000 001 002 003 GBIR: A NOVEL GAUSSIAN ITERATIVE METHOD FOR MEDICAL IMAGE RECONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial diagnostic tools, but undersampling techniques like Sparse-View CT (SV-CT) and Compressed-Sensing MRI (CS-MRI), aimed at reducing patient exposure and scan time, make image reconstruction more challenging. While deep learning-based reconstruction (DLR) methods have made significant strides, they face limitations in adapting to varying scan geometries and handling diverse patient data, hindering widespread clinical use. In this paper, we propose a novel Gaussian-Based Iterative Reconstruction (GBIR) framework that uses learnable Gaussians representations for personalized medical image reconstruction, addressing the shortcomings of DLR methods. GBIR optimizes case-specific parameters in an end-to-end fashion, enabling better generalization and flexibility under sparse measurements. Additionally, we introduce the Multi-Organ Medical Image REconstruction (MORE) dataset, comprising over 70,000 CT and MRI slices across multiple body parts and conditions. Our experiments show that GBIR outperforms state-of-the-art methods in both accuracy and speed, offering a robust solution for personalized medical image reconstruction.

1 INTRODUCTION

029 030 031 032 033 034 035 036 037 038 039 040 041 Computed Tomography (CT) [\(Koetzier et al.,](#page-12-0) [2023\)](#page-12-0) and Magnetic Resonance Imaging (MRI) [\(Haris](#page-11-0)[inghani et al.,](#page-11-0) [2019\)](#page-11-0) are the two most important diagnostic technologies in modern medicine. CT scans use computer processing to reconstruct detailed cross-sectional images from X-rays emitted at various angles and measured as they pass through body tissues. MRI scans use powerful magnets and radio waves to excite hydrogen atoms in the body, generating signals that are detected and processed by a computer to create detailed images of internal structures. Therefore, sophisticated image reconstruction algorithms are essential for both CT and MRI, converting raw data from multiple projections into diagnostic images [\(Szczykutowicz et al.,](#page-13-0) [2022;](#page-13-0) [Zhu et al.,](#page-13-1) [2018\)](#page-13-1). Modern medical practices use undersampled raw measurements by reducing radiation exposure or scanning time to benefit the health and improve comfort of patients, for example, adopting Sparse-View CT (SV-CT) [\(Koetzier](#page-12-0) [et al.,](#page-12-0) [2023\)](#page-12-0) and Compressed-Sensing MRI (CS-MRI) [\(Lustig et al.,](#page-12-1) [2008\)](#page-12-1), as shown in Figure [1.](#page-1-0) However, these undersampling procedures make the reconstruction process much more challenging, as the raw measurements are insufficient to recover the true 3D conditions within the patient's body.

042 043 044 045 046 047 048 049 050 051 052 053 The scanning process by the machine is usually called the forward process, which acquires the raw measurements from the patient. Conversely, the reconstruction process is called the inverse process that recovers the 3D volume from the raw measurements. The forward process is well studied and can be modeled by mathematical equations, but the inverse process is actually an ill-posed problem with non-unique solutions that is challenging to solve. Traditional methods for medical image reconstruction, such as Filtered Back Projection (FBP) [\(Bracewell & Riddle,](#page-11-1) [1967\)](#page-11-1) and Inverse Fast Fourier Transform (IFFT) [\(Gallagher et al.,](#page-11-2) [2008\)](#page-11-2) for CT and MRI, are incapable of handling the reconstruction problem from sparse measurements. Deep learning-based reconstruction (DLR) methods are leading advancements in medical image reconstruction, offering practical solutions such as SV-CT and CS-MRI for medical diagnosis. While various types of DLR methods exist, such as direct learning methods [\(Zhu et al.,](#page-13-1) [2018;](#page-13-1) [He et al.,](#page-11-3) [2020\)](#page-11-3), image-domain denoising methods [\(Jin](#page-12-2) [et al.,](#page-12-2) [2017;](#page-12-2) [Chen et al.,](#page-11-4) [2017\)](#page-11-4), and dual-domain reconstruction methods [\(Hu et al.,](#page-11-5) [2020\)](#page-11-5), they all share a common principle: employing neural networks to learn the mapping from the measurement domain to the image domain. Nevertheless, SV-CT and CS-MRI have seen limited adoption in

097 098 099

Figure 1: Illustration of medical image reconstruction paradigms. I: Full-View CT scans the patient from multiple angles to acquire complete measurements.; II: Sparse-View CT reduces the number of views to reduce radiation exposure.; III: Complete MRI captures full data sets for high-resolution imaging, ensuring detailed anatomical visualization. IV: Compressed-Sensing MRI reconstructs images from undersampled data, significantly reducing scan time.

073 074 075 076 077 078 079 080 clinical practice [\(Koetzier et al.,](#page-12-0) [2023;](#page-12-0) [Jaspan et al.,](#page-12-3) [2015\)](#page-12-3). The underlying reason is the inherent limitations of neural networks. Firstly, the fixed mapping learned by neural networks poses challenges in adapting to varying scan geometries. For instance, an SV-CT model trained on 60 views cannot be easily extended to 120 or 180 views without undergoing a complete retraining process. Secondly, the effectiveness of neural networks is limited by the diversity of the training data. Variations in patient demographics and medical conditions make it hard to create a comprehensive dataset. Consequently, DLR methods may struggle in clinical practice, as neural networks might fail to reconstruct images for conditions not included in the training data. As noted by [Szczykutowicz et al.](#page-13-0) [\(2022\)](#page-13-0), future methods should be customized for each individual patient.

081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 Given the numerous inherent limitations of neural networks in medical image reconstruction, we are motivated to take a bold step: abandoning neural networks in favor of a set of learnable isotropic Gaussians to represent the 3D volume to be reconstructed. This idea is inspired by the success of 3D Gaussian Splatting (3DGS) in the field of computer graphics [\(Kerbl et al.,](#page-12-4) [2023\)](#page-12-4), which uses a set of 3D Gaussians to represent and reconstruct a 3D scene from 2D images. But it is important to note that, unlike 3D scene reconstruction, medical image reconstruction involves supervision signals in the measurement domain rather than the image domain, and the objective is to recover a fixed 3D volume instead of rendering a dynamic 3D scene. Without any Rendering process, in this paper, we propose a novel Gaussian-Based Iterative Reconstruction (GBIR) framework that encompasses both high-quality representation and an efficient reconstruction process. GBIR creates a tailored Gaussian representation for each case (patient), with learnable parameters optimized in an end-to-end fashion. This allows for customized medical image reconstruction, overcoming the generalization challenges faced by neural networks, and it also offers flexibility in reconstructing medical images under varying sparse measurement conditions. GBIR requires only the current patient's data for optimization, enabling a "train-as-you-infer" approach.

- **096** The main contributions of this paper can be summarized as follows:
- **100** • We propose a novel Gaussian-Based Iterative Reconstruction (GBIR) framework. GBIR employs a new reconstruction approach that involves projecting onto the measurement at each iteration, and optimizing the reconstruction based on the loss with the current case's measurement. This method achieves personalized modeling and strong generalization.
- **101 102 103 104** • We propose a comprehensive Multi-Organ Medical Image REconstruction (MORE) dataset, which contains over 70,000 slices from 173 patients, covering 15 body parts in CT scans and 5 body parts in MRI scans, with various types of diseases. The dataset has passed the ethical review of the hospital and the local ethics committee and will be released to the public.
- **105 106 107** • We conduct extensive experiments to evaluate the performance of our proposed method, we compare GBIR with various existing methods on the proposed MORE dataset and other public datasets. The results show GBIR achieves state-of-the-art performance, outperforming other baselines by an obvious margin, and demonstrates superior inference speed.

108 2 BACKGROUND

109 110

113

111 112 Problem Definition The forward process in medical imaging systems (*e.g.*, CT, MRI) can be formulated as follows:

$$
y = \mathbf{A}x + n,\tag{1}
$$

114 115 116 117 118 119 where x is the 3D volume of the patient, A is the system matrix that models the imaging system, y represents the acquired measurements, and n is the noise. Medical image reconstruction refers to the inverse problem of recovering the 3D volume x from the measurements y . In applications like SV-CT and CS-MRI, the matrix \bf{A} is sparse and the measurements y are undersampled, increasing the complexity of the reconstruction process. This inverse problem is inherently ill-posed and non-unique, with the goal being to estimate the most likely 3D volume that corresponds to the given measurements.

120 121 122 A typical approach involves minimizing a loss function that balances the fidelity to the measurements y and the regularization term that imposes prior knowledge about the structure of x . The optimization problem can be written as:

123 124 $\hat{x} = \arg\min_{x} ||\mathbf{A}x - y||_2^2 + \lambda R(x),$ (2)

125 126 127 128 129 130 131 where \hat{x} is the estimated 3D volume, $||Ax - y||_2^2$ is the fidelity term that measures the discrepancy between the estimated measurements and the acquired measurements, $R(x)$ is the regularization term, which incorporates prior knowledge or assumptions about the image structure, such as smoothness, sparsity, or low-rank characteristics, depending on the specific imaging modality and application. Total variation (TV) [\(Rudin et al.,](#page-13-2) [1992;](#page-13-2) [Sidky & Pan,](#page-13-3) [2008\)](#page-13-3) regularization is a common choice for the regularization term in medical image reconstruction, as it preserves the edges and structures of the image while reducing noise. The hyperparameter λ balances the fidelity and regularization terms.

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 Related Work *(a) Sparse-View CT*. Classical CT reconstruction methods, such as Filtered Back Projection (FBP) and Iterative Reconstruction (IR), are incapable of handling the Sparse-View CT reconstruction problem. Modern deep learning methods have evolved from convolutional neural networks (CNNs) [\(Kang et al.,](#page-12-5) [2017;](#page-12-5) [Chen et al.,](#page-11-4) [2017\)](#page-11-4) to generative adversarial networks (GANs) [\(Yang](#page-13-4) [et al.,](#page-13-4) [2018\)](#page-13-4) and, more recently, to diffusion-based models [\(Chung et al.,](#page-11-6) [2022;](#page-11-6) [2023;](#page-11-7) [Xu et al.,](#page-13-5) [2024\)](#page-13-5). Apart from optimization methods like NeRP [\(Shen et al.,](#page-13-6) [2022\)](#page-13-6), these models typically require large amounts of training data to achieve good performance. *(b) Compressed-Sensing MRI*. Traditional MRI reconstruction methods rely heavily on the Fourier Transform. However, the performance of Fourier Transform-based reconstruction decreases when the number of sampling points is reduced in Compressed-Sensing MRI. Similar to Sparse-View CT, deep learning methods in this field have evolved from CNNs [\(Zhu et al.,](#page-13-1) [2018;](#page-13-1) [Hyun et al.,](#page-12-6) [2018\)](#page-12-6) to GANs [\(Yang et al.,](#page-13-7) [2017;](#page-13-7) [Quan et al.,](#page-12-7) [2018\)](#page-12-7), and finally to diffusion-based models [\(Chung & Ye,](#page-11-8) [2022;](#page-11-8) [Chung et al.,](#page-11-7) [2023\)](#page-11-7). A large amount of training data is also required to train these models. *(c) Relationship with Existing Works*. We categorize existing medical image reconstruction methods and compare their characteristics in Table [7.](#page-15-0) Recently, several contemporary works have adapted 3D Gaussian Splatting (3DGS) for CT reconstruction or novel view synthesis [\(Fu et al.,](#page-11-9) [2024;](#page-11-9) [Lin et al.,](#page-12-8) [2024;](#page-12-8) [Cai et al.,](#page-11-10) [2025;](#page-11-10) [Zha et al.,](#page-13-8) [2024\)](#page-13-8). 3DGR-CAR [\(Fu et al.,](#page-11-9) [2024\)](#page-11-9) incorporates U-Net [\(Ronneberger et al.,](#page-13-9) [2015\)](#page-13-9) to predefine Gaussian centers, which are then refined using 3DGS for the final reconstruction process. DIF-Gaussian [\(Lin et al.,](#page-12-8) [2024\)](#page-12-8) leverages 3D Gaussians to represent feature distributions, facilitating the estimation of attenuation coefficients. X-Gaussian redesigns a radiative Gaussian point cloud model for generating novel views in X-ray imaging applications. R^2 -Gaussian [\(Zha et al.,](#page-13-8) [2024\)](#page-13-8) identifies shortcomings in the use of 3DGS for volumetric reconstruction and introduces an innovative approach to enhance volumetric reconstruction quality.

153 154 155 156 We emphasize the differences between our proposed method and these approaches. Unlike the above works, our GBIR is not based on 3DGS but introduces a novel Gaussian-based iterative method specifically tailored for medical image reconstruction. The entire process is end-to-end trainable and optimized for medical image reconstruction without any splatting or rendering processes.

157 158

3 GAUSSIAN-BASED ITERATIVE RECONSTRUCTION (GBIR)

159 160

161 Figure [2](#page-3-0) illustrates our proposed GBIR method, which consists of two parts: **representation** and reconstruction. In the following sections, we provide detailed descriptions.

167 168

171

173 174

196 197 198

Figure 2: Our GBIR framework for medical image reconstruction. The 3D volume is represented by a set of 3D Gaussians, and the reconstruction process is conducted in an end-to-end manner.

3.1 TRUNCATED THREE-SIGMA GAUSSIAN REPRESENTATION

Basic Formula. We represent the 3D medical volume as the sum of a set of isotropic Gaussians. Each Gaussian function is characterized by its center at a mean value μ and a covariance Σ where Σ is a diagonal matrix. We define the Gaussian function as follows:

$$
G(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right),\tag{3}
$$

192 193 194 where $\mathbf{x} \in \mathbb{R}^d$ represents a 3D point in the scene, exhibiting a bell-shaped curve symmetrically distributed around the mean μ . The spread of this function in the 3D space is determined by the standard deviation σ .

195 Naively, we can formulate the reconstruction process of n Gaussians as follows:

$$
\mathbf{V} = \sum_{i=1}^{n} G(\mathbf{x}, \mu_i, \Sigma_i) \cdot I_i = \sum_{i=1}^{n} e^{-\frac{1}{2}(\mathbf{x} - \mu_i)^{\top} \Sigma_i^{-1}(\mathbf{x} - \mu_i)} \cdot I_i = \sum_{i=1}^{n} e^{-\frac{1}{2}D_i^2} \cdot I_i,
$$
 (4)

199 200 201 202 203 In this equation, I_i denotes the intensity of the *i*-th Gaussian. This intensity serves dual purposes: it represents the intensity of the voxel in the volume and also acts as the weight of the Gaussian. The term $(x - \mu)^{\top} \Sigma^{-1} (x - \mu)$ is recognized as the squared Mahalanobis distance, and we denote it as D_i^2 for the *i*-th Gaussian for brevity.

204 205 206 However, this formulation is computationally expensive, as it requires the computation of the squared Mahalanobis distance for each voxel in the volume. To address this issue, we introduce a localized Gaussian mapping technique to accelerate the reconstruction process.

207 208 209 210 211 Truncated Three-Sigma Gaussian According to the Three-Sigma rule, in Gaussian distribution, the probability of a point falling within three standard deviations of the mean is approximately 99.73% (Appendix [B\)](#page-14-0). This implies that the influence of a Gaussian on a voxel diminishes as the distance from the Gaussian center to the voxel increases. By considering only the contributions of Gaussians within a specified proximity of each voxel, we can accelerate the reconstruction process.

212 213 214 215 Specifically, for each voxel in the 3D volume, we consider a neighborhood δ around the voxel and compute the contributions of all Gaussians within this neighborhood. The contributions of all Gaussians within their neighborhoods are then added to their corresponding voxels in the volume. This process is repeated for all voxels in the volume, resulting in the final reconstructed 3D volume. The neighborhood around each voxel is centered at the Gaussian center.

216 217 218 219 220 221 222 Denote the target discretized 3D volume as $\mathbf{V} \in \mathbb{R}^{C \times H \times W}$ where C, H, and W represent the size of the three dimensions, and denote the neighborhood around *i*-th Gaussian as $\delta_i \in \mathbb{R}^{c \times h \times w \times d}$ where c, h, and w represent the size of the neighborhood, $d = 3$ represents the dimension of 3D coordinates. Note the neighborhood is centered at the Gaussian center μ_i , thus the distance from the points in δ_i to the center μ_i is **a constant tensor** for all Gaussians^{[1](#page-4-0)}, denoted as $\delta' = \delta_i - \mu_i$ with broadcasting applied, where each point p in δ_i and its corresponding point after transformation p' in δ_i' satisfies $\vec{p'}=p-\mu_i.$

223 224 Hereby the computation of the squared Mahalanobis distance D_i^2 between the voxel and the Gaussian's mean can be simplified as:

$$
D_i^2 = \delta'^{\top} \Sigma_i^{-1} \delta'. \tag{5}
$$

227 228 229 230 231 232 233 Alignment and Differentiability The computation above does not take the discretized grid into account, which is essential for the reconstruction process. The discretized 3D volume V is composed of integer coordinates, whereas μ_i is continuous. Direct discretization of μ_i to the nearest integer for indexing would render the reconstruction process non-differentiable. To address this, we compute each Gaussian's contribution at the discretized grid instead of its continuous position. We denote the δ''_i as the discretized neighborhood around the Gaussian center. The relationship between δ'_i , δ''_i , and μ_i is given by:

$$
\delta_i'' = \delta_i' - (\mu_i - \lfloor \mu_i \rfloor) = \delta_i' - \Delta \mu_i, \tag{6}
$$

235 236 237 238 239 240 where we denote $\Delta \mu_i = \mu_i - \lfloor \mu_i \rfloor$ for brevity. Each point p in δ_i and its corresponding point after transformation p' in δ''_i satisfies $p' = p - (\mu_i - \lfloor \mu_i \rfloor)$. From now on, we use subscripts to denote the tensor dimensions to represent the broadcasting operations and tensor-wised operations. For example, Equation [6](#page-4-1) will be written as $\delta''_{n,c,h,w,d} = \tilde{\delta}'_{c,h,w,d} - \Delta \mu_{n,1,1,1,d}$. Here, $\delta''_{n,c,h,w,d}$ is the tensor comprised of neighborhoods of all n Gaussians, and $\Delta \mu_{n,1,1,1,d}$ implicitly denotes the expansion of $\Delta \mu_{n,d}$ to identical dimensions for element-wise subtraction.

3.2 EFFICIENT RECONSTRUCTION

On the discretized 3D grid, the computation of the squared Mahalanobis distance tensor $D^2_{n,c,h,w}$ can be formulated as the Einstein summation:

246 247

> **248 249**

225 226

234

By combining Equations [6](#page-4-1) and [7,](#page-4-2) we decompose the large Einstein summation above into the sum of

four smaller Einstein summations:

 $D^2_{n,c,h,w} = \sum$

d

$$
D_{n,c,h,w}^{2} = \sum_{d} \delta'_{c,h,w,d} \Sigma_{n,d,d}^{-1} \delta'_{c,h,w,d} - \sum_{d} \delta'_{c,h,w,d} \Sigma_{n,d,d}^{-1} \Delta \mu_{n,1,1,d}
$$

$$
- \sum_{d} \Delta \mu_{n,1,1,d} \Sigma_{n,d,d}^{-1} \delta'_{c,h,w,d} + \sum_{d} \Delta \mu_{n,1,1,d} \Sigma_{n,d,d}^{-1} \Delta \mu_{n,1,1,d}.
$$
(8)

255 256 257

Then we can compute the contributions of all Gaussians, denoted as $\Gamma_{n,c,h,w}$, as the following:

$$
\Gamma_{n,c,h,w} = e^{-\frac{1}{2}D_{n,c,h,w}^2} \cdot I_n.
$$
\n(9)

 ${\delta''}_{n,c,h,w,d}^{\top} \Sigma_{n,d,d}^{-1} {\delta''}_{n,c,h,w,d.}$ (7)

Note that $\Gamma_{n,c,h,w}$ is the contributions of all Gaussians within their neighborhoods, and the final step is to add up all the contributions to their corresponding voxels in the volume. A direct way is to loop over each Gaussian and add its contribution to the volume as ${\bf V}[\bm{\delta}_i] \leftarrow {\bf V}[\bm{\delta}_i] + \Gamma_i.$ For acceleration, we use the parallel accumulation operation to compute the contributions of all Gaussians within their neighborhoods in parallel.

$$
\mathbf{V}_{c,h,w} = \text{parallel_accumulate}(\Gamma_{n,c,h,w}, \delta_{n,c,h,w,d}).\tag{10}
$$

¹The shape of the Gaussian function remains invariant under translation; shifting the parameter μ changes the peak's location but does not alter the overall shape of the function.

270 271 3.3 OPTIMIZATION IN MEASUREMENT DOMAIN

323

272 273 274 275 After the 3D volume is reconstructed, we transform the 3D volume to the measurement domain and directly optimize it under the supervision of the current patient's measurement. The transformation $\mathcal F$ from the 3D volume to the measurement domain is achieved through the Radon transform for CT and Fourier transform for MRI^{[2](#page-5-0)}.

$$
\hat{\mathbf{M}} = \mathcal{F}(\mathbf{V}) = \begin{cases} Radon(\mathbf{V}), & \text{for CT} \\ Fourier(\mathbf{V}), & \text{for MRI} \end{cases}
$$
\n(11)

where M is the estimated measurement. Then the optimization problem becomes to minimize the discrepancy between the estimated measurement \dot{M} and the sparse measurement \dot{M} . We penalize the discrepancy in the measurement domain by L_1 norm and Structure Similarity Index (SSIM). Besides, we add a total variation (TV) regularization term to the 3D volume to preserve the structure of the volume. The optimization problem can be formulated as:

$$
\min_{\mathbf{V}} \lambda_1 \left\| \hat{\mathbf{M}} - \mathbf{M} \right\|_1 + \lambda_2 (1 - \text{SSIM}(\hat{\mathbf{M}}, \mathbf{M})) + \lambda_3 \text{TV}(\mathbf{V}),\tag{12}
$$

where $\lambda_1 = 1$, $\lambda_2 = 500$, and $\lambda_3 = 500$ are hyperparameters to balance the three terms. For the MRI reconstruction, the measurement M and the estimated measurement M are complex-valued, and we compute the loss separately for the real and imaginary parts and sum them up. Iteratively, we update the parameters of the Gaussians to minimize the objective function. The optimization process is conducted in an end-to-end manner, and the final 3D volume is obtained after convergence.

4 MULTI-ORGAN MEDICAL IMAGE RECONSTRUCTION DATASET (MORE)

Existing datasets usually focus on a single body part or disease, which substantially hinders a more thorough and comprehensive assessment of current research on medical image reconstruction. Advanced methods including [\(Chung et al.,](#page-11-7) [2023;](#page-11-7) [Xu et al.,](#page-13-5) [2024;](#page-13-5) [Yang et al.,](#page-13-10) [2022;](#page-13-10) [Xia et al.,](#page-13-11) [2022\)](#page-13-11) usually evaluate on a single body part, such as only abdomen part in AAPM-Mayo LDCT Challenge Dataset [\(Moen et al.,](#page-12-9) [2021\)](#page-12-9), or only brain part in BRATS [\(Menze et al.,](#page-12-10) [2014\)](#page-12-10) dataset. It is difficult to conclude the effectiveness of a method based solely on the results of a single body part, and its generalization ability remains to be verified. To address this limitation, we propose the Multi-Organ Medical Image **RE**construction (**MORE**) dataset, which has the following characteristics:

- It incorporates both CT and MRI data types, and a diverse set of body parts. To be specific, MORE contains over 65,755 CT slices and 7,498 MRI slices from 173 patients, covering 15 body parts in CT scans and 5 body parts in MRI scans. Table [1](#page-6-0) presents a detailed comparison of MORE with existing medical image reconstruction datasets.
- **305 306 307 308 309 310 311 312** • MORE exhibits a rational distribution of demographics and diseases. To be specific, MORE involves a total of 173 patients and 189 examinations. Some patients underwent multiple examinations, resulting in 135 CT scans and 54 MRI scans. The median age of the participants was 52 years, ranging from 7 to 85 years. The age distribution is as follows: 0-20 years (5.4%), 21-40 years (29.5%), 41-60 years (37.2%), 61-80 years (24.0%), 81-100 years (3.9%). The gender distribution was 59.7% male and 40.3% female. MORE contains 25 types of diseases in CT and 17 types of diseases in MRI, respectively. We show the specific distribution of the CT and MRI scans in Figure [3](#page-6-1) and Figure [4,](#page-6-2) and provide some samples in Figure [6](#page-16-0) for visualization.
- **313 314 315 316** • MORE has been approved by the ethics committee of corresponding hospital, and the approval number also has been obtained^{[3](#page-5-1)}. All DICOM data has been anonymized by RSNA clinical trial processor to protect patient privacy and comply with the Helsinki declaration. We will release the dataset for public availability.
- **317 318 319 320 321 322** Currently, MORE dataset provides DICOM images and does not include the original raw measurements. This aligns with common practices in medical image reconstruction research as demonstrated by several advanced methods [\(Yang et al.,](#page-13-10) [2022;](#page-13-10) [Chung et al.,](#page-11-7) [2023;](#page-11-7) [Xu et al.,](#page-13-5) [2024\)](#page-13-5), which often rely on simulated measurements generated from image slices. In the experiments, we simulate measurements by applying the Radon transform for CT data and the Fourier transform for MRI data following previous research [\(Xu et al.,](#page-13-5) [2024;](#page-13-5) [Chung et al.,](#page-11-7) [2023\)](#page-11-7).

 2 In this paper, we only reconstruct the magnitude of the MRI image, which is real-valued.

³Due to the double-blind policy, the information of the hospital will be disclosed after the review process.

Calgary-Campinas-359 [\(Souza et al.,](#page-13-13) [2018\)](#page-13-13) 1 (brain) $42,752 \text{ MRI}$ $42,752 \text{ MRI}$ $47,752 \text{ MRI}$ $48,752 \text{ MRI}$ $49,752 \text{ MRI}$

containing 15 organs and 25 disease types.

Figure 3: Data distribution of MORE CT part, Figure 4: Data distribution of MORE MRI part, containing 5 organs and 17 disease types.

5 EXPERIMENTS

BraTS [\(Menze et al.,](#page-12-10) [2014\)](#page-12-10)

In this section, we extensively evaluate and benchmark various types of methods on both public widely used datasets and our newly proposed MORE dataset.

5.1 EXPERIMENTAL SETTINGS

362 363 364 365 366 367 368 369 Datasets We extensively benchmark various methods on both public widely used datasets and our newly proposed MORE dataset. For the public dataset, we use the widely-used AAPM-Mayo LDCT Challenge Dataset [\(Moen et al.,](#page-12-9) [2021\)](#page-12-9) for CT reconstruction, and the BRATS dataset [\(Menze](#page-12-10) [et al.,](#page-12-10) [2014\)](#page-12-10) for MRI reconstruction with those learning-based methods pretrained on the fastMRI dataset [\(Knoll et al.,](#page-12-13) [2020\)](#page-12-13) following the setting of our baseline method DiffusionMBIR [\(Chung](#page-11-7) [et al.,](#page-11-7) [2023\)](#page-11-7). We simulate the sparse-view CT reconstruction of fan-beam geometry with 60, 90, 120, and 180 views, and the MRI reconstruction by 1D uniform distribution with an acceleration factor of 2 to subsample the k-space data.

370 371 372 373 Evaluation Metrics We follow the standard practice in medical image reconstruction [\(Chung et al.,](#page-11-7) [2023;](#page-11-7) [Xu et al.,](#page-13-5) [2024;](#page-13-5) [Chen et al.,](#page-11-4) [2017\)](#page-11-4) to evaluate the performance of different methods using the Peak Signal-to-Noise Ratio (PSNR) [\(Hore & Ziou,](#page-11-14) [2010\)](#page-11-14) and the Structural Similarity Index (SSIM) [\(Wang et al.,](#page-13-14) [2004\)](#page-13-14). The detailed definitions of PSNR and SSIM are provided in Appendix [A.](#page-14-1)

374 375 376 377 Compared Methods We compare our proposde GBIR method with different types of baselines which covering representative methods to state-of-the-art methods. We choose traditional methods FBP [\(Bracewell & Riddle,](#page-11-1) [1967\)](#page-11-1) and IFFT [\(Gallagher et al.,](#page-11-2) [2008\)](#page-11-2) that widely used in clinical practice, early DLR methods REDCNN [\(Chen et al.,](#page-11-4) [2017\)](#page-11-4), AUTOMAP [\(Zhu et al.,](#page-13-1) [2018\)](#page-13-1), and the 3D Scene-based method NeRP [\(Shen et al.,](#page-13-6) [2022\)](#page-13-6) that implicitly learn the prior from the data, and

Method	T. Time (min)	T. Mem (MiB)	Inf. Time (min)	Inf. Mem (MiB)
RED-CNN (Chen et al., 2017)	221	4857	2.4	1665
AUTOMAP (Zhu et al., 2018)	33.4	9.75	≈ 0.2	49140
Score-MRI (Chung & Ye, 2022)	9833	6143	1941	16685
MCG (Chung et al., 2022)	10342	7103	3290	7392
DiffusionMBIR (Chung et al., 2023)	10342	7103	1983	16673
SWORD $(Xu et al., 2024)$	3017	16580	5094	3051
$NeRP$ (Shen et al., 2022)		0	1121	44927
GBIR (Ours)			464	34126

Table 3: SV-CT reconstruction on AAPM-Mayo LDCT dataset. Best in Bold.

410

378

392 393 394

> most advanced diffusion-based DLR methods DiffusionMBIR [\(Chung et al.,](#page-11-7) [2023\)](#page-11-7), MCG [\(Chung](#page-11-6) [et al.,](#page-11-6) [2022\)](#page-11-6), score-mri [\(Chung & Ye,](#page-11-8) [2022\)](#page-11-8), SWORD [\(Xu et al.,](#page-13-5) [2024\)](#page-13-5).

411 412 413 414 415 416 Experimental Settings As shown in Table [7,](#page-15-0) most methods, particularly DLR methods, require the entire training dataset to learn parameters. We mark these methods as requiring 'Extra Data'. For other optimization-based methods, including FBP [\(Bracewell & Riddle,](#page-11-1) [1967\)](#page-11-1), IFFT [\(Gallagher et al.,](#page-11-2) [2008\)](#page-11-2), NeRP [\(Shen et al.,](#page-13-6) [2022\)](#page-13-6), and our GBIR, we directly evaluate the performance on the test set without using any training data. All experiments are conducted on an Ubuntu server equipped with an NVIDIA RTX 6000 Ada Generation GPU with 48 GiB of memory.

417 418 419 420 Hyperparameter Setting For our proposed GBIR framework, we initialize the number of Gaussians to 150. We use the Adam optimizer with a learning rate of 3e-4 and decay to 3e-5 at the end of training. For 60-view, 90-view, 120-view, and 180-view SV-CT, we set the training iteration to 5K, 6K, and 7K, and 10K, respectively. For the CS-MRI, we set the training iteration to 3K.

421 422

5.2 SPARSE-VIEW CT ON AAPM-MAYO LDCT DATASET

423 424 425 426 427 AAPM-Mayo LDCT Challenge Dataset is widely used for Sparse-View CT reconstruction, and we follow the latest state-of-the-art method SWORD [\(Xu et al.,](#page-13-5) [2024\)](#page-13-5) to conduct the evaluation with 60-view, 90-view, 120-view, and 180-view, which is also a common setting adopted [\(Guan et al.,](#page-11-15) [2023;](#page-11-15) [Yang et al.,](#page-13-10) [2022\)](#page-13-10). The results are shown in Table [3.](#page-7-0) Our proposed GBIR outperforms all the compared methods in terms of PSNR and SSIM without bells and whistles.

428 429

430

5.3 COMPRESSED-SENSING MRI ON BRATS DATASET

431 We evaluate the performance of different methods on the BRATS dataset for CS-MRI reconstruction following the setting in [Chung et al.](#page-11-7) [\(2023\)](#page-11-7); [Chung & Ye](#page-11-8) [\(2022\)](#page-11-8). The result of DuDoRNet [\(Lahiri](#page-12-15)

458 459 460

433	Table 4: CS-MRI reconstruction on BRATS dataset. Best in Bold.							
434	Method	Extra Data	Axial		Coronal		Sagittal	
435			PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
436	RED-CNN (Chen et al., 2017)	√	33.23	0.920	29.11	0.916	28.91	0.910
437	Unet (Lee et al., 2018)	✓	37.15	0.929	31.56	0.899	30.90	0.816
438	DuDoRNet (Lahiri et al., 2023)	\checkmark	39.78	0.974	33.56	0.927	33.48	0.927
439	AUTOMAP (Zhu et al., 2018)	\checkmark	31.11	0.913	30.96	0.905	29.39	0.895
440	ScoreMRI (Chung $&$ Ye, 2022)	✓	40.38	0.968	33.97	0.925	34.02	0.928
441	DiffusionMBIR (Chung et al., 2023)	✓	41.49	0.974	37.36	0.942	37.18	0.953
442	IFFT (Gallagher et al., 2008)	\times	32.15	0.914	31.80	0.911	31.44	0.910
443	GBIR (Ours)	\times	40.40	0.973	39.64	0.969	39.45	0.968
444								

Table 5: Effectiveness of Three-Sigma Gaussian Truncation.

	PSNR	SSIM	Inference Time (h)	Space Consumption (GiB)
$11 \times 11 \times 11$	44.64	0.989	5.88	32.24
$13 \times 13 \times 13$	45.38	0.991	8.10	38.22
$15 \times 15 \times 15$	46.05	0.993	11.46	47.53
$Three-Sigma$	46.39	0.995	7.73	33.32

453 454 455 456 457 [et al.,](#page-12-15) [2023\)](#page-12-15) is sourced from [Chung et al.](#page-11-7) [\(2023\)](#page-11-7). Different from CT, MRI scans are usually conducted in three different directions, including axial, coronal, and sagittal. The results are shown in Table [4.](#page-8-0) Our proposed GBIR achieves the best performance in coronal and sagittal views, and the second-best performance in the axial view, which is only slightly lower than the best method. Besides, GBIR shows a more balanced performance across different views compared to other methods.

5.4 BENCHMARK AND FINDINGS ON MORE DATASET

461 462 463 464 465 466 We benchmark the performance of different methods on the newly proposed MORE dataset, which contains a wide range of body parts and diseases. Our benchmark include 15 body parts and 25 diseases for CT scans (Table [9](#page-18-0) to Table [23\)](#page-21-0), and 5 body parts and 17 diseases for MRI scans (Table [24](#page-21-1) to Table [28\)](#page-22-0). To the best of our knowledge, this is the first time that such a comprehensive dataset is used for evaluating medical image reconstruction methods. More than comparing the performance, we also provide some insights and findings from the benchmark on the MORE dataset.

467 468 469 470 471 472 473 *Optimization-based methods are more robust to the influence of data.*: We observe that optimizationbased methods, including FBP [\(Bracewell & Riddle,](#page-11-1) [1967\)](#page-11-1), IFFT [\(Gallagher et al.,](#page-11-2) [2008\)](#page-11-2), NeRP [\(Shen](#page-13-6) [et al.,](#page-13-6) [2022\)](#page-13-6), and our GBIR, show consistent performance across different body parts and diseases. In contrast, learning-based methods, such as REDCNN [\(Chen et al.,](#page-11-4) [2017\)](#page-11-4), AUTOMAP [\(Zhu et al.,](#page-13-1) [2018\)](#page-13-1), and score-mri [\(Chung & Ye,](#page-11-8) [2022\)](#page-11-8), show a more significant performance variation across different body parts and diseases. This indicates that optimization-based methods are more robust to the influence of data, while learning-based methods are more sensitive to the data distribution.

474 475 476 477 478 479 480 481 *A comprehensive dataset helps improve the generalization ability for learning-based methods*: Table [8](#page-17-0) and Table [23](#page-21-0) both are evaluated on the subarachnoid hemorrhage disease, but their training data are different. The former is trained on the AAPM-Mayo LDCT dataset, while the latter is trained on the MORE dataset. We observe that the learning-based methods, including REDCNN [\(Chen et al.,](#page-11-4) [2017\)](#page-11-4), AUTOMAP [\(Zhu et al.,](#page-13-1) [2018\)](#page-13-1), and score-mri [\(Chung & Ye,](#page-11-8) [2022\)](#page-11-8), show better performance when trained on the MORE dataset compared to the AAPM-Mayo LDCT dataset. This indicates that a comprehensive dataset with diverse body parts and diseases can help improve the generalization ability of learning-based methods.

482 483 484 485 *Significant performance variation across different body parts*: We observe that the performance of different methods varies significantly across different body parts and diseases. Figure [7](#page-17-1) and Figure [8](#page-17-2) show the distribution of PSNR and SSIM across different body parts and diseases for CT and MRI scans, respectively. We observe that the performance of different methods varies significantly across different body parts and diseases. For example, the performance of RED-CNN is considerably

lower on the **Emphysema** part compared to the **Ureteral Calculi** part. It is important to evaluate the performance on a diverse dataset with multiple organs to ensure the robustness of the method.

Furthermore, our GBIR method shows the best performance across different body parts and diseases on the MORE dataset, which demonstrates the effectiveness and robustness of our proposed method.

497 5.5 ABLATION STUDY AND EFFICIENCY ANALYSIS

498 499 500 501 502 503 To avoid confusion with the training time, inference time, and rendering time, here the training time refers to the time consumed for training the neural network for DLR methods, while the inference time refers to the time consumed for reconstructing the volume. Thus, NeRP [\(Shen et al.,](#page-13-6) [2022\)](#page-13-6) and our GBIR do not have training time, as they do not require any training data. The rendering time refers to the time consumed for reconstructing the volume from the Gaussians.

504 505 506 507 508 509 510 511 Computational Efficiency We provide an efficiency analysis of different methods in terms of training time, GPU memory consumption, inference time, and GPU memory consumption. The results are shown in Table [2.](#page-7-1) Our proposed GBIR achieves the best efficiency in terms of training time and GPU memory consumption, as it does not require any training data. In contrast, learning-based methods, such as RED-CNN [\(Chen et al.,](#page-11-4) [2017\)](#page-11-4), score-mri [\(Chung & Ye,](#page-11-8) [2022\)](#page-11-8), and MCG [\(Chung et al.,](#page-11-6) [2022\)](#page-11-6), require a large amount of training data and thus consume more training time and GPU memory. For inference time and GPU memory consumption, our proposed GBIR achieves better efficiency than the advanced diffusion-based methods and NeRP, which is essential for real-time applications in clinical practice.

512 513 514 515 516 Effect of Three-Sigma Truncation We evaluate the effect of Three-Sigma truncation in the GBIR framework on AAPM-Mayo LDCT dataset 180-view SV-CT. We substitute the Three-Sigma truncation with different size of cuboid box, including $11 \times 11 \times 11$, $13 \times 13 \times 13$, and $15 \times 15 \times 15$. The results are shown in Table [5.](#page-8-1)

517 518 519 520 Effect of Efficient Reconstruction In Table 6 , we compare the rendering time and space consumption of direct reconstruction, non-parallel reconstruction, and efficient reconstruction. Specifically, direct reconstruction refers to the reconstruction with formula [7,](#page-4-2) non-parallel reconstruction refers to the reconstruction process without parallel computation.

- 6 DISCUSSION
- **522 523 524**

521

486

> Limitations It should be noted that although our proposed GBIR is faster than the advanced methods, it is still slower than the traditional DLR methods. In Table [2,](#page-7-1) the inference time of RED-CNN and AUTOMAP is much shorter than all other advanced methods. Nevertheless, their performance is significantly lower. This trade-off between speed and performance is a common challenge in medical image reconstruction, and it remains an open problem for future research.

529 530 531 532 533 534 Visualization We include a visualization of the reconstruction process in Appendix [5](#page-16-1) to provide a better understanding of the reconstruction process of our proposed GBIR method. Iteration by iteration, the reconstruction becomes clearer and more detailed. We also provide histograms of PSNR on the MORE dataset of 60-view SV-CT and axial CS-MRI in Figure [7](#page-17-1) and Figure [8,](#page-17-2) respectively. The histograms show the distribution of PSNR across different body parts and diseases, providing insights into the performance of different methods on the MORE dataset.

535 536 537 538 539 Conclusion In this paper, we present a novel Gaussian-based image reconstruction method, GBIR, which achieves state-of-the-art performance on both public widely used datasets and our newly proposed MORE dataset. Our proposed method is efficient and robust, making it suitable for tailored reconstruction of different body parts and diseases. We also provide a comprehensive benchmark on the MORE dataset, which includes a wide range of body parts and diseases, to facilitate further research in medical image reconstruction.

594 595 REFERENCES

Appendix

A EVALUATION METRICS

759 760 761

776 777

781 782 783

787

756 757 758

In this section, we describe the evaluation metrics used in the paper.

A.1 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

The PSNR [\(Hore & Ziou,](#page-11-14) [2010\)](#page-11-14) is a widely used metric to evaluate the quality of the reconstructed images. It is defined as:

$$
PSNR(x, y) = 10 \cdot \log_{10} \left(\frac{\text{MAX}^2}{\text{MSE}(x, y)} \right),\tag{13}
$$

where MAX is the maximum possible pixel value of the image and $MSE(x, y)$ is the mean squared error between the original and reconstructed images.

A.2 STRUCTURAL SIMILARITY INDEX (SSIM)

774 775 The SSIM [\(Wang et al.,](#page-13-14) [2004\)](#page-13-14) is a metric that measures the similarity between two images. It is defined as:

$$
SSIM(x, y) = \frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)},
$$
\n(14)

778 779 780 where μ_x and μ_y are the mean values of the images x and y, σ_x^2 and σ_y^2 are the variances of the images, σ_{xy} is the covariance of the images, and C_1 and C_2 are constants to stabilize the division with weak denominator.

B THREE-SIGMA RULE

784 785 786 The *Three-Sigma rule* states that approximately 99.73% of the data in a Gaussian distribution lies within three standard deviations of the mean. This result is derived from the properties of the Gaussian (normal) distribution.

788 789 For a random variable X that follows a Gaussian distribution with mean μ and standard deviation σ , the probability density function (PDF) is given by:

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

To find the probability that X lies within three standard deviations of the mean, i.e., within the interval $[\mu - 3\sigma, \mu + 3\sigma]$, we compute the following probability:

$$
P(\mu - 3\sigma \le X \le \mu + 3\sigma) = \int_{\mu - 3\sigma}^{\mu + 3\sigma} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) dx
$$

To simplify the integral, we standardize the normal distribution by defining a standard normal variable z as:

$$
z = \frac{x - \mu}{\sigma}
$$

805 806 807 This transforms the limits of the integral from $[\mu - 3\sigma, \mu + 3\sigma]$ to $[-3, 3]$. The PDF of the standard normal distribution is then:

$$
f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)
$$

802 803 804

Thus, the probability becomes:

$$
P(-3 \le z \le 3) = \int_{-3}^{3} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz
$$

This integral does not have a closed-form solution but can be numerically approximated. Using standard numerical methods or precomputed values from the cumulative distribution function (CDF) of the standard normal distribution, the result of this integral is approximately:

$$
P(-3 \le z \le 3) \approx 0.9973
$$

This confirms that approximately 99.73% of the data in a Gaussian distribution lies within three standard deviations from the mean.

The contribution of a Gaussian distribution decreases rapidly as the distance from its mean increases. Therefore, in medical image reconstruction, truncating the Gaussian distribution at three standard deviations from the mean can remove the negligible tail values while retaining the majority of the distribution.

C VISUALIZATION

Figure [5](#page-16-1) shows the gradual convergence of the GBIR framework for a brain CT reconstruction. The 3D volume is gradually reconstructed from the initial random noise to the final clear structure. The convergence process is conducted in an end-to-end manner, and the final 3D volume is obtained after convergence.

D DATA ACQUISITION AND PROCESSING

857 858 859 860 861 Staff Configuration All CT and MRI scans were collected and evaluated by three experienced radiologists. The radiologists were responsible for reviewing the scans and identifying any abnormalities or diseases. Among the three radiologists, two were senior radiologists with over 10 years of experience, and one was a junior radiologist with 5 years of experience. The radiologists worked together to ensure the accuracy and consistency of the data.

862 863 Data Selection The CT and MRI scans were selected based on the following criteria: (1) the scans were of high quality, with minimal artifacts or noise, (2) the scans covered a wide range of body parts and conditions, and (3) the scans were representative of the clinical cases encountered in practice.

16

Figure 5: Iterative reconstruction visualization of our GBIR.

Figure 6: Examples of MORE dataset, containing CT and MRI scans from 4 different organs.

In practice, the radiologists first categorized the scans based on the body part imaged and the condition depicted, and then select typical cases from the corresponding parts, including internal and external medicine and acute and chronic cases.

 Scan Parameters Each individual sample selects the window width and window position that are commonly displayed for the corresponding disease type. Samples of two slice thicknesses (1mm and 3mm) are chosen for CT scans, and two echo times (TE) are chosen for MRI scans. The MRI scans are collected using a 1.5T MRI scanner.

 Data processing The image data is provided and easy to use. Slices within the same sequence can be identified with file names, and each slice is stored as a 2D array of pixel intensities without extra transformation. Intensity values depend on the type of scan (CT or MRI) and the scanning

Figure 7: Performance of various methods on different organs within our MORE dataset, evaluated by the PSNR metric on 60 view SV-CT.

Figure 8: Performance of various methods on different organs within our MORE dataset, evaluated by the PSNR metric on axial CS-MRI.

parameters. For CT scans, the pixel intensities represent Hounsfield units, while for MRI scans, the pixel intensities represent signal intensities. To facilitate other researchers' use, we also provide PNG images for each DICOM file which can be easily visualized.

Table 8: SV-CT reconstruction of MORE dataset Subarachnoid Hemorrhage trained on AAPM-Mayo LDCT Dataset. Best in Bold.

962	Mayo LDCT Dataset. Dest in Duiu.									
963	Method	Extra Data			180-view 120-view		90-view		60-view	
964									PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM	
965	RED-CNN (Chen et al., 2017)								28.03 0.818 27.76 0.795 27.43 0.792 26.40 0.787	
966	MCG (Chung et al., 2022)	\checkmark							35.85 0.874 35.90 0.875 35.78 0.870 35.59 0.869	
967	DiffusionMBIR (Chung et al., 2023)	\checkmark							36.65 0.962 36.59 0.962 36.57 0.963 36.02 0.961	
968	SWORD $(Xu et al., 2024)$	\checkmark							38.03 0.971 37.36 0.954 32.42 0.885 28.83 0.813	
969	FBP (Bracewell & Riddle, 1967)	\times							21.31 0.440 20.84 0.423 19.22 0.404 17.93 0.361	
970	NeRP (Shen et al., 2022)	\times							23.72 0.760 23.34 0.760 23.84 0.800 24.04 0.791	
971	GBIR (Ours)	\times							43.29 0.993 42.74 0.993 41.98 0.992 41.02 0.992	

973 974	Table 9: SV-CT reconstruction on Emphysema . Best in Bold.									
975	Method	Extra Data	180 -view		120 -view		90-view		60-view	
976									PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM	
977	RED-CNN (Chen et al., 2017)								29.58 0.714 28.44 0.644 27.06 0.623 27.27 0.588	
978	MCG (Chung et al., 2022)	\checkmark	32.72						0.820 32.84 0.821 34.47 0.843 32.90 0.820	
979	DiffusionMBIR (Chung et al., 2023)	\checkmark							32.58 0.933 32.64 0.936 32.45 0.932 32.24 0.932	
980	SWORD (Xu et al., 2024)								35.38 0.879 34.52 0.864 33.78 0.849 32.30 0.827	
981	FBP (Bracewell & Riddle, 1967)	\times							18.55 0.365 16.29 0.293 14.77 0.248 12.03 0.193	
982	NeRP (Shen et al., 2022)	\times	25.41						0.744 25.21 0.735 25.40 0.745 25.39 0.745	
983 001	GBIR (Ours)	\times							39.47 0.950 39.04 0.946 38.42 0.941 38.04 0.937	

984

985 986 987

Table 10: SV-CT reconstruction on Ureteral Calculi. Best in Bold.

988	Table 10: SV-CT reconstruction on Ureteral Calculi. Best in Bold.									
989	Method			180 -view	120 -view		90-view		60-view	
990		Extra Data PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM								
991	RED-CNN (Chen et al., 2017)								37.04 0.901 35.63 0.913 32.07 0.759 31.46 0.844	
992	MCG (Chung et al., 2022)	\checkmark							37.94 0.901 37.99 0.901 38.04 0.902 38.05 0.902	
993	DiffusionMBIR (Chung et al., 2023)	\checkmark							38.37 0.968 38.24 0.967 38.13 0.967 38.90 0.966	
994	SWORD $(Xu et al., 2024)$	\checkmark							42.35 0.973 40.93 0.967 39.42 0.960 37.63 0.947	
995	FBP (Bracewell & Riddle, 1967)	\times	23.09						0.515 19.42 0.462 16.89 0.416 14.02 0.355	
996	NeRP (Shen et al., 2022)	\times	26.91						0.801 26.68 0.789 26.95 0.802 26.66 0.785	
997	GBIR (Ours)	\times	43.43						0.982 42.24 0.980 40.82 0.976 40.11 0.975	

Table 11: SV-CT reconstruction on Rib Fracture. Best in Bold.

Method	Extra Data		180 -view	120 -view		90-view	60-view	
		PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM						
RED-CNN (Chen et al., 2017)				29.61 0.707 28.97 0.682 27.94 0.658 27.97 0.585				
MCG (Chung et al., 2022)	\checkmark			34.81 0.851 34.94 0.852 34.96 0.853 35.07 0.854				
DiffusionMBIR (Chung et al., 2023)	\checkmark			34.64 0.950 34.64 0.952 34.54 0.951 34.35 0.950				
SWORD $(Xu et al., 2024)$	\checkmark			36.51 0.877 35.90 0.864 35.53 0.855 34.76 0.838				
FBP (Bracewell & Riddle, 1967)	\times			19.33 0.388 16.64 0.324 14.76 0.280 12.69 0.230				
NeRP (Shen et al., 2022)	\times			25.77 0.778 25.10 0.744 25.63 0.771 25.60 0.769				
GBIR (Ours)	\times			42.43 0.972 41.05 0.962 40.01 0.953 39.43 0.948				

1012 1013 1014 1015

1026

1040 1041

Table 14: SV-CT reconstruction on Cerebral Hemorrhage. Best in Bold.

1042	Table 14. SV-CT reconstruction on Cerebial Hemorinage. Descrit Dolu.										
1043	Method				180 -view 120 -view		90-view		60-view		
1044		Extra Data PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM									
1045	RED-CNN (Chen et al., 2017)								35.47 0.895 33.29 0.864 30.46 0.786 29.26 0.766		
1046	MCG (Chung et al., 2022)	\checkmark							39.14 0.898 39.23 0.899 39.32 0.899 39.31 0.899		
1047	DiffusionMBIR (Chung et al., 2023)	\checkmark							39.04 0.969 39.29 0.973 39.05 0.971 38.53 0.969		
1048	SWORD $(Xu et al., 2024)$	\checkmark							34.90 0.742 33.50 0.740 31.86 0.737 29.57 0.732		
1049	FBP (Bracewell & Riddle, 1967)	\times							24.13 0.526 21.54 0.490 19.70 0.460 17.52 0.413		
1050	NeRP (Shen et al., 2022)	\times							25.38 0.789 25.98 0.804 25.02 0.760 24.23 0.764		
1051	GBIR (Ours)	\times							43.71 0.984 42.94 0.981 41.68 0.978 40.56 0.974		

Table 15: SV-CT reconstruction on Kidney Stones. Best in Bold.

Method		Extra Data 180-view 120-view 90-view 60-view PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM						
RED-CNN (Chen et al., 2017)				36.65 0.882 34.70 0.909 31.98 0.802 30.89 0.798				
MCG (Chung et al., 2022)	\checkmark			38.16 0.909 38.43 0.911 38.49 0.912 38.67 0.913				
DiffusionMBIR (Chung et al., 2023)	\checkmark			28.84 0.964 38.92 0.966 38.79 0.964 38.54 0.964				
SWORD $(Xu et al., 2024)$	✓			43.58 0.980 42.27 0.976 40.95 0.971 39.51 0.961				
FBP (Bracewell & Riddle, 1967)	\times			22.88 0.483 19.39 0.439 16.27 0.398 13.52 0.341				
NeRP (Shen et al., 2022)	\times			26.17 0.767 26.25 0.773 26.11 0.772 26.16 0.776				
GBIR (Ours)	\times	44.37		0.988 43.45 0.987 42.99 0.986 41.20 0.982				

Table 16: SV-CT reconstruction on Fatty Liver. Best in Bold.

Table 17: SV-CT reconstruction on Gallbladder Stones . Best in Bold.							
Method	Extra Data		180 -view	120-view	90-view		60-view
						PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM	
RED-CNN (Chen et al., 2017)				36.15 0.892 35.59 0.913 32.41 0.797		31.80 0.868	
MCG (Chung et al., 2022)	✓			38.13 0.897 38.47 0.901 38.01 0.897		37.95 0.899	
DiffusionMBIR (Chung et al., 2023)	√			38.20 0.966 38.22 0.966 38.19 0.967		37.86 0.965	
SWORD $(Xu et al., 2024)$						43.66 0.974 42.34 0.969 40.56 0.961 37.64 0.943	
FBP (Bracewell & Riddle, 1967)	\times			23.94 0.548 20.27 0.494 17.46 0.445		14.68 0.380	
NeRP (Shen et al., 2022)	\times	27.03	0.809		27.12 0.814 26.81 0.799	26.86 0.806	
GBIR (Ours)	\times	43.73				0.985 42.91 0.984 42.15 0.982 40.55 0.977	

1093 1094

Table 18: SV-CT reconstruction on Hepatic Cyst. Best in Bold.

1096	Table 16. SV-CT reconstruction on Hepatic Cyst . Best in Bold.								
1097	Method			Extra Data 180-view 120-view 90-view 60-view PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM					
1098									
1099	RED-CNN (Chen et al., 2017)							36.74 0.930 35.52 0.905 31.33 0.791 33.36 0.854	
1100	MCG (Chung et al., 2022)	\checkmark						37.87 0.891 37.91 0.891 37.94 0.891 37.94 0.891	
1101	DiffusionMBIR (Chung et al., 2023)	\checkmark						37.92 0.955 38.02 0.957 37.91 0.956 37.50 0.952	
1102	SWORD $(Xu et al., 2024)$	\checkmark						42.84 0.973 41.42 0.967 39.81 0.960 37.12 0.946	
1103	FBP (Bracewell & Riddle, 1967)	\times						25.26 0.603 19.94 0.525 17.27 0.475 14.26 0.416	
1104	NeRP (Shen et al., 2022)	\times						26.65 0.808 26.57 0.804 26.65 0.808 26.39 0.799	
1105	GBIR (Ours)	\times						42.96 0.981 42.29 0.980 41.47 0.977 39.12 0.971	

Table 19: SV-CT reconstruction on Elbow Fracture. Best in Bold.

Table 19. SV-CT reconstruction on Eidow Fracture. Dest in Dolu.						
Method	Extra Data			180 -view 120 -view 90 -view	60-view	
					PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM	
RED-CNN (Chen et al., 2017)					34.41 0.847 34.05 0.789 27.42 0.777 29.82 0.732	
MCG (Chung et al., 2022)	\checkmark				37.20 0.857 37.13 0.858 37.08 0.856 36.80 0.852	
DiffusionMBIR (Chung et al., 2023)	\checkmark				37.06 0.932 36.93 0.930 36.89 0.931 36.75 0.930	
SWORD $(Xu et al., 2024)$	\checkmark				42.83 0.959 38.67 0.917 37.39 0.901 34.71 0.865	
FBP (Bracewell & Riddle, 1967)	\times				26.15 0.459 22.32 0.382 19.93 0.337 16.95 0.279	
NeRP (Shen et al., 2022)	\times				28.14 0.826 28.31 0.827 28.06 0.823 28.18 0.835	
GBIR (Ours)	\times				42.82 0.961 41.94 0.954 41.19 0.949 38.97 0.978	

1119 1120 1121

Table 20: SV-CT reconstruction on Spinal Fracture. Best in Bold.

1124	Method	Extra Data	180 -view		120 -view		90-view		60 -view	
1125					PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM					
1126	RED-CNN (Chen et al., 2017)				23.86 0.866 23.94 0.841 23.92 0.832 23.70 0.810					
1127	MCG (Chung et al., 2022)				38.52 0.913 38.52 0.913 38.48 0.912 38.40 0.911					
1128	DiffusionMBIR (Chung et al., 2023)	\checkmark			39.34 0.973 39.27 0.973 39.08 0.972 38.49 0.969					
1129	SWORD $(Xu et al., 2024)$				40.94 0.946 38.02 0.930 34.68 0.901 28.85 0.834					
1130	FBP (Bracewell & Riddle, 1967)	\times	16.41		0.793 15.20 0.766 14.73 0.741 13.96 0.698					
1131	NeRP (Shen et al., 2022)	\times	28.10		0.847 26.24 0.779 27.95 0.840 26.48 0.790					
1132 1133	GBIR (Ours)	\times			41.23 0.981 39.70 0.977 38.41 0.971 37.68 0.968					

1134

1148 1149

1150

Table 22: SV-CT reconstruction on Wrist Fracture. Best in Bold.

Method Extra Data PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 1152	
1153 RED-CNN (Chen et al., 2017) 36.61 0.810 34.73 0.825 31.73 0.870 30.78 0.744	
1154 MCG (Chung et al., 2022) 37.14 0.887 37.53 0.889 37.65 0.890 37.64 0.889 \checkmark	
1155 DiffusionMBIR (Chung et al., 2023) 36.91 0.953 36.94 0.954 36.73 0.952 36.31 0.950 \checkmark	
1156 SWORD $(Xu et al., 2024)$ 36.74 0.903 33.91 0.874 31.57 0.832 28.91 0.766 ✓	
1157 FBP (Bracewell & Riddle, 1967) 21.35 0.231 17.95 0.197 15.69 0.174 12.96 0.146 \times	
1158 NeRP (Shen et al., 2022) 29.55 0.893 28.77 0.891 29.62 0.897 29.56 0.893 \times	
1159 GBIR (Ours) 40.28 0.984 39.71 0.983 38.89 0.976 37.78 0.973 \times .	

1160 1161

1162

1163

1164

Table 23: SV-CT reconstruction on Subarachnoid Hemorrhage. Best in Bold.

Method	Extra Data					180-view 120-view 90-view 60-view PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM				
RED-CNN (Chen et al., 2017)				29.52 0.874 29.65 0.877 29.55 0.877 29.42 0.863						
MCG (Chung et al., 2022)	\checkmark			38.78 0.908 38.87 0.909 38.81 0.908 38.79 0.908						
DiffusionMBIR (Chung et al., 2023)	\checkmark			39.46 0.975 39.38 0.975 39.20 0.974 38.70 0.973						
SWORD $(Xu et al., 2024)$				42.54 0.965 39.60 0.955 36.71 0.938 31.84 0.895						
FBP (Bracewell & Riddle, 1967)	\times			21.31 0.440 20.84 0.423 19.22 0.404 17.93 0.361						
NeRP (Shen et al., 2022)	\times			23.72 0.760 23.34 0.760 23.84 0.800 24.04 0.791						
GBIR (Ours)	\times			43.29 0.993 42.74 0.993 41.98 0.992 41.02 0.992						

Table 26: CS-MRI reconstruction on Shoulder. Best in Bold.

Method	Extra Data		Axial	Coronal		Sagittal		
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
RED-CNN (Chen et al., 2017)		27.95	0.724	27.41	0.769	29.64	0.746	
AUTOMAP (Zhu et al., 2018)	√	21.81	0.657	23.83	0.622	21.18	0.663	
ScoreMRI (Chung & Ye, 2022)	✓	29.12	0.763	30.89	0.873	30.55	0.814	
DiffusionMBIR (Chung et al., 2023)	\checkmark	30.01	0.781	27.90	0.788	30.74	0.863	
IFFT (Gallagher et al., 2008)	\times	28.66	0.733	27.49	0.693	28.83	0.745	
GBIR (Ours)	\times	32.64	0.730	31.71	0.868	33.54	0.919	

Method Extra Data Axial Coronal Sagittal PSNR SSIM PSNR SSIM PSNR SSIM RED-CNN [\(Chen et al.,](#page-11-4) [2017\)](#page-11-4) \checkmark 32.98 0.786 30.29 0.862 27.86 0.822 AUTOMAP [\(Zhu et al.,](#page-13-1) [2018\)](#page-13-1) \checkmark 24.07 0.818 22.31 0.667 18.22 0.654 ScoreMRI [\(Chung & Ye,](#page-11-8) [2022\)](#page-11-8) \checkmark 30.75 0.623 **33.18** 0.847 **31.46** 0.780 DiffusionMBIR [\(Chung et al.,](#page-11-7) [2023\)](#page-11-7) \checkmark 27.63 0.617 29.46 0.813 23.94 0.760 IFFT [\(Gallagher et al.,](#page-11-2) [2008\)](#page-11-2) × 29.98 0.827 26.30 0.790 20.48 0.713 GBIR (Ours) \times 34.11 0.753 29.70 0.826 27.13 0.857

Table 27: CS-MRI reconstruction on Knee. Best in Bold.

