a stable crystal structure that aligns
with the provided textual description. Formally, given a datasetM = {Mi,Ti}, containing crystal
structure Mi = (Ai,Xi,Li) and its text description (Ti), the goal of text guided crystal generation
problem is to capture the underlying conditional data distribution p(M|T) via learning a generative
model fθ(M|T), where θ is a set of learnable parameters. While training, we need fθ to ensure that
the learned distribution is invariant to different symmetry transformations mentioned in Section 2.
Once trained, given a text description of a plausible material, the learned generative model can sample
a valid and stable structure of the material, that is invariant to different symmetry transformations.

4.2 TEXTUAL DATASETS

Leveraging textual information to guide the reverse diffusion process remains unexplored in the
material design community. To the best of our knowledge, there is currently no text data available
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for materials in benchmark databases (mentioned in Section 5.1). Hence, we first curate the textual
data of these material databases. Specifically, we propose two approaches for generating textual
descriptions of materials, which are easy to follow. First, we utilize a freely available utility tool,
Robocrystallographer (Ganose & Jain, 2019) to generate detailed textual descriptions about the
periodic structure of crystal materials. These descriptions encompass local compositional details
like atomic coordination, geometry, etc. as well as global structural aspects like crystal formula,
mineral type, space group information, etc. Secondly, we utilized shorter and less detailed prompts
that are more easily interpretable by users. We extend the prompt template proposed by (Gruver et al.,
2024), which encodes minimal information about the material like its chemical formula, constituent
elements, crystal system it belongs to, and its space group number. Further, we specify a few
chemical properties, and instead of mentioning their actual values, we provide generic information
like negative/positive formation energy, zero/nonzero band gaps, etc. Detailed information regarding
the two textual datasets, including their curation process is provided in Appendix D. We have publicly
shared the textual datasets for both benchmark material databases with the community for future use.

4.3 PROPOSED METHODOLOGY : TGDMAT

Our proposed model, TGDMat (Fig. 2), uses an equivariant diffusion model guided by contextual
representation of the textual description (Cp) to generate a new crystal structure M = (A,X,L).
Unlike prior methods (Jiao et al., 2023; Luo et al., 2023b; Xie et al., 2021), our method jointly diffuses
A, X, L to learn the underlying data distribution of crystal structure p(M|Cp). Diffusion models (Ho
et al., 2020; Song & Ermon, 2019; 2020) are popular generative models that are formulated using
a T steps Markov Chain. Given an input crystal material M0 = (A0,X0,L0), the forward process
gradually add noise to A0,X0,L0 independently over T steps and the reverse denoising process
samples a noisy structure MT = (AT ,XT ,LT ) from a prior distribution and reconstruct back M0

using some GNN model. At each tth step of denoising (T ≥ t ≥ 0), the contextual representation of
the crystal textual description (Cp) will guide the diffusion process so that the intermediate structure
Mt aligns the target 3D structure constrained on textual conditions. Moreover, the learned distribution
of material structure must satisfy periodic E(3) invariance. It is well studied in the literature (Xu
et al., 2022) that if the prior distribution p(x) is invariant to a group and the transition probabilities
of a Markov chain y ∼ p(y|x) exhibit equivariance, the marginal distribution of y at any given time
step also remains invariant to group transformations. Hence the learned distribution p(M0) of the
denoising model will satisfy periodic E(3) invariance if the prior distribution p(MT ) is invariant
and the neural network used to parameterize the transition probability q(Mt−1|Mt) is equivariant to
permutational, translation, rotational, and periodic transformations. To satisfy that, we use periodic-
E(3)-equivariant GNN model as a backbone denoising network to guide the denoising process. Next
in this section, we first explain diffusion on M in 4.3.1, then demonstrate the text-guided denoising
network in 4.3.2 and finally training details in 4.4.

4.3.1 JOINT EQUIVARIANT DIFFUSION ON M
Diffusion on Lattice (L). Since the Lattice Matrix L = [l1, l2, l3]

T ∈ R3×3 is in continuous
space, we leverage the idea of the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
2020) for diffusion on L. Specifically, given input lattice matrix L0 ∼ p(L), at each tth step, the
forward diffusion process iteratively diffuses it through a transition probability q(Lt|L0) which
can be derived as q(Lt|L0) = N (Lt|

√
ᾱtL0, (1 − ᾱt)I) where, ᾱt =

∏t
k=1 αk, αt = 1 − βt

and {βt ∈ (0, 1)}Tt=1 controls the variance of diffusion step following certain noise scheduler. By
reparameterization, we can rewrite Lt =

√
ᾱtL0 +

√
1− ᾱtϵ

L where, ϵL is noise sampled from
N (0, I), added with L0 at tth step to generate Lt. After T such diffusion steps, noisy lattice matrix
LT ∼ N (0, I) is generated. During reverse denoising process, given noisy LT ∼ N (0, I) we
reconstruct true lattice structure L0 thorough iterative denoising step via learning reverse conditional
distribution, which we formulate as p(Lt−1|Mt,Cp) = N{Lt−1|µL(Mt,Cp), βt

(1−ᾱt−1)
(1−ᾱt)

I} where
µL(Mt,Cp) =

1√
αt
(Lt − 1−αt√

1−ᾱt
ϵ̂L(Mt,Cp, t)). Intuitively, ϵ̂L needs to be subtracted from Lt to

generate Lt−1 and textual representation Cp will steer this reverse diffusion process. We use a text-
guided denoising network Φθ(At,Xt,Lt, t,Cp) to model the noise term ϵ̂L(Mt,Cp, t). Following the
simplified training objective proposed by (Ho et al., 2020), we train denoising model using l2 loss
between ϵ̂L and ϵL

Llattice = EϵL,t∼U(1,T )∥ϵL − ϵ̂L∥22 (1)
Diffusion on Atom Types (A). Prior studies (Jiao et al., 2023; Xie et al., 2021) consider Atom
Type Matrix A as the probability distribution for k classes ∈ RN×k (continuous variable) and apply
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Figure 2: Model Architecture of our proposed text guided diffusion model TGDMat. At tth step of
reverse diffusion, given Mt = (At,Xt,Lt), we use periodic-E(3)-equivariant GNN model guided by
contextual representation of the textual prompts (Cp) to generate Mt−1 = (At−1,Xt−1,Lt−1)

DDPM to learn the distribution. However for discrete data these models are inappropriate and
produce suboptimal results (Austin et al., 2021; Campbell et al., 2022). Hence we consider A as
N discrete variables belonging to k classes and leverage discrete diffusion model (D3PM) (Austin
et al., 2021) for diffusion on A. In specific, with a as the one-hot representation of atom a, the
transition probability for the forward process is q(at|at−1) = Cat(at; p = at−1Qt), where Cat(a; p)
is a categorical distribution over a with probabilities p and Qt is the Markov transition matrix at
time step t, defined as [Qt]i,j = q(at = i|at−1 = j). Different choices of Qt and corresponding
stationary distributions are proposed by (Austin et al., 2021) which provides flexibility to control the
data corruption and denoising process. We adopted the absorbing state diffusion process, introducing
a new absorbing state [MASK] in Qt. At each time step t, an atom either stays in its type state with
probability 1 − βt or moves to [MASK] state with probability βt and once it moves to [MASK]
state, it stays there. Hence, the stationary distribution of this diffusion process has all the mass
on the [MASK] state. During denoising process, given textual representation Cp, we first sample
noisy aT and obtain a0 thorough iterative denoising step via learning reverse conditional transition
pθ(at−1|at,Cp) ∝

∑
a0 q(at−1, at|a0)pθ(a0|at,Cp). We use the text-guided denoising network

Φθ(At,Xt,Lt, t,Cp) to model this denoising process, which is trained using following loss function :
Ltype = LV B + λLCE (2)

where LV B and LCE is the variational lower bound and cross-entropy loss respectively and λ is a
hyperparameter. Details about the diffusion process and the losses LV B , LCE are in Appendix E

Diffusion on Atom Coordinates (X). We can diffuse the Coordinate Matrix X = [x1, x2, ..., xN ]T ∈
RN×3 in two ways: either by diffusing cartesian coordinates or fractional coordinates. Prior works
like CDVAE (Xie et al., 2021) and SyMat (Luo et al., 2023b) diffuse cartesian coordinates whereas
DiffCSP (Jiao et al., 2023) diffuses fractional coordinates. In our setup, as we are jointly learning
atom coordinates and lattice matrix, hence we follow DiffCSP and diffuse fractional coordinates.
Fractional coordinates in crystal material resides in quotient space RN×3/ZN×3 induced by the
crystal periodicity. Since the Gaussian distribution used in DDPM is unable to model the cyclical
and bounded domain of X, it is not suitable to apply DDPM to model X. Hence at each step of
forward diffusion, we add noise sampled from Wrapped Normal (WN) distribution (De Bortoli et al.,
2022) to X and during denoising leverage Score Matching Networks (Song & Ermon, 2019; 2020)
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to model underlying transition probability q(Xt|X0) = NW (Xt|X0, σ
2
t I). In specific, at each tth

step of diffusion, we derive Xt as : Xt = fw(X0 + σtϵ
X) where, ϵX ∼ N (0, I), σt is the noise

scheduler and fw(.) is a truncation function. Given a fractional coordinate matrix X, truncation
function fw(X) = (X − ⌊X⌋) returns the fractional part of each element of X.
As argued in (Jiao et al., 2023), q(Xt|X0) is periodic translation equivariant, and approaches uniform
distribution U(0, 1) for sufficiently large values of σT . Hence during the denoising process, we first
sample XT ∼ U(0, 1) and iteratively denoise via score network for T steps to recover back the true
fractional coordinates X0. We use the text-guided denoising network Φθ(At,Xt,Lt, t,Cp) to model
the denoising process, which is trained using the following score-matching objective function :

Lcoord = EXt∼q(Xt|X0)
t∼U(1,T )

∥∇Xt
logq(Xt|X0)− ϵ̂X(Mt,Cp, t)∥22 (3)

where ∇Xt
logq(Xt|X0) ∝

∑
K∈ZN×3 exp(− ∥Xt−X0+K∥2

F

2σ2
t

) is the score function of transitional distri-

bution and ϵ̂X(Mt,Cp, t) denoising term. More Details are provided in Appendix E

4.3.2 TEXT GUIDED DENOISING NETWORK

In this subsection, we will illustrate the detailed architecture of our proposed Text Guided Denoising
Network Φθ(At,Xt,Lt, t,Cp), which we used during denoising process to generate A, X and L.
As mentioned in 2, the learned distribution of material structure p(M) must satisfy periodic E(3)
invariance. Hence we leverage a periodic-E(3)-equivariant Graph Neural Network (GNN) integrated
with a pre-trained textual encoder to model the denoising process. In particular, as a text encoder, we
adopt a pre-trained MatSciBERT (Gupta et al., 2022) model, which is a domain-specific language
model for materials science, followed by a projection layer. MatSciBERT is effectively a pre-trained
SciBERT model on a scientific text corpus of 3.17B words, which is further trained on a huge
text corpus of materials science containing around 285M words. We feed textual description of
material T into MatSciBERT and extract embedding of [CLS] token hCLS as a representation of
the whole text. Further. we feed hCLS through a projection layer to generate the contextual textual
embedding for the material Cp ∈ Rd, which we pass to the equivariant GNN model to guide the
denoising process. Practically, as the backbone network for the denoising process, we extend CSPNet
architecture (Jiao et al., 2023), originally developed for crystal structure prediction (CSP) task.
CSPNet is built upon EGNN (Satorras et al., 2021), satisfying periodic E(3) invariance condition on
periodic crystal structure. At the kth layer message passing, the Equivariant Graph Convolutional
Layer (EGCL) takes as input the set of atom embeddings hk = [hk

1 ,h
k
2 , ...,h

k
N ], atom coordinates

xk = [xk1 , xk2 , ..., xkN ] and Lattice Matrix L and outputs a transformation on hk+1. Formally, we can
define the kth layer message passing operation as:

mi,j = ρm{hk
i , hk

j , LT L, ψFT (xki − xkj )}; mi =

N∑
j=1

mi,j ; hk+1
i = hk

i + ρh{hk
i ,mi} (4)

where ρm, ρh are MLPs and ψFT is a Fourier Transformation function applied on relative difference
between fractional coordinates xk

i , xkj . Fourier Transformation is used since it is invariant to periodic
translation and extracts various frequencies of all relative fractional distances that are helpful for
crystal structure modeling (Jiao et al., 2023).
We fuse textual representation Cp into input atom feature h0

i as
h0
i = ρ { fatom(ai) || fpos(t) || Cp} (5)

where t is the timestamp of the diffusion model, fpos(.) is sinusoidal positional encoding (Ho et al.,
2020; Vaswani et al., 2017), fatom(.) learned atomic embedding function and || is concatenation
operation. Input atom features h0 and coordinates x0 are fed through K layers of EGCL to produce
ϵ̂L, p(At−1|Mt) and ϵ̂X as follows :

ϵ̂L = LρL(
1

N

N∑
i=1

hK); p(At−1 |Mt) = ρA(hK); ϵ̂X = ρX(hK) (6)

where ρL, ρA, ρX are MLPs on the final layer embeddings. Intuitively, we feed global structural
knowledge about the crystal structure into the network by injecting contextual representation Cp into
input atom features. This added signal participates through message-passing operations in Eq. 4 and
guides in denoising atom types, coordinates, and lattice parameters such that it can capture the global
crystal geometry and aligned with the input stable structure specified by textual description.
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Method # Samples Perov-5 Carbon-24 MP-20
Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓

P-cG-SchNet 1 48.22 0.4179 17.29 0.3846 15.39 0.3762
20 97.94 0.3463 55.91 0.3551 32.64 0.3018

CDVAE 1 45.31 0.1138 17.09 0.2969 33.90 0.1045
20 88.51 0.0464 88.37 0.2286 66.95 0.1026

DiffCSP 1 52.02 0.0760 17.54 0.2759 51.49 0.0631
20 98.60 0.0128 88.47 0.2192 77.93 0.0492

TGDMat
(Short)

1 56.54 0.0583 24.13 0.2424 52.22 0.0597
20 98.25 0.0137 88.28 0.2252 80.97 0.0443

TGDMat
(Long)

1 90.46 0.0203 44.63 0.2266 55.15 0.0572
20 98.59 0.0072 95.27 0.1534 82.02 0.0483

Table 1: Summary of results on CSP task. We highlight the best and second-best performances in
bold and underlined, respectively.

4.4 TRAINING AND SAMPLING

TGDMat is trained using the following combined loss:
L = λLLlattice + λALtype + λXLcoord (7)

where Llattice, Ltype and Lcoord are lattice l2 loss (Eq. 1), type loss (Eq. 2) and coordinate score
matching loss (Eq. 3) respectively and λL, λA, λX are hyperparameters control the relative weightage
between these different loss components. During training, we freeze the MatSciBERT parameters
and do not tune them further. During sampling, we use the Predictor-Corrector (Song et al., 2020)
sampling mechanism to sample A0, X0 and L0. Training/Sampling algorithms are provided in
Appendix E.5

5 EXPERIMENTS

We provide a comprehensive evaluation of our method against several baselines on two benchmark
tasks. First, in 5.1, we provide a brief overview of the experimental setup, including benchmark tasks,
and datasets. Next, in 5.2, we demonstrate how textual data enhances the prediction of stable crystal
structures. Following that, in 5.3, we highlight the effectiveness of our proposed joint diffusion
paradigm in enhancing its ability to generate novel crystal materials. Additionally, we present the
correctness of our generated materials 5.4, the computational cost of training and inference 5.5, and a
few ablation studies 5.6. Appendix F describes additional experiments and more ablations studies.

5.1 BENCHMARK TASKS AND DATASETS

Following the prior works (Xie et al., 2021; Jiao et al., 2023), we evaluate our proposed model
TGDMat on two benchmark tasks for material generation, Crystal Structure Prediction (CSP) and
Random Material Generation (Gen), using three popular material datasets: Perov-5 (Castelli et al.,
2012a;b), Carbon-24 (Pickard., 2020) and MP-20 (Jain et al., 2013b). We curated textual data for
these datasets with a textual description of each material. Specifically, we generate both long detailed
textual descriptions and shorter prompts using approaches mentioned in 4.2. While training TGDMat,
we split the datasets into the train, test, and validation sets following the convention of 60:20:20 (Xie
et al., 2021). More details about the dataset and the experimental setup are in Appendix F.1

5.2 CRYSTAL STRUCTURE PREDICTION (CSP)
Setup. In CSP task, the goal is to predict the crystal structure (atom coordinates and lattice) given
atom types. In text guidance setup, TGDMat utilizes textual descriptions during the denoising process
and jointly predicts atom coordinates and lattice parameters from randomly sampled noise. To assess
TGDMat’s effectiveness, we choose three SOTA generative models: P-cG-SchNet (Gebauer et al.,
2022), CDVAE (Xie et al., 2021), and DiffCSP (Jiao et al., 2023). Following prior works (Jiao et al.,
2023; Xie et al., 2021), we evaluate the performance of all competing models using standard metrics
Match Rate (MR) and RMSE, by matching the generated structure and the ground truth structure
in the test set. In particular, we generate k samples for each material structure in the test set, and
determine the matching metrics (MR and RMSE) if at least one sample aligns with the ground truth
structure. Details about evaluation metrics in Appendix F.2
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Dataset Method Validity ↑ Coverage ↑ Property Statistics (EMD) ↓
Compositional Structural COV-R COV-P # Element ρ E

Perov-5

CDVAE 98.59 100 99.45 98.46 0.0628 0.1258 0.0264
CDVAE+ 98.45 99.8 99.53 99.09 0.0609 0.1276 0.0223

SyMat 97.40 100 99.68 98.64 0.0177 0.1893 0.2364
SyMat+ 97.88 99.9 99.70 98.79 0.0172 0.1755 0.2566
DiffCSP 98.85 100 99.74 98.27 0.0128 0.1110 0.0263

DiffCSP+ 98.44 100 99.85 98.53 0.0119 0.1070 0.0241
TGDMat(Short) 98.28 100 99.7 99.24 0.0108 0.0947 0.0257
TGDMat(Long) 98.63 100 99.83 99.52 0.0090 0.0497 0.0187

Carbon-24

CDVAE - 100 99.8 83.08 - 0.1407 0.285
CDVAE+ - 100 99.8 84.76 - 0.1377 0.266

SyMat - 100 99.9 97.59 - 0.1195 3.9576
SyMat+ - 100 99.9 97.63 - 0.1171 3.862
DiffCSP - 100 99.9 97.27 - 0.0805 0.082

DiffCSP+ - 100 99.9 97.33 - 0.0763 0.085
TGDMat(Short) - 100 99.8 91.77 - 0.0681 0.087
TGDMat(Long) - 100 99.9 92.43 - 0.043 0.063

MP-20

CDVAE 86.70 100 99.15 99.49 1.432 0.6875 0.2778
CDVAE+ 87.42 100 99.57 99.81 0.972 0.6388 0.2977

SyMat 88.26 100 98.97 99.97 0.5067 0.3805 0.3506
SyMat+ 88.47 99.9 99.01 99.95 0.4865 0.3879 0.3489
DiffCSP 83.25 100 99.71 99.76 0.3398 0.3502 0.1247

DiffCSP+ 85.07 100 99.8 99.89 0.3122 0.3799 0.1355
TGDMat(Short) 86.60 100 99.79 99.88 0.3337 0.3296 0.1154
TGDMat(Long) 92.97 100 99.89 99.95 0.2890 0.3382 0.1189

Table 2: Summary of results on Gen task, with the best and second-best performances in bold and
underlined, respectively. The table contains ”-” values for metrics that don’t apply to certain datasets.

Results and Discussions. We report the Match Rate and RMSE of all the baselines and
TGDMat for three benchmark datasets in Table 1. We trained TGDMat using both detailed
textual descriptions and short prompts, as outlined in 4.2 and report them as TGDMat(Long) and
TGDMat(Short) respectively in Table 1. We observe that both variants of TGDMat surpass all
the baseline models with a good margin across three datasets, which shows the rich capability of
text-guided joint diffusion to predict stable crystal structure. Notably, while prior diffusion models
demonstrate improved Match Rates and lower RMSE when generating 20 samples per test material,
they largely fail in both metrics when generating only one sample per test material. However,
generating 20 samples per test material to match the structures is unrealistic and computationally
burdensome. This highlights the importance of text-guided diffusion: incorporating textual
knowledge during reverse diffusion aids in aligning the noisy structure with the 3D geometry of
stable realistic materials. Specifically, with just one generated sample (k = 1) per test material, both
the variants of TGDMat outperform all baseline models, thereby reducing computational overhead.
Moreover, even with 20 generated samples (k = 20) performance of TGDMat is significantly better
for Carbon-24 and MP-20, whereas comparable with DiffCSP for Perov-5. In general, due to the
extensive metadata provided by the detailed description about the crystal structure, the performance
enhancement in the long variant surpasses that of the short one. However, these findings collectively
demonstrate the effectiveness of text-guided diffusion in the stable crystal structure prediction task.

5.3 RANDOM MATERIAL GENERATION (GEN)
Setup. In Gen task, the goal is to generate novel stable materials (both structure and atom types), that
are distributionally similar to the materials in the test dataset. In TGDMat, by design choice, we use
the textual description of crystal materials in the test dataset during the reverse diffusion process to
enhance the generation capability. To evaluate performance of TGDMat in this task, we choose three
popular state-of-the-art generative models: CDVAE (Xie et al., 2021), SyMat (Luo et al., 2023b),
and DiffCSP (Jiao et al., 2023). For a fair comparison, we also consider their text-guided variants
such as CDVAE+, SyMat+ and DiffCSP+ respectively, where we fuse the contextual representation
of (Long) text data into those models using the same process described in 4.3.2. Following (Xie et al.,
2021), for evaluating all the competing models, we use seven metrics under three broad categories:
Validity, Coverage, and Property Statistics (Details in Appendix F.2). To ensure a fair comparison
regarding sample size, we generate a number of samples equal to the test data size for all baseline
models, both unconditional and text-guided variants, and evaluate their performance accordingly.

Results and Discussions. We report the result of TGDMat (Long and Short) and all the
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Long (Detailed) Description Short Prompt Ground truth Generated Samples
LaNi2Ge2 crystallizes in the tetragonal
I4/mmm space group. La is bonded in a 16-
coordinate geometry to eight equivalent Ni
and eight equivalent Ge atoms. All La-Ni
bond lengths are 3.25 Å. . . . The Ge-Ge bond
length is 2.66 Å. The formation energy is -
0.691. The band gap is 0.0. The energy above
the convex hull is 0.0.

Below is a description of a bulk mate-
rial. The chemical formula is La(NiGe)2.
The elements are La, Ni, Ge. The forma-
tion energy is negative. The band gap is
zero. The energy above the convex hull
is zero. The spacegroup number is 138.
The crystal system is tetragonal. Gener-
ate the material.

HgScNOF is alpha Rhenium trioxide-derived
structured and crystallizes in the orthorhombic
Pmmm space group. The structure consists
of one Hg cluster inside a ScNOF . . . linear
geometry to two equivalent Sc atoms. The
formation energy is 1.1428.

Below is a description of a bulk material.
The chemical formula is HgScNOF. The
elements are Sc,Hg,N,O,F. The forma-
tion energy is positive. The spacegroup
number is 46. The crystal system is or-
thorhombic. Generate the material.

Table 3: Visualization of the generated structures given textual description. Note that our model pro-
duces rotated or translated versions of the ground truth material, owing to the periodic-E(3)invariance.

baseline models in Table 2. We observe that both variants of TGDMat consistently enhances
performance across almost all metrics across the benchmark datasets. Particularly on the Perov-5
dataset, TGDMat outperforms all baseline models across all metrics except for compositional validity,
where its performance is on par with state-of-the-art results. In the Carbon-24 and MP-20 datasets,
TGDMat exhibits performance improvements across all metrics except for COV-P. Additionally, our
experiments indicate that utilizing shorter prompts results in a slight decrease in overall performance
compared to the longer variant. Nonetheless, the performance remains comparable to baseline
models. Overall, TGDMat exhibits promising performance in the Random Material Generation task,
indicating its effectiveness in integrating global textual knowledge into the reverse diffusion process
to generate more stable periodic structures of 3D crystal materials. Moreover TGDMat outperforms
text guided variant of baseline models CDVAE+, SyMat+ and DiffCSP+ as well, which highlights
the effectiveness of using joint diffusion to learn A,X and L.
Additionally, we present visualizations of a few generated materials based on the textual descriptions
in Table 3 and compare them with the ground truth material structure. The generated samples exhibit
clear matches to the ground truth structure, highlighting the generation capability of the TGDMat
model given information in text form. More visualization results are in Appendix F.7.

5.4 CORRECTNESS OF GENERATED MATERIALS

Setup. In this section, we investigate whether the generated material matches different features
specified by the textual prompts. TGDMat has the capability to process textual prompts given by the
user, enabling it to manage global attributes about crystal materials such as Formula, Space group,
Crystal System, and different property values like formation energy, band-gap, etc. To ensure the
fidelity of our model’s outputs concerning these specified global attributes from the text prompt,
We randomly generated 1000 materials (sampled from all three Datasets) based on their respective
textual descriptions (both Long and Short) and assessed the percentage of generated materials that
matched the global features outlined in the text prompt. In specific, we matched the Formula, Space
group, and Crystal System of generated materials with the textual descriptions. Moreover, we
examined whether properties such as formation energy and bandgap matched the specified criteria as
per the text prompt (positive/negative, zero/nonzero).

Results and Discussions. We report the results for TGDMat using long prompt in Table 4
and short prompts in Table 8 (F.4). In general, using longer text, considering Perov-5 and Carbon-24
datasets, the generated material meets the specified criteria effectively. However, when dealing
with the MP-20 dataset, which is more intricate due to its complex structure and composition,
performance tends to decline. Additionally, when using shorter prompts, overall performance suffers
across all datasets compared to longer text inputs. This is because the longer text, provided by the
robocrystallographer, offers a comprehensive range of information, both global and local

5.5 COMPUTATIONAL COST FOR TRAINING AND SAMPLING

Integrating textual knowledge during reverse diffusion for crystal material generation offers a key
advantage: it accelerates convergence towards realistic structures and reduces computational overhead.
We observe, compared to other baseline models, TGDMat incurs substantially lower computation
costs during training and sampling processes. Compared to baseline models, our approach notably
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Global Features % of Matched Materials
in Text Prompt Perov-5 Carbon-24 MP-20

TGDMat(Long)

Formula 97.50 98.20 70.54
Space Group 87.00 80.79 67.88

Crystal System 92.60 91.55 73.54
Formation Energy 95.49 - 92.88

Band Gap - 98.61 96.73

Table 4: Correctness of generated materials matching conditions specified by the textual prompts.

(a) Match Rate vs Running time (b) Smoothness of TGDMat

Figure 3: (a) Match Rate vs Running time (GPU Hours) for different variants of TGDMat(Long)
{50 Steps ⋆, 100 Steps ⋆, 200 Steps ⋆, 500 Steps ⋆, 1K Steps ⋆ }, DiffCSP ♦ and CDVAE ✚. (b)
Materials sampled given the textual description of the center ground truth material M . The sampled
materials are structurally similar (rotated or translated) to each other as well as the ground truth.

cuts down on training time, requiring only 500 epochs compared to 3K or 4K epochs for CDVAE
and DiffCSP on Perov-5 and Carbon-24 datasets respectively. Additionally, our method reduces
sampling steps, making it faster to generate new structures. While CDVAE and DiffCSP need 5K and
1K steps respectively, our model only requires 500 steps. We compare the performance of CDVAE
and DiffCSP with different TGDMat(Long) variants with 50, 100, 200, 500, and 1K steps and report
the match rate of the predicted crystal structure vs running time (GPU hours in P100 GPU server)
for Perov-5 and Carbon-24 datasets in Fig. 3(a). We notice that the inference time for CDVAE is
lengthier as it necessitates 5K steps for each generation. However, for Carbon-24, TGDMat with 200
or 500 steps outperforms DiffCSP with 1K steps. Additionally, for Perov-5, TGDMat with 500 steps
achieves results comparable to DiffCSP with 1K steps.

5.6 SMOOTHNESS OF MODEL’S GENERATION

We qualitatively demonstrate the smoothness of the crystal generation process in our model. We
provide a textual description of a ground truth material and generate several samples of materials to
assess the diversity of the generated structures. Figure 3(b) summarizes the results for one crystal
material from the Perov-5 dataset, which shows that the generated materials are structurally similar
to each other and the given input material.

6 CONCLUSION

In this work, we explore a practical approach of generating stable crystal materials given a textual
description of the material. We propose TGDMat, which jointly diffuse atom types, fractional
coordinates, and lattice structure for crystal materials using a periodic-E(3)-equivariant denoising
model. We further integrate textual information into the reverse diffusion process through a pre-
trained transformer model, which guides the denoising process in learning the crystal 3D geometry
matching the specification by textual description. Extensive experiments conducted on two benchmark
generative tasks reveal that TGDMat surpasses all popular baseline models by a good margin.
Furthermore, integrating textual knowledge reduces the overall computational cost for both training
and inference of the diffusion model. Moreover, when applied to real-world custom text prompts by
experts, TGDMat demonstrates rich generative capability under general textual conditions.
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and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
Commentary: The Materials Project: A materials genome approach to accelerating materials
innovation. APL Materials, 1(1):011002, 07 2013a. ISSN 2166-532X. doi: 10.1063/1.4812323.
URL https://doi.org/10.1063/1.4812323.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. The materials project:
A materials genome approach to accelerating materials innovation, apl mater. APL Mater., 2013b.

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. arXiv preprint arXiv:2309.04475, 2023.

12

https://www.nature.com/articles/s41524-022-00784-w
https://www.nature.com/articles/s41524-022-00784-w
https://doi.org/10.1063/1.4812323


Published as a conference paper at ICLR 2025

Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
generation. arXiv preprint arXiv:2402.03992, 2024.

Sungwon Kim, Juhwan Noh, Geun Ho Gu, Alan Aspuru-Guzik, and Yousung Jung. Generative
adversarial networks for crystal structure prediction. ACS central science, 6(8):1412–1420, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical review, 140(4A):A1133, 1965.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
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PERIODIC MATERIALS GENERATION USING TEXT-GUIDED JOINT DIFFUSION
MODEL (TECHNICAL APPENDIX)

A LIMITATIONS AND FUTURE WORK

1) One of the major limitations and scope of the future work of our proposed work is the lack of
independent textual datasets for material generation tasks. In our experimental setup, our model
relied on textual data extracted from existing datasets. Initially, we extracted text data from CIF
files of materials in the test sets of Perov-5, Carbon-24, and MP-20, utilizing this data to evaluate
our model and all baseline models. While the experimental results show promise, a more robust
evaluation could have been achieved with an independent dataset containing only textual prompts.
This would enable us to assess how effectively these models can generate the underlying 3D structure
of materials through a text-guided diffusion process. Hence curating an independent textual dataset
for material generation containing a diverse set of meta-information will be a future scope for research.

2) Given text prompts/descriptions, we generate contextual representation using a text en-
coder in TGDMat, where we adopted a pre-trained MatSciBERT (Gupta et al., 2022) model, which is
a domain-specific language model for materials science. Also, while training TGDMat, we freeze
the MatSciBERT parameters and do not tune them further. Moreover, during sampling, the user
must follow a specific format (Long/Short) to provide the text description of the target material.
This setup limits the expressive power of the textual representation. We investigated the robustness
of TGDMat with much shorter prompts to sample from pre-trained TGDMat model in F.5, but
observed performance degradation across all the benchmark dataset on Gen task. Hence, Exploring
state-of-the-art LLMs and further fine-tuning them during training may create more powerful text
conditional diffusion models and provide flexibility to process text prompts of different formats.
However, that might create computational overhead as it will increase the number of parameters
significantly. This provides scope for further investigation and we keep it as scope for future work.

B MORE RELATED WORK

B.1 CRYSTAL REPRESENTATION LEARNING

In recent times, graph neural network (GNN) based approaches have emerged as a powerful model
in learning robust representation of crystal materials, which enhance fast and accurate property
prediction. CGCNN (Xie & Grossman, 2018) is the first proposed model, which represents a 3D
crystal structure as an undirected weighted multi-edge graph and builds a graph convolution neural
network directly on the graph. Following CGCNN, there are a lot of subsequent studies (Chen et al.,
2019; Choudhary & DeCost, 2021; Das et al., 2023a; Louis et al., 2020; Park & Wolverton, 2020;
Schmidt et al., 2021), where authors proposed different variants of GNN architectures for effective
crystal representation learning. Recently, graph transformer-based architecture Matformer (Yan
et al., 2022) is proposed to learn the periodic graph representation of the material, which marginally
improves the performance, however, is much faster than the prior SOTA model. Moreover, scarcity of
labeled data makes these models difficult to train for all the properties, and recently, some key studies
(Das et al., 2022; 2023b) have shown promising results to mitigate this issue using transfer learning,
pre-training, and knowledge distillation respectively.

B.2 DIFFUSION MODELS

The fundamental idea of the diffusion model, as initially proposed by (Sohl-Dickstein et al., 2015),
is to gradually corrupt data with diffusion noise and learn a neural model to recover back data from
noise. Idea of diffusion further developed in two broad categories - 1) Score Matching Network
(Song & Ermon, 2019; 2020) and 2) Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020). In recent times diffusion models have emerged as a powerful new family of deep
generative models, achieving remarkable performance records across numerous applications such as
image synthesis (Dhariwal & Nichol, 2021; Ramesh et al., 2022; Rombach et al., 2022), molecular
conformer generation (Shi et al., 2021; Xu et al., 2022), molecular graph generation (Liu et al.,
2021), protein folding (Luo et al., 2022; Wu et al., 2021) etc.

B.3 CONDITIONAL DIFFUSION MODELS

The initial DDPM model (Ho et al., 2020) demonstrated unconditional diffusion models for image
generation, where the output cannot be directed towards a desired characteristic or property. In guided
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DiffCSP TGDMat

Tasks Only CSP Task Both CSP and Gen Tasks

Diffusion on Atom Type - Discrete Diffusion (D3PM)

Model Category Unconditional; unable to specify
the criteria required by the user

Conditional; able to specify the
criteria required by the user (in
Text Format)

Text Guided Diffusion No Yes

Table 5: Key Differences between TGDMat from DiffCSP

diffusion models, the sampling process can be steered by a prompt, which can be a textual description
of the desired output, reference image, or any other type of media.

In the field of image generation by diffusion models, Ramesh et al (Ramesh et al., 2022) came up
with a text-guided diffusion model called Dall-E2 which showed how textual prompt can be used
to steer the sampling process. While training the model, both the image and its textual description
are encoded and mapped together, and the encoding of the prompt is used to generate the image
during sampling. Another way of guiding the diffusion process using a separate classifier model was
shown by (Dhariwal & Nichol, 2021). They trained a classifier on the noised images and used the
gradient of the classifier to guide the sampling process. In the classifier-free setting, (Ho & Salimans,
2022) trained two diffusion models, one guided and one unguided, and combined the resulting score
estimated during sampling to get the desired outcome. OpenAI’s CLIP (Radford et al., 2021) further
improved the relevance of the generated image to the given prompt by scoring the correctness of the
generated image given the textual prompt.

Similar efforts have been made in the field of molecular generative models. The shortcoming of
SMILES-based autoregressive models were addressed by TGM-DLM (Gong et al., 2024) by utilizing
diffusion models. This necessitates a two step process, text-guided generation phase, where the
SMILES representation is generated from Gaussian noise with the help of a textual description, and
correction phase, where necessary rectification are made for the correctness of SMILES string format.
This is one of the drawbacks of the SMILES string format, which was addressed by 3M-Diffusion
(Zhu et al., 2024), where they have generated molecular graphs from a given textual description.

B.4 CRYSTAL MATERIAL GENERATION

In the past, there were limited efforts in creating novel periodic materials, with researchers
concentrating on generating the atomic composition of periodic materials while largely neglecting
the 3D structure. With the advancement of generative models, the majority of the research focuses
on using popular generative models like VAEs or GANs to generate 3D periodic structures of
materials, however, they either represent materials as three-dimensional voxel images (Court et al.,
2020; Hoffmann et al., 2019; Long et al., 2021; Noh et al., 2019) and generate images to depict
material structures (atom types, coordinates, and lattices), or they directly encode material structures
as embedding vectors (Kim et al., 2020; Ren et al., 2020; Zhao et al., 2021). However, these
models neither incorporate stability in the generated structure nor are invariant to any Euclidean
and periodic transformations. In recent times equivariant diffusion models (Xie et al., 2021;
Luo et al., 2023b; Jiao et al., 2023; Yang et al., 2023; Jiao et al., 2024; Miller et al., 2024) have
become the leading method for generating stable crystal materials, thanks to their capability to
utilize the physical symmetries of periodic material structures. In specific, state-of-the-art models
like CDVAE (Xie et al., 2021) and SyMat (Luo et al., 2023b) integrate a variational autoencoder
(VAE) and powerful score-based decder network, work directly with the atomic coordinates of the
structures and uses an equivariant graph neural network to ensure euclidean and periodic invariance.
However, both CDVAE and SyMat first predict the lattice parameters and atomic composition
using the VAE model and subsequently update the coordinates using score based diffusion
model. Moreover, given atomic composition, DiffCSP (Jiao et al., 2023) jointly optimizes the atom
coordinates and lattice using a diffusion framework to predict the crystal structure with high precision.

Relations with Prior Methods. Among the existing models, DiffCSP (Jiao et al., 2023)
comes close to our methodology, however our work differs from it in multiple ways. DiffCSP
primarily focuses only on the Crystal Structure Prediction (CSP) task and they didn’t explore
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the Crystal Generation task, whereas TGDMat focuses on both tasks. Moreover, unlike DiffCSP,
TGDMat can leverage the informative textual descriptions during the reverse diffusion process and
can jointly learn lattices, atom types, and fractional coordinates from randomly sampled noise. This
makes TGDMat more flexible and robust in Crystal Generation and Structure Prediction tasks.

C INVARIANCES IN CRYSTAL STRUCTURE

The basic idea of using generative models for crystal generation is to learn the underlying data
distribution of material structure p(M). Since crystal materials satisfy physical symmetry properties
(Dresselhaus et al., 2007; Zee, 2016), one of the major challenges here is the learned distribution
must satisfy periodic E(3) invariance i.e. invariance to permutation, translation, rotation, and periodic
transformations.

• Permutation Invariance : If we permute the indices of constituent atoms it will not change
the material. Formally, given any material M = (A,X,L), using any permutation matrix P
if we permute A and X as P(A) and P(X), then new material MP = (P(A),P(X),L) will
remains unchanged. Hence the underlying distribution is also the same i.e p(M) = p(MP).

• Translation Invariance : If we translate the atom coordinates by a random vector it will
not change the structure of the material. Formally, given any material M = (A,X,L), if
we translate X by an arbitrary translation vector u ∈ R3, new generated material MP =
(A,X + u1T ,L) will be the same as M. Hence p(M) = p(MT) must satisfy.

• Rotational Invariance : If we rotate the atom coordinates and lattice matrix, the material
remains unchanged. Formally, using any orthogonal rotational matrix Q ∈ R3×3 (satisfying
QTQ = I), if we rotate X and L of any material M and generate new MR = (A,QX,QL),
then actually different representations of the same material. Hence p(M) = p(MR) must
satisfy.

• Periodic Invariance : Finally, since the atoms in the unit cell can periodically repeat itself
infinite times along the lattice vector, there can be many choices of unit cells and coordinate
matrices representing the same material. Formally, given coordinates X, after applying
periodic transformation using random matrix K ∈ Rn×3, new coordinates X′ = X + KL
are periodically equivalent. Hence M = (A,X,L) and M’ = (A,X′,L) are same material
and p(M) = p(M’) must hold.

D TEXTUAL DATASET

Leveraging textual information to guide the reverse diffusion process remains unexplored in the
material design community. To the best of our knowledge, there is currently no dataset available that
includes textual descriptions of the materials present in standard benchmark databases (Section 5.1)
used for material generation. In specific, we propose two methods for generating textual descriptions
of materials. Hence, we first curate the textual dataset containing textual descriptions of these
materials to train our model.

Long Detailed Textual Description: First, we utilize a freely available utility tool known
as Robocrystallographer (Ganose & Jain, 2019) to generate detailed textual descriptions about
the periodic structure of crystal materials encoded in Crystallographic Information Files (CIF
Files). Robocrystallographer breaks down crystal structures into two main components: local
compositional details such as atomic coordination, geometry, polyhedral connectivity, and tilt angles,
as well as global structural aspects like crystal formula, mineral type, space group information,
symmetry, and dimensionality. This information is presented in three formats: JSON for machine
processing, human-readable text for easy comprehension akin to descriptions provided by humans,
and machine learning format for specialized analysis. We choose the human-readable text format to
compile textual datasets, which closely resemble descriptions given of the crystal structure by humans.

Short Custom Prompts: Secondly, we utilized shorter and less detailed prompts that are
more easily interpretable by users. We extend the prompt template proposed by (Gruver et al.,
2024), which encodes minimal information about the material like its chemical formula, constituent
elements, crystal system it belongs to, and its space group number. Further, we specify a few
chemical properties, and instead of mentioning their actual values, we provide generic information
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like negative/positive formation energy, zero/nonzero band gaps, etc. We used the Pymatgen
tool (Ong et al., 2013) to extract this information from the Crystallographic Information Files (CIF
Files) and curate the textual prompts.

An illustrative example of both these textual descriptions and the unit cell structure is pro-
vided in Figure 4.

BaPd2 is Cubic structured and 
crystallizes in the cubic Fd-3m space 

group. Ba(1) is bonded in a 
12-coordinate geometry to twelve 

equivalent Pd(1) atoms. All 
Ba(1)-Pd(1) bond lengths are 3.37 Ã. 

Pd(1) is bonded to six equivalent 
Ba(1) and six equivalent Pd(1) atoms 
to form a mixture of face, edge, and 

corner-sharing cuboctahedra. All 
Pd(1)-Pd(1) bond lengths are 2.88 Ã. 

Its formation energy per atom is 
-0.578, band gap is 0.0, energy above 

hull is 0.0. Generate the material

Detailed Description by 
Robocrystallographer

Unit Cell Structure

Below is a description of a bulk 
material. The chemical formula is 

BaPd2. The elements are Ba, Pd. The 
formation energy per atom is 

negative. The band gap is zero. The 
energy above the convex hull is zero. 
The space group number is 227. The 
crystal system is cubic.Generate the 

material

Short Prompt by Users

Figure 4: Detailed textual description generated by Robocrystallographer, short/less-detailed prompts
by experts, and crystal unit cell structure of BaPd2 from Material Projects dataset. Text generated by
Robocrystallographer contains both local chemical compositional information related to atom/bonds
(like site coordination, geometry, polyhedral connectivity, and tilt angles) and global structural
knowledge (like mineral type, space group information, symmetry, and dimensionality).The shorter
prompt encodes minimal information about the material like its chemical formula, constituent
elements, crystal system, and few chemical properties.

E JOINT EQUIVARIANT DIFFUSION ON M
Given an input crystal material M0 = (A0,X0,L0), we define a forward diffusion process through a
Markov chain over T steps to defuse A, X, L independently as follows :

q(At,Xt,Lt|At−1,Xt−1,Lt−1) = q(At|At−1)q(Xt|Xt−1)q(Lt|Lt−1) t = 1, 2, ...T (8)

E.1 DIFFUSION ON LATTICE (L)

Lattice Matrix L = [l1, l2, l3]
T ∈ R3×3 is a global feature of the material which determines the shape

and symmetry of the unit cell structure. Since L is in continuous space, we leverage the idea of the
Denoising Diffusion Probabilistic Model (DDPM) for diffusion on L. In specific, given input lattice
matrix L0 ∼ p(L), the forward diffusion process iteratively diffuses it over T timesteps to a noisy
lattice matrix LT through a transition probability q(Lt|L0) at each tth step, which can be derived as
follows :

q(Lt | L0) = N
(

Lt |
√
ᾱtL0, (1 − ᾱt)I

)
(9)

where, ᾱt =
∏t

k=1 αk, αt = 1 − βt and {βt ∈ (0, 1)}Tt=1 controls the variance of diffusion step
following certain variance scheduler. By reparameterization, we can rewrite equation 9 as:

Lt =
√
ᾱtL0 +

√
1− ᾱtϵ

L (10)
where, ϵl is a noise, sampled fromN (0, I), added with original input sample L0 at tth step to generate
Lt. After T such diffusion steps, noisy lattice matrix LT is generated from prior noise distribution
∼ N (0, I). In the reverse denoising process, given noisy LT ∼ N (0, I) we reconstruct true lattice
structure L0 thorough iterative denoising step via learning reverse conditional distribution, which we
formulate as follows :

p(Lt−1|Mt,Cp) = N
{

Lt−1 | µL(Mt,Cp), βt
(1− ᾱt−1)

(1− ᾱt)
I
}

(11)

where µL(Mt,Cp) = 1√
αt

(
Lt − 1−αt√

1−ᾱt
ϵ̂L(Mt,Cp, t)

)
. Intuitively, ϵ̂l is the denoising term that

needs to be subtracted from Lt to generate Lt−1 and textual representation Cp will steer this reverse
diffusion process. We use a text-guided denoising network Φθ(At,Xt,Lt, t,Cp) to model the noise
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term ϵ̂L(Mt,Cp, t). Following the simplified training objective proposed by (Ho et al., 2020), we
train the aforementioned denoising network using l2 loss between ϵ̂L and ϵL

Llattice = EϵL,t∼U(1,T )∥ϵL − ϵ̂L∥22 (12)

E.2 DIFFUSION ON ATOM TYPES (A)
Prior studies (Jiao et al., 2023; Xie et al., 2021) consider Atom Type Matrix A as the logits/probability
distribution for k classes ∈ RN×k (continuous variable in real space) and apply DDPM to learn the
distribution. However for discrete data these models are inappropriate and produce suboptimal results
(Austin et al., 2021; Campbell et al., 2022; Hoogeboom et al., 2021). Hence we consider A as N
discrete variables belonging to k classes and leverage discrete denoising diffusion probabilistic model
(D3PM) (Austin et al., 2021) for diffusion on A. In specific, denoting row vector a as a one-hot
representation of an atom a, we can write transition probability for forward process as:

q(at|at−1) = Cat(at; p = at−1Qt) (13)
where Cat(a; p) is a categorical distribution over the one-hot row vector a with probabilities given
by the row vector p and Qt is the Markov transition matrix at time step t defined as [Qt]i,j = q(at =
i | at−1 = j). Different choices of Qt and corresponding stationary distributions are proposed by
(Austin et al., 2021) which provides flexibility to control the data corruption and denoising process.
We adopted the absorbing state diffusion process, introducing a new absorbing state [MASK] in Qt.
At each time step t, we can formally define the transition matrix as:

[Qt]i,j =


1, if i = j = [MASK].

1− βt, if i = j ̸= [MASK]

βt, if i = j = [MASK].

(14)

Intuitively, at each time step t, an atom either stays in its type state with probability 1− βt or moves
to [MASK] state with probability βt and once it moves to [MASK] state, it stays in that state. Hence,
the stationary distribution of this diffusion process has all the mass on the [MASK] state. During
reverse denoising process, given textual representation Cp, we first sample noisy aT and obtain a0
thorough iterative denoising step via learning reverse conditional transition:

pθ(at−1|at,Cp) ∝
∑

a0

q(at−1, at|a0)pθ(a0|at,Cp) (15)

We use the text-guided denoising network Φθ(At,Xt,Lt, t,Cp) to model this backward denoising
process, which is trained using the following loss function as proposed by (Austin et al., 2021) :

Ltype = LV B + λLCE (16)
where LV B is the variational lower bound loss defined as follows:

LV B = Eq(a0)

[
DKL{q(aT |a0)||p(aT )}︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(at|a0) [DKL{q(at−1|at, a0)||pθ(at−1|at)}]︸ ︷︷ ︸
Lt−1

−Eq(a1|a0)[log pθ(a0|a1)}]︸ ︷︷ ︸
L0

]
(17)

and LCE is the cross-entropy loss defined as follows:

LCE = Eq(a0)

[ T∑
t=2

Eq(at|a0)[log pθ(a0|at)}]
]

(18)

and λ is a hyperparameter.

E.3 DIFFUSION ON ATOM COORDINATES (X)
Coordinate Matrix X = [x1, x2, ..., xN ]T ∈ RN×3 denotes atomic coordinate positions, where
xi ∈ R3 corresponds to coordinates of ith atom in the unit cell. We can diffuse the atom coordinates
in two ways: either by diffusing cartesian coordinates or fractional coordinates. Prior works like
CDVAE (Xie et al., 2021) and SyMat (Luo et al., 2023b) diffuse cartesian coordinates whereas
DiffCSP (Jiao et al., 2023) diffuse fractional coordinates. In our setup, as we are jointly learning
atom coordinates and lattice matrix simultaneously, we follow the line of work by DiffCSP and
diffuse fractional coordinates. Atomic fractional coordinates in crystal material lives in quotient space
RN×3/ZN×3 induced by the crystal periodicity. Since the Gaussian distribution used in DDPM
is unable to model the cyclical and bounded domain of X, it is not suitable to apply DDPM to
model X. Hence at each step of forward diffusion, we add noise sample from Wrapped Normal
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(WN) distribution (De Bortoli et al., 2022) to X and during backward diffusion leverage Score
Matching Diffusion Networks (Song & Ermon, 2019; 2020) to model underlying transition probability
q(Xt | X0) = NW (Xt | X0, σ

2
t I). In specific, at each tth step of diffusion, we derive Xt as :

Xt = fw(X0 + σtϵ
X) where, ϵX is a noise, sampled from N (0, I), σt is the noise scale following

exponential scheduler and fw(.) is a truncation function. Given a fractional coordinate matrix X,
truncation function fw(X) = (X − ⌊X⌋) returns the fractional part of each element of X.
As argued in (Jiao et al., 2023), q(Xt|X0) is periodic translation equivariant, and approaches uniform
distribution U(0, 1) for sufficiently large values of σT . Hence during the backward denoising process,
we first sample XT ∼ U(0, 1) and iteratively denoise via score network for T steps to recover back
the true fractional coordinates X0. We use the text-guided denoising network Φθ(At,Xt,Lt, t,Cp) to
model the backward diffusion process, which is trained using the following score-matching objective
function :

Lcoord = EXt∼q(Xt|X0)
t∼U(1,T )

∥∇Xt
logq(Xt|X0)− ϵ̂X(Mt,Cp, t)∥22 (19)

where ∇Xt logq(Xt|X0) ∝
∑

K∈ZN×3 exp(− ∥Xt−X0+K∥2
F

2σ2
t

) is the score function of transitional distri-

bution and ϵ̂X(Mt,Cp, t) denoising term.

E.4 TEXT GUIDED DENOISING NETWORK

In this subsection, we will illustrate the detailed architecture of our proposed Text Guided Denoising
Network Φθ(At,Xt,Lt, t,Cp), which we used to denoise A, X and L. As mentioned in 2, the learned
distribution of material structure p(M) must satisfy periodic E(3) invariance. Hence we leverage an
periodic-E(3)-equivariant Graph Neural Network (GNN) integrated with a pre-trained textual encoder
to model the denoising process. In particular, as a text encoder, we adopt a pre-trained MatSciBERT
(Gupta et al., 2022) model, which is a domain-specific language model for materials science, followed
by a projection layer. MatSciBERT is effectively a pre-trained SciBERT model on a scientific text
corpus of 3.17B words, which is further trained on a huge text corpus of materials science containing
around 285 M words. We feed textual description of material T and extract embedding of [CLS]
token hCLS as a representation of the whole text. Further. we pass hCLS through a projection
layer to generate the contextual textual embedding for the material Cp ∈ Rd, which we pass to
the equivariant GNN model to guide the denoising process. Practically, as the backbone network
for the backward diffusion process, we extend CSPNet architecture (Jiao et al., 2023), originally
developed for crystal structure prediction (CSP) task. CSPNet is built upon EGNN (Satorras et al.,
2021), satisfying periodic E(3) invariance condition on periodic crystal structure. At the kth layer
message passing, the Equivariant Graph Convolutional Layer (EGCL) takes as input the set of atom
embeddings hk = [hk

1 ,h
k
2 , ...,h

k
N ], atom coordinates xk = [xk1 , xk2 , ..., xkN ] and Lattice Matrix L and

outputs a transformation on hk+1. Formally, we can define the kth layer message passing operation
as follows :

mi,j = ρm{hk
i , hk

j , LT L, ψFT (xk
i − xkj )}; (20)

hk+1
i = hk

i + ρh{hk
i ,mi} (21)

where mi =
∑N

j=1 mi,j , ρm, ρh are multi-layer perceptrons and ψFT is a Fourier Transformation
function applied on relative difference between fractional coordinates xki , xk

j . Fourier Transformation
is used since it is invariant to periodic translation and extracts various frequencies of all relative
fractional distances that are helpful for crystal structure modeling.
We fuse textual representation Cp into input atom feature h0

i as
h0
i = ρ { fatom(ai) || fpos(t) || Cp (22)

where t is the timestamp of the diffusion model, fpos(.) is sinusoidal positional encoding (Ho et al.,
2020; Vaswani et al., 2017), fatom(.) learned atomic embedding function and || is concatenation
operation. Input atom features h0 and coordinates x0 are fed through K layers of EGCL to produce
ϵ̂L, p(At−1 |Mt) and ϵ̂X as follows :

ϵ̂L = LρL(
1

N

i=1∑
N

hK);

p(At−1 |Mt) = ρA(hK);

ϵ̂X = ρX(hK)

(23)
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where ρL, ρA, ρX are multi-layer perceptrons on the final layer embeddings. Intuitively, we feed
global structural knowledge about the crystal structure into the network by injecting contextual
representation Cp into input atom features. This added signal will participate through message-
passing operations in Eq. 20 and guides in denoising atom types, coordinates, and lattice parameters
such that it can capture the global crystal geometry and aligned with the input stable structure
specified by textual description.

Algorithm 1 Training Algorithm

1: Input: Atom type Matrix A0 (One hot Vector Representation), Coordinate Matrix X0, Lattice
matrix L0, Markov Transition Matrix [Qt]

T
t=1, Textual Representation Cp, Number of diffusion

step T and hyperparameters λA, λX, λL.
2: repeat
3: Sample t ∼ U(0,T)
4: Sample Noise ϵX, ϵL ∼ N(0, I)
5: Lt =

√
ᾱtL0 +

√
1− ᾱtϵ

L

6: Xt = fw(X0 + σtϵ
x)

7: At = Cat(At; p = At−1Qt)
8: ϵ̂L, ϵ̂X,A′

t ← Φθ(At,Xt,Lt, t,Cp)

9: Llattice = ∥ϵL − ϵ̂L∥22
10: Lcoord = ∥∇Xt logq(Xt|X0)− ϵ̂X∥22
11: Ltype = LV B + λLCE

12: Minimize L = λLLlattice + λALtype + λXLcoord and update parameters of Φθ

13: until converged

Algorithm 2 Sampling Algorithm

1: Sample LT ∼ N (0, I),XT ∼ U(0, 1)
2: Randomly sample each atom type between 0 to 99 (Max possible atom type) and form AT

3: Cp ← Textual Representation
4: for t← T to 1 do
5: ϵA, ϵX, ϵL ∼ N(0, I)/ ∗ Sample ∗ /
6: Â, ϵ̂X, ϵ̂L ← Φθ(At,Xt,Lt, t,Cp)

7: Lt−1 ← 1√
αt
(Lt − βt√

1−ᾱt
ϵ̂L) +

√
βt

1−ᾱt−1

1−ᾱt
ϵL

8: At−1 ← Softmax(Â + σtϵ
A)

9: Xt− 1
2
← w(Xt + (σ2

t − σ2
t−1)ϵ̂

X +
σt−1

√
σ2
t−σ2

t−1

σt
ϵX)

10: ,ϵ̂
X ← Φθ(At,Xt− 1

2
,Lt−1, t,Cp)

11: ηt ← step size ∗ σt−1

σt

12: Xt−1 ← w(Xt− 1
2
+ ηtϵ̂

X +
√
2ηtϵ

X)

13: end for

E.5 TRAINING AND SAMPLING

TGDMat is trained using the following combined loss:

L = λLLlattice + λALtype + λXLcoord (24)

where Llattice, Ltype and Lcoord are lattice l2 loss (Eq. 12), type cross-entropy loss (Eq. 16) and
coordinate score matching loss (Eq. 19) respectively and λL, λA, λX are hyperparameters control
the relative weightage between these different loss components. During training, we freeze the
MatSciBERT parameters and do not tune it further. During sampling, we use the Predictor-Corrector
sampling mechanism to sample A0, X0 and L0. Next we explain algorithms for training and sampling.
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Figure 5

F EXPERIMENTS

F.1 EXPERIMENTAL SETUP

Benchmark Tasks. We evaluate our proposed model TGDMat on two different categories of tasks
for material generation, Random Material Generation (Gen) and Crystal Structure Prediction (CSP).
In Gen task, the goal of the generative model is to generate novel stable materials (atom types,
fractional coordinates, and lattice structure). In CSP task, atom types of the materials are given and
the goal is to predict/match the crystal structure (atom coordinates and lattice). In TGDMat model,
by design choice, we use the textual description of crystal materials during each step of the reverse
diffusion process to enhance the generation capability in both tasks. A pictorial illustration of both
tasks is provided at 5

Dataset. Following Xie et al (Xie et al., 2021) we evaluate our model on three baseline
datasets: Perov-5, Carbon-24 and MP-20. Perov-5 (Castelli et al., 2012a;b) dataset consists
of 18,928 perovskite materials, each with 5 atoms in a cell. They generally can be denoted by
ABX3 indicating the three different types of atoms usually observed in such materials. Carbon-24
(Pickard., 2020) dataset has 10,153 materials with 6 to 24 atoms of carbon in the crystal lattice.
Finally, MP-20 (Jain et al., 2013b) dataset has 45,231 materials curated from the Materials Project
library (Jain et al., 2013a), where each material has at most 20 atoms in the lattice. Crystals from
Perov-5 dataset share the same structure but differ in composition, whereas Crystals from Carbon-24
share the same composition but differ in structure. Crystals from MP-20 differs in both structure
and composition. We curated textual data for these datasets with a textual description of each
material. Specifically, we generate both long detailed textual descriptions and shorter prompts using
approaches mentioned in Appendix D.
The structures in all three datasets are derived from quantum mechanical simulations and are all at
local energy minima. Most materials in Perov-5 and Carbon-24 are hypothetical, whereas MP-20
represents a realistic dataset that includes many experimentally known inorganic materials, each with
a maximum of 20 atoms in the unit cell, most of which are globally stable. A model that performs
well on MP-20 could potentially generate novel materials that can be synthesized experimentally.
While training TGDMat, we split the datasets into the train, test, and validation sets following the
convention of 60:20:20 as done by Xie et al (Xie et al., 2021).

Hyper-Parameters Details. In our TGDMat model, we adopted 4 layers CSPNet as message passing
layer with hidden dimension set as 512. Further, we use pre-trained MatSciBERT (Gupta et al., 2022)
followed by a two-layer projection layer (projection dimension 64) as the text encoder module. We
keep the dimension of time embedding at each diffusion timestep as 64. We train it for 500 epochs
using the same optimizer, and learning rate scheduler as DiffCSP and keep the batch size as 512. We
perform all the experiments in the Tesla P100-PCIE-16GB GPU server.
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F.2 EVALUATION METRICS

Random Material Generation (Gen) Task. Following CDVAE (Xie et al., 2021), we evaluate
the performance of TGDMat and baseline models on generating novel material structure using
seven metrics under three broad categories: Validity, Coverage, and Property Statistics. Under
Validity, following the prior line of work (Court et al., 2020; Xie et al., 2021), we measure structural
and compositional validity, representing the percentages of generated crystals with valid periodic
structures and atom types, respectively. A structure is valid as long as the shortest distance between
any pair of atoms is larger than 0.5 Å whereas the composition is valid if the overall charge is neutral
as computed by SMACT (Davies et al., 2019). In Coverage, we consider two coverage metrics,
COV-R (Recall) and COV-P (Precision). COV-R measures the percentage of the test set materials
being correctly predicted, whereas COV-P measures the percentage of generated materials that cover
at least one of the test set materials. (More detailed discussions can be found in (Xie et al., 2021)
and (Ganea et al., 2021)). Finally, we evaluate the similarity between the generated materials and
those in the test set using various Property Statistics, where we compute the earth mover’s distance
(EMD) between the distributions in element number (# Elem), density (ρ, unit g/cm3), and formation
energy (E , unit eV/atom) predicted by a GNN model.

Crystal Structure Prediction (CSP) Task. We evaluate the performance of TGDMat and
baseline models on stable structure prediction using standard metrics proposed by the prior works
(Jiao et al., 2023; Xie et al., 2021), by matching the generated structure and the input ground truth
structure in the test set. In Specific, for each material structure in the test set, we generate k samples
given the textual description and then identify the matching if at least one of the samples matches the
ground truth structure. We calculate the Match Rate and RMSE metrics using the StructureMatcher
class in Pymatgen, which identifies the best match between two structures while accounting for all
material invariances. Match rate indicates the percentage of the matched structures over the test set
satisfying thresholds stol=0.5, angle tol=10, ltol=0.3. RMSE is computed between the ground truth
and the best-matching candidate, normalized by 3

√
V/N where V is the volume of the lattice, and

averaged over the matched structures. For baselines and TGDMat, we evaluate using k = 1 and
k = 20.

F.3 COMPLETE AND DETAILED RESULTS

In this subsection, we provide full comprehensive results on both Gen and CSP tasks across three
benchmark datasets and evaluate the performance of all the baseline models, their text-guided
variants (both short and long), and our proposed TGDMat(Long) & TGDMat(Short). We report the
CSP and Gen task results in Table 6 and 7 respectively.

Following are the Insights or Observations:

• For both tasks, across all the datasets, text guidance outperforms the vanilla diffusion models
in almost all metrics.

• Our experiments suggest that using shorter prompts text-guided models outperforms the
vanilla baseline models. However, performance is even superior when using text-guided
diffusion using longer prompts.

• For the CSP task, using text guidance during the reverse denoising process, with just one
generated sample per test material, text-guided variants outperform respective vanilla models,
thereby reducing computational overhead.

• Our proposed TGDMat (Long) stands out as the leading model when compared to all
baseline models and their text-guided variants across three benchmark datasets. In specific,
for Gen Task, TGDMat (Long) outperforms the closest baseline DiffCSP+ (Long) because
we leveraged discrete diffusion on atom types, which is more powerful in learning discrete
variables like atom types.

• Finally, results indicate that utilizing shorter prompts TGDMat (Short) results in a slight de-
crease in overall performance compared to the longer variant TGDMat (Long). Nonetheless,
the performance remains superior or comparable to baseline models (vannila and text-guided
variants).

24



Published as a conference paper at ICLR 2025

Method # samples Perov-5 Carbon-24 MP-20

Match RMSE Match RMSE Match RMSE

CDVAE 1 45.31 0.1138 17.09 0.2969 33.9 0.1045

20 88.51 0.0464 88.37 0.2286 66.95 0.1026

CDVAE+(short) 1 48.97 0.1063 22.65 0.264 40.33 0.1037

20 89.54 0.0423 89.61 0.2188 70.22 0.0876

CDVAE+(long) 1 49.25 0.1055 23.73 0.259 41.8 0.1021

20 89.73 0.0417 89.77 0.2053 72.56 0.084

SyMat 1 47.32 0.1074 20.81 0.2655 33.92 0.1039

20 90.25 0.0316 89.29 0.2184 71.03 0.0945

SyMat+(short) 1 49.39 0.0985 23.71 0.2567 40.84 0.1027

20 92.1 0.0255 90.86 0.2069 71.31 0.0875

SyMat+(long) 1 50.88 0.0963 28.18 0.251 43.17 0.1016

20 92.3 0.0201 91.65 0.187 72.96 0.082

DiffCSP 1 52.02 0.076 17.54 0.2759 51.49 0.0631

20 98.6 0.0128 88.47 0.2192 77.93 0.0492

DiffCSP+(short) 1 56.54 0.0583 24.13 0.2424 52.22 0.0597

20 98.25 0.0137 88.28 0.2252 80.97 0.0443

DiffCSP+(long) 1 90.46 0.0203 44.63 0.2266 55.15 0.0572

20 98.59 0.0072 95.27 0.1534 82.02 0.0391

TGDMat (short 1 56.54 0.0583 24.13 0.2424 52.22 0.0597

20 98.25 0.0137 88.28 0.2252 80.97 0.0443

TGDMat (long) 1 90.46 0.0203 44.63 0.2266 55.15 0.0572

20 98.59 0.0072 95.27 0.1534 82.02 0.0391

Table 6: Summary of the Complete and Detailed Results on the CSP Task.
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Dataset Method Validity Coverage Property

Comp Struct Cov-R Cov-P # element Density form energy

Perov 5

CDVAE 98.29 100 99.25 98.39 0.0731 0.1462 0.0291

CDVAE+ (Short) 98.17 100 99.4 99.01 0.0706 0.1395 0.0246

CDVAE+ (Long) 98.45 100 99.53 99.09 0.0609 0.1276 0.0223

SyMat 96.83 100 99.16 98.29 0.0193 0.1991 0.2827

SyMat+ (Short) 96.94 100 99.22 98.4 0.0192 0.1827 0.2633

SyMat+ (Long) 97.88 100 99.71 98.79 0.0172 0.1755 0.2566

DiffCSP 98.15 100 99.28 98.08 0.0132 0.1281 0.0267

DiffCSP+ (Short) 98.21 100 99.61 98.39 0.0123 0.1193 0.0266

DiffCSP+ (Long) 98.44 100 99.85 98.53 0.0119 0.1071 0.0241

TGDMat(Short) 98.28 100 99.71 99.24 0.0108 0.0947 0.0237

TGDMat(Long) 98.63 100 99.87 99.52 0.009 0.0497 0.0187

Carbon 24

CDVAE - 100 99.35 82.66 - 0.1539 0.2889

CDVAE+ (Short) - 100 99.34 82.96 - 0.1398 0.2804

CDVAE+ (Long) - 100 99.82 84.76 - 0.1377 0.266

SyMat - 100 99.42 97.17 - 0.1234 3.9628

SyMat+ (Short) - 100 99.52 97.2 - 0.1206 3.7422

SyMat+ (Long) - 100 99.9 97.63 - 0.1171 3.862

DiffCSP - 99.9 99.49 97.27 - 0.0861 0.0876

DiffCSP+ (Short) - 100 99.61 97.29 - 0.0811 0.087

DiffCSP+ (Long) - 100 99.93 97.33 - 0.0763 0.0853

TGDMat(Short) - 100 99.81 91.77 - 0.0681 0.0865

TGDMat(Long) - 100 99.91 92.43 - 0.0436 0.0632

MP 20

CDVAE 86.3 100 99.15 99.49 1.4921 0.7085 0.3039

CDVAE+ (Short) 87.05 100 99.36 99.6 0.993 0.642 0.297

CDVAE+ (Long) 87.42 100 99.57 99.81 0.972 0.6388 0.2977

SyMat 87.96 99.9 98.3 99.37 0.5236 0.4012 0.3877

SyMat+ (Short) 88.08 99.9 98.59 99.47 0.5031 0.3917 0.3622

SyMat+ (Long) 88.47 99.9 99.01 99.95 0.4865 0.3879 0.3489

DiffCSP 83.25 100 99.41 99.76 0.3411 0.3802 0.1497

DiffCSP+ (Short) 84.57 100 99.52 99.85 0.331 0.38 0.1379

DiffCSP+ (Long) 85.07 100 99.81 99.89 0.3122 0.3799 0.1355

TGDMat(Short) 86.6 100 99.79 99.88 0.3337 0.3296 0.1189

TGDMat(Long) 92.97 100 99.89 99.95 0.289 0.3082 0.1154

Table 7: Summary of the Complete and Detailed Results on the Gen Task.
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F.4 CORRECTNESS OF GENERATED MATERIALS

Setup. In this section, we investigate whether the generated material matches different features
specified by the textual prompts. TGDMat has the capability to process textual prompts given by the
user, enabling it to manage global attributes about crystal materials such as Formula, Space group,
Crystal System, and different property values like formation energy, band-gap, etc. To ensure the
fidelity of our model’s outputs concerning these specified global attributes from the text prompt,
We randomly generated 1000 materials (sampled from all three Datasets) based on their respective
textual descriptions(both Long and Short) and assessed the percentage of generated materials that
matched the global features outlined in the text prompt. In specific, we matched the Formula, Space
group, and Crystal System, and Dimensions of generated materials with the textual descriptions.
Moreover, we examined whether properties such as formation energy and bandgap matched the
specified criteria as per the text prompt (positive/negative, zero/nonzero).

Results and Discussions. We report the results in Table 8. In general, using longer text,
considering Perov-5 and Carbon-24 datasets, the generated material meets the specified criteria
effectively. However, when dealing with the MP-20 dataset, which is more intricate due to its
complex structure and composition, performance tends to decline. Additionally, when using shorter
prompts, overall performance suffers across all datasets compared to longer text inputs. This is
because the longer text, provided by the robocrystallographer, offers a comprehensive range of
information, both global and local, thereby enhancing the generation capabilities of TGDMat.

Method Global Features % of Matched Materials
in Text Prompt Perov-5 Carbon-24 MP-20

TGDMat(Long)

Formula 97.50 98.20 70.54
Space Group 87.00 80.79 67.88

Crystal System 92.60 91.55 73.54
Formation Energy 95.49 - 92.88

Band Gap - 98.61 96.73

TGDMat(Long)

Formula 90.70 92.56 65.22
Space Group 86.51 80.50 58.77

Crystal System 83.19 81.64 72.77
Formation Energy 90.33 - 91.00

Band Gap - 95.90 93.33

Table 8: Summary of results on % of generated materials matching different global features specified
by the textual prompts.

F.5 PERFORMANCE ON MORE SHORTER PROMPTS

In this section, we explore the generalizability and robustness of our model by examining potential
variability in text description lengths. The goal of this paper is, given the text prompt, to generate
specific material, not any generic or class of materials. Hence some minimum essential information
about the crystal, like formula, space group, crystal system, property value, etc must be given as input
to the pre-trained model. However, to investigate the robustness of our proposed TGDMat model
with more custom and shorter prompts, we did an experiment where we evaluated TGDMat (trained
with full text) with even shorter custom prompts with very little information as follows:

• Specifying only Formula: ”The chemical formula is GaSiSO2. The elements are Ga, Si, S,
O. Generate the material.”

• Specifying only Space Group Info: ”The spacegroup number is 1. Generate the material.”

• Specifying only Property Info: ”The formation energy per atom is positive. Generate the
material.”

We report the results in table 9. We observe that though TGDMat can handle more custom prompts,
but it affects the quality of generated materials. Hence we conclude some minimum essential
information about the crystal must be given as input to TGDMat to generate high quality crystal
materials.
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Text Encoder Perov-5 Carbon-24 MP-20
Comp(%) ↑ Struct (%) ↑ Comp(%) ↑ Struct (%) ↑ Comp(%) ↑ Struct (%) ↑

Only Formula 97.06 99.19 - 98.76 86.16 96.01
Only Space Group 85.91 98.97 - 95.39 84.22 96.88

Only Property 96.62 98.53 - 94.21 86.53 91.73
Full Text 98.28 100 - 100 86.60 100

Table 9: Summary of results on generated materials using more custom/shorter Prompt.

Table 10: Ablation study results on different choices of Text Encoders.

Text Encoder Perov-5 Carbon-24 MP-20
MR ↑ RMSE ↓ MR ↑ RMSE ↓ MR ↑ RMSE ↓

BERT 96.64 0.0109 72.21 0.2679 79.53 0.057
MatSciBERT 98.63 0.0072 95.27 0.1534 82.02 0.039

Comp ↑ Struct ↑ Comp ↑ Struct ↑ Comp ↑ Struct ↑
BERT 97.44 99.97 - 100 84.73 98.37

MatSciBERT 98.63 100 - 100 92.97 100

F.6 ABLATION STUDY : CHOICE OF TEXT ENCODER

Further, we investigate the expressiveness of textual representation during the reverse diffusion
process. In particular, we are interested in understanding whether there are any benefits we are
gaining from using a domain-specific pre-trained text encoder MatSciBERT. We conduct an ablation
study where we substitute MatSciBERT with pre-trained BERT (Devlin et al., 2018) model (which
is domain agnostic) as text encoder in TGDMat and evaluate the performance on both tasks. The
results presented in Table 10 demonstrate that MatSciBERT surpasses BERT (Devlin et al., 2018) in
performance for both tasks. This highlights the richer expressiveness of contextual representation
achieved through the use of a domain-specific pre-trained language model.

F.7 MORE VISUALIZATION ON PEROV-5, CARBON-24 AND MP-20

28



Published as a conference paper at ICLR 2025

Detailed Description Short Prompt Ground truth Generated Samples

YCoSO2 crystallizes in the orthorhombic Pmm2 space
group. Y is bonded in a distorted square co-planar ge-
ometry to two equivalent S, two equivalent O, and two
equivalent O atoms. Both Y-S bond lengths are 2.74 Å.
Both Y-O bond lengths are 2.24 Å. There is one shorter
(2.09 Å) and one longer (2.39 Å) Y-O bond length. Co
is bonded in a distorted see-saw-like geometry to two
equivalent S and two equivalent O atoms. Both Co-S
bond lengths are 2.31 Å. Both Co-O bond lengths are
2.40 Å. S is bonded in a 6-coordinate geometry to two
equivalent Y, two equivalent Co, and two equivalent O
atoms. Both S-O bond lengths are 2.30 Å. There are
two inequivalent O sites. In the first O site, O is bonded
in a rectangular see-saw-like geometry to two equiva-
lent Y and two equivalent Co atoms. In the second O
site, O is bonded in a distorted square co-planar geome-
try to two equivalent Y and two equivalent S atoms.

Below is a description of a bulk material.
The chemical formula is YCoSO2. The
elements are Y, Co, S, O. The formation
energy per atom is positive. The space-
group number is 24. The crystal system
is orthorhombic. Generate the material:

ScMoN2O is (Cubic) Perovskite-derived structured and
crystallizes in the tetragonal P4mm space group. Sc
is bonded to four equivalent N and two equivalent O
atoms to form ScN4O2 octahedra that share corners
with six equivalent ScN4O2 octahedra and faces with
eight equivalent MoN8O4 cuboctahedra. The corner-
sharing octahedral tilt angles range from 0-1°. All
Sc-N bond lengths are 2.00 Å. There is one shorter
(2.00 Å) and one longer (2.01 Å) Sc-O bond length.
Mo is bonded to eight equivalent N and four equivalent
O atoms to form MoN8O4 cuboctahedra that share
corners with twelve equivalent MoN8O4 cuboctahedra,
faces with six equivalent MoN8O4 cuboctahedra, and
faces with eight equivalent ScN4O2 octahedra. There
are four shorter (2.83 Å) and four longer (2.84 Å) Mo-
N bond lengths. All Mo-O bond lengths are 2.83 Å.
N is bonded in a linear geometry to two equivalent Sc
and four equivalent Mo atoms. O is bonded in a linear
geometry to two equivalent Sc and four equivalent Mo
atoms. The formation energy per atom is 1.8931.

Below is a description of a bulk mate-
rial. The chemical formula is ScMoN2O.
The elements are Sc, Mo, N, O. The for-
mation energy per atom is positive. The
spacegroup number is 98. The crystal
system is tetragonal. Generate the mate-
rial:

ScNO2Ga is alpha Rhenium trioxide-derived structured
and crystallizes in the orthorhombic Pmm2 space group.
The structure consists of one Ga cluster inside a ScNO2
framework. In the Ga cluster, Ga is bonded in a 1-
coordinate geometry to atoms. In the ScNO2 frame-
work, Sc is bonded to two equivalent N, two equivalent
O, and two equivalent O atoms to form corner-sharing
ScN2O4 octahedra. The corner-sharing octahedral tilt
angles range from 0-1°. Both Sc-N bond lengths are
2.09 Å. Both Sc-O bond lengths are 2.09 Å. Both Sc-
O bond lengths are 2.09 Å. N is bonded in a linear
geometry to two equivalent Sc atoms. There are two
inequivalent O sites. In the first O site, O is bonded in
a linear geometry to two equivalent Sc atoms. In the
second O site, O is bonded in a linear geometry to two
equivalent Sc atoms.The formation energy per atom is
1.4796.

Below is a description of a bulk mate-
rial. The chemical formula is ScGaNO2.
The elements are Sc, Ga, N, O. The for-
mation energy per atom is positive. The
spacegroup number is 24. The crystal
system is orthorhombic. Generate the
material:

OsAuO3 is (Cubic) Perovskite structured and crystal-
lizes in the cubic Pm-3m space group. Os is bonded
to six equivalent O atoms to form OsO6 octahedra that
share corners with six equivalent OsO6 octahedra and
faces with eight equivalent AuO12 cuboctahedra. The
corner-sharing octahedra are not tilted. All Os-O bond
lengths are 1.97 Å. Au is bonded to twelve equivalent
O atoms to form distorted AuO12 cuboctahedra that
share corners with twelve equivalent AuO12 cubocta-
hedra, faces with six equivalent AuO12 cuboctahedra,
and faces with eight equivalent OsO6 octahedra. All
Au-O bond lengths are 2.79 Å. O is bonded in a linear
geometry to two equivalent Os and four equivalent Au
atoms.The formation energy per atom is 1.4248.

Below is a description of a bulk material.
The chemical formula is OsAuO3. The
elements are Os, Au, O. The formation
energy per atom is 1.4248. The space-
group number is 220. The crystal system
is cubic. Generate the material.

Table 11: Visualization of the generated structures given textual description for Perov-5 dataset

29



Published as a conference paper at ICLR 2025

Detailed Description Short Prompt Ground truth Generated Samples

C crystallizes in the triclinic P1 space group. There
are twenty-two inequivalent C sites. In the first C site,
C(1) is bonded to one C(18), one C(5), and two equiva-
lent C(9) atoms to form corner-sharing CC4 tetrahedra.
. . . two equivalent C(12) atoms to form a mixture of dis-
torted corner and edge-sharing CC4 trigonal pyramids.
The energy per atom is -154.1336.

Below is a description of a bulk material.
The chemical formula is C. The elements
are C. The energy per atom is negative.
The spacegroup number is 0. The crystal
system is triclinic. Generate the material

C crystallizes in the orthorhombic Cmcm space group.
There are two inequivalent C sites. In the first C site,
C(1) is bonded to one C(2) and three equivalent C(1)
atoms to form a mixture of corner and edge-sharing
CC4 trigonal pyramids. The C(1)-C(2) bond length is
1.49 Å. There are two shorter (1.51 Å) and one longer
(1.56 Å) C(1)-C(1) bond length. In the second C site,
C(2) is bonded to one C(1) and three equivalent C(2)
atoms to form corner-sharing CC4 tetrahedra. There are
two shorter (1.54 Å) and one longer (1.56 Å) C(2)-C(2)
bond length. The energy per atom is -154.2425.

Below is a description of a bulk material.
The chemical formula is C. The elements
are C. The energy per atom is negative.
The spacegroup number is 62. The crys-
tal system is orthorhombic. Generate the
material.

C crystallizes in the triclinic P-1 space group. There
are six inequivalent C sites. In the first C site, C(1)
is bonded to one C(3), one C(5), and two equivalent
C(4) atoms to form corner-sharing CC4 tetrahedra.
. . . In the sixth C site, C(6) is bonded to one C(2), one
C(4), and two equivalent C(3) atoms to form distorted
corner-sharing CC4 tetrahedra. The energy per atom is
-154.1338.

Below is a description of a bulk material.
The chemical formula is C. The elements
are C. The energy per atom is negative.
The spacegroup number is 1. The crystal
system is triclinic. Generate the material

C is a Theoretical Carbon Structure-like structure and
crystallizes in the triclinic P-1 space group. There are
nine inequivalent C sites. In the first C site, C(1) is
bonded to one C(5), one C(6), one C(7), and one C(8)
atom to form a mixture of corner and edge-sharing
CC4 tetrahedra. The C(1)-C(5) bond length is 1.51 Å.
The C(1)-C(6) bond length is 1.56 Å. The C(1)-C(7)
bond length is 1.54 Å. . . . In the ninth C site, C(9) is
bonded to one C(4), one C(6), one C(7), and one C(8)
atom to form a mixture of corner and edge-sharing CC4
tetrahedra. The energy per atom is -154.2197.

Below is a description of a bulk material.
The chemical formula is C. The elements
are C. The energy per atom is -154.2197.
The spacegroup number is 1. The crystal
system is triclinic. Generate the mate-
rial.

Table 12: Visualization of the generated structures given textual description for Carbon-24 dataset
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Detailed Description Short Prompt Ground truth Generated Samples

Eu2PCl is Caswellsilverite-like structured and crystal-
lizes in the tetragonal P4/mmm space group. There are
two inequivalent Eu sites. In the first Eu site, Eu(1) is
bonded to two equivalent P(1) and four equivalent Cl(1)
atoms to form EuP2Cl4 octahedra that share corners
with six equivalent Eu(1)P2Cl4 octahedra, edges with
four equivalent Eu(1)P2Cl4 octahedra, and edges with
eight equivalent Eu(2)P4Cl2 octahedra. . . . The corner-
sharing octahedra are not tilted. The formation energy
per atom is -1.7615. The band gap is zero. The energy
above the convex hull is zero.

Below is a description of a bulk material.
The chemical formula is Eu2PCl. The el-
ements are Eu, P, and Cl. The formation
energy per atom is -1.7615. The band
gap is 0.0. The energy above the con-
vex hull is 0.0. The spacegroup number
is 122. The crystal system is tetragonal.
Generate the material.

MgNdHg2 is Heusler structured and crystallizes in
the cubic Fm-3m space group. Mg(1) is bonded in
a body-centered cubic geometry to eight equivalent
Hg(1) atoms. All Mg(1)-Hg(1) bond lengths are 3.18
Å. Nd(1) is bonded in a body-centered cubic geome-
try to eight equivalent Hg(1) atoms. All Nd(1)-Hg(1)
bond lengths are 3.18 Å. Hg(1) is bonded in a body-
centered cubic geometry to four equivalent Mg(1) and
four equivalent Nd(1) atoms. The formation energy per
atom is -0.4708. The band gap is 0.0. The energy above
the convex hull is 0.0. The spacegroup number is 224.

Below is a description of a bulk material.
The chemical formula is NdMgHg2. The
elements are Nd, Mg, and Hg. The for-
mation energy per atom is -0.4708. The
band gap is 0.0. The energy above the
convex hull is 0.0. The spacegroup num-
ber is 224. The crystal system is cubic.
Generate the material.

MgNdTl crystallizes in the hexagonal P-62m space
group. Mg(1) is bonded in a 4-coordinate geometry to
two equivalent Tl(1) and two equivalent Tl(2) atoms.
Both Mg(1)-Tl(1) bond lengths are 3.01 Å. Both Mg(1)-
Tl(2) bond lengths are 3.03 Å. Nd(1) is bonded in a
5-coordinate geometry to one Tl(2) and four equivalent
Tl(1) atoms. The Nd(1)-Tl(2) bond length is 3.31 Å.
All Nd(1)-Tl(1) bond lengths are 3.32 Å. There are two
inequivalent Tl sites. In the first Tl site, Tl(2) is bonded
in a distorted q6 geometry to six equivalent Mg(1) and
three equivalent Nd(1) atoms. In the second Tl site,
Tl(1) is bonded in a 9-coordinate geometry to three
equivalent Mg(1) and six equivalent Nd(1) atoms. The
formation energy per atom is -0.355. The band gap
is 0.0. The energy above the convex hull is 0.0. The
spacegroup number is 188.

Below is a description of a bulk material.
The chemical formula is NdMgTl. The
elements are Nd, Mg, and Tl. The forma-
tion energy per atom is -0.355. The band
gap is 0.0. The energy above the con-
vex hull is 0.0. The spacegroup number
is 188. The crystal system is hexagonal.
Generate the material.

LaNi2Ge2 crystallizes in the tetragonal I4/mmm space
group. La(1) is bonded in a 16-coordinate geometry to
eight equivalent Ni(1) and eight equivalent Ge(1) atoms.
All La(1)-Ni(1) bond lengths are 3.25 Å. All La(1)-
Ge(1) bond lengths are 3.26 Å. Ni(1) is bonded in a
4-coordinate geometry to four equivalent La(1) and four
equivalent Ge(1) atoms. All Ni(1)-Ge(1) bond lengths
are 2.39 Å. Ge(1) is bonded in a 9-coordinate geometry
to four equivalent La(1), four equivalent Ni(1), and one
Ge(1) atom. The Ge(1)-Ge(1) bond length is 2.66 Å.
The formation energy per atom is -0.691. The band gap
is 0.0. The energy above the convex hull is 0.0.

Below is a description of a bulk mate-
rial. The chemical formula is La(NiGe)2.
The elements are La, Ni, and Ge. The
formation energy per atom is -0.691.
The band gap is 0.0. The energy above
the convex hull is 0.0. The spacegroup
number is 138. The crystal system is
tetragonal. Generate the material.

Table 13: Visualization of the generated structures given textual description for MP-20 dataset
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