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Abstract

This research presents an innovative method for001
representing nodes in graph neural networks002
(GNNs) using human-readable text in natural003
language, diverging from the traditional numer-004
ical embeddings. By employing a large lan-005
guage model (LLM) as a projector, we train006
GNNs to aggregate information from neigh-007
boring nodes and update node representations008
iteratively. Our experiments on the MovieLens009
dataset, widely used for recommendation tasks,010
demonstrate that human-readable representa-011
tions effectively capture useful information for012
recommendations. This suggests that LLMs013
can successfully aggregate neighborhood infor-014
mation in a graph. Furthermore, fine-tuning015
the LLMs can improve their ability to gener-016
ate more application-specific human-readable017
representations. This technique not only fa-018
cilitates the incorporation of world knowledge019
into GNNs but also enhances their interpretabil-020
ity and allows for human intervention in their021
behavior. Our approach shows significant po-022
tential for making graph neural networks more023
understandable and controllable.024

1 Introduction025

Graph neural networks (GNNs) show effectiveness026

in many applications in the area of natural language027

processing and information retrieval (Wang et al.,028

2021; Wu et al., 2020; Fang et al., 2020). One of the029

key advantages of GNNs is their ability to exploit030

the relational structure in data, effectively capturing031

dependencies and relationships between entities. In032

NLP, this is extremely beneficial for tasks like se-033

mantic role labeling, entity recognition, relation034

extraction, and question answering, as GNNs can035

model the syntactic and semantic relationships be-036

tween words and phrases, leading to richer contex-037

tual representations. In recommendation systems,038

GNNs excel by taking into account the complex in-039

teractions between users and items. For instance, in040

social network-based recommendations, GNNs can041

exploit the connections and interactions between 042

users to provide more personalized and contextu- 043

ally relevant recommendations (Wu et al., 2022; 044

Gao et al., 2022). Additionally, GNNs’ capacity to 045

aggregate information from neighbors in the graph 046

allows for better handling of sparse data, which is 047

a common challenge in recommendation systems. 048

By leveraging the structural information inherent 049

in data, GNNs offer enhanced performance and 050

insights in tasks where relationships are key. 051

GNNs are adept at learning nuanced representa- 052

tions of nodes and edges within graph-structured 053

data. Initially, each node is characterized by a 054

feature vector, which could be innate attributes or 055

embeddings. Throughout the GNN’s processing, 056

these representations are refined via an aggregation 057

mechanism, typically employing message-passing 058

techniques. Specifically, a node’s updated repre- 059

sentation is derived from a combination of its an- 060

tecedent representation and the representations of 061

its adjacent nodes. As the iterations progress, the 062

GNN constructs sophisticated representations of 063

nodes and edges, encapsulating not only the fea- 064

tures but also the underlying structure of the graph. 065

These representations are instrumental for an array 066

of downstream applications such as node classifi- 067

cation, link prediction, and graph classification. 068

This work introduces a novel approach for rep- 069

resenting nodes in GNNs through human-readable 070

text, as opposed to the conventional numerical 071

embeddings. Utilizing a large language model 072

(LLM) for information aggregation and node up- 073

dates, this method takes advantage of LLM’s nat- 074

ural language processing capabilities (Thoppilan 075

et al., 2022; Shuster et al., 2022; OpenAI, 2023). 076

Specifically, each node is represented by a descrip- 077

tion in natural language (e.g., English), and through 078

the synergy between GNN and LLM, task-oriented 079

descriptions for nodes will be updated during train- 080

ing. We conducted experiments using the Movie- 081

Lens dataset (Harper and Konstan, 2015a), known 082
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for its abundant textual metadata, and showed that083

incorporating human-readable text elevates the net-084

work’s interpretability and accessibility, facilitat-085

ing deeper analysis by domain experts (Yuan et al.,086

2022).087

Furthermore, the inclusion of human-readable088

text enables the incorporation of expert insights089

and fine-tuning, which proves invaluable in sce-090

narios where compliance with ethical or business091

standards is paramount. This methodology holds092

significant potential in recommendation systems,093

where transparency is essential for earning user094

trust (Chen et al., 2022; Afchar et al., 2022). By095

understanding and having the ability to modify the096

network’s decisions, we can achieve stronger and097

more dependable recommendations.098

By employing human-readable text for node rep-099

resentation in graph neural networks, we enhance100

both the interpretability and manageability of these101

networks, laying the groundwork for the develop-102

ment of more responsible and transparent intelli-103

gent systems. Our contributions are three-fold as104

follows.105

• The introduction of human-readable text as106

node representations in GNNs facilitates a107

more intuitive understanding of the network,108

enabling non-experts to interpret its structure109

and behavior more easily.110

• By allowing for the integration of expert111

knowledge, this approach ensures that the net-112

work can be fine-tuned according to domain-113

specific standards or ethical considerations,114

making it adaptable for a wide range of appli-115

cations.116

• Through the cooperation between GNNs and117

LLMs, the method provides richer, task-118

oriented descriptions for nodes, which could119

lead to improved accuracy and performance120

in tasks such as recommendation systems, by121

harnessing the contextual information embed-122

ded in natural language.123

2 Related Work124

2.1 LLMs and GNNs125

Recent studies have shown significant interest in126

integrating large language models (LLMs) with127

graph data. For instance, TAPE (He et al., 2024)128

uses LLMs to capture textual information as fea-129

tures, enriching graph data with semantic context.130

GraphAdapter (Huang et al., 2024) addresses text- 131

attributed graphs (TAGs) by modeling textual at- 132

tributes with LLMs, enhancing graph represen- 133

tations. GraphLLM (Chai et al., 2023) converts 134

graphs into text, enabling LLMs to make predic- 135

tions based on this transformed data, thus leverag- 136

ing their language understanding capabilities. 137

Chen et al. (Chen et al., 2024) provide a com- 138

prehensive survey of LLM performance on graphs, 139

identifying two main roles: enhancers, which im- 140

prove input data quality by adding contextual in- 141

formation, and predictors, which directly generate 142

outputs from graph data. 143

In contrast, our approach employs LLMs as both 144

enhancers and projectors in training graph neu- 145

ral networks (GNNs). We utilize LLMs to ag- 146

gregate information from neighboring nodes and 147

update node representations iteratively, capturing 148

rich semantic information. This method not only 149

enhances the integration of world knowledge into 150

GNNs but also improves interpretability and allows 151

for human intervention. Our research contributes 152

a novel method for leveraging LLMs’ strengths, 153

making GNNs more understandable, controllable, 154

and effective for complex tasks. 155

2.2 LLMs for Recommendation Systems 156

With the advancement of large language models 157

(LLMs), many recommendation system studies 158

have utilized them to enhance item information. 159

For example, IDGenRec (Tan et al., 2024) pro- 160

poses assigning each item a unique, semantically 161

rich textual ID. Acharya et al. (2023) leverage 162

LLMs to produce comprehensive item descrip- 163

tions, thereby enriching recommendations with 164

augmented knowledge. 165

In contrast to previous studies, our approach with 166

LLMs not only generates beneficial item informa- 167

tion for recommendation tasks but also produces 168

user information. Additionally, we design LLMs to 169

function as aggregation functions in a graph neural 170

network (GNN) model, ensuring that the generated 171

content implicitly contains graph structure informa- 172

tion. This dual role enhances the recommendation 173

system by integrating detailed, semantically rich 174

descriptions of both items and users, while also cap- 175

turing the intricate relationships within the graph 176

structure, leading to more accurate and contextually 177

aware recommendations. 178
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Figure 1: Overview of our approach. The upper part shows the process of the training stage, and the bottom part
shows the inference stage.

3 Methodology179

Figure 1 illustrates the training and inference stages180

of our approach in a recommendation scenario. The181

system is based on a bipartite graph consisting of182

user nodes, ui where i = {1, . . . , n}, and item183

nodes, oj where j = {1, . . . ,m}.184

The initial text representations of each user node185

and item node are denoted as T t−1
ui

and T t−1
oj , re-186

spectively. Additionally, Pui and Poj represent the187

prompts for each user and item node.188

After applying the LLM t times, we obtain up-189

dated text representations, T t
ui

and T t
oj . The recom-190

mendation task involves predicting a user’s prefer-191

ence score for an item based on their interaction.192

Therefore, our model is trained to measure the pref-193

erence score for an arbitrary user-item pair (ui, oj).194

3.1 GNN with Human-Readable195

Representation196

In general terms, a gated graph neural network197

can be represented as G = (V,E), where V =198

{v1, ..., v|V |} constitutes a set of nodes, encom-199

passing n nodes in total. The edge set, denoted as200

E = (vi, vj), vi, vj ∈ V , signifies the interactions201

between the nodes, with an edge existing between202

nodes vi and vj if they interact. As the network203

progresses through its epochs, the representation of 204

node vi evolves. During the t-th epoch, this repre- 205

sentation, denoted as hti, is a d-dimensional vector 206

in Rd. It undergoes an update by aggregating infor- 207

mation from its neighboring nodes, represented by 208

Ni. This update is formalized by Equation 1: 209

hti = σ

[ht−1
i ;

∑
j∈Ni

ai,jWht−1
j ]

 (1) 210

Here, σ denotes an activation function such as 211

ReLU, ai,j represents the weight associated with 212

the edge between node vi and its neighbor vj , and 213

W ∈ Rd×d is a weight matrix. The matrix W is 214

subject to training and is learned during the training 215

phase, while the edge weights ai,j can either be pre- 216

assigned or learned during training as well. 217

In this research, our objective is to substitute 218

the d-dimensional hidden representation of node 219

vi, hti, with a human-readable representation writ- 220

ten in a natural language such as English. For the 221

recommendation task, the overt representation of 222

a user node, denoted by Tui , takes the form of an 223

English description consisting of up to l tokens. 224

Similarly, the overt representation of an item node 225

oj , denoted by Toj , also takes the form of an En- 226

3



glish description consisting of up to l tokens. This227

representation is derived as per Equation 2:228

T t
ui

= Σj ∈ Ni(ai,j , T
t−1
oj )

T t
oj = Σi ∈ Nj(ai,j , T

t−1
ui

)
(2)229

where Σ represents a conditional generative model230

tasked with formulating a description for user node231

ui or item node oj , based on the descriptions and232

weights associated with all of ui’s or oj’s neighbor-233

ing nodes. It is essential to note that in our model,234

either ui or oj is incorporated into its own neigh-235

borhood set Ni or Nj . This inclusion ensures that236

the prior representation T t
ui

of node ui and T t
oj of237

node ij are also considered during the generation of238

the updated representation, with their significance239

being modulated by the weight ai,j .240

When we employ this GNN to a specific target241

task such as link prediction, the relation between242

the user ui and the item oj can be determined by243

using Equation 3.244

ŷ = argmax
y

P (y|T t
ui
, T t

oj ) (3)245

Since both T t
ui

and T t
oj are descriptions in a nat-246

ural language, pre-trained text encoders such as247

BERT (Devlin et al., 2019) and RoBERTa (Liu248

et al., 2019) can be employed as ϕ(T t
ui
, T t

oj ) to249

learn to predict the relation between two nodes.250

3.2 Training of Our GNN Model251

Our special GNN model with human readable rep-252

resentation consists of four steps in each training253

iteration:254

1. Large Language Model Update: With the255

updated prediction model, we fine-tune the256

large language model (LLM) to align it with257

the downstream target task.258

2. Graph Representation Update: We use the259

LLM as a projector to aggregate neighboring260

information on the graph, thereby updating261

the overt representation of each node.262

3. Prediction Model Update: With the updated263

node representations, we fine-tune the predic-264

tion model ϕ(·, ·) according to the target task.265

4. Neighboring Weight Update: Finally, we266

update the neighboring weight ai,j for every267

pair of nodes in the graph.268

The details of these steps are given in the following269

subsections.270

3.3 Large Language Model Update 271

In this step, we generate two different sets of re- 272

sponses from the same set of prompts through 273

LLM, as shown in Figure 1, for the user repre- 274

sentation T t
ui

and the item representation T t
oj . The 275

prompt template is given in Table 1. 276

We transform the known pairs, (ui, oj), into 277

four combinations, (T t−1
ui

, T t−1
oj ), (T t−1

ui
, T t

oj ), 278

(T t
ui
, T t−1

oj ), and (T t
ui
, T t

oj ). Using the prediction 279

model from the previous epoch, we make predic- 280

tions for these four combinations. We then compare 281

the predicted results with the actual targets, consid- 282

ering the combinations with smaller differences as 283

better matches for the pairs. Finally, after averag- 284

ing the results from multiple pairs, we identify the 285

better and worse responses for each user nodes and 286

item nodes. 287

After producing better and worse responses, we 288

fine-tune the LLM through Kahneman-Tversky op- 289

timization (KTO) (Ethayarajh et al., 2024), which 290

is reportedly more stable than reinforcement learn- 291

ing from human feedback (RLHF) (Christiano 292

et al., 2017) and direct preference optimization 293

(DPO) (Rafailov et al., 2024). This makes the re- 294

sponse results of LLM more consistent with the 295

prediction needs of our downstream target tasks. 296

3.4 Graph Representation Update 297

In this study, we employ the updated LLM as the 298

conditional generative model for producing overt 299

representation of each node. 300

Taking the scenario of recommendation, the task 301

of is to predict the score of an item for a user. In 302

the GNN, a node is either an item or a user. The 303

description of an item node can be initialized with 304

the textual information about the item such as its 305

title, description, price, social network comments, 306

and so on. Similarly, the description of a user can 307

be initialized with their age, gender, occupation, 308

location, and so on. 309

Prompting plays an important role in asking 310

LLMs for sophisticated NLP tasks. Table 1 shows 311

the prompt templates we employ to generate one- 312

hop representations of both items and users. The 313

prompts for two-hop representation can be eas- 314

ily extended from the one-hop ones by a number 315

of ways, varying from the specific dataset. Full 316

prompts in our experiments can be found in Ap- 317

pendix. Note that if fine-tuning the LLM is practi- 318

cal, the LLM can also be aligned to generate better 319

representations during training. 320
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Prompt for item description generation

Generate an item description based on the fol-
lowing information:

The item’s information: {the item’s previous
description}
The item has been reviewed by the following
users in the format of {rating: user profile}

{rating1: profile of user1}
{rating2: profile of user2}
{rating3: profile of user3}
...

Prompt for user description generation

Generate a user profile based on the following
information:

The user’s information: {the user’s previous
profile}

The user rates the following items in the format
of {rating: item description}

{rating1: description of item1 }
{rating2: description of item2 }
{rating3: description of item3 }
...

Table 1: The prompts for generating one-hop represen-
tations for items and users

3.5 Model Update321

With the updated representations for all nodes in322

the graph, we train the final prediction model ϕ(·, ·)323

in the supervised manner. In this work, we employ324

the BERT model as ϕ(), which is trained to predict325

the rating of item oj from user ui. Their representa-326

tions are concatenated by using the [SEP] symbol327

as the format “[CLS] T t
ui

[SEP] T t
oj”. Finally, we328

update the neighbor matrix based on the ŷ produced329

by the model ϕ. That is ai,j = ϕ(T t
ui
, T t

oj ).330

4 Experiments331

4.1 Dataset332

We use the MovieLens 100K dataset, which con-333

tains 943 users, 1682 items and 100K ratings (80k334

for training and 20k for testing) (Harper and Kon-335

stan, 2015b). User information includes gender,336

Max. Min. Avg.
Length 373 25 157
Tokens 94 7 36

Table 2: Statistics of IMDb data without 4 missing
values.

occupation, and age. Item information includes 337

movie title (year) and genre. Ratings are from 1 to 338

5 (worst to best). In addition, we crawled the plot 339

information of movies on IMDb1 by ourselves, but 340

4 movies cannot be found. Statistics of IMDb data 341

without 4 missing values are presented in Table 2. 342

4.2 Baseline Models 343

In addition to existing models for the MovieLens 344

dataset, we also compare our approach with a 345

baseline model based on BERT. The BERT model 346

trained to predict the rating given the initial user 347

profile and the initial movie description. In other 348

words, the GNN is not involved in this setting. 349

The other baseline model is similar to our GNN 350

model, but this model skips the process of represen- 351

tation update (Section 3.4), while the model update 352

described in Section 3.5 will be performed. 353

Another baseline model is closer to our approach, 354

it generates new user profiles and item descriptions 355

through a LLM, but the LLM was not fine-tuned 356

(Section 3.3). It means that LLM does not update 357

according to the loss generated by the prediction 358

results and the real target like the GNN model. 359

4.3 Settings 360

We set l, the maximum token number of LLM re- 361

sponse to 200, and the temperature is set to 0 for 362

reproducibility. In addition, the maximum number 363

of neighbors aggregated by each node is 10. We 364

employ LoRA (Hu et al., 2021) and KTO (Etha- 365

yarajh et al., 2024) to fine-tune our LLM and BERT 366

as the final prediction model ϕ(·, ·), with 12 layers 367

and a maximum length of 512. The optimizer is 368

AdamW, the batch size is 32, and the weight decay 369

and learning rate are both 0.01. Because it is a re- 370

gression task to predict the user’s rating of the item, 371

the mean square error (MSE) is used as the loss 372

function. We have experimented with three settings 373

(one-hop, two-hop, and pressed-two-hop) before, 374

and finally evaluate our approach in the one-hop 375

setting. 376

1https://www.imdb.com/
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IMDb Method Epoch=1 Epoch=2 Epoch=3 Epoch=4

BERT 1.0126 0.9929 0.9914 1.0030
✓ BERT 1.0001 0.9825 0.9809 1.0040

GNN without Representation Update 1.0635 1.0112 0.9970 0.9900
✓ GNN without Representation Update 1.0914 1.0841 1.0808 1.0805

gpt-3.5-turbo-0301 + BERT in 1-hop 1.0177 0.9829 0.9741 0.9697
gpt-3.5-turbo-0301 + BERT in 2-hop 0.9965 0.9802 0.9710 0.9669

✓ gpt-3.5-turbo-0301 + BERT in 2-hop 0.9997 0.9761 0.9701 0.9647

✓ zephyr-7b-beta + BERT 0.9906 0.9785 0.9721 0.9656
✓ Our approach w/ zephyr-7b-beta) 0.9775 0.9646 0.9608 0.9555

✓ llama3 + BERT 0.9921 0.9746 0.9728 0.9682
✓ Our approach w/ llama3 0.9749 0.9685 0.9601 0.9570

Table 3: Results of our approach in both one- and two-hop settings, compared with baseline models. RMSE of
each iteration is reported, the lower the better. The first column denotes if the information from IMDb is used. The
results in bold indicate significant improvement at p < 0.001.

• One-Hop: This setting aggregates informa-377

tion from one-hop neighbors. Take a user378

as example, the prompt is “<userID> is a379

<age> <gender> <occupation>. He/She has380

watched <itemID-i1> (<title-i1>) is a <genre-381

i1> movie. He/She rated it a <rating-i1> out382

of 5. ... He/She has watched <itemID-in>383

(<title-im>) is a <genre-n> movie. He/She384

rated it a <rating-im> out of 5. Please describe385

<userID>.”386

Text inputs to a predictive model for387

natural language processing (NLP) likes388

that “[CLS]<LLM describes userID (1389

hop)>[SEP]<LLM describes itemID (1390

hop)>.”391

• Two-Hop: This setting aggregates infor-392

mation from two-hop neighbors. Take a393

user as example, the prompt is “<LLM de-394

scribes userID (1 hop)>. He/She has watched395

<itemID-i1>. <LLM describes itemID-i1 (1396

hop)> He/She rated it a <rating-i1> out of 5.397

... He/She has watched <itemID-im>. <LLM398

describes itemID-im (1 hop)>. He/She rated399

it a <rating-im> out of 5. Please describe400

<userID>. ”401

Text inputs to a predictive model for NLP402

likes that “[CLS]<LLM describes userID403

(2 hop)>[SEP]<LLM describes itemID (2404

hop)>.”405

4.4 Results 406

Experimental results are shown in Table 3. The 407

baseline model BERT performs the worst be- 408

cause the model can only learn the basic infor- 409

mation of users/items and cannot know the types 410

of items/users they may prefer/be preferred. In 411

addition, because the number of instances is not 412

sufficient in the MovieLens dataset, it will also 413

make it difficult for the model to learn the task goal 414

from a short input text. The results of GNN without 415

representation update show the importance of the 416

representation in a recommendation system. 417

Simply adding IMDb data without the process 418

of GNN representation update lead to poor results. 419

It is speculated that the possible reason is that too 420

many words have become noise, causing BERT 421

to be interfered with. However, from the results 422

of gpt-3.5-turbo-0301+BERT, we can find that the 423

results of 2-hop and adding IMDb information will 424

be better. This means that the method of adding 425

IMDb data and enhancing and integrating it with 426

the help of LLM is effective. 427

Although gpt-3.5-turbo-0301 is a powerful large 428

language model, because it is not open source and 429

requires high monetary costs, we use other open 430

source LLMs, such as zephyr-7b-beta and llama3, 431

to conduct more experiments. 432

Our approach achieves the improved perfor- 433

mances over both backbone models. That is, the 434

RMSE of the one type of information aggregated 435

through LLM and the LLM be fine-tune by KTO 436

is the lowest. Because through LLM, it will give 437
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Figure 2: The prompts with the IMDb information and the human readable representations for users and items

a description about the user/item. In addition to438

integrating the existing information we have given,439

this description will also add some additional infor-440

mation. For example, if a user has watched many441

kinds of movies, the integrated description may442

include that the user enjoys a wide variety.443

Figure 2 shows the prompt with IMDb data and444

compares the responses of our approach with base- 445

line models. The responses generated by gpt-3.5- 446

turbo-0301 and llama3 will not end well due to 447

token restrictions. This may be the reason why 448

their performance is relatively poor. Secondly, it 449

can be found that the user response of our method 450

(zephyr-7b-beta) is the same as zephyr-7b-beta. 451
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Figure 3: Normalization attention distribution before
(top) and after (bottom) the KTO fine-tuning.

This is reasonable because our method is based452

on distinguishing the original responses to find and453

generate responses that are more beneficial to the454

downstream task model. It is therefore possible455

to produce the same response as the original LLM456

response without fine-tune.457

Through the significant test, the method of LLM458

without KTO fine-tune is statistically significant459

with our method (LLM with KTO fine-tune). The460

p-value calculated by LLM using zephr-7b-beta or461

llama3 are both less than 0.001. Our method is462

comparable with the state-of-the-art approaches,2463

beating GMC with an RMSE of 0.996 (Kalofolias464

et al., 2014). The currently best model on this465

dataset RMSE task is GHRS (Darban and Valipour,466

2022), reaching 0.887.467

4.5 Analysis468

Because [CLS] token determines the final predic-469

tion result, we observe the impact of other tokens470

on each head in the last layer on its attention. We471

sum up the attention of each token in [CLS] token,472

and then normalize all. Normalization can ensure473

comparability between different variables without474

changing the original distribution.475

Figure 3 shows that the attention distribution476

after fine-tuning is obviously right-skewed distri-477

bution (mode < median < mean) and before fine-478

tuning is slightly left-skewed distribution (mode >479

median > mean). From the median value of the two480

pieces of data (median from Before > median from481

After), we can know that data generated by LLM482

without fine-tune causes BERT to have a larger483

number of tokens with high attention. Many tokens484

2https://paperswithcode.com/sota/
collaborative-filtering-on-movielens-100k

have high attention, it becomes harder to interpret 485

the BERT’s behavior and understand which parts of 486

the input are driving its decisions. In addition, High 487

attention spread across many tokens can dilute the 488

focus on the most relevant parts of the input. It can 489

introduce noise into the BERT’s representations. 490

This is most likely why our method is better than 491

LLM without fine-tune. 492

5 Conclusions 493

This study presents an innovative methodology for 494

employing human-readable text in natural language 495

as representations for nodes in GNNs, as opposed 496

to the traditional numerical embeddings. Utilizing 497

a LLM as a medium for information aggregation 498

from neighboring nodes, our approach enhances 499

the understandability and controllability of the net- 500

work by integrating human-readable representa- 501

tions. Experiments conducted on the MovieLens 502

dataset demonstrate the feasibility and efficacy of 503

this approach in recommendation tasks. Moreover, 504

the integration of world knowledge enriches the 505

interpretability of the network, while also allow- 506

ing for human interaction in shaping the network’s 507

outcomes. This pioneering technique opens new 508

avenues for leveraging the synergies between natu- 509

ral language processing and graph neural networks, 510

with significant implications for transparent and 511

interpretable machine learning applications. 512

Limitations 513

The current experiments use only the MovieLens 514

dataset, but we plan to evaluate our approach on 515

additional datasets to demonstrate its robustness. 516

Our method, which combines LLMs with GNNs, is 517

highly generalizable and can be applied to various 518

AI applications. These include social network anal- 519

ysis, bioinformatics, and fraud detection, where 520

integrating textual data with graph structures en- 521

hances interpretability and accuracy. 522

Ethics Statement 523

We conducted experiments using the publicly avail- 524

able MovieLens dataset, ensuring that there were 525

no concerns regarding private or copyright issues. 526

Additionally, our approach is designed to enhance 527

general AI capabilities in a responsible manner, 528

without posing risks to user privacy or ethical stan- 529

dards. The manuscript was mildly polished by 530

using ChatGPT. 531
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