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Abstract
The formalization of mathematical theorems and
their proofs is a time-consuming and tedious pro-
cess which, despite recent advances in the rea-
soning capabilities of AI systems, remains a chal-
lenging task for computers. Existing attempts
to automate the process with language models
struggle with the difference in level of detail be-
tween formal and informal proofs. Successful
autoformalization requires models to understand
and be able to explain the nuances of logical argu-
ments, a critical aspect of reasoning that is often
overlooked in existing research. In this work, we
introduce Sketch, Prove, Add Details & Repeat
(SPADER), an approach that enhances proof aut-
oformalizers by using language models to infer
and explicitly incorporate implicit details from
informal proofs. With the same number of auto-
formalization attempts, our method increases the
percentage of successfully formalized problems
in the miniF2F test dataset from 34.8% to 38.1%.

1. Introduction
A significant body of recent work has investigated the rea-
soning capabilities of Large Language Models (LLMs), par-
ticularly in the context of solving mathematical problems.
One frequently studied task is Automated Theorem Prov-
ing (ATP), which involves automatically generating formal
proofs of mathematical theorems. However, few studies
have investigated the ability of LLMs to understand and
explain mathematical arguments. In this work, we introduce
an approach that leverages this capability to construct more
detailed informal mathematical proofs, thereby improving
the process of autoformalization – the translation of infor-
mal proofs into formally verifiable formal proofs. Informal
proofs lack many details that are necessary to verify their
correctness. While formal proofs do not suffer from this
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issue, in practice the focus on low-level details makes for-
mal automated theorem provers less successful at high-level
planning. As a result, autoformalization systems struggle
with the discrepancy in the level of detail in formal and in-
formal proofs (Jiang et al., 2023, Section 5.2 and Appendix
C). Our approach uses LLMs to explain informal proofs by
inferring and incorporating implicit details, thereby bridging
the gap between informal and formal proofs.

To plan ahead and focus on the overall proof strategy, math-
ematicians usually write proofs in a non-linear, hierarchical
manner: They start by writing a high-level proof draft and
iteratively add more detail until the proof is considered com-
plete. Previous work on language model-based ATP has
studied such hierarchical set-ups (Li et al., 2021; Jiang et al.,
2023; Mikuła et al., 2023), but has not explored adding de-
tail to informal proofs. For example, in Draft, Sketch and
Prove (DSP) (Jiang et al., 2023), a high-level informal proof
draft is used to inform a more detailed formal proof sketch,
which is later completed by an automated theorem prover.
A common error case occurs in the process of translating
informal drafts into formal sketches. This process happens
in a single step: the model must decide which steps in the
draft need further argumentation, add the missing details,
and translate the informal draft to the formal language all
at once. Therefore, the approach could benefit from using
specialized models for each of the three stages, particularly
adding the missing details as it is especially complex.

Our main contribution is SPADER, a method that enhances
autoformalizers through the use of LLMs to construct more
detailed informal mathematical proofs by incorporating
the implicit reasoning steps into them. The approach is
illustrated in Figure 1. Starting with a theorem statement
and an informal proof, we use an autoformalizer to generate
a formal proof sketch. We attempt to complete the sketch
using an automated prover. If some steps cannot be proved,
we use an LLM to provide more details about them and
re-attempt the process with a new, more detailed, informal
proof. The process succeeds if the additional detail is correct
and offers a good explanation for the problematic step.

Our experiments show that SPADER increases the success
rate of autoformalization systems. With the same number
of autoformalization attempts, adding detail to informal

1



More Details, Please: Improving Autoformalization with More Detailed Proofs

Problem. Expand the product (x+1)2 ·x. Show that
it is x3 + 2x2 + x.

Solution. We have (x+ 1)2 = x2 + 2x+ 1.

Multiplying this by x gives x3 + 2x2 + x. □

theorem:

fixes x ::real

shows "(x + 1)^2 * x = x^3 + 2 * x^2 + x"

proof -

have f1: "(x + 1)^2 = x^2 + 2 * x + 1"

sorry

have "(x^2 + 2 * x + 1) * x = x^3 + 2 * x^2 + x"

by (simp add: mult.left_commute

numeral_3_eq_3 power2_eq_square)

then show ?thesis

using f1 by simp

qed

✗

Problem. Expand the product (x+1)2 · x. Show that it is x3 +2x2 + x.

Solution. We have (x+ 1)2 = (x+ 1)(x+ 1)

= x · x+ x · 1 + 1 · x+ 1 · 1

= x2 + 2x+ 1.

Multiplying this by x gives x3 + 2x2 + x. □

theorem:

fixes x ::real

shows "(x + 1)^2 * x = x^3 + 2 * x^2 + x"

proof -

have c0: "(x + 1)^2 = (x + 1) * (x + 1)"

by (simp add: power2_eq_square)

then have c1: "(x + 1) * (x + 1) = x * x + x * 1 + 1 * x + 1 * 1"

by (simp add: algebra_simps)

then have c2: "x^2 + x + x + 1 = x^2 + 2 * x + 1"

by (simp add: power2_eq_square)

finally have f1: "(x + 1)^2 = x^2 + 2 * x + 1"

using c0 c2 by (simp add: c1 mult_1 power2_eq_square)

have "(x^2 + 2 * x + 1) * x = x^3 + 2 * x^2 + x"

by (simp add: mult.left_commute

numeral_3_eq_3 power2_eq_square)

then show ?thesis

using f1 by simp

qed

✓
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Figure 1. Overview of SPADER (Sketch, Prove, Add Details & Repeat). Given formal and informal statements of a theorem and an
informal proof, we attempt to autoformalize the proof and then formally verify it. Whenever a particular step cannot be proved, we add
more details to it using a language model. We re-attempt the formal verification with the more detailed informal proof. The inclusion of
more details into informal proofs improves the performance of the autoformalizer.

proofs with GPT-4o increases the number of successfully
verified problems in the miniF2F test from 85 (34.8%) to 93
(38.1%).

In conclusion, we make the following contributions:

• We propose a method for using LLMs to construct
more detailed proofs by inferring implicit details in
informal mathematical proofs.

• We demonstrate the usefulness of the presented method
for autoformalization.

Our work shows that LLMs can provide detailed mathemat-
ical proofs by inferring and explaining implicit reasoning
steps. This ability helps bridge the gap between informal
and formal mathematical proofs and enables LLM-based
autoformalization systems to verify more theorems.

2. Background and Related Work
2.1. Mathematical Reasoning with Language Models

With recent advances in language models, particularly the
introduction of LLMs, there has been an increase in research
into their reasoning capabilities, particularly in the context
of mathematical problem-solving (Hendrycks et al., 2021;
Drori et al., 2022; Welleck et al., 2021). While alterna-
tive prompting methods (Wei et al., 2022; Yao et al., 2023;
Zheng et al., 2023a) help improve the accuracy of reasoning
arguments, language models still frequently make mistakes.
These challenges highlight the need for robust verification
methods to complement informal reasoning.

Furthermore, the ability of LLMs to understand and explain
existing arguments remains largely unexplored. In this
work, we investigate these abilities and their evaluation

2



More Details, Please: Improving Autoformalization with More Detailed Proofs

through autoformalization and formal verification.

2.2. Autoformalization

To address the limitations of reasoning with language mod-
els, recent work has explored the combination of informal
reasoning with formal verification through autoformaliza-
tion. While early approaches to autoformalization with deep
learning took inspiration from Neural Machine Translation
(Wang et al., 2018), it has been observed (Wu et al., 2022)
that LLMs are better suited for this task because of their in-
context few-shot learning capabilities (Brown et al., 2020)
and the scarcity of parallel informal-formal data. Draft,
Sketch and Prove (DSP) (Jiang et al., 2023) approaches
automated theorem proving by autoformalizing computer-
generated informal proofs. Autoformalization proceeds in
two stages. The first stage uses an LLM to generate a formal
sketch that follows the informal proof. The formal sketch is
not a complete formal proof; instead, it outlines the overall
proof strategy by describing intermediate conjectures. In
the second stage, an off-the-shelf formal theorem prover
is employed to prove the intermediate conjectures in the
sketch, thus completing the proof. However, in many cases,
the informal proof does not contain enough detail for the
automated prover to fill in the gaps. Don’t Trust: Verify
(Zhou et al., 2024) applies a similar method to open-ended
mathematical problems. The method consists of generating
an informal chain-of-thought reasoning argument to find
the answer to a problem, which is considered valid only if
it can be autoformalized and formally verified by an auto-
mated prover. This approach suffers from the same problem,
where informal solutions sometimes fail to be verified de-
spite being correct. Lyra (Zheng et al., 2023b) addresses
this issue by prompting LLMs to repair errors in the formal
proofs. In our approach, we instead prompt LLMs to add
more detail to the informal proofs. We note that informal
solutions to the test problems used to evaluate the methods
in Lyra, as well as ours, may be part of the training data for
the LLMs used (GPT-4 and GPT-4o. respectively). There-
fore, these methods are better understood as methods for
autoformalization rather than theorem-proving.

2.3. Formal Theorem Proving

The construction of mathematical proofs in non-linear ways,
where detail is dynamically added to problematic steps, has
been more widely studied in the context of formal theorem
proving. IsarStep (Li et al., 2021) introduces a benchmark
for the task of generating intermediate steps in a formal
proof. Magnushammer (Mikuła et al., 2023) combines a
premise selection model with formal proof generators (Jiang
et al., 2022). The premise selection model is employed
to find premises that imply the intermediate conjectures
generated by the proof generator, which together constitute a
proof of the theorem. Baldur (First et al., 2023) approaches

ATP by generating a full formal proof with a pre-trained
language model and using a specialized model to repair any
errors with it. However, unlike the methods in Section 2.2,
none of these methods make use of informal mathematical
data, which is significantly more abundant than formal data.

3. SPADER: Enhancing Autoformalization
with More Detailed Informal Proofs

We now describe SPADER (Sketch, Prove, Add Details
& Repeat), our approach to autoformalization and formal
verification. This approach enhances the performance of
autoformalizers by using LLMs to construct more detailed
proofs that guide the autoformalization and formal verifi-
cation process. The approach is illustrated in Figure 1 and
summarized in Algorithm 1. We assume the user has access
to an autoformalizer and an automated theorem prover or
proof assistant. Given an informal proof – a proof draft in
the terminology of DSP (Jiang et al., 2023) – the approach
consists of the following stages:

Stage 1 (Sketch). The informal proof draft is translated
into a formal sketch using an autoformalizer. The formal
sketch need not be a complete formal proof; it may contain
open conjectures that will be handled in the next stage.
The formal sketch should follow the high-level structure of
the informal draft. For example, in Figure 1, the different
intermediate conjectures in the formal proof can be mapped
to steps with the same color in the informal draft. This may
be achieved through the use of comments in the sketch.

Stage 2 (Prove). An automated theorem prover attempts
to fill in the missing details in the formal sketch, thus com-
pleting the proof. If a proof is found, the process has been
successful. If the theorem prover is unable to prove an in-
termediate step, the step is flagged as not proven, and the
theorem prover proceeds with the rest of the proof, assuming
that the step is true.

Stage 3. (Add Detail). The steps in the formal sketch that
could not be proved are mapped to the corresponding steps
in the informal draft. A separate model, typically an LLM,
is then prompted to provide more details on the steps in
question and to generate a more detailed informal draft.

Repeat. The process is repeated starting from Stage 1 with
the new draft.

In Figure 1, the vertical downward arrows represent Stages 1
and 2, and the middle arrow represents Stage 3. In the rest
of this paper, we refer to the number of times that Stage 3 is
run as the number of detailing passes M .

3



More Details, Please: Improving Autoformalization with More Detailed Proofs

Algorithm 1 SPADER (Sketch, Prove, Add Details &
Repeat). The algorithm assumes that the user has ac-
cess to an autoformalizer autoformalize, an automated
theorem prover attempt formal proof, and a model
add detail that can add detail to proofs.

Parameters: Number of detailing passes M .
Input: Theorem t, informal proof p.
draft← p
for j ∈ {0, . . . ,M} do
sketch← autoformalize(t, draft)
proof ← attempt formal proof(sketch)
failedSteps← {s ∈ proof : s.proven = false}
if failedSteps = ∅ then

return proof
else if j < M then
draft← add detail(t, draft, failedSteps)

end if
end for
return FAIL

4. Experiments
Next, we describe the experiments we conducted to evaluate
whether adding detail to informal proofs with SPADER
improves the performance of autoformalizers.

4.1. Dataset and Metrics

We evaluate SPADER on the miniF2F dataset (Zheng et al.,
2021). The miniF2F dataset comprises 488 mathematical
problems (244 validation problems and 244 test problems).
Each problem consists of a collection of formal statements in
different formal languages: Isabelle (Paulson, 1988), Lean
(de Moura et al., 2015), MetaMath (Yu et al., 2024) and
HOL Light (Bansal et al., 2019). This dataset was expanded
in DSP (Jiang et al., 2023) to include an informal state-
ment and a human-written informal solution for each formal
statement. Our goal is to correctly autoformalize and for-
mally verify the informal solution in Isabelle. We evaluate
the performance of our method according to the number of
test problem solutions that can be correctly formalized and
verified.

4.2. Implementation

We performed our experiments with the Isabelle proof as-
sistant (Paulson, 1988). We have considered M = 1 and
M = 2 detailing passes. This allows us to compare the
effect of multiple detailing passes.

As our autoformalization model, we use GPT-4o1. We
prompt the model through the OpenAI API to translate
the informal proof into a formal Isabelle/HOL sketch with

1https://openai.com/index/hello-gpt-4o/

3-shot prompting. We prompt the model to include the orig-
inal proof as comments before the corresponding steps in
Isabelle. We also prompt the model to include a comment
concluding the informal proof (with “The result follows”)
so that the end of the proof can be marked as needing more
detail in the next stages. We include 3 in-context examples,
randomly sampled from a list of 17 hand-labeled samples,
which are modified versions of those from (Jiang et al.,
2023). They have been modified to break down the infor-
mal proofs (included as comments in the formal proof) into
smaller steps. We hope that segmenting informal proofs into
smaller steps makes it easier to pinpoint the problematic
steps later. To generate a diverse set of sketches across multi-
ple runs, we generate them with temperature sampling with
a temperature parameter of 0.6 as in DSP (Jiang et al., 2023).

We attempt to complete the sketch using the Isabelle theo-
rem prover. Whenever Isabelle fails to prove an intermediate
conjecture, we attempt to prove it with several heuristics,
as in DSP (Jiang et al., 2023), and Sledgehammer (Paulson
& Blanchette), a collection of automated theorem provers.
If these fail to prove a conjecture, we add a sorry state-
ment, which tells Isabelle to assume that the step has been
proven and allows it to continue verifying the rest of the
proof. If the verification process encounters an error (e.g. if
the formal sketch contains syntax errors), we abort and stop
the run. If a proof is parsed correctly but contains sorry
statements, we add an ‘unproven’ flag to the last comment
before each such statement. Since the comments contain
the original informal proof, the flagged steps are those that
require more detail. We concatenate all the steps to recover
the original proof and surround the flagged steps with the
strings <MORE_DETAIL> and </MORE_DETAIL>.

To add detail to the proof, we prompt GPT-4o to rewrite
the proof with more detail in the marked steps. We use
temperature sampling with a temperature parameter of 0.4.
We have used a lower temperature parameter than before
to prioritize accuracy over diversity since only one detailed
draft is generated per sketch. We generate either one (if
M = 2) or two (if M = 1) formal sketches for each of the
new drafts and re-attempt the formal verification. If M = 2,
we repeat the process of adding detail to unproven steps,
generating a formal sketch, and attempting to complete it.

We ensure that the number of autoformalization attempts is
consistent across the different experiments (M = 1, M = 2
and the baseline) by implementing a modified version of
Algorithm 1, which is described in the appendix.

We have run each experiment N = 100 times and con-
sider a problem solution to be successfully autoformalized
whenever one of these succeeds. To avoid confusion in
our discussion, we will distinguish between individual runs
(each run of an experiment) and autoformalization attempts
(each time the autoformalizer is called). Each individual run
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Table 1. Results of the experiments on autoformalization. The
table shows the number of problems correctly formalized in the
miniF2F test dataset for different autoformalization methods. With
the same number of autoformalization attempts, SPADER is able
to write complete formal solutions for 8 more problems than the
Sketch and Prove baseline, where additional details are not added
to informal drafts.

METHOD PROBLEMS FORMALIZED

SKETCH AND PROVE 85 (34.8%)

SPADER, M = 1 (OURS) 93 (38.1%)
SPADER, M = 2 (OURS) 93 (38.1%)

may generate up to three sketches with different levels of
detail, so the process involves at most 300 autoformalization
attempts. Since we stop a run whenever a formal proof is
found or the verification encounters an error, this bound
is rarely reached in practice (with the average number of
attempts being 108).

4.3. Baselines

As a baseline, we compare our approach against our im-
plementation of the autoformalization method presented in
DSP (Jiang et al., 2023): we first generate a formal sketch,
which we try to formally verify in Isabelle using the same
procedure described above. We refer to this baseline as
Sketch and Prove since it does not include the Draft stage in
DSP: we conduct our experiments exclusively with human-
generated proofs. These proofs, unlike computer-generated
ones, are known to be correct and contain no errors. This
allows us to isolate the effect of additional detail on autofor-
malization more accurately. As discussed above, for each
individual run, we use the same number of autoformaliza-
tion attempts in the baseline and the other approaches.

4.4. Results

The results of our experiments on autoformalization are
displayed in Table 1. With the same number of autoformal-
ization attempts, SPADER achieves a higher success rate
than the Sketch and Prove baseline. We note that SPADER
is able to solve the same number of problems with M = 1
and M = 2, which suggests that adding even more detail to
detailed sketches does not improve performance. Figure 2
shows how the number of successfully solved problems
changes with the number of individual runs N .

5. Discussion
LLMs Can Understand and Explain Informal Proofs.
In our experiments, we have asked LLMs to provide more
details on specific steps in mathematical proofs. For 8 prob-

Figure 2. Number of problems solved in the miniF2F test set
for different numbers of runs for SPADER with M = 2 (green),
M = 1 (orange), and the Sketch and Prove baseline (blue). We
use the same number of autoformalization attempts in all methods.
After the easier problems are solved, SPADER can autoformalize
more problems.

lems in the miniF2F dataset, the new, more detailed proofs
could be formalized, while the original proofs could not.
Therefore, the details added by the LLM must be correct
(since they have been formally verified) and must provide
a good explanation of the arguments in the original proof
(since they help verify the rest of the proof). We have in-
cluded a few successful examples in the appendix.

Additional Details do not Improve Autoformalization on
Easy Problems. We observe from Figure 2 that for small
numbers of runs (N < 20), the more detailed proofs do not
improve the success rate of autoformalizers. All the prob-
lems that are proved by the baseline, but not by SPADER
in this range, are solved in subsequent runs by SPADER on
initial autoformalization attempts (i.e., by autoformalizing
the original drafts, which do not contain additional details).
This suggests that the process of adding detail is helpful
only for difficult problems. Future research may explore
distinguishing which proofs benefit most from additional
detail so that resources can be allocated more effectively.

Multiple Detailing Passes are not Necessary. Table 1 and
Figure 2 indicate that adding detail twice (M = 2) does not
yield better performance than adding detail once (M = 1).
As discussed above, the performance of the baseline (which
corresponds to M = 0) is similar to that of M = 1, 2 for
small numbers of runs, suggesting that the similar trend for
M = 1 and M = 2 might not hold for a very large number
of runs (N ≫ 100). However, verifying or making use of
this would require an impractical amount of computational
resources. It is also possible that more detailing passes are
beneficial for more complicated informal proofs, since they
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are usually less detailed.

Use of Specialized Models for Adding Detail. We have
experimented with using specialized models that retrieve
relevant references or insert intermediate steps in proofs to
provide more detail. However, these models have not proved
successful at improving autoformalization. We believe this
is due to the difference in distribution between the problems
in the miniF2F dataset, consisting of high-school level math-
ematics and employing rich language in their solutions, and
our training data, which is collected from ProofWiki2 and
consists of university-level mathematics using more rigid
language.

6. Conclusion
To create successful autoformalization systems, it is essen-
tial to reconcile the lack of detail of informal proofs with
the high detail requirements of formal verification systems.
In this paper, we introduced SPADER, an approach that
enhances autoformalizers by using Large Language Models
(LLMs) to construct more detailed informal mathematical
proofs. By inferring and incorporating implicit details in
proofs, this approach improves the accuracy of language
model-based autoformalizers. This shows that LLMs pos-
sess the ability to understand and explain existing mathe-
matical arguments.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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More Details, Please: Improving Autoformalization with More Detailed Proofs

A. Implementation Details
A.1. Achieving a Consistent Number of Autoformalization Attempts

To ensure that the baseline is on a level playing field with our method, we have modified Algorithm 1 to use the same number
of autoformalization attempts for the baseline and our method. The resulting modification can be found in Algorithm 2. We
use M∗ = 2, so that M = 1, 2 correspond to our implementation of SPADER and M = 0 corresponds to the baseline with
the same number of attempts.

Algorithm 2 SPADER with a consistent number of attempts for different detailing passes M . The algorithm assumes that
the user has access to an autoformalizer autoformalize, an automated theorem prover attempt formal proof,
and a model add detail that can add detail to proofs.

Parameters: Number of maximum detailing passes M∗.
Input: Theorem t, informal proof p.

for M ∈ {0, . . . ,M∗} do
successfulProofs[M ]← ∅

end for
drafts[1]← p
/* Autoformalize with M = M∗ detailing passes */
for j ∈ {0, . . . ,M∗} do

sketch← autoformalize(t, drafts[j])
proof ← attempt formal proof(sketch)
if proof = ERROR then

break
end if
failedSteps← {s ∈ proof : s.proven = false}
if failedSteps = ∅ then
successfulProofs[M∗].add(proof )
break

else if j < M∗ then
drafts[j + 1]← add detail(t, drafts[j], failedSteps)

end if
end for
/* Autoformalize with M < M∗ detailing passes with the same number of autoformalization attempts */
for M ∈ {0, . . . ,M∗ − 1} do

for j ∈ {0, . . . , length(drafts)} do
sketch← autoformalize(t, drafts[min(M, j)])
proof ← attempt formal proof(sketch)
failedSteps← {s ∈ proof : s.proven = false}
if failedSteps = ∅ then

successfulProofs[M ].add(proof )
break

end if
end for

end for
return FAIL

A.2. Autoformalization with LLMs

We describe in detail our process for translating informal proofs into formal sketches with GPT-4o. In the initial sketching
stage (j = 0 in Algorithm 2), where we work with the original informal proofs (as opposed to more detailed ones), we have
used two different prompts that ask the model to write a formal sketch in Isabelle that follows the informal draft, where
each informal step is included as a comment before the corresponding formal steps. The first has very detailed instructions,
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More Details, Please: Improving Autoformalization with More Detailed Proofs

prompting the model to follow the informal proof very closely and make the informal steps (included in comments) as close
as possible. The motivation behind this is that, with smaller steps, our approach will be able to more accurately zone in on
the parts of the proof that are difficult for the automated prover. In contrast to (Jiang et al., 2023), instead of prompting the
model to invoke the Sledgehammer automated prover to prove intermediate conjectures whenever possible, we allow the
model to predict premises that will prove it. The second prompt contains less detailed instructions.

We sample 3 random examples from a list of 17 hand-labeled samples and include them as in-context examples. The
examples contain the original informal proof as comments: for each step in the informal proof, a comment containing it is
followed by the corresponding formal statement. The examples are based on the examples from (Jiang et al., 2023); however,
we segment the informal proofs into smaller steps. For each set of examples and prompts, we have generated two outputs
with temperature sampling with a temperature parameter of 0.6 and a maximum output context length of 1024 tokens. We
did not observe any significant difference in the performance of the two prompts in our validation runs. For the following
sketching stages (j > 0), we use only the first prompt and generate a single output per set of in-context examples, also with
a temperature parameter of 0.6 and a maximum output context length of 1024 tokens.

A.3. ATP heuristics

Whenever an intermediate conjecture in the formal sketch fails to be proved, we attempt to prove it with the fol-
lowing heuristics: auto, simp, blast, fastforce, force, eval, presburger, sos, arith, linarith,
auto simp: field simps algebra simps. Note that, differently to DSP (Jiang et al., 2023), we include
algebra simps in the last one. If the heuristics fail, we attempt to prove the step with the Sledgehammer auto-
mated prover (Paulson & Blanchette). We interact with Isabelle from Python scripts via Portal to ISAbelle (Jiang et al.,
2021).

B. Examples of Successfully Autoformalized Proofs
Below, we include four examples of problems whose original human-written solution could not be autoformalized with
the Sketch and Prove baseline, but which could be autoformalized with the additional detail provided by GPT-4o with
SPADeR. We include the original informal statement and original human-written informal solution, as well as the more
detailed informal solution and complete formal solutions provided by SPADeR. We show two number theory problems
(Figure 3 and Figure 4) and two algebra problems (Figure 5 and Figure 6). The first problem (Figure 3) was discussed in
Appendix C of DSP (Jiang et al., 2023) as an example of a problem whose human-written solution could not be correctly
autoformalized due to not containing enough detail, but for which a computer-written solution could.
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More Details, Please: Improving Autoformalization with More Detailed Proofs

Problem. Prove that the fraction 21n+4
14n+3

is irreducible for every natural number n.

Original informal solution. Denoting the greatest common divisor of a, b as (a, b), we use the Euclidean algorithm:
(21n+ 4, 14n+ 3) = (7n+ 1, 14n+ 3) = (7n+ 1, 1) = 1
It follows that 21n+4

14n+3
is irreducible. Q.E.D.

Detailed informal solution. Denoting the greatest common divisor of a, b as (a, b), we use the Euclidean algorithm: (21n+
4, 14n+ 3).
First, we calculate the remainder when 21n+ 4 is divided by 14n+ 3:
21n+ 4 = (14n+ 3) · 1 + (7n+ 1), so (21n+ 4, 14n+ 3) = (14n+ 3, 7n+ 1).
Next, we calculate the remainder when 14n+3 is divided by 7n+1: 14n+3 = (7n+1)·2+1, so (14n+3, 7n+1) = (7n+1, 1).
Finally, since the greatest common divisor of any number and 1 is 1, we have (7n+ 1, 1) = 1.
Therefore, (21n+ 4, 14n+ 3) = 1.
It follows that 21n+4

14n+3
is irreducible. Q.E.D.

Formal solution.

theorem:
fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* Denoting the greatest common divisor of a, b as (a,b), we use the Euclidean algorithm: *)
(* (21n+4, 14n+3). *)
(* First, we calculate the remainder when 21n+4 is divided by 14n+3: *)

have step1: "21*n + 4 = (14*n + 3) * 1 + (7*n + 1)"
by simp

(* 21n+4 = (14n+3) \cdot 1 + (7n+1), so (21n+4, 14n+3) = (14n+3, 7n+1). *)
have step2: "gcd (21*n + 4) (14*n + 3) = gcd (14*n + 3) (7*n + 1)"
using gcd_non_0_nat[of "14*n + 3" "7*n + 1"] step1
by (metis gcd.commute gcd_add2 nat_mult_1_right)

(* Next, we calculate the remainder when 14n+3 is divided by 7n+1: *)
have step3: "14*n + 3 = (7*n + 1) * 2 + 1"
by simp

(* 14n+3 = (7n+1) \cdot 2 + 1, so (14n+3, 7n+1) = (7n+1, 1). *)
have step4: "gcd (14*n + 3) (7*n + 1) = gcd (7*n + 1) 1"
using gcd_non_0_nat[of "7*n + 1" 1] step3
by (metis gcd.bottom_right_bottom gcd.commute gcd_add_mult mult.commute nat_1_add_1)

(* Finally, since the greatest common divisor of any number and 1 is 1, we have (7n+1, 1) = 1. *)
have step5: "gcd (7*n + 1) 1 = 1"
by simp

(* Therefore, (21n+4, 14n+3) = 1. *)
have "gcd (21*n + 4) (14*n + 3) = 1"
using step2 step4 step5
by simp

(* It follows that \frac{21n+4}{14n+3} is irreducible. The result follows. *)
then show ?thesis
by simp

qed

Figure 3. First example of a number theory problem solved by SPADER.
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Problem. What is the units digit of the sum of the squares of the first nine positive integers? Show that it is 5.

Original informal solution. We can reduce the amount of work we have to do in this problem by realizing that the units
digit of the sum of the squares is the units digit of the sum of the units digits of the squares. In other words, the units digit of
12 + 22 + . . .+ 92 is the units digit of 1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 = 45, which is 5.

Detailed informal solution. We can reduce the amount of work we have to do in this problem by realizing that the units digit of
the sum of the squares is the units digit of the sum of the units digits of the squares.
To find the units digit of 12 + 22 + . . .+ 92, we first compute the units digit of each square:
- The units digit of 12 is 1.
- The units digit of 22 is 4.
- The units digit of 32 is 9.
- The units digit of 42 is 6.
- The units digit of 52 is 5.
- The units digit of 62 is 6.
- The units digit of 72 is 9.
- The units digit of 82 is 4.
- The units digit of 92 is 1.
Summing these units digits, we get 1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 = 45.
Thus, the units digit of the sum 12 + 22 + . . .+ 92 is the same as the units digit of 45, which is 5.

Formal solution.
theorem mathd_numbertheory_3 :
"(\<Sum> x < 10. ((x + 1)̂ 2)) mod 10 = (5::nat)"

theorem mathd_numbertheory_3 :
"(\<Sum> x < 10. ((x + 1)̂ 2)) mod 10 = (5::nat)"

proof -
(* We can reduce the amount of work we have to do in this problem by realizing that the units digit of the sum of the squares is the units digit of

the sum of the units digits of the squares. *)
(* To find the units digit of 1ˆ2+2ˆ2+\ldots+9ˆ2, we first compute the units digit of each square: *)
(* The units digit of 1ˆ2 is 1. *)

have c1: "(1ˆ2 :: nat) mod 10 = 1"
by simp

(* The units digit of 2ˆ2 is 4. *)
have c2: "(2ˆ2 :: nat) mod 10 = 4"
by simp

(* The units digit of 3ˆ2 is 9. *)
have c3: "(3ˆ2 :: nat) mod 10 = 9"
by simp

(* The units digit of 4ˆ2 is 6. *)
have c4: "(4ˆ2 :: nat) mod 10 = 6"
by simp

(* The units digit of 5ˆ2 is 5. *)
have c5: "(5ˆ2 :: nat) mod 10 = 5"
by simp

(* The units digit of 6ˆ2 is 6. *)
have c6: "(6ˆ2 :: nat) mod 10 = 6"
by simp

(* The units digit of 7ˆ2 is 9. *)
have c7: "(7ˆ2 :: nat) mod 10 = 9"
by simp

(* The units digit of 8ˆ2 is 4. *)
have c8: "(8ˆ2 :: nat) mod 10 = 4"
by simp

(* The units digit of 9ˆ2 is 1. *)
have c9: "(9ˆ2 :: nat) mod 10 = 1"
by simp

(* Summing these units digits, we get 1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 = 45. *)
have "1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 = (45::nat)"
by simp

(* Thus, the units digit of the sum 1ˆ2 + 2ˆ2 + \ldots + 9ˆ2 is the same as the units digit of 45, which is 5. *)
hence "(1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1) mod 10 = (45 mod 10)"
by simp

also have "... = (5::nat)"
by simp

(* The result follows. *)
then show ?thesis
by eval

qed

Figure 4. Second example of a number theory problem solved by SPADER.
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Problem. If a, b, and c are positive real numbers such that a(b+ c) = 152, b(c+ a) = 162, and c(a+ b) = 170, then abc is
(A) 672 (B) 688 (C) 704 (D) 720 (E) 750
Show that it is 720.

Original informal solution. Adding up the three equations gives 2(ab+bc+ca) = 152+162+170 = 484 =⇒ ab+bc+ca =
242.
Subtracting each of the above equations from this yields, respectively, bc = 90, ca = 80, ab = 72.
Taking their product, ab · bc · ca = a2b2c2 = 90 · 80 · 72 = 7202 =⇒ abc = 720 ⇒ (D).

Detailed informal solution. Adding up the three equations gives 2(ab+bc+ca) = 152+162+170 = 484 =⇒ ab+bc+ca =
242.
Subtracting each of the above equations from this yields, respectively, ab + bc + ca − a(b + c) = 242 − 152 =⇒ bc = 90,
ab+ bc+ ca− b(c+ a) = 242− 162 =⇒ ca = 80, and ab+ bc+ ca− c(a+ b) = 242− 170 =⇒ ab = 72.
Taking their product, (ab) · (bc) · (ca) = (abc)2 = 72 · 90 · 80.
Calculating the product, 72 · 90 = 6480 and 6480 · 80 = 518400 =⇒ (abc)2 = 518400 =⇒ abc =

√
518400 = 720 ⇒ (D).

The result follows.

Formal solution.
theorem:
fixes a b c::real
assumes h0: "0 < a \<and> 0 < b \<and> 0 < c"
and h1: "a * (b + c) = 152"
and h2: "b * (c + a) = 162"
and h3: "c * (a + b) = 170"

shows "a * b * c = 720"
proof -
(* Adding up the three equations gives 2(ab + bc + ca) = 152 + 162 + 170 = 484 *)
have c0: "2 * (a * b + b * c + c * a) = 152 + 162 + 170"
using h1 h2 h3
by (simp add: algebra_simps)

(* \Longrightarrow ab + bc + ca = 242 *)
hence c1: "a * b + b * c + c * a = 242"
by simp

(* Subtracting each of the above equations from this yields, respectively, *)
(* ab + bc + ca - a(b+c) = 242 - 152 \Longrightarrow bc = 90 *)

have c2: "a * b + b * c + c * a - a * (b + c) = 242 - 152"
using c1 h1
by simp

hence c3: "b * c = 90"
by (auto simp: field_simps algebra_simps)

(* ab + bc + ca - b(c+a) = 242 - 162 \Longrightarrow ca = 80 *)
have c4: "a * b + b * c + c * a - b * (c + a) = 242 - 162"
using c1 h2
by simp

hence c5: "c * a = 80"
by (auto simp: field_simps algebra_simps)

(* ab + bc + ca - c(a+b) = 242 - 170 \Longrightarrow ab = 72 *)
have c6: "a * b + b * c + c * a - c * (a + b) = 242 - 170"
using c1 h3
by simp

hence c7: "a * b = 72"
by (auto simp: field_simps algebra_simps)

(* Taking their product, (ab) \cdot (bc) \cdot (ca) = (abc)̂ 2 = 72 \cdot 90 \cdot 80. *)
have c8: "(a * b) * (b * c) * (c * a) = (a * b * c) ˆ 2"
by (simp add: power2_eq_square)

hence c9: "(a * b * c) ˆ 2 = 72 * 90 * 80"
using c3 c5 c7
by simp

(* Calculating the product, 72 \cdot 90 = 6480 and 6480 \cdot 80 = 518400 \Longrightarrow (abc)̂ 2 = 518400 *)
hence c10: "(a * b * c) ˆ 2 = 518400"
by (simp add: mult.commute mult.left_commute)

(* \Longrightarrow abc = \sqrt{518400} = 720 *)
hence c11: "a * b * c = sqrt 518400"
by (simp add: h0 less_eq_real_def real_sqrt_unique)

hence "a * b * c = 720"
by simp

(* The result follows. *)
then show ?thesis
by simp

qed

Figure 5. First of an algebra problem solved by SPADER.
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Problem. Expand the product (x+ 1)2 · x. Show that it is x3 + 2x2 + x.

Original informal solution. We have (x+ 1)2 = (x+ 1)(x+ 1) = x(x) + 1(x) + 1(x) + 1 = x2 + 2x+ 1. Multiplying this
by x gives x3 + 2x2 + x.

Detailed informal solution. We have (x+1)2 = (x+1)(x+1) = x ·x+x ·1+1 ·x+1 ·1 = x2+x+x+1 = x2+2x+1.
Multiplying this by x gives x · (x2 + 2x+ 1) = x · x2 + x · 2x+ x · 1 = x3 + 2x2 + x.
The result follows.

Formal solution.

theorem:
fixes x ::real
shows "(x + 1)̂ 2 * x = x̂ 3 + 2 * x̂ 2 + x"

proof -
(* We have (x+1)̂ 2 = (x+1)(x+1) *)
have c0: "(x + 1)̂ 2 = (x + 1) * (x + 1)"
by (simp add: power2_eq_square)

(* = x \cdot x + x \cdot 1 + 1 \cdot x + 1 \cdot 1 *)
also have "... = x * x + x * 1 + 1 * x + 1 * 1"
by (simp add: algebra_simps)

(* = x̂ 2 + x + x + 1 *)
also have "... = x̂ 2 + x + x + 1"
by (simp add: power2_eq_square)

(* = x̂ 2 + 2x + 1 *)
also have "... = x̂ 2 + 2 * x + 1"
by (simp add: algebra_simps)

finally have c1: "(x + 1)̂ 2 = x̂ 2 + 2 * x + 1"
.

(* Multiplying this by x gives x \cdot (x̂ 2 + 2x + 1) *)
have c2: "(x̂ 2 + 2 * x + 1) * x = x * (x̂ 2 + 2 * x + 1)"
by (simp add: algebra_simps)

(* = x \cdot x̂ 2 + x \cdot 2x + x \cdot 1 *)
also have "... = x * x̂ 2 + x * (2 * x) + x * 1"
by (simp add: algebra_simps)

(* = x̂ 3 + 2x̂ 2 + x *)
also have "... = x̂ 3 + 2 * x̂ 2 + x"
by (smt (verit, ccfv_SIG) One_nat_def Suc_1 \<open>x * x + x * 1 + 1 * x + 1 * 1 = x\< ŝup>2 + x

+ x + 1\<close> mult.commute numeral_3_eq_3 power.simps(2) ring_class.ring_distribs(2))
finally have "(x̂ 2 + 2 * x + 1) * x = x̂ 3 + 2 * x̂ 2 + x"
.

(* The result follows. *)
then show ?thesis
using c1 c2
by simp

qed

Figure 6. Second example of an algebra problem solved by SPADER.
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