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ABSTRACT

We propose PRM, a novel photometric stereo based large reconstruction model to
reconstruct high-quality meshes with fine-grained local details. Unlike previous
large reconstruction models that prepare images under fixed and simple lighting
as both input and supervision, PRM renders photometric stereo images by varying
materials and lighting for the purposes, which not only improves the precise local
details by providing rich photometric cues but also increases the model’s robust-
ness to variations in the appearance of input images. To offer enhanced flexibility
of images rendering, we incorporate a real-time physically-based rendering (PBR)
method and mesh rasterization for online images rendering. Moreover, in em-
ploying an explicit mesh as our 3D representation, PRM ensures the application
of differentiable PBR, which supports the utilization of multiple photometric su-
pervisions and better models the specular color for high-quality geometry opti-
mization. Our PRM leverages photometric stereo images to achieve high-quality
reconstructions with fine-grained local details, even amidst sophisticated image
appearances. Extensive experiments demonstrate that PRM significantly outper-
forms other models.

1 INTRODUCTION

Recent advancements in generative models (Song et al., 2020; Ho et al., 2020) have spurred notable
progress in 2D content creation, driven by fast growth in data volumes. In contrast, the development
in 3D field remains encumbered due to limited 3D assets, which are essential for diverse applications
including game modeling (Gregory, 2018), computer animation (Parent, 2012; Lasseter, 1987), and
virtual reality (Schuemie et al., 2001). Traditional approaches to generating 3D assets have utilized
optimization-based techniques from multi-view posed images (Wang et al., 2021; Yariv et al., 2021;
2020) or have harnessed SDS-based distillation methods from 2D diffusion models (Liang et al.,
2023; Lin et al., 2023; Poole et al., 2022). Despite their effectiveness, these methods often require
increased computational costs without a commensurate improvement in surface quality, making
them less suitable for rapid deployment in real-world scenarios.

Feed-forward 3D generative models (Hong et al., 2023; Hu et al., 2024; Zhang et al., 2024) have been
developed to address the limitations of per-scene optimization by training a generalizable model
on large-scale 3D assets. Notably, the Large Reconstruction Model (LRM) (Hong et al., 2023)
has demonstrated promising results, exhibiting exceptional reconstruction speeds. The subsequent
LRM series (Hong et al., 2023; Xu et al., 2023; Wang et al., 2024; Xu et al., 2024; Tang et al., 2024)
utilizes a Transformer-based architecture to encode either single or multi-view images, and decoding
them into 3D representations, such as triplanes (Chan et al., 2022), Flexicubes (Shen et al., 2023)
or 3D Gaussians (Tang et al., 2024). These 3D representations enable differentiable rendering from
arbitrary viewpoints, which is crucial for calculating multi-view reconstruction loss for optimization.

While LRM series demonstrate effectiveness and efficiency in globally coherent 3D assets recon-
struction, they encounter limitations in accurately capturing fine-grained local details. This chal-
lenge stems from their dependence on images rendered under fixed and simple lighting conditions,
which provide inadequate photometric information for detailed surface reconstruction. Furthermore,
LRM series are sensitive to variations in the appearance of conditioned images, particularly when
dealing with surfaces exhibiting glossy characteristics. As a result, LRM series tend to entangle the
texture and geometry, leading to wrong geometry reconstruction.
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Input Image Generated NormalsGenerated Textured Mesh
Input Image Generated NormalsGenerated Textured Mesh

Figure 1: Top left: PRM is capable of reconstructing high-quality meshes with fine-grained local
details even under complex image appearances, such as specular highlights and dark appearances.
Right: We demonstrate a scene comprising diverse 3D objects generated by our models. Bottom
left: A zoomed-in visualization of the scene highlights these details more clearly.

To address the above mentioned challenges, we introduce PRM, a photometric stereo based large
reconstruction model. This model is adept at capturing fine-grained local details and ensures robust-
ness against the complex appearances of input images. We achieve these objectives by leveraging
photometric stereo images (Hernandez et al., 2008). Specifically, we render photometric stereo im-
ages by varying camera pose, materials (i.e., metallic and roughness), and lighting for both input
and supervision. However, rendering these images is not trivial since there are infinite possible
combinations of camera pose, materials and lighting. In the recent LRM series, images are typi-
cally rendered offline using Blender’s Cycles engine (Hess, 2013). While this approach produces
high-quality, noise-free images, it requires numerous samples of lighting directions, significantly
increasing the time cost and making it expensive to maximize the training sample distribution.

To address this issue, we incorporate a real-time, physically based rendering technique known as
split-sum approximation (Karis & Games, 2013), along with mesh rasterization for online render-
ing. This approach offers greater flexibility compared to traditional offline methods. We discuss
two corresponding training strategies in the Appendix, thanks to the flexible rendering. Photomet-
ric stereo images offer two distinct advantages. First, photometric stereo images furnish additional
photometric cues, thereby enhancing the capacity to recover fine-grained local details. Second, the
PRM model demonstrates remarkable robustness to variations in the appearances of input images.
For instance, it is capable of accurately reconstructing the geometry of images with glossy surfaces.
Moreover, by utilizing mesh as our 3D representation, we are capable of utilizing differentiable PBR
to produce intermediate shading variables such as albedo, specular light, and diffuse light maps,
along with geometric cues like normals and depth. These variables provide multiple supervisions,
including photometric supervision and geometric supervision for high-quality geometry reconstruc-
tion. Furthermore, PBR can better disentangle the specular component, making the geometry also
be correctly recovered when the supervision images are characterized with glossy surfaces.

To summarize, our contributions are listed as follows.

• We introduce PRM, a model that is capable of reconstructing geometry with fine-grained
local details and robust to variations in the appearance of input image by utilizing photo-
metric stereo images as input and supervision.

• To the best of our knowledge, we are the first to integrate split-sum approximation and mesh
rasterization to render images online for LRM, offering significantly greater flexibility.

• By utilizing mesh as the 3D representation, we ensure differentiable PBR for predictive
rendering. This approach is advantageous for modeling reflective components and enables
the incorporation of multiple supervisions for high-quality geometry reconstruction, signif-
icantly outperforming other models.
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2 RELATED WORK

2.1 FEED-FORWARD 3D GENERATIVE MODELS

Large-scale 3D assets (Deitke et al., 2023) facilitate the training of generalizable reconstruction
models. Recent works have focused on generating 3D objects using feed-forward models (Hong
et al., 2023; Xu et al., 2023; Wang et al., 2024; Xu et al., 2024; Li et al., 2023; Hu et al., 2024; Tang
et al., 2024; Zhang et al., 2024), demonstrating impressive results in terms of speed and quality.
Specifically, Clay (Zhang et al., 2024) utilizes occupancy for direct supervision. X-ray (Hu et al.,
2024) explores novel 3D representations by converting a 3D object into a series of surface frames at
different layers. The LRM series (Hong et al., 2023; Xu et al., 2023; Wang et al., 2024; Xu et al.,
2024; Li et al., 2023) shows that a transformer backbone can effectively map image tokens to 3D
triplanes, benefiting from multi-view supervision. Instant3D (Li et al., 2023) employs multi-view
images to provide additional 3D information for triplane prediction, yielding promising outcomes.
CRM (Wang et al., 2024) and InstantMesh (Xu et al., 2024) opt for an explicit mesh representation,
supporting mesh rasterization and rendering additional geometric cues for supervision. Despite
these achievements, the existing LRM series typically render low-frequency images under fixed and
simple lighting, which compromises the model’s adaptability to complexity in the appearance of
input images and the model’s capability to recover local details due to limited photometric cues.
In response, we render photometric stereo images that significantly enhance the photometric cues
necessary for the recovery of fine-grained local details.

2.2 PHOTOMETRIC STEREO

Photometric stereo (PS) is a technique for recovering surface normals from the appearance of an
object under varying lighting conditions. Traditional methods, inspired by the seminal work (Wood-
ham, 1980), assume calibrated, directional lighting. Recently, uncalibrated photometric stereo meth-
ods have emerged, which assume Lambertian integrable surfaces and aim to resolve the General
Bas-Relief ambiguity (Hayakawa, 1994) between light and geometry. However, these methods are
still constrained to single directional lighting. More contemporary research (Mo et al., 2018; Ike-
hata, 2022; 2023) has shifted focus towards natural lighting conditions. Despite the significant
progress, these approaches generally concentrate on single-view photometric stereo, relying solely
on photometric cues and neglecting multi-view information, which is crucial for accurately rea-
soning geometric features. Some studies (Kaya et al., 2022a; Park et al., 2013; Zhao et al., 2023;
Hernandez et al., 2008; Kaya et al., 2022b; 2023) leverage both photometric and geometric cues
for reconstruction. These cues are complementary: photometric stereo provides precise local de-
tails, while multi-view information yields accurate global shapes (Zhao et al., 2023). For example,
UA-MVPS (Kaya et al., 2022a) utilizes complementary strengths of PS and multi-view stereo for
geometry reconstruction. NeRF-MVPS (Kaya et al., 2022b) utilizes surface normal estimated from
photometric stereo images to enhance the reconstruction performance of NeRF. Our approach inte-
grates the principles of photometric stereo into LRM, aiming to harness the strengths of photometric
cues for enhanced reconstruction accuracy.

2.3 PHYSICALLY-BASED RENDERING

Physically based rendering (PBR) is a computer graphics approach that renders photo-realistic im-
ages. PBR offers a physically plausible approach to modeling radiance by simulating the interaction
between lighting and materials. PBR has proven to be effective in improving the geometry for
multi-view reconstruction task. For example, incorporating the principles of PBR into volume ren-
dering significantly improves the accuracy (Verbin et al., 2022; Ge et al., 2023; Liu et al., 2023),
especially for glossy surfaces. Since geometry and predicted radiance are closely entangled, im-
proving radiance modeling can also enhance geometry reconstruction. Besides, PBR is also widely
used in inverse rendering task (Barron & Malik, 2014; Nimier-David et al., 2019). The task aims
at decomposing image appearance into intrinsic properties. Unlike previous LRM methods that
predict radiance without explicitly considering the interactions between materials and lighting, we
leverage advancements from the multi-view reconstruction field and employ PBR for improved radi-
ance modeling and geometry reconstruction. To this end, we predict albedo instead of color, which
is more reasonable as albedo is view-independent. The final color is derived using the predicted
albedo and the ground truth metallic, roughness, and lighting.
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Figure 2: Overview of our framework. During training, photometric stereo images are rendered
using PBR with randomly varied materials, lighting, and camera poses, along with depth, normal,
albedo, and lighting maps. Images are encoded as a mesh through the network. All associated maps,
along with the images, are used for supervision. During inference, an optional multi-view diffusion
model takes a single image as input and outputs multi-view images, which are then fed into the
network for mesh prediction. Relighting and material editing functionalities are also supported.

3 METHOD

We begin with a succinct overview of large reconstruction model, physically based rendering and
photometric stereo in Section 3.1. Then, we introduce how to prepare photometric stereo images
in Section 3.2. Subsequently, we introduce PRM in Section 3.3, with our proposed comprehensive
objectives and applications. An overview of our framework is provided in Figure 2.

3.1 PRELIMINARIES

Large Reconstruction Model aims to reconstrcut 3D assets given a single image or multi-view
images. LRM first utilizes a pre-trained visual transformer, DINO (Caron et al., 2021), to encode
the images into image tokens. Subsequently, it employs an image-to-triplane transformer decoder
that projects these 2D image tokens onto a 3D triplane using cross-attention (Hong et al., 2023).
Following this, images can be differentiable rendered from any viewpoint by decoding the triplane
features into color and density, supporting photometric supervision and optimization.

Physically-based Rendering aims to produce 2D images using specified geometry, materials, and
lighting. Central to this process is the rendering equation (Kajiya, 1986) formulated by

C(x,ωo) =

∫
Ω

f(x,ωo,ωi)Li(x,ωi)(ωi · n)dωi, (1)

where ωo is the viewing direction of the outgoing light, Li is the incident light of direction ωi

sampled from the upper hemisphere Ω of the surface point x, and n is the surface normal. f is the
BRDF properties. The function f consists of a diffused and a specular component

f(x,ωo,ωi) = (1−m)
a

π
+

DFG

4(ωi × n)(ωo × n)
, (2)

where m ∈ [0, 1] is the metallic, a ∈ [0, 1]3 is the albedo. We detail the expression of D, F and G
in the Appendix. With Eq.(1) and Eq.(2), the outgoing radiance is given by

C(x,ωo) = Cd(x,ωo) +Cs(x,ωo), (3)
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Cd(x,ωo) = (1−m)a

∫
Ω

Li(x,ωi)
(ωi · n)

π
dωi, (4)

Cs(x,ωo) =

∫
Ω

DFG

4(ωi × n)(ωo × n)
Li(x,ωi)(ωi · n)dωi, (5)

Cs and Cd are specular and diffuse color, respectively.

Photometric Stereo aims to estimate the surface normals by observing an object under varying
lightings (Woodham, 1980). When considering a Lambertian surface illuminated by a single point-
like, distant light, the color is determined solely by the diffuse term, which can be formulated by

C(x) = a(L · n), (6)

where L = L · ω, ω and L are the direction and the intensity of the lighting, respectively. When
we observe the object under different lighting conditions Li, we have multiple such equations. We
assume that both the direction and intensity of the lighting are known, and the shading colors C(x)
is also observed. Under these conditions, determining the surface normals n and the albedo a
is effectively equivalent to solving a system of equations derived from these observations. More
lighting indicates more equations, which effectively constrain the solution space.

3.2 PHOTOMETRIC STEREO IMAGES PREPARATION

Previous methods typically prepared training data by
rendering multi-view images using fixed, simple light-
ing and materials in Blender (Hess, 2013). This
approach resulted in images characterized by low-
frequency appearances, providing limited photometric
cues. Consequently, these methods struggled to recon-
struct geometry with precise local details. Moreover,
they often fail when processing images with glossy
surfaces, as the models tend to interpret these glossy
attributes as geometric permutations. An example is
shown in Figure 3. Our method correctly reconstructs
surfaces with glossy component.

OursInstantMeshInput image

Figure 3: Comparison on shiny objects.

In contrast, we prepare photometric stereo images by varying materials and lighting. A naive solu-
tion is to prepare these images offline, as with previous methods, but this approach poses significant
challenges due to the infinite number of potential combinations of materials and lighting. Moreover,
rendering high-quality images requires large sample counts, making traditional data preparation
methods infeasible. To overcome these issues, we incorporate a real-time rendering method known
as split-sum approximation (Karis & Games, 2013) along with mesh rasterization, which facilitates
rapid rendering. This method enables online data preparation and significantly enhances flexibility.

Split-sum approximation. High-quality estimation of physically based rendering typically requires
Monte Carlo sampling to approximate the integral in Eq.(1). However, this process demands large
sample counts, making it time-consuming. Instead, we employ a real-time rendering method known
as the split-sum approximation (Karis & Games, 2013). According to the split-sum approximation,
the specular component in Eq.(5) can be rewritten as:

Cs(x,ωo) ≈
∫
Ω

DFG

4(ωo · n)
dωi

∫
Ω

L(x,ωi)D(d̂, ρ)dωi, (7)

The first term is the integral of the BRDF, which is approximated by specular albedo as = ((1−m)∗
0.04+m∗a)∗F1+F2, where F1 and F2 are pre-computed scalars and stored in a 2D lookup texture
related to ρ,n and ωo. The second term is the integral of lights on the normal distribution function
D(d̂, ρ), which can also be pre-computed and stored as mipmaps Ms. d̂ = 2(−ωo · n)n + ωo is
the reflective direction. After simplification, the Eq.(7) is modified as

Cs(x,ωo) = as(a,m,n,ωo)Lspec(x,n,ωo, ρ,Ms), (8)

where Lspec = Tex Sample(x, d̂, ρ,Ms), Tex Sample indicates texture sampling based on dif-
ferent levels of roughness ρ in pre-computed lighting map Ms. A low-resolution map Md is also
created to represent low-frequency diffuse lighting and the diffuse part in Eq.(4) is simplified as

Cd(x,ωo) = ad(a,m)Ldiff(x,n,Md), (9)
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where ad = (1 −m)a indicates the diffuse albedo and Ldiff = Tex Sample(x,n,Md). We show
some rendered examples in the Appendix in Figure 10.

Discussion. We render photometric stereo images using varied camera poses, materials, and lighting
conditions rather than solely changing the lighting. Please refer to the Appendix for more details.
This approach offers two distinct advantages. Firstly, multi-view images provide more geomet-
ric cues than single-view images, which are crucial for reconstructing globally reasonable geome-
try (Kaya et al., 2022b;a; 2023). Secondly, by varying materials, we can create images with glossy
appearances, particularly when the metallic component is high and roughness is low. These varied
images serve as inputs, enhancing the model’s robustness to variations in appearance. Furthermore,
the core principles of photometric stereo remain applicable. In equations Eq.(8) and Eq.(9), the
observation direction ωo, metallic value m, roughness ρ, and mipmaps Md and Ms are all known.
Predicting the surface normals n and the albedo a still equates to solving these equations. More-
over, compared to merely changing lighting, altering the metallic and roughness values allows for
diverse shading color rendering, which produces a richer set of equations.

Mesh Rasterization Rendering. Given an object with explicit mesh O, rasterization is utilized to
determine surface points x, along with corresponding depth d, surface normals n, and mask m.
After obtaining the surface points x and their surface normals n along with selected camera pose,
materials and lighting, we leverage split-sum approximation to estimate the specular and diffuse
color as Eq.(8) and Eq.(9), respectively. During the process, besides the shading color, we can also
render albedo, specular light, and diffuse light maps. The entire process can be formulated as

{C,n,d,m,a,Lspec,Ldiff} = PBR(Rasterization(O)), (10)
where C, n, d, m, a, Lspec, and Ldiff are the rendered color, normal, depth, mask, albedo, specular
light, and diffuse light maps, respectively. We show some rendered cases in the Appendix.

3.3 PRM

Mesh as 3D Representation. The previous LRM-based models typically integrate triplane as 3D
representation. In contrast, we opt for an explicit representation using mesh as our 3D format, which
enables the use of the same PBR method employed in data preparation. As a result, specular and
diffuse lighting maps are also renderable, providing extra photometric cues that are only related to
surface normals. Moreover, PBR can effectively model the specular component, leading to improved
geometry reconstruction results (Verbin et al., 2022; Ge et al., 2023). Specifically, we leverage
differentiable iso-surface extraction module, namely FlexiCubes (Shen et al., 2023).

Two Stage Optimization. Inspired by InstantMesh (Xu et al., 2024), we have similarly designed a
two-stage optimization framework. The first stage mirrors Instantmesh, using triplane and volume
rendering for optimization with offline rendered data. In the second stage, FlexiCubes is used as
the 3D representation. To reuse the knowledge in the first stage, we load the pretrained model as in
InstantMesh (Xu et al., 2024). The original color MLP is repurposed as an albedo MLP to utilize the
color priors. Since an explicit mesh is utilized as our 3D representation, we can render novel views
as described in Eq.(10). The difference is that the mesh Ô is extracted using the dual marching cubes
algorithm (Nielson, 2004), which utilizes predicted SDF values, deformation, and weights derived
from the triplane formulated by

{Ĉ, n̂, d̂, m̂, â, L̂spec, L̂diff} = PBR(Rasterization(Ô)). (11)

Optimization. During the training process, our total loss function is

L = LMSE(C, Ĉ) + λLPIPSLLPIPS(C, Ĉ) + LMSE(a, â) + λLPIPSLLPIPS(a, â)

+LMSE(L*, L̂*) + λLPIPSLLPIPS(L*, L̂*) + λnormalm̂⊗ (1− n · n̂) + λregLreg

+λdepthm̂⊗ ∥d− d̂∥1 + λmaskLMSE(m, m̂),

(12)

where LMSE and LLPIPS indicates the mean squaree error loss and LPISP loss (Zhang et al., 2018),
respectively. ∗ ∈ {spec, diff} denotes specular light and diffuse light maps, respectively. Lreg is the
regularization terms used in FlexiCubes (Shen et al., 2023). During training, we set λLPIPS = 2.0,
λnormal = 0.2, λdepth = 0.5, λmask = 1.0 and λreg = 0.01.
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Table 1: Quantitative comparison with state-of-the-art methods on the GSO and Omni3D datasets,
showcasing 3D reconstruction and 2D rendering metrics.

Dataset GSO OmniObject3D
Metric CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓ CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓

TripoSR 0.109 0.872 15.247 0.859 0.197 0.083 0.940 15.237 0.865 0.176
CRM 0.202 0.707 17.293 0.854 0.142 0.088 0.907 18.293 0.894 0.112
LGM 0.144 0.800 17.643 0.869 0.158 0.138 0.823 17.893 0.884 0.139

InstantMesh 0.076 0.931 19.988 0.901 0.096 0.096 0.892 18.608 0.903 0.096
PRM 0.050 0.981 25.125 0.929 0.061 0.053 0.979 25.063 0.932 0.063

Table 2: Comparison with InstantMesh on GSO dataset: We used ground-truth rendered multi-view
images as input. “Random m&r” indicates whether materials and lighting were randomly changed.

Method Random m&r CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓
InstantMesh ✓ 0.061 0.934 21.115 0.871 0.092
InstantMesh × 0.048 0.972 23.644 0.893 0.089

PRM ✓ 0.053 0.982 24.602 0.921 0.065
PRM × 0.043 0.991 26.377 0.922 0.063

For both the specular lighting map Lspec and the diffuse lighting map Ldiff, which are directly influ-
enced by surface normals, effectively optimizing these light maps significantly enhances the surface
normals, thereby refining the precision of local details. This process is analogous to photometric
stereo. The key difference is that these maps are exclusively related to surface normals without
considering albedo, as demonstrated in Eq.(8) and Eq.(9), in contrast to shading color.

Applications. PRM achieves high-quality geometry reconstruction with predicted albedo. This
capability enables us to render the object under novel lighting conditions and also to modify its
material properties. Examples of these applications are provided in Figure 11 in the Appendix.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

Datasets. For training, we used Objaverse (Deitke et al., 2023), a dataset comprised of synthetic 3D
assets, that allows us to control the lighting, geometry, and material properties. We first filter Obja-
verse to get a high-quality subset for training. The filtering process aims to exclude objects lacking
texture maps or those of inferior quality, such as those with low-poly properties. Texture maps are
essential as they provide detailed albedo maps; in their absence, vertex colors are used as a substi-
tute for albedo. Moreover, low-poly meshes result in uneven surface lighting. During rendering,
we maintained the original albedo unchanged and randomly selected a material combination from a
total of 121 possibilities, which were derived by varying the metallic and roughness properties from
0 to 1 in increments of 0.1. For lighting, we utilized environment maps sampled from a collection
of 679 maps available on Polyhaven.com, thereby ensuring a diverse range of lighting conditions.

For evaluation, We performed quantitative comparisons using two public datasets, including Google
Scanned Objects (GSO) (Downs et al., 2022) and OmniObject3D (Omni3D) (Wu et al., 2023). We
randomly picked out 300 objects as the evaluation set both datasets, respectively. To show the robust
capabilities of our model on appearance variations, we rendered the input view of each object with a
randomly sampled combination of materials and lighting. We also report extra comparison results,
following previous methods that utilized fixed lighting and did not change materials.
Evaluation Protocol. We evaluated both the 2D visual quality and the 3D geometric quality. For
the 2D visual evaluation, we rendered novel views from the reconstruced 3D mesh and compared
them with the ground truth views, using PSNR, SSIM, and LPIPS as metrics. Since other methods
do not predict albedo, we compared their shading color in novel views. For our method, we rendered
the shading color based on the predicted mesh and albedo, then performed the metric calculations.
For the 3D geometric evaluation, we first aligned the coordinate systems of the reconstruced meshes
with those of the ground truth meshes. Subsequently, we repositioned and rescaled all meshes into
a cube of size [−1, 1]3. We reported the Chamfer Distance (CD) and F-Score (FS) at a threshold of
0.1, which were computed by uniformly sampling 16K points from the mesh surfaces.
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4.2 IMPLEMENTATION DETAILS

Our model was developed based on InstantMesh (Xu et al., 2024). The architecture of the Trans-
former encoder, triplane transformer, and the FlexiCubes decoder mirrors that of InstantMesh. Our
model underwent training for 7 days and 3 days on 32 NVIDIA RTX A800 GPUs for the first stage
and second stage, respectively. For more details, please see our Appendix.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compared the proposed PRM with four baselines. These include TripoSR (Tochilkin et al.,
2024), an open-source LRM implementation renowned for its superior single-view reconstruction
performance; CRM (Wang et al., 2024), a UNet-based Convolutional Reconstruction Model that
reconstructs 3D meshes from generated multi-view images and canonical coordinate maps (CCMs);
LGM (Tang et al., 2024), a unet-based Large Gaussian Model that reconstructs Gaussians from gen-
erated multi-view images; and InstantMesh (Xu et al., 2024), a transformer-based LRM that employs
a two-stage training strategy for direct 3D mesh reconstruction. We reported both quantitative and
qualitative comparative results for a complete comparison analysis.

Quantitative Results. We reported quantitative results with randomly selected lighting and materi-
als in two different datasets in Table 1. We also report quantitative results without changing materials
and using fixed lighting as previous methods compared with cutting-edge method Instantmesh on
GSO in Table 2, where ground-truth rendered multi-view images were used as input.
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Figure 4: Qualitative comparisons with state-of-the art methods and ground truth for single-view
reconstruction task. PRM reconstructs the highest quality 3D mesh and provides a more accurate
texture prediction from input photographs compared to the others.
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For 3D reconstruction metrics, PRM achieves significant improvements over all previous state-of-
the-art methods on both datasets, as shown in Table 1. It records a relative 34% improvement,
reducing the Chamfer Distance from 0.076 in InstantMesh to 0.050, and demonstrates substantial
enhancement in FS@0.1, increasing from 0.931 in InstantMesh to 0.981 on the GSO dataset. The
qualitative comparison with other methods is presented in Figure 4. We attribute these improvements
to our use of photometric stereo images for both input and supervision. This approach not only
enables the model to learn fine-grained geometric details by providing rich photometric cues but
also enhances the model’s robustness to variations in image appearance. Further validation of these
results in the test setting without material changes and using fixed lighting is shown in Table 2.

For 2D visual metrics, our approach effectively mitigates the impact of lighting variations to ac-
curately restore the original colors of objects, as shown in Table 1. We surpass all current methods
across all metrics. For example, on the GSO dataset, our PSNR has improved from 19.988 to 25.125,
SSIM from 0.901 to 0.929, and LPIPS has decreased from 0.096 to 0.061. Similar performance gains
are also observed on the OmniObject3D dataset.

Qualitative Results. For the qualitative comparison, we randomly selected four images from the
GSO dataset to serve as inputs for 3D model reconstruction. For each reconstructed mesh, we
visualized both the albedo (ours) and the shading color (others), as well as the pure geometry.

As shown in Figure 4, the results reconstructed by PRM exhibit significantly more accurate geome-
try and appearance. Our model can reconstruct precise geometry and accurately predict albedo from
images with specular highlights, whereas other methods fail. For instance, InstantMesh often pre-
dicts uneven geometric surfaces and tends to reconstruct incorrect geometry. TripoSR, on the other
hand, frequently confuses texture and lighting information with geometric details, leading to erro-
neous final reconstructions. Similarly, both CRM and LGM struggle to produce satisfactory results,
falling short in both geometry accuracy and texture prediction. This underscores the robustness and
superior performance of our PRM method in handling complex lighting conditions and intricate
surface details, making it a more reliable choice for high-quality 3D model reconstruction.

4.4 ABLATION STUDY

We conducted the ablation study to validate the effectiveness of each component in our framework.

The effectiveness of PBR. PBR plays a crucial role in improving geometry, especially for glossy
surfaces. To validate the effectiveness of PBR, we conducted experiments by directly predicting
shading colors using an MLP, rather than deriving results with PBR. It is important to note that we
continued to utilize our rendering method with varied materials and lighting, which demonstrates
significant view-dependent effects. However, direct prediction of shading color, without account-
ing for view-dependent appearances, struggles to model such effects and thus fails to accurately
reconstruct geometry. We presented these results as “w/o PBR” in Figure 8.

Ground Truth

Only albedo supervision w/o PRB

w/o lighting supervision Full model

Figure 5: Ablation study to validate the ef-
fectiveness of each individual component.
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Figure 6: Shading color offers significant
photometric cues for perceiving geometry,
whereas albedo lacks this information.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025
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Chamfer Distance and F-Score VS Number of Input Views

Chamfer Distance
F-Score

Figure 7: Ablation study of the effect of
number of input views.

Full model w/o change materialsInput image

Figure 8: Ablation study of the effect of
changing materials during training.

Albedo supervision only. To avoid the interference caused by specular color on the surface, an
intuitive approach is to directly use albedo instead of shading color for supervision. However, this
method proves ineffective in practice, as albedo contains few photometric cues, thereby hindering
geometry reconstruction. For example, a concave surface with uniform albedo may appear planar
without the presence of cast shadows, while shading color provides significant photometric cues
critical for accurately perceiving geometry, as illustrated in Figure 6. We conducted an ablation
study within our framework by excluding shading color and light maps from supervision. The
qualitative comparison is shown in Figure 5 “Only albedo supervision”. The results demonstrate
that photometric cues are crucial for accurate geometry reconstruction.

Lighting maps supervision. We conducted the ablation study within our framework by excluding
the lighting maps loss. The results, denoted as “w/o lighting supervision”, are displayed in Figure 5 .
Since lighting maps are exclusively related to surface normals and do not include albedo, optimizing
these maps proves particularly beneficial for enhancing the optimization of fine-grained local details.

The number of camera views. We conducted an ablation study to illustrate the importance of
varying camera poses as input during training. The quantitative results, including Chamfer Dis-
tance (CD) and F-Score, are depicted in Figure 7 by varying number of camera views from 1 to 8.
When more images rendered under different camera views are inputted, we achieve better results.
Additional visualization results can be found in Figure 14 in the Appendix .

Variations in materials. We conducted an ablation study to illustrate the effectiveness of varying
materials during training. The qualitative results are shown in Figure 8. Without changing the
materials, some details are lost, as varying materials leads to a greater number of equations for an
optimal solution. Moreover, the model has lost the capability to reconstruct glossy surfaces.

5 CONCLUSION AND LIMITATION

Limitation. Despite the high-quality results achieved in this work, there remain several limitations
for future research to explore: 1) Firstly, the reconstructed 3D model is sensitive to the quality of
multi-view images. If the pre-trained multi-view diffusion model performs poorly in converting sin-
gle views to multi-view images, our model may produce sub-optimal results as shown in Figure 15 in
the Appendix. 2) Secondly, the accuracy of the estimated albedo appears to be somewhat entangled
with the lighting conditions.

Conclusion. In this work, we introduce PRM, a novel feed-forward framework designed to recon-
structed high-quality 3D assets that feature fine-grained local details, even amidst complex image
appearances. To achieve this goal, we utilize photometric stereo images as both input and supervi-
sion, providing sufficient photometric cues for fine-grained local geometry recovery and enhancing
the model’s robustness to variations in image appearance. Using a mesh as our 3D representation,
we employ differentiable PBR for predictive rendering, underpinning the utilization of multiple pho-
tometric supervisions for optimization. Experiments on public datasets validate that PRM surpasses
other methods by a large margin.
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A APPENDIX

A.1 BRDF PARAMETERIZATION

In Sec. 3.1 we introduce the D, F and G term of the specular component of BRDF property. We
implement the Cook-Torrance BRDF model (Cook & Torrance, 1982). The basic specular albedo
F0 = (m ∗ a + (1 −m) ∗ 0.04), where a is the albedo and m is the metalness. The Fresnel term
(F ) is defined as:

F = F0 + (1− F0)(1− (h · ωo))
5, (13)

where h is the half-way vector between ωo and viewing direction ωi. The normal distribution
function D is Trowbridge-Reitz GGX distribution as

D(h) =
α2

π ((n · h)2(α2 − 1) + 1)
2 , (14)

where α = ρ2, n is the surface normal. The geometry term G is the Schlick-GGX Geometry
function:

G(n,ωo,ωi, k) = Gsub(n,ωo, k)Gsub(n,ωi, k), (15)

where Gsub is given by:

Gsub(n,ω, k) =
n · ω

(n · ω)(1− k) + k
, (16)

where k is a parameter related to the roughness ρ, often approximated as k = ρ4

2 .

A.2 OPTIMIZATION AND ADDITIONAL MODEL DETAILS

Optimization Details. We used Adam (Kingma & Ba, 2014) as our optimizer. In the first stage,
the learning rate was set to 4× 10−5. In the second stage, the learning rate was set to 4× 10−6 for
finetuning. We used 32 NVIDIA A800 GPUs in the first stage for nerf training with a batch size of
256 for 100K steps, taking about 7 days. In the second stage, We used 32 NVIDIA A800 GPUs to
finetune the model from the first stage with a batch size of 256 for 30K steps, taking about 3 days.

Network architecture. Our network architecture is similar to that of InstantMesh (Xu et al., 2024),
consisting of a pre-trained DINO that encodes images into image tokens, and an image-to-triplane
transformer decoder that projects these 2D image tokens onto a 3D triplane using cross-attention.
Furthermore, three MLPs are utilized, taking interpolated triplane features as input and outputting
albedo, SDF, deformation, and weights. These outputs are required by FlexiCube for mesh extrac-
tion and subsequent rendering. The details of the network is shown in Figure 9 Our final model is a
large transformer with 16 attention layers, with feature dimension 1024. The size of triplane is 64 ×
64 × 3 with 80 channels. The grid size for FlexiCube was set to 128. The resolution of input images
was 512.

Photometric
stereo images

Image
encoder

Triplane
decoder

FlexiC
ubes

Interpolated Feature

SDF MLP

Deformation MLP

Weight MLP

Albedo MLP

Predicted mesh

Figure 9: The details of network architecture.
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A.3 QUANTITATIVE RESULTS OF ABLATION STUDY

We reported quantitative results of our ablation study in Table 3. Due to the high computation cost
for each trial, it is infeasible for us to include all training objects for ablation study. Alternatively,
we used 10k training objects for our ablation study. The evaluation set is the same as we did in the
main experiments.

Table 3: Quantitative results of our ablation study.

Metric CD↓ FS@0.1↑ PSNR↑ SSIM↑ LPIPS↓
Only albedo supervision 0.099 0.887 17.532 0.795 0.188

w/o PBR 0.089 0.909 19.143 0.724 0.154
w/o lighting supervision 0.073 0.919 20.114 0.810 0.155

w/o change materials 0.089 0.894 19.662 0.817 0.159
Full model 0.066 0.948 20.992 0.830 0.137

A.4 TRAINING STRATEGY

Camera Augmentation. Previous LRMs typically prepare training data by rendering images with
fixed Fields-Of-View (FOVs) and camera distances, making the models sensitive to changes in these
variables during inference. Since we adopt a real-time rendering method and mesh rasterization for
fast online rendering, we can readily adjust the FOVs and camera distances during training. This
training strategy enhances our model’s robustness to variations in camera embeddings. We provide
some examples in the following section.

Random materials and lighting. During inference, one option for 3D mesh reconstruction is to
leverage a multi-view diffusion model to generate multi-view images. However, these images may
exhibit inconsistencies in materials or lighting. To ensure our model remains robust to these incon-
sistencies, we randomly change the materials and lighting when rendering each view during training.
Alternatively, the lighting and materials of the input images are consistent. Our model need to han-
dle this scenario. Therefore, we establish a threshold to ensure that the rendered multi-view images
potentially share the same materials and lighting. Specifically, when rendering each view, there is
a 50% probability that the materials and lighting will change. This arrangement means that each
view may feature different materials or lighting. If no changes are made, all views are rendered with
consistent materials and lighting.

A.5 EXAMPLE OF PHOTOMETRIC STEREO IMAGES

In this section, we present examples of rendered photometric stereo images along with intermediate
shading variables, including specular lighting, diffuse lighting, albedo maps and environment maps,
as shown in Figure 10. The red box highlights how varying roughness levels influence the specular
lighting maps, affecting their frequency. Specifically, lower roughness (right) results in specular
lighting of higher frequency.

A.6 APPLICATION VISUALIZATION

Since our method can reconstruct high-quality meshes with predicted albedo, it facilitates down-
stream applications such as relighting and material editing. We showcase some examples in Fig-
ure 11.

A.7 ROBUSTNESS EVALUATION

Robustness to Camera Embedding. PRM exhibits robustness to variations in camera embedding.
We compared PRM with InstantMesh by altering the camera embedding (i.e., FOV and camera ra-
dius) during inference. The results, shown in Figure 12, demonstrate that PRM maintains strong
robustness to changes in camera embedding, whereas the performance of InstantMesh declines sig-
nificantly when camera embedding varies.
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Robustness to image appearance. PRM is robust to the image appearance. When handling specular
surfaces, we can achieve correct geometry reconstruction. More visualization results can be found
in Figure 13.

Robustness to spatially-varying materials. PRM is robust to the objects with spatially-varying
materials for both synthetic and real-captured images. More visualization results can be found in
Figure 18.

A.8 THE EFFECT OF THE NUMBER OF CAMERA VIEWS

We demonstrate the importance of varying camera poses for rendering multi-view photometric
stereo images as input. The number of input views is increased from 1 to 8. The qualitative re-
sults are illustrated in Figure 14. Better results are achieved with more input views; using 4 or 6
views provides the optimal balance between effectiveness and efficiency.

A.9 FAILURE CASES

Although effective, the performance of PRM is constrained by the quality of the multi-view images
generated by the multi-view diffusion model when performing single image to 3D tasks. We
illustrate a failure case in Figure 15. The lack of depth information in the input image leads to
undesirable multi-view image generation, resulting in a reconstructed 3D mesh that lacks accu-
racy. A potential solution is to use the estimated depth to guide the multi-view images generation.
We show an example of the estimated depth by DepthAnythingV2 (Yang et al., 2024) in Figure 16.
Our method cannot handle multi-view images with background as shown in Figure 19, since we
used images with while background as input during training as previous methods do. However, we
can easily obtain images with while background by pretrained segmentation model.

Images

Specular maps

Diffuse maps

Albedo

Env

Figure 10: Examples of rendered photometric stereo images, along with specular, diffuse lighting
maps and albedo maps. The red box highlights how varying roughness levels influence the specular
lighting maps, affecting their frequency. Specifically, lower roughness (right) results in specular
lighting of higher frequency.
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Relighting

Metallic Editing

Roughness Editing

Figure 11: Application visualization. We show relighting and materials editing here.

A.10 MORE VISUALIZATION RESULTS

We show more visualization results of PRM in Figure 17.

A.11 QUALITATIVE COMPARISON WITH MESHLRM

We also show some qualitative comparisons with MeshLRM (Wei et al., 2024) in Figure 20.
PRM achieves better reconstruction performance on both glossy surfaces and complex objects.
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Radius: 4.5   FOV: 30

Input image

Radius: 3.5   FOV: 40

Ours InstantMesh

Radius: 4.5   FOV: 40

Radius: 4.5   FOV: 30

Radius: 3.5   FOV: 40

Radius: 4.5   FOV: 40

Figure 12: Comparison with InstantMesh when changing FOVs and camera radius: PRM demon-
strates robustness to variations in camera embedding. Conversely, InstantMesh struggles when the
radius and FOV differ from those used during training.
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Input image Ours InstantMesh

Generated textured mesh Generated normal Generated textured mesh Generated normal 

Figure 13: Single view reconstruction results using our method on input images with extreme con-
ditions, such as specular highlights and shadows. Despite challenging lighting conditions, PRM
successfully reconstructs the geometry and surface normals with high fidelity.
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Input image Output mesh Input image Output mesh

Figure 14: The effect of the number of input views. More views lead to better reconstruction result.

Input image Generated multi-view image Reconstructed geometry

Figure 15: Illustration of a failure case.
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Estimated DepthInput Image

Figure 16: DepthAnythingV2 can estimate correct depth for image that lacks depth information,
which may help multi-view diffusion model generate more reasonable multi-view images.

Input image Generated mesh Input image Generated mesh

Figure 17: Visualization of more results of single view to 3D task.
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Input image Material map Generated textured mesh Generated normal Generated albedo

N/A

Figure 18: PRM can handle objects with spatially-varying materials for both synthetic and real-
captured images.

Input image

Generated color mesh

Figure 19: Our method fails to handle images with natural background since we takes images with
while background as input during training.

Input image Ours MeshLRM

Figure 20: Qualitative comparison with MeshLRM.
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