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ABSTRACT

Equivariant diffusion models have emerged as the prevailing approach for generat-
ing novel crystal materials due to their ability to leverage the physical symmetries
of periodic material structures. However, current models do not effectively learn
the joint distribution of atom types, fractional coordinates, and lattice structure
of the crystal material in a cohesive end-to-end diffusion framework. Also, none
of these models work under realistic setups, where users specify the desired char-
acteristics that the generated structures must match. In this work, we introduce
TGDMat, a novel text-guided diffusion model designed for 3D periodic material
generation. Our approach integrates global structural knowledge through textual
descriptions at each denoising step while jointly generating atom coordinates,
types, and lattice structure using a periodic-E(3)-equivariant graph neural network
(GNN). Through extensive experiments with popular datasets on benchmark tasks,
we first demonstrate that integrating textual knowledge significantly improves the
material generation capabilities of existing state-of-the-art models. Furthermore,
we show that TGDMat surpasses text-guided variants of existing baseline meth-
ods by a substantial margin, highlighting the effectiveness of our joint diffusion
paradigm. Additionally, incorporating textual knowledge reduces overall training
and sampling computational overhead while enhancing generative performance
when utilizing real-world textual prompts from experts.

1 INTRODUCTION

Screening 3D periodic structures and their atomic compositions to identify novel crystal materials with
specific chemical properties remains a long-standing challenge in the materials design community.
These materials have been fundamental to key innovations such as the development of batteries, solar
cells, semiconductors etc. (Butler et al., 2018; Desiraju, 2002). Historically, there have been attempts
to generate novel materials by conducting resource-intensive and time-consuming simulations based
on Density Functional Theory (DFT) (Kohn & Sham, 1965). Recently, the equivariant diffusion
models (Jiao et al., 2023; Luo et al., 2023b; Xie et al., 2021) have demonstrated great potential to
generate stable 3D periodic structures of new crystal materials.

However, these models possess several inherent limitations. 1) None of these existing SOTA models
learns the joint distribution of atom coordinates, types, and lattice structure of the material through
an end-to-end diffusion network. Existing models like CDVAE (Xie et al., 2021) and SyMat (Luo
et al., 2023b) learn lattice parameters and atom types separately using a VAE model and further
use a score network to learn the conditional distribution of atom coordinates given atom types and
lattice. DiffCSP (Jiao et al., 2023), on the other hand, focuses primarily on structure prediction task
where it assumes atom types are given and predict the stable crystal structure (lattice and coordinates).
2) Furthermore, these models use SE(3)-equivariant GNNs as backbone denoising network, which
largely relies on messages passing around the local neighborhood of the atoms. Hence they fail to
incorporate global structural knowledge into the diffusion process, which can enhance the diffusion
performance. 3) Finally, these models are unconditional by design. From initial noisy structures
without any external constraints, they generate stable crystal structures, which are distributionally
similar to structures of the training dataset. This setup may have limited utility in real-world scenarios,
as it lacks a mechanism for users to specify a criteria for the material to be generated. In a realistic
setup, users would want to specify certain key details about the target material, like the chemical
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BaPd2 is Cubic structured and 
crystallizes in the cubic Fd-3m space 

group. Ba(1) is bonded in a 
12-coordinate geometry to twelve 

equivalent Pd(1) atoms. All 
Ba(1)-Pd(1) bond lengths are 3.37 Ã. 

Pd(1) is bonded to six equivalent 
Ba(1) and six equivalent Pd(1) atoms 
to form a mixture of face, edge, and 

corner-sharing cuboctahedra. All 
Pd(1)-Pd(1) bond lengths are 2.88 Ã. 

Its formation energy per atom is 
-0.578, band gap is 0.0, energy above 

hull is 0.0. Generate the material

Detailed Description by 
Robocrystallographer

Unit Cell Structure

Below is a description of a bulk 
material. The chemical formula is 

BaPd2. The elements are Ba, Pd. The 
formation energy per atom is 

negative. The band gap is zero. The 
energy above the convex hull is zero. 
The space group number is 227. The 
crystal system is cubic.Generate the 

material

Short Prompt by Users

Figure 1: Detailed textual description generated by Robocrystallographer, less-detailed prompts by
domain experts, and crystal unit cell structure of BaPd2.

formula, space group, crystal symmetry, bond lengths, chemical properties, etc as input to the
diffusion model, which the generated structure must then match.

In this paper, we propose, TGDMat, a novel Text-Guided Diffusion Model for Material Generation
that mitigates the limitations mentioned above and enhances the generation capability. Though
Text Guided Diffusion Models (TGDMs) produce impressively high-quality data in the form of
images (Nichol et al., 2021; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022),
audio (Kreuk et al., 2022; Yang et al., 2022), video (Du et al., 2024), molecules (Gong et al., 2024;
Luo et al., 2023a) etc, it remains largely unexplored in periodic material generation. Text-guided
diffusion for new material generation has some key benefits. First, we can leverage popular tools
like Robocrystallographer (Ganose & Jain, 2019) to generate a textual description of the material
which provides a rich and diverse set of global structural knowledge like chemical formula, lattice
constraint, space group number, crystal symmetry, chemical properties, etc. We believe this additional
information is helpful for diffusion models in learning underlying crystal geometry. Second, it
provides end users the flexibility to use custom prompts to guide the material generation process,
ensuring that the resulting material aligns with the user’s provided description. Towards that goal, we
first develop a diffusion model that jointly generates the atom coordinates, atom types, and lattice
structure of crystal materials using a periodic E(3)-equivariant denoising model, satisfying periodic
E(3) invariance properties of learned data distribution. Subsequently, we fuse textual information into
the reverse diffusion process, which guides the denoising process in predicting material structure as
specified by the textual description.
To sum up, our novel contributions in this work are as follows:

• To the best of our knowledge, we are the first to explore text-guided diffusion for material
generation. Our proposed TGDMat bridges the gap between natural language understanding
and material structure generation.

• Unlike prior models, TGDMat conducts joint diffusion on lattices, atom types, and co-
ordinates, enhancing its ability to accurately capture the crystal geometry. Additionally,
incorporating global structural knowledge through textual descriptions at each denoising step
improves TGDMat’s ability to generate plausible materials with valid and stable structures.

• Through extensive experiments using popular datasets on benchmark tasks we show that
text guidance can improve the generation capability of existing SOTA diffusion models
for crystal materials. Moreover, in the generation task, TGDMat outperforms text-fusion
variants of SOTA models with good margin, showcasing the effectiveness of the text guided
joint diffusion paradigm.

• Fusing textual knowledge reduces the overall computational cost for both training and infer-
ence of the diffusion model. Moreover, when applied to real-world custom text prompts by
experts, TGDMat demonstrates rich generative capability under general textual conditions.
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DiffCSP TGDMat

Tasks Only CSP Task Both CSP and Gen Tasks

Diffusion on Atom Type - Discrete Diffusion (D3PM)

Model Category Unconditional; unable to specify
the criteria required by the user

Conditional; able to specify the
criteria required by the user (in
Text Format)

Text Guided Diffusion No Yes

Table 1: Key Differences between TGDMat from DiffCSP

2 PRELIMINARIES

2.1 CRYSTAL STRUCTUREREPRESENTATION

Crystal material can be modeled by a minimalunit cell, which gets repeated in�nite times in 3D
space on a regular lattice to form the periodic crystal structure. Given a material withN number
of atoms in its unit cell, we can describe the unit cell by two matrices:Atom Type Matrix (A)
andCoordinate Matrix (X). Atom Type MatrixA = [ a1; a2; :::; aN ]T 2 RN � k denotes set of
atomic type in one hot representation (k: maximum possible atom types). On the other hand,
Coordinate MatrixX = [ x1; x2; :::; xN ]T 2 RN � 3 denotes atomic coordinate positions, where
xi 2 R3 corresponds to coordinates ofi th atom in the unit cell. Further, there is an additional
Lattice Matrix L = [ l1; l2; l3]T 2 R3� 3, which describes how a unit cell repeats itself in the 3D
space towardsl1; l2 andl3 direction to form the periodic 3D structure of the material. Formally, a
given material can be de�ned asM = ( A; X; L) and we can represent its in�nite periodic structure as
X̂ = f x̂ i jx̂ i = xi +

P 3
j =1 kj l j g; Â = f âi jâi = ai g wherek1; k2; k3; i 2 Z; 1 � i � N .

2.2 INVARIANCES IN CRYSTAL STRUCTURE

The basic idea of using generative models for crystal generation is to learn the underlying data
distribution of material structurep(M). Since crystal materials satisfy physical symmetry properties
(Dresselhaus et al., 2007; Zee, 2016), one of the major challenges here is the learned distribution
must satisfy periodic E(3) invariance i.e. invariance to permutation, translation, rotation, and periodic
transformations. A formal de�nition of these invariance properties is provided in Appendix C.

3 RELATED WORK: PERIODIC MATERIAL GENERATION

Recently, the majority of the research on material generation focuses on using popular generative mod-
els like VAEs (Kingma & Welling, 2013), GANs (Goodfellow et al., 2014) or Diffusion Models (Song
& Ermon, 2019; 2020; Ho et al., 2020) to generate 3D periodic structures of materials (Hoffmann
et al., 2019; Noh et al., 2019; Ren et al., 2020; Kim et al., 2020; Court et al., 2020; Long et al., 2021;
Zhao et al., 2021; Xie et al., 2021; Jiao et al., 2023; Luo et al., 2023b; Zeni et al., 2023; Yang et al.,
2023; Jiao et al., 2024; Miller et al., 2024). In speci�c, state-of-the-art models like CDVAE (Xie
et al., 2021) and SyMat (Luo et al., 2023b) combine VAEs and score-based diffusion models to work
directly with atomic coordinates, ensuring euclidean and periodic invariance using equivariant graph
neural networks(GNNs). Moreover, DiffCSP (Jiao et al., 2023) focuses on structure prediction, jointly
optimizing atom coordinates and lattice using a diffusion framework given atomic composition. We
provided a comprehensive literature review of other related works in Appendix B.
Key differences between DiffCSP and TGDMat.We report key differences between DiffCSP and
TGDMat in Table 1. The goal of this paper is not to introduce a new diffusion model to replace
existing models like DiffCSP or CDVAE for periodic material generation. Instead, we focus on
demonstrating that conditional models can outperform traditional unconditional models, such as
DiffCSP. Speci�cally, we show that incorporating textual conditions through text-guided diffusion
leads to better performance compared to using unconditional models like DiffCSP. Additionally, we
enhance DiffCSP by integrating discrete diffusion over atom types in our proposed TGDMat.
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4 METHODOLOGY

4.1 PROBLEM FORMULATION

In this work, given the textual description, we focus on generating a stable crystal structure that aligns
with the provided textual description. Formally, given a datasetM = f M i ; Ti g, containing crystal
structureM i = ( Ai ; Xi ; L i ) and its text description (Ti ), the goal of text guided crystal generation
problem is to capture the underlying conditional data distributionf (MjT) via learning a generative
modelp� (MjT), where� is a set of learnable parameters. While training, we needp� to ensure that
the learned distribution is invariant to different symmetry transformations mentioned in Section 2.2.
Once trained, given a text description of a plausible material, the learned generative model can sample
a valid and stable structure of the material, that is invariant to different symmetry transformations.

4.2 TEXTUAL DATASETS

Leveraging textual information to guide the reverse diffusion process remains unexplored in the
material design community. To the best of our knowledge, there is currently no text data available
for materials in benchmark databases (mentioned in Section 5.1). Hence, we �rst curate the textual
data of these material databases. Speci�cally, we propose two approaches for generating textual
descriptions of materials, which are easy to follow. First, we utilize a freely available utility tool,
Robocrystallographer(Ganose & Jain, 2019) to generate detailed textual descriptions about the
periodic structure of crystal materials. These descriptions encompass local compositional details
like atomic coordination, geometry, etc. as well as global structural aspects like crystal formula,
mineral type, space group information, etc. Secondly, we utilized shorter and less detailed prompts
that are more easily interpretable by users. We extend the prompt template proposed by (Gruver et al.,
2024), which encodes minimal information about the material like its chemical formula, constituent
elements, crystal system it belongs to, and its space group number. Further, we specify a few
chemical properties, and instead of mentioning their actual values, we provide generic information
like negative/positive formation energy, zero/nonzero band gaps, etc. Detailed information regarding
the two textual datasets, including their curation process is provided in Appendix D.

4.3 PROPOSEDMETHODOLOGY : TGDMAT

Our proposed model, TGDMat (Fig. 2), uses an equivariant diffusion model guided by contextual
representation of the textual description (Cp) to generate a new crystal structureM = ( A; X; L).
Unlike prior methods (Jiao et al., 2023; Luo et al., 2023b; Xie et al., 2021), our method jointly diffuses
A, X, L to learn the underlying data distribution of crystal structurep(MjCp). Diffusion models (Ho
et al., 2020; Song & Ermon, 2019; 2020) are popular generative models that are formulated using
a T steps Markov Chain. Given an input crystal materialM0 = ( A0; X0; L0), the forward process
gradually add noise toA0; X0; L0 independently over T steps and the reverse denoising process
samples a noisy structureMT = ( AT ; XT ; LT ) from a prior distribution and reconstruct backM0
using some GNN model. At eacht th step of denoising(0 � t � T), the contextual representation of
the crystal textual description (Cp) will guide the diffusion process so that the intermediate structure
M t aligns the target 3D structure constrained on textual conditions. Moreover, the learned distribution
of material structure must satisfy periodic E(3) invariance. It is well studied in the literature (Xu
et al., 2022) that if the prior distributionp(x) is invariant to a group and the transition probabilities
of a Markov chainy � p(yjx) exhibit equivariance, the marginal distribution of y at any given time
step also remains invariant to group transformations. Hence the learned distributionp(M0) of the
denoising model will satisfy periodic E(3) invariance if the prior distributionp(MT ) is invariant
and the neural network used to parameterize the transition probabilityq(M t � 1jM t ) is equivariant to
permutational, translation, rotational, and periodic transformations. To satisfy that, we use periodic-
E(3)-equivariant GNN model as a backbone denoising network to guide the denoising process. Next
in this section, we �rst explain diffusion onM in 4.3.1, then demonstrate the text-guided denoising
network in 4.3.2 and �nally training details in 4.4.

4.3.1 JOINT EQUIVARIANT DIFFUSION ONM

Diffusion on Lattice (L). Since the Lattice MatrixL = [ l1; l2; l3]T 2 R3� 3 is in continuous
space, we leverage the idea of the Denoising Diffusion Probabilistic Model (DDPM) for diffusion

4
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Figure 2: Model Architecture of our proposed text guided diffusion model TGDMat. Att th step of
reverse diffusion, givenM t = ( At ; Xt ; Lt ), we use periodic-E(3)-equivariant GNN model guided by
contextual representation of the textual prompts (Cp) to generateM t � 1 = ( At � 1; Xt � 1; Lt � 1)

on L. Speci�cally, given input lattice matrixL0 � p(L), at eacht th step, the forward diffusion
process iteratively diffuses it through a transition probabilityq(Lt jL0) which can be derived as
q(Lt jL0) = N (Lt j

p
�� t L0; (1 � �� t )I ) where,�� t =

Q t
k=1 � k , � t = 1 � � t andf � t 2 (0; 1)gT

t =1
controls the variance of diffusion step following certain noise scheduler. By reparameterization,
we can rewriteLt =

p
�� t L0 +

p
1 � �� t � L where,� l is noise sampled fromN (0; I ), added with

L0 at t th step to generateLt . After T such diffusion steps, noisy lattice matrixLT � N (0; I )
is generated. During reverse denoising process, given noisyLT � N (0; I ) we reconstruct true
lattice structureL0 thorough iterative denoising step via learning reverse conditional distribution,
which we formulate asp(Lt � 1jM t ; Cp) = N f Lt � 1j� L(M t ; Cp); � t

(1 � �� t � 1 )
(1 � �� t ) I g where� L(M t ; Cp) =

1p
� t

(Lt � 1� � tp
1� �� t

�̂ L(M t ; Cp; t)) . Intuitively, �̂ l needs to be subtracted fromLt to generateLt � 1 and
textual representationCp will steer this reverse diffusion process. We use a text-guided denoising
network� � (At ; Xt ; Lt ; t; Cp) to model the noise term̂� L(M t ; Cp; t). Following the simpli�ed training
objective proposed by (Ho et al., 2020), we train denoising model usingl2 loss between̂� L and� L

L lattice = E� L ;t �U (1 ;T ) k� L � �̂ Lk2
2 (1)

Diffusion on Atom Types (A). Prior studies (Jiao et al., 2023; Xie et al., 2021) consider Atom
Type MatrixA as the probability distribution for k classes2 RN � k (continuous variable) and apply
DDPM to learn the distribution. However for discrete data these models are inappropriate and
produce suboptimal results (Austin et al., 2021; Campbell et al., 2022). Hence we considerA as
N discrete variables belonging to k classes and leverage discrete diffusion model (D3PM) (Austin
et al., 2021) for diffusion onA. In speci�c, with a as the one-hot representation of atoma, the
transition probability for the forward process isq(at jat � 1) = Cat(at ; p = at � 1Qt ), whereCat(a; p)
is a categorical distribution overa with probabilitiesp andQt is the Markov transition matrix at
time step t, de�ned as[Qt ]i;j = q(at = i jat � 1 = j ). Different choices ofQt and corresponding
stationary distributions are proposed by (Austin et al., 2021) which provides �exibility to control the
data corruption and denoising process. We adopted the absorbing state diffusion process, introducing
a new absorbing state [MASK] inQt . At each time step t, an atom either stays in its type state with
probability1 � � t or moves to [MASK] state with probability� t and once it moves to [MASK]
state, it stays there. Hence, the stationary distribution of this diffusion process has all the mass
on the [MASK] state. During denoising process, given textual representationCp, we �rst sample
noisyaT and obtaina0 thorough iterative denoising step via learning reverse conditional transition
p� (at � 1jat ; Cp) /

P
a0

q(at � 1; at ja0)p� (a0jat ; Cp). We use the text-guided denoising network
� � (At ; Xt ; Lt ; t; Cp) to model this denoising process, which is trained using following loss function :

L type = L V B + � L CE (2)

5


	Introduction
	Preliminaries
	Crystal Structure Representation
	Invariances in Crystal Structure

	Related Work: Periodic Material Generation
	Methodology
	Problem Formulation
	Textual Datasets
	Proposed Methodology : TGDMat
	Joint Equivariant Diffusion on M
	Text Guided Denoising Network

	Training and Sampling

	Experiments
	Benchmark Tasks, Evaluation Metrics and Datasets
	Efficacy of Text-Guidance in Diffusion
	Effectiveness of TGDMat
	Correctness of Generated Materials
	Computational Cost for Training and Sampling

	Conclusion
	Limitations and Future Work
	More Related Work
	Crystal Representation Learning
	Diffusion Models
	Conditional Diffusion Models
	Crystal Material Generation
	Key differences between DiffCSP and TGDMat

	Invariances in Crystal Structure
	Textual Dataset
	Joint Equivariant Diffusion on M
	Diffusion on Lattice (L)
	Diffusion on Atom Types (A)
	Diffusion on Atom Coordinates (X)
	Text Guided Denoising Network
	Training and Sampling

	Experiments
	Experimental Setup
	Evaluation Metrics
	Complete and Detailed Results
	Correctness of Generated Materials
	Choice of Text Encoder
	Performance on More Shorter Prompts
	Utility of Text-guidance than Feature Vectors-guidance
	Ablation study for Joint learning of crystal geometry.
	More Visualization on Perov-5, Carbon-24 and MP-20


