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ABSTRACT

An important barrier to the safe deployment of machine learning systems is the
risk of task ambiguity, where multiple behaviors are consistent with the provided
examples. We investigate whether pretrained models are better active learners, ca-
pable of asking for example labels that disambiguate between the possible tasks a
user may be trying to specify. Across a range of image and text datasets with spu-
rious correlations, latent minority groups, or domain shifts, finetuning pretrained
models with data acquired through simple uncertainty sampling achieves the same
accuracy with up to 6× fewer labels compared to random sampling. Moreover,
the examples chosen by these models are preferentially minority classes or in-
formative examples where the spurious feature and class label are decorrelated.
Notably, gains from active learning are not seen in unpretrained models, which do
not select such examples, suggesting that the ability to actively learn is an emer-
gent property of the pretraining process.

Figure 1: Active learning can resolve task ambiguity, which is especially salient in few-shot
settings. Here, the provided training data leaves the model unsure of the task: is it to predict
the shape or the color of the object? Pretraining enables models to disentangle and weigh various
competing features, making them good active learners that can choose disambiguating examples
(e.g. the blue square), resolving this task ambiguity.

1 INTRODUCTION

Modern pretrained models can be adapted to new tasks with remarkably little data, enabling down-
stream applications for tasks with only tens or hundreds of examples (Brown et al., 2020; Radford
et al., 2021). However, an important but neglected challenge that is especially salient in few-shot
settings is task ambiguity, when the desired behavior is not uniquely specified by the provided ex-
amples. Task ambiguity can manifest in different ways: For example, the class-relevant features of
an input (e.g., the shape of an object in Figure 1) may be spuriously correlated with other features
predictive of the training labels (e.g., the color of the object), making the desired task unclear. In
addition, task ambiguity may arise from an underdiverse training set, causing models to be unsure
of the desired behavior for minority groups or during distribution shifts that occur at test-time.

We consider whether the task ambiguity problem can be addressed through active learning, where
models select informative examples for users to label. In principle, active learning allows models
themselves to assist in resolving task ambiguity by identifying examples whose labels would be
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informative; for example, in fig. 1, asking for the label of the blue square helps determine that the
desired task is to predict the object shape not the object color. Since it may be challenging in general
for users to intuit possible sources of task ambiguity, much less how to address them with example
selection, an automated active learning approach may be desirable.

In traditional settings with smaller, unpretrained models, several challenges often prevent active
learning from seeing success in practice, including label noise, unlearnable examples, and a lack of
generalizability across models and tasks (Lowell et al., 2019; Karamcheti et al., 2021). However,
using pretrained models in few-shot or low-data settings has several key differences from traditional
ML pipelines which may make them particularly well-suited for active learning. First, the effect
of an individual data point (and the difference between an informative vs. an uninformative one) is
magnified, compared to the thousands or millions of examples typically acquired through standard
active learning pipelines. Second, pretrained models excel at learning high-level representations of
inputs, which better surface relevant features and may encourage active learning to select examples
that disambiguate between these high-level features (e.g. shape and color).

We consider the use of active learning on a range of spuriously correlated, imbalanced, or domain
shifted datasets where task ambiguity is salient. We compare an active learning approach with a
random-sampling baseline, and compare the difference in performance with and without the use of
pretrained models. Our contributions are:

1. Identifying and motivating task ambiguity as a unified concern across a range of real-world
datasets, and an especially salient problem for low-data settings.

2. Proposing active learning as a potential solution, along with a simple yet practical recipe
that does not require adjustment for new datasets or tuning on validation data.

3. Showing that active learning can enable large gains (up to 6× reduction in data points,
+12% absolute gain for the same labeling budget) and presenting scaling trends demon-
strating that this is an emergent property of pretraining.

2 METHOD

We study the pool-based active learning setup common in the literature (Settles, 2009), where we
have a (possibly pretrained) modelM, a small seed set of training data S = {(xi, yi)}, and a larger
pool of unlabeled data P = {xi}. The active learning procedure proceeds as follows: first, finetune
M on S until convergence; then, select points xi fromP that are deemed most informative according
to an acquisition function a(x;M), obtaining the corresponding labels yi, until some budget k of
data points is exhausted. This newly labeled batch B = {(xi, yi)} is then added to the existing data
S, and the model is retrained on S for the next acquisition step. This process is repeated for a fixed
number of acquisition steps.

For our acquisition function, we adopt the classic uncertainty sampling approach to active learning,
in particular the least confidence heuristic, where we acquire points for which our model is least
confident in its predicted label (Settles, 2009). Specifically, treating the outputs of the modelM as
a probability distribution1 over possible labels p(y | x;M), we define the acquisition function to be

a(x;M) = −max
i
p(yi | x;M) (1)

Although we could use more complex measures such as the entropy over labels, the least confidence
heuristic has shown to be simple and effective in a variety of settings (Settles, 2009; Hendrycks
& Gimpel, 2017; Mussmann et al., 2020), and we similarly find good results here (we refer to
least confidence sampling as “uncertainty sampling” except in Section 4.3 where we explore other
uncertainty-based acquisition functions).

On top of this standard active learning pipeline, we propose the following change to improve the
practical applicability of pretrained models in data-scarce settings:

1While in general there is no guarantee that this probability distribution will be well-calibrated, recent work
has found that pretraining improves model calibration across a variety of settings, including on out-of-domain
data (Desai & Durrett, 2020; Hendrycks et al., 2019).
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Removing the need for a separate validation set The active learning cycle begins by finetuning
the pretrained model on the seed set. If the size of the seed set is large enough, the seed set may
be partitioned into a training set and a validation set, and early stopping may be performed on the
validation set. However, in few-shot settings, labeling costs may be high, and the seed set may be
too small to meaningfully partition. This has led to a variety of ad-hoc solutions, e.g. finetuning for
an arbitrary constant number of gradient steps depending on the task (Kolesnikov et al., 2020).

Instead of an arbitrary fixed number of finetuning steps, we propose an alternative method to termi-
nate finetuning in the absence of a validation set. Specifically, we found that a simple but effective
heuristic was to stop finetuning when the training loss decreases to 0.1% of the original training loss
at the start of finetuning. In our experiments, this heuristic performed as well as early stopping on an
actual validation set (see Appendix D for more details). By using a standardized recipe across tasks
and removing the need for a separate validation set, our active learning pipeline is more robust to the
real-world difficulties of deploying active learning in data-scarce settings where use of a validation
set is impractical (Lowell et al., 2019; Perez et al., 2021), although further work is needed to capture
the full extent of this recipe’s generalizability.

3 DATASETS

We consider a variety of datasets where task ambiguity is especially likely when only a few ex-
amples are provided, especially due to spurious correlations, latent minority classes, and domain
shifts. These datasets provide an empirical testbed for the ability of pretrained models to choose
disambiguating examples using active learning.

3.1 DISTINGUISHING CAUSAL FROM SPURIOUS FEATURES

Spurious correlations arise when multiple features are predictive of the label in a training dataset, yet
it is ambiguous which ones are causally linked to the task label (Geirhos et al., 2020). We consider
two such datasets, and see whether active learning can choose the disambiguating examples where
the spurious features are not copresent with the causal features:

Waterbirds The Waterbirds dataset (Sagawa et al., 2019) consists of photographs of landbirds or
waterbirds digitally edited onto land or water backgrounds. The task is to classify whether the bird is
a landbird or a waterbird. In the train set, 77% of the pictures feature landbirds and 23% waterbirds.
95% of both landbirds and waterbirds appear on land and water backgrounds, respectively. In the
validation and test sets, this percentage is decreased to 50%, instead. Thus, the image background
is a spurious feature the model may come to rely on when making the prediction.

Treeperson As the Waterbirds dataset was synthetically generated, we also consider a dataset
where we perform classification over real, unedited images with spuriously correlated objects. We
use the object annotations in Visual Genome (Krishna et al., 2016) to create a new dataset of 8,638
images called Treeperson, for which the task is to predict whether a person is in a given image.
While 50% of the images contain a person in this dataset, each image also contains either a tree or
a building, and the presence of these objects is spuriously correlated with the presence of people.
At train time, 90% of training images with people contain a building, while 90% of training images
without people contain a tree. Thus, a model may be incentivized to form representations that
classify according to the presence of trees and buildings, rather than the presence of the actual
causal variable of interest (people). These values are changed to 50% at test time, removing this
correlation to evaluate how well the model learned the actual feature of interest. For more details on
this dataset, see Appendix C.

3.2 MEASURING ROBUSTNESS TO DISTRIBUTION SHIFT

Distribution shifts occur when algorithms are evaluated on different data distributions than the ones
they were trained on. Examples include changing the location or time of day that photos were taken,
or changing the topic or author of a particular textual source. These shifts can reduce performance,
and we consider whether active learning can help choose diverse, informative examples that clarify
how the model should behave over a range of natural distribution shifts.
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iWildCam2020-WILDS This dataset considers the task of species classification from a database
of photos taken from wildlife camera traps (Beery et al., 2020; Koh et al., 2021). The dataset is
unbalanced, with most images containing no animal, and the distribution of camera locations and
species changes between the in domain (ID) and out-of-domain (OOD) subsets.

Amazon-WILDS This dataset considers the task of predicting the number of stars associated with
the text of a given Amazon review (Ni et al., 2019; Koh et al., 2021). The reviewers are different in
the training set versus the test set, and the task is to perform as well as possible on this set of new
reviewers. In addition to number of stars, we also consider model performance stratified by different
product types, which highlights minority subgroups whose categorization is not visible to the model.

4 EXPERIMENTS

4.1 MODELS AND TRAINING

Vision For computer vision datasets, we finetune BiT (Kolesnikov et al., 2020), a recently-
proposed family of vision models which have achieved state-of-the-art performance on several vi-
sion tasks. We primarily consider the BiT-M-R50x1 model, pretrained on ImageNet-21k (Deng
et al., 2009). To explore the effectiveness of larger architectures and pretraining sources, in Section
5.2 we also consider performance achieved by the same-size BiT-S-R50x1, trained on ImageNet-
1k, and the deeper BiT-M-R101x1 model, also trained on ImageNet-21k. These models have been
shown to have emergent few-shot learning abilities, where strong classifiers for new tasks can be
obtained by simply finetuning on tens or hundreds of examples with typical gradient descent tech-
niques (rather than meta-learning techniques, for example).

Text For the text dataset (Amazon), we use RoBERTa-Large (Liu et al., 2019), another pretrained
model with similar properties as BiT, and a representative of the BERT (Devlin et al., 2019) family
of models which together have obtained state-of-the-art scores on modern NLP benchmarks (Wang
et al., 2018).

Other details, including hyperparameters and seed set/acquisition sizes are deferred to Appendix B.

Random acquisition baseline As a running baseline, we compare to the same model finetuned
with a random acquisition function (equivalent to not doing active learning). That is, a(x;M) =
rand(0, 1), so we simply sample a random batch of data from the pool at each acquisition step.

Comparison with unpretrained models To examine whether effective active learning is an emer-
gent property of the pretraining process, we also compare to the performance observed when apply-
ing active learning to a randomly initialized, instead of pretrained, BiT-M-R50x1.

4.2 ACCURACY PER ACQUISITION

For a general measure of success, we plot the accuracy of active learning versus random sampling
on the validation datasets as a function of the number of samples acquired during training.

Waterbirds Waterbirds is evaluated on a balanced dataset where the foreground and background
are not correlated. In this setting, uncertainty sampling achieves a +12% improvement in average
validation accuracy over random sampling (Figure 2a). This comes primarily from a +31% average
increase across the landbird-on-water and waterbird-on-land images (i.e. those without the spurious
correlation; Figure 2b). Uncertainty sampling required 5.8x fewer labels than random sampling to
achieve random sampling’s final accuracy.

Amazon In the Amazon dataset, we also see gains from active learning in the OOD setting, in-
cluding +1% on average across reviewers, and +2.5% on the worst 10th percentile (Figure 2g).
This result suggests that our active learning recipe may be of use outside of BiT or computer vi-
sion settings more broadly. The confidence not overlapping by the end of training is evidence that
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Figure 2: Uncertainty sampling outperforms random sampling on all datasets, especially on
minority classes. Shaded regions represent 95% CIs (Gaussian approx.).

while the difference between uncertainty and random sampling is not large, it is statistically signif-
icant. Uncertainty sampling required 1.3x fewer labels than random sampling to achieve random
sampling’s final accuracy.

iWildCam With the iWildCam dataset, uncertainty sampling achieved a +8% improvement upon
random sampling. Uncertainty sampling also required 1.9x fewer labels than random sampling to
achieve random sampling’s final accuracy (Figure 2g).

Treeperson In the Treeperson dataset, uncertainty sampling is +2% improved over random sam-
pling by the end of training (Figure 2c). Uncertainty sampling required 2.5x fewer labels than
random sampling to achieve random sampling’s final accuracy.
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Figure 3: All types of uncertainty sampling outperform random sampling on iWildCam.

4.3 ADDITIONAL ACTIVE LEARNING METHODS

We consider two additional active learning methods in addition to least confidence sampling: 1)
entropy sampling, which chooses the example that maximizes the entropy of the model’s predic-
tive distribution, and 2) margin sampling, which chooses the example with the smallest difference
between the first and second most probable classes (Scheffer et al., 2001; Settles, 2009). We run
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Figure 4: Uncertainty sampling identifies and upsamples disambiguating examples. For both
Waterbirds and Treeperson, uncertainty sampling selectively acquires examples where the spurious
and core features disagree. Y-axis: percentage oversampling of uncertainty over random sampling.

experiments with all methods on the 182-class iWildCam dataset2. All methods significantly out-
perform random sampling (Figure 3).

4.4 ADDITIONAL PRETRAINED VISION MODEL

We broaden our coverage of computer vision models to include vision transformers (Dosovitskiy
et al., 2021), the other major architecture family currently in use. We train ViT-16/B,3 on Treeperson,
observing smaller gains for AL than the BiT model (Figure 8). This perhaps reflects the fact that the
vision transformer was pretrained on ImageNet-21k for far fewer epochs then BiT (9 vs 70), and is
corroborated by much lower oversampling of minority classes than BiT (Figure 9).

5 ANALYSIS

5.1 ACTIVE LEARNING SELECTS EXAMPLES THAT RESOLVE TASK AMBIGUITY

Overall, we attribute improved performance to pretrained models’ ability to identify and preferen-
tially sample disambiguating examples and latent minority examples that resolve task ambiguity.

Waterbirds Figure 4a depicts the rate at which uncertainty sampling is acquiring examples of
each subgroup compared to the expected rate at which random sampling would acquire examples
from those same subgroup. Examples where the bird and background are mismatched are heavily
oversampled. We emphasize that these minority examples are not simply members of the minority
class (waterbirds). If active learning were simply upsampling minority classes, then all landbird
images would be downsampled and all waterbird images would be upsampled. However, this is not
the case—instead, the model identifies and preferentially upsamples informative examples where
the spurious feature (background) and the causal feature (bird type) disagree.

Treeperson For Treeperson we see the same pattern as in Waterbirds: the model identifies and
upsamples examples where only one of the spurious or causal features is present (Figure 4b).

Amazon We also see similar behavior in the Amazon dataset, indicating our method’s applicability
to multiple modalities and pretrained models. Not only does the model upsample lower star ratings,
which are less common, it is also able to upsample rarer product categories—an unseen attribute.

5.2 PRETRAINING IS CRUCIAL FOR ACTIVE LEARNING TO WORK

We also consider the role of the pretraining dataset and model size. We conduct active learning
experiments with 3 pretrained models: BiT-S-R50x1, BiT-M-R50x1, BiT-M-R101x1, and their cor-
responding non-pretrained versions. For all pretrained models (except BiT-M R-101 for Treeperson)

2Note that least confidence, entropy, and margin sampling are identical in the case of binary classification.
3https://huggingface.co/google/vit-base-patch16-224
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Figure 5: Uncertainty sampling upsamples both visible and latent minority subgroups. Fraction
of Amazon examples acquired by random and uncertainty sampling, stratified by star rating and
product category. Uncertainty sampling preferentially acquires examples with lower star ratings and
rarer product categories, despite the latter attribute not being visible to the model.

uncertainty acquisition outperformed random acquisition (Figure 7a, Figure 7b, Figure 7c). Impor-
tantly, we did not see any gains from AL on the unpretrained models, even when exploring a range
of different hyperparameter configurations.

Scaling trend Interestingly, the BiT-S-R50x1 model, which was pretrained on a smaller dataset
than the BiT-M models (ImageNet-1k vs ImageNet-21k) achieves less of a boost from active learn-
ing on iWildCam vs the other two models. This suggests that the gains from active learning may
continue to grow as pretained models are trained for longer on more data. However, we did not see
a difference between BiT-M-50x1 and BiT-M-101x1, which were trained on the same dataset but
have different numbers of parameters. We encourage future work that more thoroughly examines
these behaviors and scaling laws across a range of models and datasets.

Impact of pretraining on acquisition patters Pretrained models also acquire disambiguating
subgroups much more efficiently than their unpretrained counterparts. See Appendix G for addi-
tional figures and results illustrating this point.

5.3 PRETRAINING PROVIDES A BETTER FEATURE SPACE FOR ACTIVE LEARNING

Why does pretraining improve AL for resolving task ambiguity? We investigate the hypothesis that
pretrained representations enable AL models to select objects based on higher-level features (e.g.
object foreground and background) through various analyses on Waterbirds.

Linear classifier analysis We investigate the presence of these high-level features by training
linear classifiers on the second to last layer of BiT models. The classifiers are trained to predict
each image’s bird type and background type (4 classes, each comprising 25% of the data). As
shown in Figure 6, these classes are more linearly separable in pretrained models both before any
finetuning, as well as after finetuning on a seed set and then acquired examples from the original 2-
class Waterbirds dataset. This demonstrates that pretrained models can better identify both the causal
and spurious features in the data, potentially explaining why they can choose them preferentially.

(a) Group accuracies for linear classifier on Water-
birds image embeddings attained from a pretrained
BiT model after various degrees of finetuning

(b) Group accuracies for linear classifier on Wa-
terbirds image embeddings attained from an unpre-
trained BiT model after various degrees of finetuning

Figure 6: Both causal and spurious features are more linearly separable in pretrained models.
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Figure 7: Uncertainty sampling only provides gains when using pretrained models. S-R50, M-
R50, and M-R101 correspond to the BiT-S-R50x1, BiT-M-R50x1, and BiT-M-R101x1 pretrained
models, respectively, while R50-NP and R101NP correspond to ResNet models which are not pre-
trained. Shaded regions represent 95% CIs (Gaussian approx.).

t-SNE visualization We visualize the second-to-last layer embeddings of BiT (without any fine-
tuning) using t-SNE (van der Maaten & Hinton, 2008), shown in Figure 13. We find that examples
selected by uncertainty sampling fall closer to the decision boundary for the pretrained model than
for the unpretrained model. We also see that the pretrained model exhibits far more separation by
class, suggesting it is better able to identify useful features in the input. These conclusions help
further characterize how pretraining provides a feature space more amenable to active learning.

5.4 PINPOINTING THE EFFECT OF TASK AMBIGUITY WITH A DOSE-RESPONSE EXPERIMENT

To examine the impact of task ambiguity from the perspective of the unlabeled dataset, we construct
variants of the waterbirds dataset where the percentage of mismatched examples range from 95%
to 50%. 4 We then proceed with AL and report results in Figure 10.5 We find significantly larger
gains on versions of the dataset with smaller fraction of mismatched examples (gains average 4%
for 50–70% shift, and 10% for 75–95% shift) keeping. This provides stronger evidence that active
learning is actually helping the model identify the true task.

5.5 FAILURE CASES

To assess how similar the datasets needed to be to the training distribution of BiT, we also perform
preliminary experiments on Camelyon17-WILDS (Bándi et al., 2019; Koh et al., 2021), which con-
siders tumor identification from tissue patches, and FMoW-WILDS (Christie et al., 2018; Koh et al.,
2021), which considers land-use classification from satellite images. Active learning performs com-
parably or worse than random sampling on these datasets, even when using a pretrained BiT model,
suggesting that generalization to domains far from the training distribution (ImageNet-21k) may be
challenging. However, Camelyon17-WILDS is also known to exhibit high variance across seeds,6
which may also be a contributing factor.

6 RELATED WORK

Task ambiguity and specification Several works address ambiguity or poor specification in ma-
chine learning problems. Taylor et al. (2020) describe the problem of “inductive ambiguity identifi-
cation,” and describe active learning as a promising potential solution that has failed to see practical
success. D’Amour et al. (2020) describe the problem of underspecification, where high variance,
instability, and poor model performance result from training overparameterized models on small
amounts of data. Geirhos et al. (2020) describes how task ambiguity can arise when both desirable
and undesirable features are predictive of the training labels, a problem which several works seek
to better characterize and address (Nagarajan et al., 2021; Sagawa et al., 2019; 2020). Finally, Finn
et al. (2018) address task ambiguity in few-shot settings via a probabilistic meta-learning algorithm,

4We construct these datasets using the code at https://github.com/kohpangwei/group_DRO.
5Results are preliminary and will be rerun with more seeds.
6https://wilds.stanford.edu/get_started/
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and perform an active learning experiment in a 1D regression setting. We build on these works by
demonstrating that simple uncertainty sampling with pretrained models can be an effective approach
to the task ambiguity problem across a wide variety of high-dimensional classification settings.

Uncertainty and distribution shift In the face of these challenges, several works have tried to
quantify how much pretrained models know about problems or their own uncertainty about them.
Rajpurkar et al. (2018) propose a question answering dataset with unanswerable questions, where
a model must abstain rather than proceeding with an answer. Pretraining can also improve the
calibration of model uncertainty (Hendrycks et al., 2019) and pretrained features can be used for out-
of-distribution detection (Reiss et al., 2021; Wu & Goodman, 2020)—observations that align with
our findings that uncertainty sampling can identify minority subgroups in datasets. Furthermore,
our observation that upsampling latent minority groups results in better performance aligns well
(Sagawa et al., 2020), which found that simply upweighting minority groups performed less well
than increasing the relative fraction of minority group examples in the distribution. Importantly,
however, our active learning setup does not require these groups to be known in advance.

Active learning and example selection Active learning (AL) (Lewis & Catlett, 1994; Settles &
Craven, 2008; Settles, 2009; Houlsby et al., 2011; Aggarwal et al., 2020) is a well-studied field that
investigates how machine learning algorithms might automatically select helpful additional data
points to maximize their performance. Such strategies are especially helpful in imbalanced settings
(Ertekin et al., 2007; Mussmann et al., 2020) and has been fruitfully applied to deep models (Gal
et al., 2017; Beluch et al., 2018), including pretrained models (Yuan et al., 2020; Margatina et al.,
2021; Shelmanov et al., 2021). Past work has also considered AL for few-shot learning (Woodward
& Finn, 2017). We extend these works by specifically considering AL for resolving task ambiguity,
showing that AL can induce something closer to the true task desired by users by selecting examples
from unlabeled minority subgroups, as well as examples that disambiguate causal from spurious
features. In contrast to prior work, we also demonstrate the causal effect of pretraining on AL by
running controlled studies that compare to both random sampling and unpretrained models.

Pretrained models and their emergent properties Our work contributes to a broader literature
on how pretraining enables new kinds of model capabilities (Bommasani et al., 2021; Tamkin et al.,
2021), especially when deployed in few-shot settings. For example, (Brown et al., 2020) identify
the phenomenon of in-context learning, where tasks can be specified for models through a language
modeling prompt, while Caron et al. (2021) discover that a self-supervised vision model implic-
itly learns high-quality segmentation maps visible through attention scores. Kaplan et al. (2020);
Henighan et al. (2020) conduct scaling laws experiments which chart how capabilities emerge with
scale. We identify a new model capability that emerges through pretraining: the capacity to actively
learn and resolve task ambiguity in conceptually abstract hypothesis spaces.

7 DISCUSSION AND LIMITATIONS

We argue that pretrained models are good active learners, capable of identifying informative exam-
ples across a diverse range of settings where task ambiguity makes choosing examples challenging.
Despite past work largely considering each separate problems, we find that active learning helps in
cases where data is spuriously correlated, undergoes domain shift, or contains unlabeled subpopu-
lations. These behaviors emerge most clearly as a result of large-scale pretraining, suggesting that
active learning may be an underappreciated tool for increasing the reliability of systems in real-
world settings. Importantly, pretraining appears necessary for these behaviors to manifest—and in
some cases, models pretrained for longer on larger datasets appear to actively learn better.

Our method does suffer from a number of limitations. First, it requires a human in the loop for data
acquisition, which significantly increases the time required to train a model compared to random
sampling—a cost which must be weighed against potential benefits. Second, our method requires
the labeling method to be relatively free of noise—this may be acceptable if annotators are domain
experts or are well-trained, but may also increase the cost per acquired example.

Finally, we note the opportunity for much exciting future work, including deeper investigation of
task ambiguity in real-world settings and better understanding how pretraining shapes active learning
as models continue to scale.
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A CODE RELEASE

Our code and training scripts will be released at https://redacted.

B ADDITIONAL EXPERIMENTAL DETAILS

Here we provide some additional experimental details.

All BiT runs use the same default settings specified in the BiT paper (Kolesnikov et al., 2020) and
the BiT GitHub repo: https://github.com/google-research/big_transfer

Settings that are constant across all BiT runs:

1. Optimizer - SGD with momentum 0.9
2. Learning Rate - Base learning rate 0.003. Linear warm up to this rate, then staircase decay.

Exact schedule depends on dataset size, but for our few shot setting, this means: (1) linear
warm up in the first 100 steps to 0.003, then (2) decay 10 fold every 100 steps; (3) after 500
steps, stop and move on to the next acquisition round.

3. Data Augmentation - Random cropping and flipping. See our
repo/utils/datasets/load for details. Also available in BiT repo.

4. Batch Size - 32 when training, split into gradient accumulation microbatches of size 8.
5. Early stopping condition - When the training loss reaches below 0.001 times the original

training loss.

Settings that varied between image datasets:

1. Size of Initial Seed Set - 40 for Waterbirds, 40 for Treeperson, 182 for iWildCam, 20 for
CIFAR10, 8 for Camelyon17

2. Size of Training Pool - Entire training set for Waterbirds, Treeperson, Camelyon17. A
random subset of 5000 examples and 12000 examples (re-drawn for each acquisition) from
the entire training set of CIFAR10 and iWildCam, respectively.

3. Number of Acquired Examples - 320 for Waterbirds, 320 for Treeperson, 1456 for iWild-
Cam, 180 for CIFAR10, 128 for Camelyon17
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4. Number of Examples Acquired Each Acquisition - 5 for Waterbirds, 5 for Treeperson,
20 for iWildCam, 2 for CIFAR10, 1 for Camelyon17.

Settings used for Amazon + RoBERTa-Large runs:

1. Optimizer - AdamW with default hyperparameters (β1 = 0.99, β2 = 0.999, weight decay
= 0.1).

2. Learning Rate - LR = 1e-6.

3. Batch Size - 2 (due to memory considerations).

Early Stopping Condition When the training loss reaches below 0.001 times the original
training loss or when 4000 gradient steps have been taken (whichever comes first).

4. Size of Initial Seed Set - 10.

5. Size of Training Pool - A random subset of 2000 examples (re-drawn for each acquisition)
from the entire training set.

6. Number of Acquired Examples - 90.

7. Number of Examples Acquired Each Acquisition - 2.

C TREEPERSON DATASET

The Treeperson dataset is composed of images from Visual Genome (Krishna et al., 2016) with
different compositions of detected objects.

Training set composition by subclass:

• Person and Building: 3700

• Person and Tree: 370

• No Person and Building: 370

• No Person and Tree: 3700

The validation set contains 498 examples of each subclass.

The following annotated objects were used to form the different subclasses:

• Person: person, people, man, men, woman, women

• Building: building, buildings

• Tree: tree, trees, leaf, leaves, grass

The training set and validation set were drawn randomly from qualifying images in Visual Genome’s
training set and validation set, respectively.

D EARLY STOPPING CONDITION

At the outset of this work, we explored if we could identify a heuristic for stopping training when
there was no validation set present. We compared how the BiT model would perform if it stopped
the finetuning step based off of when the validation accuracy plateaued versus when the training loss
decayed to be 0.001 of its original value.

We ran a smaller experiment than the standard Waterbirds parameters we described in Appendix B.
Namely, our seed set was of size 32, we acquired 64 examples on top of that, and we acquired one
example at a time. We also defined the validation accuracy as having plateaued the fifth time it did
not increase.

We ran twelve paired experiments where for twelve different randomized seed sets, we performed
the Waterbirds experiment four times - with random sampling and stopping when validation accu-
racy plateaued, with random sampling and stopping when training loss decayed, with uncertainty
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sampling and stopping when validation accuracy plateaued, and with uncertainty sampling and stop-
ping when training loss decayed.

We found that these experiments achieved:

1. Random sampling + Stop from validation accuracy: average accuracy = 69.11%, average
duration = 3.5 hours

2. Random sampling + Stop from training loss: average accuracy = 69.93%, average duration
= 38 minutes

3. Uncertainty sampling + Stop from validation accuracy: average accuracy = 83.64%, aver-
age duration = 4.5 hours

4. Uncertainty sampling + Stop from training loss: average accuracy = 85.62%, average du-
ration = 74 minutes

Thus, we concluded that the by stopping our finetuning step just by waiting for the training loss to
decay to 0.001 of its original values, we could achieve comparable if not better accuracies, spend a
fraction of the time, and remove the need for a labeled validation set.

E VISION TRANSFORMER MODEL

Results for Treeperson when using ViT-B/16 are presented in Figure 8. While active learning im-
proves upon random sampling, the gains are not as large as for BiT, perhaps because ViT was
pretrained for almost 8x fewer epochs.
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Figure 8: Active learning improves upon random sampling for Treeperson when using ViT-
B/16. However, the gains are not as large as for BiT, perhaps because ViT was pretrained for almost
8x fewer epochs.

F DOSE RESPONSE

Results for the Waterbirds dose-response experiment are presented in Figure 10. Even when the
training and test distributions are the same, active learning allows the pretrained BiT model to out-
perform random sampling. However, as the train and test distribution diverge, the benefit of active
learning increases, indicating the importance.

G EFFECT OF MODEL SCALING AND PRETRAINING ON ACQUISITION

For the Waterbirds model scaling experiment, we track the examples each model acquires. These
are presented in Figure 11. The acquisition patterns of all the pretrained models look fairly similar—
they upsample both minority (landbird/water-background, waterbird/land-background) subclasses.
However, the non-pretrained model is unable to capture that distinction, and is only able to upsam-
ple images with a water background, resulting in worse performance. A summary of final class
acquisition ratios is available in Figure 12.
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Figure 9: Acquisitions for Treeperson using ViT. The ViT model requested labels for minority
classes at a significantly lower rate than did the BiT model.

Figure 10: Waterbirds background mismatch dose-response experiment. As the train and test
distribution diverge, the benefit that active learning provides increases.
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(a) Pretrained BiT-S-R50x1 (b) Pretrained BiT-M-R50x1

(c) Pretrained BiT-M-R101x1 (d) Non-pretrained ResNet R50x1

Figure 11: All pretrained models acquire disambiguating subgroups much more efficiently
than their non-pretrained counterparts. The pretrained models do not simply oversample based
on the the bird or the background; instead they oversample disambiguating examples which have
mismatched backgrounds. By contrast, the non-pretrained model only oversamples images with a
water background, and accordingly is less able to perform well on the balanced validation set.

Figure 12: Pretrained models ask for labels of images with mismatched backgrounds, while
non-pretrained models do not.

H VISUALIZATION OF IMAGE EMBEDDINGS OF PRETRAINED BIT-M

As seen in Figure 13b, when performing t-SNE on the Waterbirds image embeddings, we find that
the t-SNE of the pretrained model has much more structure than that of the unpretrained model.
In the unpretrained model, the image embeddings of the landbird/land background, landbird/water
background, and waterbird/water background classes are distributed uniformly about the center of
the t-SNE projection. However, we observe much more structure in the pretrained model’s t-SNE.
In particular, the most noticible difference is that the landbird/water background and waterbird/land
background classes can be found near the other landbird and waterbird images, respectively. This
shows that even without any finetuning, the pretrained model already has learned features to help
process the type of bird that appears in the image.
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In the t-SNE plots, the black stars represent the embeddings of the first 10 images that were ac-
quired by each model. For the pretrained model, the acquired examples very clearly fall along the
waterbird-landbird boundary in the projected feature space. However, in the unpretrained model,
the acquired examples are distributed randomly. This suggests that the features acquired during
pretraining enables them to select examples that fall near the decision boundary of a new unseen
task.

(a) t-SNE of Waterbirds image embeddings from pre-
trained Bit-M

(b) t-SNE of Waterbirds image embeddings from
non-pretrained Bit-M

Figure 13: Without any finetuning, pretrained models already embed images into a useful
feature space.

I ROLE OF LABEL IMBALANCE

We attempt to isolate the role of label imbalance by investigating CIFAR-10 (Krizhevsky, 2009),
a widely-used balanced dataset where task ambiguity is not known to be a common problem. We
train uncertainty- and random-sampling models on both the original CIFAR-10 dataset, as well as
an imbalanceed variant where half of the classes have 90% of their examples removed. As shown
in Figure 14, random sampling slightly outperforms uncertainty sampling on the original CIFAR-10
dataset, but uncertainty sampling performs better in unbalanced settings, both when the validation
dataset is imbalanced as well as when it is balanced.

(a) CIFAR-10 (b) CIFAR-10-unbalanced
(unbalanced validation)

(c) CIFAR-10-unbalanced
(balanced validation)

Figure 14: Accuracy on CIFAR10 as more samples are acquired with uncertainty vs random acqui-
sition. Shaded regions represent 95% CIs (Gaussian approx.). All runs are with the pretrained model
BiT-M-R50x1. (a): The usual CIFAR10. (b) and (c): CIFAR10 where the training set has 5 out of
10 classes from which 90% samples are removed. (b) is accuracy on validation split with the same
distribution as train. (c) is on balanced validation split.

18


	Introduction
	Method
	Datasets
	Distinguishing causal from spurious features
	Measuring robustness to distribution shift

	Experiments
	Models and Training
	Accuracy per acquisition
	Additional active learning methods
	Additional pretrained vision model

	Analysis
	Active learning selects examples that resolve task ambiguity
	Pretraining is crucial for active learning to work
	Pretraining provides a better feature space for active learning
	Pinpointing the effect of task ambiguity with a dose-response experiment
	Failure Cases

	Related work
	Discussion and Limitations
	Code release
	Additional experimental details
	Treeperson dataset
	Early stopping condition
	Vision transformer model
	Dose Response
	Effect of model scaling and pretraining on acquisition
	Visualization Of Image Embeddings Of Pretrained Bit-M
	Role of label imbalance

