
How to Combine Variational Bayesian Networks in
Federated Learning

Atahan Ozer
Computer and Informatics

Istanbul Technical University
ozera17@itu.edu.tr

Kadir Burak Buldu
Computer and Informatics

Istanbul Technical University
buldu19@itu.edu.tr

Abdullah Akgül
Computer and Informatics

Istanbul Technical University
akgula15@itu.edu.tr

Gozde Unal
Computer and Informatics

Istanbul Technical University
gozde.unal@itu.edu.tr

Abstract

Federated Learning enables multiple data centers to train a central model collabo-
ratively without exposing any confidential data. Even though deterministic models
are capable of performing high prediction accuracy, their lack of calibration and
capability to quantify uncertainty is problematic for safety-critical applications.
Different from deterministic models, probabilistic models such as Bayesian neural
networks are relatively well-calibrated and able to quantify uncertainty alongside
their competitive prediction accuracy. Both of the approaches appear in the feder-
ated learning framework; however, the aggregation scheme of deterministic models
cannot be directly applied to probabilistic models since weights correspond to
distributions instead of point estimates. In this work, we study the effects of various
aggregation schemes for variational Bayesian neural networks. With empirical
results on three image classification datasets, we observe that the degree of spread
for an aggregated distribution is a significant factor in the learning process. Hence,
we present an survey on the question of how to combine variational Bayesian
networks in federated learning, while providing computer vision classification
benchmarks for different aggregation settings.

1 Introduction

Over the last years, machine learning (ML) has become the de facto approach for many real-
life applications. Although the long-established ML algorithms provide promising results, their
requirement for central data storage in model training raises data privacy issues. In an ideal scenario,
the raw data of the users should not be transferred to any external computational device to enable
data-privacy considering General Data Protection Regulation [31]. However, the current state of the
ML contradicts with privacy concerns. In order to address this contradiction, a Federated Learning
(FL) framework, where models are being learned in a distributed manner without exposing any data
to the outside, was proposed [24]. It lays the foundations of the Horizontal FL problem where users
share the same feature set but a different sample space. The main objective of the FL framework is
to assemble the global optimization problem by solving the local optimization problems iteratively
rather than solving the global problem directly.

The structure of Horizontal FL mainly consists of two repeating stages: first, locally trained models
are aggregated to construct the global model in the server; second, the global model from the previous

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.



stage is distributed from the server to clients and these clients perform the local training. The
first proposed algorithm with empirical results for this structure is FEDAVG [24]. It compares
favorably to centralized models under the assumption that all clients have independent and identically
distributed (IID) datasets. However, dataset homogeneity often is not possible in real life. In
case the IID condition is not satisfied, both the convergence and the accuracy of the algorithm
significantly degenerates [21, 34]. As addressed by several studies [14, 20], the performance cut of
FEDAVG essentially stems from its averaging scheme. Even though the aforementioned methods
offer solutions to this problem with gradient correction terms and weight space regularizations,
they lack mechanisms for quantifying the uncertainty of the given predictions which is essential for
safety-critical applications.

From a probabilistic perspective, another solution to this problem could be the aggregation of the
distributions of the parameter space that represents the local optimization problem. This approach
would provide the necessary tools for uncertainty quantification; however, the exact posterior of Deep
Neural Networks are intractable due to their complexity. To resolve this issue, one could benefit from
Variational Inference (VI) [3, 12] or Monte Carlo methods [9, 2, 5]. Having the required architecture
for uncertainty, our motivation for this study is the question of how to aggregate the local posterior
distributions to obtain a global posterior distribution.

The previous question is well studied by statisticians in the context of combining expert views on
the predictive modeling of an event such as seismic risks or meteorological forecasts [6]. However,
constraints and requirements for FL are remarkably different from those studies, especially for the
non-IID case. In the probabilistic FL setting, there is no prior work that investigates different statistical
aggregation rules for Variational Bayesian Neural Networks (VBNN) with a simple application of VI.
Yet, aggregation of the clients is a significant subject of the probabilistic FL since the aggregation
of clients’ distributions change the outcome of the global optimization problem. In Figure 1, we
illustrate that aggregation rules yield different distributions, which is exemplified with two clients.

We summarize our contributions: i) We empirically inspect five different statistical aggregation
schemes as a survey for VBNNs in the federated learning setting on image classification benchmarks.
ii) We explore VBNNs’ degree of spread in the context of different federated learning scenarios
with comprehensive experiments. iii) We examine deterministic and probabilistic models based on
prediction accuracy, model calibration, and uncertainty quantification. iv) We share our multi-process
simulation pipeline to facilitate efficient experimentation in federated learning research available at 1.

Client A

Central Server

Aggregation Schemes

Client B

Figure 1: Different aggregation methods are depicted with two different Gaussians. First, clients
obtain the weight distributions and transfer them to the central server; then the server aggregates the
different distributions and returns the aggregated distribution back to the clients. The aggregation rule
significantly affects the aggregated distribution. Different aggregations are described in Section 3.

1https://github.com/ituvisionlab/BFL-P

2

https://github.com/ituvisionlab/BFL-P


2 Background

2.1 Federated Learning

Generally, horizontal federated learning can be expressed as an assembly of K local optimization
problems with the following formulation:

min
θ
f(θ) where f(θ) =

K∑
k=1

βkfk(θ). (1)

Depending on the machine learning problem, fk(θ) usually corresponds to LDk(θ), which is the local
loss function for each client k = 1, ...,K utilizing its local dataset Dk with the model parameters
θ. βk refers to aggregation weights for K local optimization problems where

∑K
k=1 βk = 1 and

βk ∈ (0, 1]. Most of the time, the local stage is optimized by Stochastic Gradient Descent and its
variants; nevertheless, optimizing the local problem solely is not enough for the solution of Eq. 1. To
further optimize f(θ), an alternating optimization is used. First, the global model is trained for E
epochs on the clients with the local datasetDk, and later, these locally updated models are collected in
the server to apply the aggregation rule for the acquisition of the global model. After the aggregation,
the new global model is distributed to the clients and the algorithm is repeated for T communication
rounds until convergence. In our study, D comprises Dk as one of its unique subsets:

{
(xi, yi)

}|DK |
i=1

where x refers to the features and y refers to the target label for a classification problem.

Algorithm 1: Federated Optimization
Input: Dataset D, initial θ, # parties K,

# communication rounds T , #
local epochs E, learning rate η,
aggregation method AGG.

for each round t = 1, · · · , T do
Sample a set of parties CK
Set Cθ = {}
for k ∈ CK in parallel do

θk ← Client Update(θ, Dk)
Cθ = Cθ ∪ θk

θ ← AGG(Cθ) ▷ using Eqs. 4, 5, 6, 7, 8.
Output: θ

Algorithm 2: Client Update
Input: Initial θ0k, dataset Dk.
for each epoch e = 1, · · · , E do

θek ← θe−1
k − η∇LDk(θ

e−1
k )

Output: θEk

Figure 2: Federated Learning: Algorithmic
Overview.

One of the promising properties of the FL framework
is to work with a high number of clients yet, in prac-
tice, involving all of the clients in the same commu-
nication round is time-costly and not always possible
due to client inactivity. In order to simulate that effect,
the whole framework is run with only K = C × γ
active clients where C is the total number of clients
and γ is a fraction for active client selection [24]. An
algorithmic overview of the FL framework is given in
Figure 2.

2.2 Variational Bayesian Neural Networks

Bayesian Neural Networks (BNN) are built on Neural
Networks (NN) with a probabilistic Bayesian infer-
ence mechanism that allows them to learn the NN
weights as a probability distribution instead of point
estimate weights [18, 30, 7]. Using the Bayesian
paradigm offers some relevant and useful outcomes
such as quantification of uncertainty [16, 28], and
mathematical understanding of regularizations in
Deep NNs [29] which relieve the overfitting problem
in NNs.

For a given classification dataset D, BNN can be represented as a probabilistic model through
its predictive density p(y|x, θ). The likelihood of the prediction can be written as p(D|θ) =∏|D|
i=1 p(yi|xi, θ). From Bayes’ Rule, the posterior is given by p(θ|D) = p(D|θ)p(θ)

p(D) . Since p(D)
(evidence) is not dependent on the model weights θ, multiplication of the likelihood and p(θ) (prior
of the weights) will be proportional to the true posterior of the model weights p(θ|D) ∝ p(D|θ)p(θ).
For complex models such as Deep NNs, an analytical solution for the true posterior is intractable. Yet,
there are extensive works for approximation of the true posterior with Markov Chain Monte Carlo
methods [9] or Variational Inference (VI) [3]. Its computational simplicity and scalability [4, 13]
compared to the other methods, make the latter framework i.e., the Variational Bayesian Neural
Networks (VBNNs) suitable for the FL problem where sources are scarce and time is limited.

Using VI, the true posterior of the model p(θ|D) can be approximated with a variational distribution
qψ(θ) which is parameterized under ψ. Then the optimization objective LD can be written as

LD = KL
(
qψ(θ)||p(θ)

)
− Eθ∼qψ(θ)

[
log p(D|θ)

]
(2)

3



where KL(·||·) stands for the Kullback-Leibler (KL) divergence between the two distributions on its
arguments. In this case, the optimization objective LD is the negative variational free energy (Eq. 2)
which corresponds to Evidence Lower Bound.

2.3 Federated Variational Bayesian Learning

As for many safety-critical real-world applications, BNNs are suitable to be employed in the federated
learning framework. In this setup, each local optimization problem aims to approximate a local
posterior p(θk|Dk) where k ∈ [1, · · · ,K]. The problem is to minimize the LDk with respect to θk,
which is the weight distribution of the kth problem. Its prior p(θk) is approximated by qψk(θk) that
is parameterized under ψk. Then the corresponding optimization objective reads

LDk = KL
(
qψk(θk)||p(θ)

)
− Eθk∼qψk (θk)

[
log p(Dk|θk)

]
. (3)

In practice it is hard to come up with a good prior representing the data; however, motivated by the
FedProx and common usage in VAEs, we can benefit from the same gaussian priors as in regulating
term. After the local optimization of each client is finished for a round, the local parameters of
clients must be transferred to the server in order to obtain parameters of the global model that aims to
optimize the overall loss LD.

The global aggregation scheme of VBNNs is different from FEDAVG and its variants since the weights
of the VBNNs are not point estimates but rather they are distributions. There are several works that
concern the aggregation in a probabilistic paradigm. FedSparse [23] considers the aggregation as the
M-step of an Expectation-Maximization (EM) framework. pFedBayes [33] creates a personalized
framework for federated Bayesian variational inference. Federated posterior averaging [1] proposes
to estimate the global posterior from the clients via Monte Carlo methods. Federated online Laplace
approximation [22] addresses the aggregation error and devises the usage of the Gaussian product
method with Laplace approximation for averaging weights of clients. However, except FedSparse
and pFedBayes, none of the aforementioned methods do use VI for Bayesian inference. Even though
FedSparse and pFedBayes use VI, their main concerns are not about aggregation schemes. To our
knowledge, we are the first to investigate the effects of the aggregation rule on VBNNs considering
parametric distributions.

3 Aggregation Methods for Variational BNNs

In this section, we discuss five methods of parametric distribution aggregation for VBNNs. We
introduce aggregation rules for hyperparameters of the distribution which is exemplified by a Gaussian
model, where hyperparameters are mean and variance. The five methods are Empirical Arithmetic
Aggregation (EAA), Gaussian Arithmetic Aggregation (GAA), Arithmetic Aggregation with Log
Variance (AALV), Population Pooling Based Aggregation (PPA), and Conflation Aggregation (CF).
In our work, due to its performance and accessibility; we benefit from the univariate Gaussian
distribution for each neuron. Thus, we derive all aggregation methods in terms of mean (µ) and
variance (σ2) parameters. As an implementation trick, since σ2 ≥ 0, we use α = log σ2.

3.1 Empirical Arithmetic Aggregation (EAA)

Through the lens of Federated averaging, the most straightforward way of aggregation is to average
the hyper-parameters of the client weights. If the statistical properties of Gaussians are put aside, a
straightforward naive averaging yields

µEAA =

K∑
k=1

βkµk, σ2
EAA =

K∑
k=1

βkσ
2. (4)

Intuitively, aggregation with EAA is the weighted sum of clients’ hyper-parameters that are µ and σ2.

3.2 Gaussian Arithmetic Aggregation (GAA)

Unlike the previous approach, regarding the rigorous properties of the Gaussian, and assuming that
the distribution weights of each client are mutually independent, we can use the sum rule of Gaussian

4



distributions to derive the following aggregation rule

µGAA =

K∑
k=1

βkµk, σ2
GAA =

K∑
k=1

β2
kσ

2. (5)

One observation about the newly obtained variance σ2
GAA of this approach is that it will be always

smaller than the variance aggregated with EAA if clients provide the same variances for the two
methods. The proof is straightforward, βk ∈ (0, 1] and β2

k < βk; therefore, σ2
GAA < σ2

EAA.

3.3 Arithmetic Aggregation with Log Variance (AALV)

This aggregation method is derived from the implementation trick α = log σ2 which accommodates
learning σ2 in the proper range. The aggregation method corresponds to FEDAVG and it is also used
in pFedBayes, which is equivalently using gradient averaging for α with aggregation weights. The
corresponding aggregation rule reads

µAALV =

K∑
k=1

βkµk, αAALV =

K∑
k=1

βkαk =⇒ σ2
AALV = e

∑K
k=1 βk log σ2

k . (6)

3.4 Population Pooling based Aggregation (PPA)

As widely studied by statisticians, there exist a variety of population pooling methods like [27]. Here,
we take the most basic approach for aggregation. First, we create a set for each client by sampling
from their weight distribution as Sk =

⋃N ·βk
i=1 Xi ∼ N (µk, σ

2
k) where N is the population size, and

Xi is a sample from the weight distribution of client k. Afterwards, we generate a population Sp
from populations of all clients in order to represent local characteristics in the aggregated distribution.
The Sp population can be obtained with Sp =

⋃K
k=1

⋃N ·βk
i=1 Xi where Xi ∈ Sk. Having defined the

population for aggregation, we can obtain the hyper-parameters of the aggregated distribution by

µPPA = X̄N =
1

N

N∑
i=1

Xi, σ2
PPA =

1

N

N∑
i=1

(Xi − X̄N )2, Xi ∈ Sp. (7)

3.5 Conflation Aggregation (CF)

Conflation [10] is introduced as a unification of a finite number of probability distributions into a

single probability distribution. Conflation is defined as f(x) =
f1(x)f2(x) . . . fK(x)∫ ∞

−∞
f1(y)f2(y) . . . fK(y)dy

where fk,

k = 1, ...,K, is a set of probability density functions to be consolidated. Conflation can be applied to
any kind of probability distribution and is easy to calculate. Furthermore, conflation appears in many
real-life scenarios such as [11, 35, 8] in order to fuse different measurements of the same quantity.

For a set of K Gaussian distributions, the conflation aggregation equations are derived as follows:

µCF =

β1µ1

σ2
1

+ . . .+ βkµk
σ2
k

β1

σ2
1
+ . . .+ βK

σ2
K

, σ2
CF =

βmax
β1

σ2
1
+ . . .+ βK

σ2
K

, (8)

where βmax = maxβk.

Conflation tends to decrease the variance of the aggregated distribution. Furthermore, conflation
yields a mean value that is proportional to aggregation weights and inversely proportional to variances.

4 Results and Discussion

Experiment results with 10 clients As it can be observed, VBNNs with a relatively low aggrega-
tion degree of spread (GAA, AALV, and CF) outperform deterministic counterparts (FED and FEDAVG)
on all metrics (See Appendix 6.1 Table 4 for variance comparisons). When predictive accuracies are
competitive, probabilistic methods provide better calibration along with better uncertainty quantifica-
tion as we stated in Section 2. There is no aggregation rule that consistently outperforms the other
rules in both IID and non-IID partitions for 10 clients.

5



Table 1: Our main results of 10 clients experiment with means ± standard errors of the scores across
five repetitions/seeds for FMNIST, Cifar-10, and SVHN datasets. Best performing models that
overlap within a standard error are highlighted in bold.

FMNIST Cifar-10 SVHN
Part. Model Agg. Acc(%) ↑ ECE(%) ↓ NLL ↓ Acc(%) ↑ ECE(%) ↓ NLL ↓ Acc(%) ↑ ECE(%) ↓ NLL ↓

II
D

FED N/A 89.62±0.15 7.99±0.12 0.64±0.01 70.09±0.56 3.35±0.07 0.87±0.02 88.55±0.22 9.05±0.17 0.94±0.02

FEDAVG N/A 89.58±0.15 7.97±0.15 0.63±0.01 70.10±0.70 3.31±0.09 0.86±0.02 88.58±0.20 8.97±0.14 0.93±0.01

FVBA

EAA 90.10±0.11 3.04±0.09 0.30±0.00 67.25±0.36 6.76±0.12 0.95±0.01 90.44±0.16 1.54±0.05 0.36±0.00

GAA 89.82±0.11 6.38±0.10 0.46±0.01 71.29±0.21 3.11±0.07 0.83±0.01 89.58±0.15 5.86±0.08 0.60±0.01

AALV 89.85±0.08 6.44±0.07 0.47±0.00 70.89±0.33 3.15±0.13 0.83±0.01 89.53±0.14 6.00±0.08 0.61±0.01

PPA 89.78±0.08 2.16±0.07 0.29±0.00 64.80±0.31 10.16±0.18 1.05±0.01 89.45±0.16 4.29±0.11 0.38±0.00

CF 89.90±0.15 6.35±0.10 0.47±0.00 71.17±0.24 2.81±0.05 0.83±0.01 89.38±0.18 6.14±0.15 0.63±0.02

FVBWA

EAA 90.09±0.05 3.07±0.11 0.30±0.00 67.32±0.26 6.87±0.20 0.95±0.01 90.51±0.13 1.60±0.03 0.36±0.00

GAA 89.85±0.07 6.37±0.06 0.47±0.00 71.08±0.35 2.86±0.06 0.83±0.01 89.48±0.14 5.92±0.10 0.61±0.01

AALV 89.85±0.11 6.37±0.06 0.46±0.01 71.05±0.33 2.91±0.03 0.83±0.01 89.73±0.13 5.88±0.06 0.60±0.00

PPA 89.68±0.08 2.17±0.09 0.29±0.00 65.00±0.21 10.00±0.26 1.04±0.00 89.31±0.22 4.34±0.11 0.38±0.01

CF 89.84±0.12 6.37±0.14 0.46±0.01 70.99±0.30 3.01±0.07 0.83±0.01 89.73±0.15 5.91±0.07 0.61±0.00

N
on

-I
ID

FED N/A 88.11±0.24 8.73±0.17 0.65±0.01 65.90±0.16 4.39±0.26 0.98±0.00 86.65±0.30 9.88±0.21 0.93±0.01

FEDAVG N/A 87.99±0.35 8.90±0.24 0.66±0.02 66.02±0.29 4.89±0.47 0.97±0.01 86.67±0.38 9.85±0.28 0.94±0.02

FVBA

EAA 88.57±0.21 3.45±0.15 0.34±0.01 61.48±0.33 6.45±0.87 1.09±0.01 88.33±0.36 1.69±0.03 0.42±0.01

GAA 88.62±0.27 6.47±0.20 0.47±0.01 67.26±0.23 3.21±0.10 0.93±0.01 87.52±0.31 6.24±0.18 0.62±0.01

AALV 88.47±0.20 6.64±0.13 0.47±0.01 67.61±0.51 3.21±0.17 0.92±0.01 87.66±0.28 6.20±0.16 0.63±0.01

PPA 88.14±0.29 2.41±0.14 0.34±0.01 58.45±0.48 13.35±0.91 1.26±0.02 86.97±0.21 7.72±0.50 0.48±0.01

CF 88.75±0.25 6.44±0.11 0.47±0.01 66.99±0.50 3.45±0.09 0.93±0.01 87.60±0.29 6.28±0.21 0.63±0.01

FVBWA

EAA 88.30±0.32 3.47±0.35 0.35±0.01 61.01±1.12 6.56±0.71 1.11±0.02 87.91±0.42 1.84±0.11 0.43±0.01

GAA 88.39±0.26 6.73±0.22 0.48±0.01 66.07±0.71 3.40±0.27 0.95±0.02 87.56±0.32 6.20±0.17 0.63±0.01

AALV 88.46±0.26 6.78±0.14 0.49±0.01 67.05±0.47 3.03±0.24 0.94±0.02 87.44±0.31 6.41±0.16 0.63±0.02

PPA 87.72±0.30 2.47±0.18 0.35±0.01 56.08±1.78 12.36±0.80 1.32±0.05 86.71±0.27 8.08±0.47 0.50±0.01

CF 88.33±0.28 6.90±0.23 0.49±0.01 66.55±0.48 3.33±0.06 0.95±0.01 87.37±0.32 6.42±0.22 0.64±0.02

Experiment results with 100 clients are given in Appendix 6.1 Table 3. VBNNs with a relatively
high aggregation degree of spread (EEA and PPA) cannot provide competitive results. In contrast,
a relatively low degree of spread yields high performance in all metrics. Furthermore, in the IID
partition, high performing aggregation rules significantly surpass the deterministic counterparts. We
also measure computational wall clock time per communication round (TPC) in Appendix 6.1.

Empirical degree of spread. In Appendix 6.1 Table 4, we report the final models’ learned standard
deviations. The latter are calculated as the Euclidean norm by stacking standard deviations of all
neurons in a vector. As we mention throughout the paper, degree of spread (in our case the standard
deviation) is an important factor that affects the outcomes of the VBNNs. When the dataset is
coarsely partitioned as in the 10-client experiment, aggregation methods are able to work even though
standard deviations are significantly higher for e.g. EAA in FMNIST and SVHN datasets. On the
other hand, when the dataset is distributed to a high number of clients as in the 100-client experiment,
the aggregations end up with high standard deviations leading to EAA, PPA performing poorly.

5 Conclusion

Summary. We investigate different distribution aggregation methods for variational Bayesian
neural networks in federated learning. First, we derive the variational version of FEDAVG with the
Bayesian paradigm, then we benchmark distribution aggregation schemes on three image classification
datasets. We compare the performance of the aggregation methods based on prediction accuracy,
calibration error, and uncertainty quantification. In general, we observe that spread of distributions
highly affects the learning outcomes. We also share our easy-to-use multi-process experimental
pipeline providing shorter simulation runtimes.

Broad Impact. Our work signifies the importance of aggregation rules for federated learning in a
variational Bayesian setting. Furthermore, our findings indicate that aggregated distributions’ degree
of spread is a notable factor in the federated learning procedure. Our investigations can be further
analyzed via the provided implementation and used in different federated learning scenarios including
safety-critical domains.

Limitations and Ethical Concerns. We present different aggregation schemes for VBNNs with
empirical results. Their convergence analysis should be analytically investigated. Furthermore, our

6



study concerns only the aggregation of Gaussian distributions due to their convenient manipulation and
high performance; we consider generic distributions as our future work. The presented aggregations
are general-purpose statistical methods, yet they are not investigated from the perspective of fairness
sensitive applications. A fairness analysis and testing is required before putting these techniques to
use in the field.

7



References
[1] M. Al-Shedivat, J. Gillenwater, E. Xing, and A. Rostamizadeh. Federated learning via posterior averaging:

A new perspective and practical algorithms. In International Conference on Learning Representations,
2021.

[2] R. Bardenet, A. Doucet, and C. Holmes. On Markov Chain Monte Carlo methods for tall data. J. Mach.
Learn. Res., 18(1):1515–1557, 2017.

[3] D.M. Blei, A. Kucukelbir, and J.D. McAuliffe. Variational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877, 2017.

[4] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. In
Proceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, page 1613–1622. JMLR.org, 2015.

[5] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American Statistician,
49(4):327–335, 1995.

[6] R. T. Clemen and R. L. Winkler. Aggregating Probability Distributions, page 154–176. Cambridge
University Press, 2007.

[7] E. Goan and C. Fookes. Bayesian Neural Networks: An Introduction and Survey, pages 45–87. Springer
International Publishing, 2020.

[8] V. Hassija, V. Gupta, S. Garg, and V. Chamola. Traffic jam probability estimation based on blockchain and
deep neural networks. IEEE Transactions on Intelligent Transportation Systems, 22(7):3919–3928, 2021.

[9] W.K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[10] T.P. Hill. Conflations of probability distributions. Transactions of the American Mathematical Society,
363:3351–3372, 2008.

[11] T.P. Hill and J. Miller. How to combine independent data sets for the same quantity. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 21(3):033102, 2011.

[12] M.D. Hoffman, D.M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine
Learning Research, 2013.

[13] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun. Hands-on bayesian neural networks –
a tutorial for deep learning users, 2020.

[14] S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A.T. Suresh. SCAFFOLD: Stochastic
controlled averaging for federated learning. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

[15] D.P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[16] A. Kristiadi, M. Hein, and P. Hennig. Being bayesian, even just a bit, fixes overconfidence in relu networks.
In International Conference on Machine Learning, 2020.

[17] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[18] J. Lampinen and A. Vehtari. Bayesian approach for neural networks—review and case studies. Neural
Networks, 14(3):257–274, 2001.

[19] Q. Li, Y. Diao, Q. Chen, and B. He. Federated learning on Non-IID data silos: An experimental study. In
IEEE International Conference on Data Engineering, 2022.

[20] T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in het-
erogeneous networks. In Proceedings of Machine Learning and Systems, volume 2, pages 429–450,
2020.

[21] X. Li, Huang K., W. Yang, S. Wang, and Zhang Z. On the convergence of fedavg on non-iid data. In
International Conference on Learning Representations, 2020.

[22] L. Liu, F. Zheng, H. Chen, G. Qi, H. Huang, and L. Shao. A bayesian federated learning framework with
online laplace approximation, 2021.

8



[23] C. Louizos, M. Reisser, J. Soriaga, and M. Welling. Federated averaging as expectation maximization,
2021.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A.Y. Arcas. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages
1273–1282. PMLR, 2017.

[25] M.P. Naeini, G.F. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities using bayesian
binning. AAAI’15, page 2901–2907. AAAI Press, 2015.

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, and B.and Ng A. Wu. Reading digits in natural images with
unsupervised feature learning. 2011.

[27] B. O’Neill. Some useful moment results in sampling problems. The American Statistician, 68(4):282–296,
2014.

[28] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J.V. Dillon, B. Lakshminarayanan, and
J. Snoek. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty under Dataset
Shift. 2019.

[29] N.G. Polson and V. Sokolov. Deep learning: A bayesian perspective. Bayesian Analysis, 12(4), 2017.

[30] D.M. Titterington. Bayesian Methods for Neural Networks and Related Models. Statistical Science,
19(1):128 – 139, 2004.

[31] P. Voigt and A. von dem Bussche. The EU General Data Protection Regulation (GDPR): A Practical
Guide. Springer Publishing Company, Incorporated, 1st edition, 2017.

[32] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine
learning algorithms, 2017.

[33] X. Zhang, Y. Li, W. Li, K. Guo, and Y. Shao. Personalized federated learning via variational Bayesian
inference. In Proceedings of the 39th International Conference on Machine Learning, volume 162, pages
26293–26310. PMLR, 2022.

[34] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated learning with non-iid data, 2018.

[35] W. Zhi, L. Ott, R. Senanayake, and F. Ramos. Continuous occupancy map fusion with fast Bayesian Hilbert
maps. In 2019 International Conference on Robotics and Automation (ICRA), pages 4111–4117, 2019.

9



6 Appendix

6.1 Experimental Evaluation

In order to validate the proposed aggregation methods via quantitative evaluations, we conduct a
series of experiments with VBNNs considering image classification datasets. In this section, we
describe baselines, architectures, evaluation metrics, datasets, experiments, training procedure and
hyper-parameters.

Baselines. We adopt two models to investigate aggregation for VBNN methods namely Federated
Variational Bayesian Averaging (FVBA) and Federated Variational Bayesian Weighted Averaging
(FVBWA). As counterparts for VBNNs, we use FEDAVG and FED to create deterministic baselines.
In FEDAVG and FVBWA, the aggregation weights are equal to βk = |Dk|

|D| where |Dk| denotes the
cardinality of the kth dataset. In FVBA and FED, we assume that each client contains the same
amount of information for the aggregation regardless of their data; therefore, we set βk = 1

K .

Architectures. We follow the same experimental pipeline and architectures from [19]. We use
two different architecture for NNs and VBNNs. Both networks have two 5× 5 convolutional layers.
ReLU activation function and 2×2 max-pooling operation follows the convolutional layers. For NNs,
there are three linear layers with 400, 120, and 84 hidden dimensions respectively. Between dense
layers, we apply ReLU activation function. For VBNNs, we replace linear layers with variational
Bayesian linear layers which are parameterized with mean and log variance. Instead of learning point
estimate weights, variational Bayesian layers consist of µ and σ2 for each neuron; thus, variational
Bayesian layers have twice the number of parameters than dense layers.

Metrics. We evaluate the performance of the models’ predictions using Accuracy (Acc), Expected
Calibration Error (ECE) as a measure of prediction calibration [25], and Negative Log-Likelihood
(NLL) as a measure of model fit that quantifies the uncertainty. For calculate ECE, we create bins
for instances and calculate ECE =

∑M
m=1(Bm/M)(ai − ci) where M is the count of the bin, Bm

is the count of instance located in that bin, ai, ci are accuracy and average confidence in that bin
respectively. For a fair comparison with other works, we report the scores of the models after the
final communication round.

Datasets. We benchmark models and aggregation rules in three image classification datasets that
are FMNIST [32], Cifar-10 [17], and SVHN [26]. The details of the datasets are listed in Table 2.

Table 2: Details on datasets. Image sizes are given
as Channel × Height ×Width.

Datasets Image Size #Labels Train Size Test Size
FMNIST 1× 28× 28

10
60000 10000

Cifar-10 3× 32× 32 50000 10000
SVHN 3× 32× 32 73257 26032

Experiments. To demonstrate the perfor-
mances of aggregation rules, we exhibit two
different experiment setups that are based on
active client numbers with two different data
distributions on three real-world image classifi-
cation datasets. In the first setup, we simulate
a scenario where all the clients are active in all
communication rounds. However, this is not al-
ways possible in real-life scenarios; therefore,
we imitate the inactivity of the clients in the second setup. In both setups, there are always 10
clients that are active for communication, however, in the second one, the active clients are randomly
sampled from 100 clients. Besides the number of clients, another important difference between setups
is the dataset size since the whole dataset is divided into 100 clients. To simulate the data distribution
shift of the clients, we conduct the experiments with two different data partitioning techniques like in
[19]. The first partition is named IID where each client has approximately the same amount of data
for each label; while, in the second partition, non-IID, clients’ data distribution is generated with a
Dirichlet distribution in a way that each client has a different amount of data for each label.

Training procedure and hyper-parameters. For each client optimization, we use Stochastic
Gradient Descent (SGD) with the parameters 0.01 for learning rate, 0.9 for momentum, and 10−5

for weight decay. We employ Cross Entropy loss for deterministic models (FED and FEDAVG) and
negative variational free energy loss in Eq. 3 for probabilistic models (FVBA, FVBWA). For VBNNs,

10



Table 3: Our main results of 100 clients experiment with means± standard errors of the scores across
five repetitions for FMNIST, Cifar-10, and SVHN datasets. Best performing models that overlap
within a standard error are highlighted in bold.

FMNIST Cifar-10 SVHN
Part. Model Agg. Acc(%) ↑ ECE(%) ↓ NLL ↓ Acc(%) ↑ ECE(%) ↓ NLL ↓ Acc(%) ↑ ECE(%) ↓ NLL ↓

II
D

FED N/A 88.55±0.15 8.30±0.08 0.63±0.01 64.40±0.51 12.96±0.21 1.16±0.02 87.20±0.14 9.77±0.11 0.99±0.01

FEDAVG N/A 88.38±0.12 8.48±0.08 0.64±0.02 64.35±0.70 12.97±0.30 1.17±0.02 87.08±0.14 9.91±0.07 1.01±0.02

FVBA

EAA 85.77±0.11 3.02±0.29 0.42±0.00 45.10±0.32 13.27±0.39 1.56±0.01 79.51±0.57 12.34±0.57 0.74±0.02

GAA 89.49±0.17 4.97±0.11 0.35±0.00 66.97±0.37 3.52±0.22 0.94±0.01 90.16±0.06 2.93±0.03 0.40±0.00

AALV 89.31±0.17 5.03±0.12 0.35±0.00 67.45±0.47 3.53±0.21 0.93±0.01 90.10±0.12 3.08±0.07 0.40±0.01

PPA 85.05±0.09 3.24±0.14 0.45±0.00 43.47±1.11 12.03±0.54 1.60±0.02 70.36±1.24 18.06±0.84 1.08±0.04

CF 89.40±0.11 4.96±0.06 0.35±0.00 67.27±0.71 3.65±0.29 0.95±0.02 89.94±0.14 3.16±0.07 0.40±0.00

FVBWA

EAA 85.88±0.14 2.58±0.15 0.42±0.00 44.99±0.83 12.36±0.60 1.55±0.02 80.52±0.22 11.74±0.50 0.71±0.01

GAA 89.56±0.13 4.81±0.11 0.35±0.00 67.44±0.67 3.63±0.24 0.93±0.02 90.13±0.15 2.97±0.08 0.40±0.01

AALV 89.48±0.12 4.92±0.12 0.35±0.00 66.48±0.49 4.10±0.17 0.96±0.01 90.13±0.10 3.11±0.02 0.40±0.00

PPA 85.00±0.13 3.14±0.30 0.45±0.00 42.76±0.81 11.84±0.28 1.61±0.02 66.14±3.41 18.07±1.09 1.20±0.09

CF 89.53±0.11 4.87±0.05 0.35±0.00 67.09±0.20 3.96±0.29 0.95±0.01 90.02±0.08 3.18±0.06 0.40±0.01

N
on

-I
ID

FED N/A 87.16±0.13 8.39±0.15 0.58±0.01 61.23±1.00 10.39±1.18 1.16±0.04 85.00±0.61 10.28±0.38 0.91±0.03

FEDAVG N/A 86.77±0.23 8.56±0.34 0.59±0.02 60.26±1.12 10.97±1.38 1.19±0.04 84.82±0.80 10.18±0.48 0.91±0.04

FVBA

EAA 82.18±0.78 4.32±0.60 0.54±0.02 26.87±4.52 5.59±0.67 1.93±0.11 67.47±1.80 12.90±0.80 1.08±0.06

GAA 87.73±0.14 4.72±0.21 0.38±0.01 60.85±1.45 4.22±1.04 1.10±0.04 87.34±0.35 2.75±0.32 0.46±0.01

AALV 87.49±0.29 4.94±0.25 0.38±0.01 60.60±1.72 4.84±1.61 1.11±0.05 87.46±0.35 2.76±0.25 0.46±0.01

PPA 72.87±4.12 7.97±1.05 0.83±0.13 19.06±2.33 4.92±0.82 2.13±0.06 18.28±0.81 4.36±1.60 2.25±0.02

CF 87.63±0.22 4.75±0.17 0.38±0.01 60.79±1.60 4.36±1.39 1.10±0.05 87.12±0.25 2.99±0.31 0.47±0.01

FVBWA

EAA 79.61±1.06 4.74±0.80 0.61±0.03 25.29±3.98 5.38±0.80 1.97±0.11 52.29±8.42 13.68±1.95 1.51±0.24

GAA 87.40±0.26 4.92±0.24 0.39±0.01 59.56±1.75 5.22±1.42 1.13±0.05 87.18±0.22 2.91±0.35 0.47±0.01

AALV 87.42±0.40 5.07±0.30 0.39±0.01 58.99±1.83 5.81±1.76 1.14±0.06 86.84±0.47 3.35±0.41 0.48±0.02

PPA 76.38±0.79 5.59±0.69 0.70±0.02 18.55±2.22 3.37±0.38 2.15±0.05 21.22±2.81 7.37±2.75 2.22±0.04

CF 87.16±0.41 5.12±0.36 0.40±0.02 59.44±1.75 5.86±1.95 1.14±0.06 87.23±0.45 3.07±0.46 0.47±0.02

we select the standard normal distribution N (0, 1) as the prior distribution p(θ) like in [15]. We set
E = 10 which is the number of local epochs. Following the benchmark paper [19], we conduct our
experiments with T = 50 epochs for 10 clients and T = 500 for 100 clients. We benchmark the
models with 5 different seeds from 0 to 4 on Intel Xeon CPU E5-2690 v3 and Nvidia Quadro P6000
24 GB.

Table 4: Comparison of standard deviations (as
means ± standard errors) across five repetitions
for FMNIST, Cifar-10, and SVHN datasets. The
standard deviations belong to the settings with Non-
IID partitioned datasets, FVBWA baselines, and
learned final models. The lowest three rank stan-
dard deviations are highlighted in bold.

FMNIST Cifar-10 SVHN
Exp. Agg. Standard Deviation

10
cl

ie
nt

EAA 15.48±0.41 17.65±0.29 17.90±0.38

GAA 3.93±0.01 4.68±0.00 4.67±0.01

AALV 2.81±0.01 3.22±0.00 3.48±0.01

PPA 18.40±0.11 23.83±0.17 31.62±0.38

CF 1.40±0.02 1.65±0.04 1.57±0.02

10
0

cl
ie

nt

EAA 79.19±0.66 91.79±1.16 94.54±0.80

GAA 3.94±0.01 4.70±0.01 4.69±0.01

AALV 2.80±0.00 3.22±0.00 3.49±0.00

PPA 64.70±0.26 75.38±0.53 101.73±0.61

CF 1.42±0.03 1.75±0.05 1.70±0.06

Implementation and reproducibility. We
provide a PyTorch implementation of our ex-
periment pipeline. In order to simulate the fed-
erated learning approach, we execute the clients
in parallel with multi-processing which signif-
icantly accelerates the training procedure. The
code is available at https://github.com/
ituvisionlab/BFL-P. We also share the
seeds that are used in the experiments, hence
our data splits (IID; non-IID), all initializations,
and the presented results are reproducible.

Runtime comparison. We measure computa-
tional wall clock time per communication round
(TPC) as in Table 5. Comparing the single
process case versus others, our multi-process
pipeline significantly speeds up the computa-
tional time cost for the simulation. Furthermore,
there is no significant TPC difference among
aggregation methods except PPA due to the sam-
pling process.

11

https://github.com/ituvisionlab/BFL-P
https://github.com/ituvisionlab/BFL-P


Table 5: Runtime comparison results based on
the number of processes of IID partitioned 100
clients experiment with means ± standard errors
of Time Per Communication round (TPC) across
five communication rounds for CIFAR-10 dataset.
Multi-processed pipeline with 10 processes is the
fastest for all models.

1 process 5 processes 10 processes
Model Agg. Time per Communication Round
FED N/A 60.83±0.26 15.55±0.51 9.30±0.07

FEDAVG N/A 60.90±0.18 15.57±0.39 9.22±0.20

FVBA

EAA 72.77±0.18 16.22±0.05 9.49±0.06

GAA 71.23±0.88 16.48±0.10 9.41±0.05

AALV 72.10±0.36 16.33±0.10 9.51±0.09

PPA 66.95±0.31 18.06±0.20 11.23±0.16

CF 72.53±0.29 16.34±0.10 9.36±0.14

FVBWA

EAA 72.38±0.31 16.45±0.06 9.44±0.11

GAA 72.78±0.15 15.88±0.25 9.42±0.11

AALV 72.41±0.24 16.19±0.09 9.64±0.13

PPA 67.51±0.16 17.99±0.42 11.15±0.12

CF 72.86±0.40 17.22±0.40 10.56±0.08

12


	Introduction
	Background
	Federated Learning
	Variational Bayesian Neural Networks
	Federated Variational Bayesian Learning

	Aggregation Methods for Variational BNNs
	Empirical Arithmetic Aggregation (EAA)
	Gaussian Arithmetic Aggregation (GAA)
	Arithmetic Aggregation with Log Variance (AALV)
	Population Pooling based Aggregation (PPA)
	Conflation Aggregation (CF)

	Results and Discussion
	Conclusion
	Appendix
	Experimental Evaluation


