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Abstract

When neural networks (NNs) are subject to
L2 regularization, increasing the regularization
strength beyond a certain threshold pushes the
model into an under-parameterization regime. This
transition manifests as a first-order phase transition
in single-hidden-layer NNs and a second-order phase
transition in NNs with two or more hidden lay-
ers. This paper establishes a unified framework for
such transitions by integrating the Ricci curvature
of the loss landscape with regularizer-driven deep
learning. First, we show that a curvature change-
point separates the model-accuracy regimes in the
onset of learning and that it is identical to the crit-
ical point of the phase transition driven by regu-
larization. Second, we show that for more complex
data sets additional phase transitions exist between
model accuracies, and that they are again identi-
cal to curvature change points in the error land-
scape. Third, by studying the MNIST data set us-
ing a Variational Autoencoder, we demonstrate that
the curvature change points identify phase transi-
tions in model accuracy outside the L2 setting. Our
framework also offers practical insights for optimiz-
ing model performance across various architectures
and datasets. By linking geometric features of the
error landscape to observable phase transitions, our
work paves the way for more informed regularization
strategies and potentially new methods for probing
the intrinsic structure of neural networks beyond the
L2 context.

1 Introduction

L2 regularization is a common method used to avoid
overfitting in different optimization tasks from sim-
ple linear regression [12] to the usage in neural net-
works (NNs) [11]. However the phenomena associ-
ated with L2 regularization in the context of train-
ing and understanding NNs goes beyond the usage

as a tool for avoiding overfitting. A phenomenon
occurring in L2 regularized NNs is the phase tran-
sition when the regularization strength is varied. A
study investigating this by employing a Statistical
Physics analogy is offered by Ziyin, Ueda et al. [5],
who are using a loss function based on quadratic
error and L2 regularization. They demonstrate
that phase transitions occur when entering under-
parameterization in simple linear neural networks,
identifying second-order phase transitions in shallow
networks and first-order transitions in deeper ones.
These insights extend to non-linear networks only
near the transition point, i.e. the onset of learning.
Another approach studying phase transitions in
similar set-ups is the information bottleneck (IB)
[1].The training maximizes a mutual information-
based accuracy term. The so called information bot-
tleneck is defined by the mutual information of some
latent representation and the input of the networks
is minimized. Varying the bottleneck strength gives
rise to phase transitions [3]. However, we will not
pursue the IB approach further due to limited appli-
cability of its theoretical predictions. Additionally,
information geometric approaches, as discussed by
Amari et al. [7] and Watanabe et al. [20], present
powerful frameworks for analyzing the error land-
scape of neural networks. This perspective treats
the parameter space of neural networks as defin-
ing a surface whose geometry reflects the models
behavior throughout training, underscoring the sig-
nificance of degeneracy and the non-convex nature
of the loss landscape. Our work builds upon and
extends these existing approaches by investigating
the geometric interpretation of L2-regularization-
induced phase transitions in neural networks. We
unify the information geometric and regularization
perspectives, offering a novel framework for under-
standing the dynamics of neural network training.
Specifically, our contributions include the reproduc-
tion and extension of Ueda et al.’s [5] results, provid-
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ing a detailed geometric interpretation of the phase
transitions they observed and the identification of
transitions to under-parameterized regimes corre-
sponding to measurable geometric change-points in
the error surface. We then conduct the observations
of additional transitions for complex datasets, in-
dicating the emergence of geometric substructures
that represent learned features. We hypothesize,
that by measuring the curvature of the error land-
scape along this path we can link the onset of learn-
ing to a change in accuracy regimes of the error
landscape. Furthermore we predict existence of ad-
ditional transitions when the data complexity is in-
creased. Again this transition comes with a change
in accuracy regimes and a geometric change-point
in the error landscape. We confirm both hypotheses
numerically using geometric quantities that we de-
rive mathematically. Our findings provide a deeper
understanding of phase transitions influenced by
the interplay of regularization and data complex-
ity. This work not only has potential practical
implications for phenomena associated with over-
and under-parametrization but also furthers our un-
derstanding of the geometry and structure of error
landscapes and the notion of accuracy regimes.

1.1 Curvature Change-points at the
onset of learning

We now examine the effects of L2 regularization on
neural-network training, focusing on phase transi-
tions at the onset of learning, i.e. at the transi-
tion from a trivial to a non-trivial NN model. Here,
NNs with a single hidden layer exhibit different be-
havior from those with two or more hidden layers,
i.e. Deep Neural Networks (DNNs): At the onset
of learning, DNNs undergo first-order phase tran-
sitions, in contrast to the second-order transitions
exhibited by single-hidden layer NNs [5]. We show
in the following that these phase transitions can be
understood as changes in Ricci curvatures of the er-
ror landscape. We, thus, link the observed phase
transitions to the geometry of the error landscape
irrespective of the regularization strength. As a con-
sequence, they can be understood as the DNNmodel
transitioning from one accuracy ’basin’ to another
through a curvature-change ’gate’.

The L2-regularized loss function was defined
as: Lreg(y, fθ(x)) = L(y, fθ(x)) + β∥θ∥2, where
L(y, fθ(x)) is the (unregularized) error function
(here the mean-squared error ) and β the regular-
ization strength. Increasing β shifts the loss land-
scape’s global minimum towards the origin, away
from the minimum of the (unregularized) error land-
scape. As β become sufficiently large, the trained

model suddenly transitions from a useful model to
a “trivial model” with all parameters θ near zero.

This transition, termed the onset of learning,
manifests as a first-order phase transition in DNNs
and as a second-order transition in single-layer NNs
[5]. Fig. 1 illustrates the change of the loss function
as the NN passes through an onset of learning, show-
ing how increasing β moves the error-minimizing
model out of the ”learnable” region. A look at the
L2 term reveals its independence of the data, sim-
ply warping the loss landscape and smoothing out
details. Our object of interest, however, is the error
landscape. It remains the same for all regularizer
strengths. Increasing the L2 can thus be seen as
the model getting shifted on the error landscape,
toward the origin. We hypothesize that the model,
with increasing regularization, traverses through a
set of basins in the error landscape as it approaches
the origin. Specifically, we hypothesize that (i) as
the model moves away from a minimum of the error
landscape, the curvature gradually increases, and
(ii) as the model leaves the basin of that minimum
and enters the basin of another there is a sudden
change in curvature of the error landscape at that
point which manifests as phase transition in the
model accuracy. We first present the experimen-
tal results for a one-hidden layer NN, trained on
Gaussian data with 2D input X and 1D output data
Y both sampled from a 3D Gaussian distribution
(X,Y) ∼ N (0,Σxy) with Σxy the joint covariance.
The model is trained with an MSE error function
and an added L2 term with regularizer strength β
that is successively increased. (see Appendix C.1 for
details).

In Fig. 2a we can read of the onset of learning
phase transition at β0, as described by Ziyin and
Ueda [5]. It shows a smooth transition as we would
expect for a second order phase transition The Ricci
Scalar in Fig. 2b shows a clear change as the model
moves toward the transition point at the onset of
learning β0. After the transition the curvatures of
course remain constant as the model doesn’t move
any more. We interpret the transition point as de-
lineating two distinct accuracy regimes.

As we increase the data complexity, we expect
the error landscape to develop additional substruc-
tures. In line with the information geometry liter-
ature [19], we hypothesize that new information is
associated with the emergence of new minima, asso-
ciated with new basins (ii). A consequence is that
additional transitions may occur and be observable
when a given model exits these. To test this, we uti-
lize an L2 regularizer to shift a trained model out
of the minimum toward the origin, proposing that a

2



Figure 1: Sketch of a loss landscape with increasing L2 regularizer strength β. The minimum of the error term
(red) and the minimum of the L2 term at the origin (blue) are marked. Increasing β progressively smooths
the landscape, eliminating local minima while shifting the global minimum toward the origin.

(a) MSE for increasing regularizer strength β

(b) Scalar Curvature (Ricci Scalar) of the error surface
for increasing regularizer strength β

Figure 2: Metrics of a NN with one hidden layer,
trained on 1D Gaussian data with increasing regu-
larizer strength. Onset of learning determined with
change-point detection and marked as β0

(a) MSE for increasing regularizer strength β

(b) Scalar Curvature (Ricci Scalar) of the error surface
for increasing regularizer strength β

Figure 3: Metrics of a NN with one hidden layer,
trained on 2D Gaussian data with increasing regu-
larizer strength. Onset of learning and second tran-
sition point determined with change-point detection
and marked as β0 and β1

second transition point will be observable. We fur-
ther propose that the second transition point will be
accompanied by a curvature change-point, resulting
from the model exiting a basin.

The experimental set-up is similar to the pre-
vious one, with the important difference that the
output data Y is now two-dimensional, drawn from
a 3-dimensional multivariate Gaussian distribution,
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(X,Y) ∼ N (0,Σxy) (see Appendix C.1for further
details). Again, we record, for each trained model,
(a) the MSE, (b) the (Ricci) Scalar curvature at the
model’s position on the loss surface. The results are
shown in Figs. 3 as a function of β. Fig. 3a depicts
the MSE as a function of β for the one-hidden-layer
and two-hidden-layer networks respectively. Again
we see a smooth transition at the onset of learning
β0. But we now have an additional transition point
at β1. The curvature plots again display changes
at the transition points. The Ricci Scalar displayed
in Fig. 3b exhibits the same behavior at the onset
of learning β0 as well as the additional transition
points β1 as in the 1D case presented in the previ-
ous section.

We now repeat both experiments for the a Neu-
ral Network with two hidden layers.

Again we see one transition point at onset of
learning β0 in Fig. 4a for the model trained on the
1D Gaussian as well as 2D case Fig. 5a. The main
difference is the sharp transition that comes with a
jump 1. The observation are in accordance with a
first order phase transition. In the 2D case Fig. 5a
we again see an additional transition point β1. The
curvature plots in Figs. 4b and 5b show us a very
similar phenomenology with change-points before
the transition points βi.

Conclusion

This study has provided insights into the geomet-
ric interpretation of phase transitions in neural net-
works, particularly focusing on the existence and
exploration of accuracy regimes utilizing L2 regu-
larization. Our investigation highlighted the crit-
ical role of the error landscape’s geometric struc-
ture. We started with the known phenomenon of the
’onset-of-learning’ transition and made a connection
to the geometry of the error landscape. We showed
that the transition is due to the model passing from

a low-accuracy to a higher-accuracy regime. The
two regimes are separated by a curvature change
point. We interpreted the higher accuracy regime as
a basin. We confirmed this and found further transi-
tions for both shallow and deep architectures, iden-
tifying a mathematical link between regime transi-
tions and the distinct curvature profile of the error
landscape. To further demonstrate the geometric
nature of the phenomena and to point out its inde-
pendence from the specific L2 setup, we constructed
a VAE type model where another mechanism is used
to push the models around in the error landscape.
Again we could clearly see that the model first en-
ters a lower accuracy regime. When β is further in-
creased the model also exists this regime and enter
the trivial regime at the ’onset-of-learning’. An im-
portant note we need to make here is on the global
error geometry. We have only investigated the lo-
cal geometry along a specific path that start in the
highest accuracy section we could find and ends at a
parameter space section that corresponds to a triv-
ial model. We can not deduce details on the global
structure of the error landscape. Even though we
have identified distinct accuracy regimes, we can not
tell whether all regimes and change-points in the er-
ror submanifold are detected. The goal however is
not a complete analysis but the establishment of a
framework that allows us connect the transition phe-
nomenon to accuracy regimes and geometric met-
rics. This can be build upon to come up with more
elaborate schemes to explore the full implications.
Also the notion of error basins linked to the accu-
racy regimes have to be taken with a grain of salt.
We have merely demonstrated their existence. We
can not make any predictions on their overall struc-
ture and the geometry of the basin boundaries. Due
to the build-in degeneracy in NNs 2 we expect the
basins to consist of valleys with complex and non-
trivial boundary structures. Our framework gives a
starting point for further investigations and estab-
lishes same basic facts.

1We expect a jump instead of a kink because of the learning algorithm. The path in parameter space is not continuous but
comes in discrete steps that can lead to an earlier transition

2All NNs are degenerate and over-parametrized in the sense that they have permutation symmetries due to the architecture
of the model. For every possible model there is always a number of node permutations, as well as symmetries of the chosen
activation function, that will give the equivalent result
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(a) MSE for increasing regularizer strength β

(b) Scalar Curvature (Ricci Scalar) of the error surface
for increasing regularizer strength β

Figure 4: Metrics of a NN with one hidden layer,
trained on 1D Gaussian data with increasing regu-
larizer strength. Onset of learning determined with
change-point detection and marked as β0

(a) MSE for increasing regularizer strength β

(b) Scalar Curvature (Ricci Scalar) of the error surface
for increasing regularizer strength β

Figure 5: Metrics of a NN with two hidden layers,
trained on 2D Gaussian data with increasing regu-
larizer strength. Onset of learning and second tran-
sition point determined with change-point detection
and marked as β0 and β1
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A Geometry of the Model
Space

A.0.1 Error and Loss Landscapes as Sub-
manifolds in Model Space

Here, we derive and investigate the geometric prop-
erties of error and loss landscapes as d dimensional
submanifolds of a d + 1 Euclidean ambient space
[23], defined by a smooth error or loss function as

the embedding.

The parameter space Θ = Rd is the high-
dimensional space of all possible parameter config-
urations (weights and biases) for a given NN archi-
tecture. Each point θ ∈ Θ represents a specific set
of weights and biases, i.e. a model. The parameter
space is equipped with the Euclidean metric, with
the previously defined L2 norm as the induced norm.
We extend this parameter space to include an error
dimension, resulting in Θ × R = Rd+1, which we
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equip with a global coordinate map (l, θ1, . . . , θd),
with l ∈ R denoting the error coordinate and the
Euclidean metric eab = δab in index notation with
a, b = 0, ..., d. We call this the model space. Given
a smooth error function L(y, fθ(x)) evaluated on a
dataset D, we can now define the error surface L̃ as
a Euclidean submanifold in the model space Θ×R.
The optimization (learning) process can be viewed
as a trajectory on L̃, where in practice some varia-
tion of gradient descent is used to locate the global
minimum. In general, the surface is highly non-
convex and contain saddle points [8] and degener-
ate global minima due to over-parametrization and
the inherent symmetries [9] of the NNs. Despite the
complexity of the geometry, we can assert some min-
imal assumptions, such as the existence of basins
that correspond to higher accuracy in the model
output and that are formed by the features present
in the dataset. We now introduce some concepts
describing basic differential geometry of the error
landscape.

A.0.2 Fundamental Forms and Curvature of
the Error Landscape

Denoting the error function as L(y, fθ(x)) ≡ l(θ),
we express the error surface in parametric form as:

f(θ1, . . . , θd) = (l(θ), θ1, . . . , θd). (1)

Alternatively, we can define it using an implicit
function formulation:

F (l, θ1, . . . , θd) = l − l(θ) = 0 (2)

We have the inclusion map for the submanifold
in the ambient space 6:

ι : L̃ → Θ× R. (3)

Let TpL be tangent space at some point p ∈ L̃. For
elements v, w ∈ TpL, the scalar product ⟨v, w⟩p on

TpL̃ is given by:

⟨v, w⟩p = (dι)p(v)(dι)p(w). (4)

This is the first fundamental form in coordinate-
free form3, also known as the pull-back of the Eu-
clidean metric in d + 1-dimensional space to the
submanifold. Given the coordinates (l, θ1, ..., θd) we

get the basis of the tangent space
(

∂
∂l ,

∂
∂θ1

, ..., ∂
∂θd

)
.

With the Euclidean metric eij = δij with i, j =

1, ..., d, 4 we get the components gij of the induced
metric:

gij = δij +
∂l

∂θi

∂l

∂θj
. (5)

The first fundamental form gives us the scalar prod-
uct and, hence, can be used to calculate lengths,
angles and volumes on the submanifold. We now
also derive the second fundamental form because it
can be used to obtain the intrinsic curvature of the
submanifold.

θ1

θ2

l

Rd+1 = Θ× R

ι TpL̃

L̃

p
∂1

∂2

n

Figure 6: Sketch of an error surface L̃ as a d dimen-
sional submanifold of the Euclidean ambient space
Rd+1 consisting of the parameter space Θ and the
error values. The tangent space TpL̃ at p ∈ L̃ is
spanned by ∂i =

∂
∂θi

.

To derive the second fundamental form, that
measures the extrinsic curvature, we need to con-
sider the normal space, which is one-dimensional, as
we have a d-dimensional submanifold embedded in
a (d + 1)-dimensional ambient space. With the im-
plicit formulation given in Eq. 2, denoting ∂i =

∂
∂θi

and ∥∇F∥ =
√
1 +

∑d
i=1 |∂il|2, the normal vector

field n is given by:

n =
−∇F

∥∇F∥ =
1

∥∇F∥ (∂0F, ∂1F, · · · , ∂dF )

=
1

∥∇F∥ (1,−∂1l, · · · ,−∂dl) (6)

With the parametrization f given in Eq. 1 and

3The first fundamental form is often denoted Iij . As it gives us the induced metric, we use the notation gij which is more
common in the physics literature.

4If not stated otherwise the indices run from 1 to d.
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with fij = ∂i∂jf = ( ∂2l
∂θi∂θj

, 0, · · · , 0) the second fun-

damental form IIij is:

IIij = n · fij =
1

∥∇F∥ (1,−∂1l, · · · ,−∂dl)

×
(

∂2l

∂θi∂θj
, 0, · · · , 0

)
=

Hij

∥∇F∥ , (7)

where Hij is the Hessian of the loss function, scaled
by the norm of the gradients plus one. This is a use-
ful relation as the gradients are a key component in
training and thus easily available for each trained
NN. The Hessian is more expensive to obtain but
cheap enough for the NNs we are investigating. As
a symmetric bilinear form, the second fundamen-
tal form can be diagonalized at any point in the
submanifold with eigenvectors and -values v(i), κ(i)

. The eigenvalues are referred to as principal curva-
tures. We can easily see that the eigenvectors of the
second fundamental form and the Hessian are the
same:

κ(i)v(i) = II · v(i) = −1

∥∇F∥H · v(i) = −1

∥∇F∥ κ̃
(i)v(i)

(8)
We get the relation between the principal curvatures
κ(i) and the Hessian eigenvalues κ̃(i):

κ(i) =
−1

∥∇F∥ κ̃
(i) (9)

Consequently, the principal curvatures can be read-
ily obtained from the eigenvalues of the Hessian and
the gradients of the error function, ∂il. With the
determinant of the second fundamental form and
the gradients, the Gauss-Kronecker curvature can
be obtained:

K =
det(II)

det(g)
=

1

∥∇F∥d
∏d

i=1 κ̃
(i)

det(g)
. (10)

The Problem with the Gauss-Kronecker curvature
is the product over the large number of eigenvalues.
Most eigenvalues are close to zero. The curvature
can thus only be obtained by introducing a cutoff.
Even then we get numerically unstable results. We
thus derive a more stable curvature measure that
scales better in higher dimensions. I.e. we use the
second fundamental form to derive the Riemann-
curvature. For Euclidean submanifolds the Gauss
Equation [24] relating the second fundamental form
(extrinsic curvature) to the Riemann tensor (intrin-
sic curvature) gives us the following expression for
the Riemann-curvature. We start with a general-
ization of the Theorema Eggregium for arbitrary
dimensions, also called Gauss-Equation. It related

the Riemann Curvature to the second fundamental
form. For Euclidean submanifolds it is given as:

Rlijk = IIikIIjl − IIijIIkl (11)

The Riemann tensor can be contracted to get the
Ricci tensor. In the Einstein summation notation
Ricci curvature tensor is then given with the inverse
of the metric gij :

Rij = Rk
ikj = gklΠklΠij −Πikg

kmΠmj (12)

Contracting the indices again we get the Ricci
scalar:

R = gijRij = gklΠklg
ijΠij − gijΠikg

kmΠmj

= H̃2 − |Π|2, (13)

with the mean curvature H̃ = gijΠij and the
squared norm of the second fundamental form
|Π|2 = gijgklΠikΠjl. We use the the Sherman-
Morrison Formula to give inverse of the metric:

gij = δij − ∂il∂j l

∥∇F∥2 (14)

With Πij =
Hij

∥∇F∥ Plugging this into the mean cur-
vature we get:

H̃2 =
1

∥∇F∥2
[(

δij − ∂il∂j l

∥∇F∥2
)
Hij

]2
=

1

∥∇F∥2
[
tr(H)− ∇lTH∇l

∥∇F∥2
]2

=
1

∥∇F∥2 (tr(H))
2 − 2

tr(H)∇lTH∇l

∥∇F∥4

+

(
∇lTH∇l

)2
∥∇F∥6 (15)

For the second term we get:

1

∥∇F∥2 g
ijgklΠikΠjl =

1

∥∇F∥2 (δ
jkδil

−δjk
∂il∂ll

∥∇F∥2 − δij
∂j l∂kl

∥∇F∥2 +
∂j l∂kl∂il∂ll

∥∇F∥4 )HjkHil

=
tr(H)2

∥∇F∥2−
2∇lTH2∇l

∥∇F∥4 +

(
∇lTH∇l

)2
∥∇F∥6

(16)

With Eq.s 15 and 16 we get the final expression
(for an alternative derivation see [22]):

R =
1

∥∇F∥ (tr(H)2 − tr(H2))

+
2

∥∇F∥2∇lT (H2 − tr(H)H)∇l (17)

The Ricci curvature in the experimental results is
obtained using this expression.
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A.1 Curvature and Fisher Informa-
tion

A.1.1 Metric of the Error Submanifold and
the Fisher Information

Consider a Deep Neural Network (DNN) with pa-
rameters θ, input x, and output f(x;θ) and the tar-
get variable y x: We have a mean-squared error loss
MSE(y, fθ(x)) = 1

N

∑N
i=1(yi − fθ (xi))

2
and Gaus-

sian error with σ2 is the variance. The likelihood of
observing y given x and θ is [27]:

p(y|x;θ) = 1

(2πσ2)n/2
exp

(
− l

2σ2

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
∥y − f(x;θ)∥2

)
,

(18)

where n is the dimensionality of y. The log-
likelihood is:

log p(y|x;θ) = −n

2
log(2πσ2)

− 1

2σ2

1

N

N∑
i=1

(yi − fθ (xi))
2
. (19)

A.1.2 Fisher Information Matrix

The Fisher Information Matrix (FIM) quantifies the
amount of information that the observable random
variable y carries about the parameters θ. The FIM
is defined as the expected outer product of the score
function:

I(θ) = E
[
S(θ)S(θ)⊤

]
,

where the score function S(θ) is the gradient of
the log-likelihood with respect to θ:

S(θ) =
∂ log p(y|x;θ)

∂θ
.

For the likelihood (Eq. 18), the score function is:

S(θ) =
1

σ2
(y − f(x;θ))

∂f(x;θ)

∂θ
=

1

σ2

∂l

∂θ
(20)

Substituting the score function into the defini-
tion of the FIM, we obtain:

I(θ) = E

[
1

σ4
(y − f(x;θ))2

∂f(x;θ)

∂θ

∂f(x;θ)

∂θ

⊤
]
.

(21)

With l the loss over all of the dataset we can
write this in components as:

Iij =
1

σ2

∂l

∂θi

∂l

∂θj
(22)

This is precisely the second term of the Eq. 5 un-
der the assumptions of Gaussian noise and squared
error function times the noise parameter. The
FIM gives us the geometric properties of the log-
likelihood surface, while our metric is the metric of
the error submanifold. The relation holds for nor-
mal error and quadratic error terms. Both spaces
are locally isometric as they give the same curva-
ture values as can easily be checked.

B Classification and Varia-
tional Autoencoders

We also looked at a vastly higher dimensional
case, i.e. a classifier. The setup is very similar,
but instead of an MSE error we use a cross en-
tropy error CE(y, fθ(x)) and again add a regular-
izer with strength β train a model with a total loss
Lreg(y, fθ(x)) = CE(y, fθ(x)) + β∥θ∥2, successively
increasing the regularizer strength. The dataset is
the MNIST dataset that consists of images of hand-
written numerals from zero to ten and the corre-
sponding labels. In Figs. 7a and 7b we can clearly
see the onset of learning, again labeled β0 and four
additional transition points, in the error (Cross-
Entropy) as well as the accuracy (percentage of cor-
rect classifications) against β.5 The input has 784
nodes giving us a problem that is not only funda-
mentally different as it is a classification task, but
also quite far from being a mere toy model as the
previous 1- and 2- dimensional Gaussian datasets.
We plot the Cross-Entropy, as well as the accuracy
6 against β and mark the change-points. We finally
look at a different set-up without an L2 regular-
izer. We trained a VAE [26] like model (see Ap-
pendix C.2) with the loss of the form:

L = MSE(y, fθ(x)) + βDKL(p|q) (23)

with pθ(l|x) the encoding map [26] and q ∝ N (0,1)
white noise. The model is trained on the same

5We do not give a precise interpretation of what is happening at these transition points, as that would be beyond the scope
of our investigations here, but demonstrate that they exist.

6The accuracy is measures as the fraction of the correctly classified images in the test dataset
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(a) Cross-Entropy for increasing regularizer strength β
(b) Accuracy, i.e. the fraction of correctly classified data-
points, for increasing regularizer strength β

Figure 7: Cross-Entropy and Accuracy of a NN with two hidden layers, trained on the MNIST dataset for
image classification. The metrics are evaluated for increasing L2 regularization strength β. The transition
points are again determined with some change-point detection algorithm and marked as βi

.

dataset (X,Y) ∝ N (0,Σxy), with the same er-
ror function as before. Increasing the β parame-
ter pushes the model away from the error minimum
toward the some trivial model that outputs noise.
This gives us a mechanisms that is very different
from the L2. It introduces a second term to the loss
function that has a minimum at a model that has
its minium defined by another model representation
that is not defined by a location in the parameter
space but by the neural network that has a latent
representation that is closest to white noise. This
gives us a more costly and less direct method of
manipulating the model. However it gives a com-
parable manipulation of the model. We start at the
MSE minimum determined by the data and gradu-
ally shift the effective minimum and thus the model
toward a trivial model. The KL-divergence mea-
sures a sort of distance, but it is not the euclidean
distance to the origin in parameter space but the
distance to the trivial model 7. In the error(MSE)-
β plot (Fig. 8) we see very similar phenomenology
to the L2 regularized models. This is to be ex-
pected as we argued that the transition is just a
consequence of the model traversing the geometric
change-points in the error landscape. Given that we
have the same error function and the same dataset
we expect the error landscape to have a very similar
(not exactly the same as the parametrization and
the precise model is a bit different) geometry.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.05

0.10

0.15

0.20

M
SE

0 = 0.2991 = 0.098

Figure 8: MSE for increasing regularizer strength β.
The regularizer is the KL-divergence term (Eq. 23)
of the VAE like model instead of the L2

C Experimental Setup

C.1 Setup 1: Simple Neural Network
with L2 Regularization

In the first experimental setup, a simple feedfor-
ward neural network was implemented with a vary-
ing regularization parameter denoted by β. The
main experiment consists in a loop where a network
is trained tested and then trained again with an in-
creasing β value. A specific β interval and the num-
ber of networks to be trained is set in the beginning.
There are two possible modes. The first is the an-
nealing mode where the parameters of the previous
model are taken as the initialization of the following

7We need to note that the KL-divergence is not a proper measure of distance at it is not symmetric
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model. Without annealing a new network is trained
for each value.

C.1.1 Architecture

The network consists of an input layer, n hidden lay-
ers, and an output layer. The input layer has two
or more dimensions corresponding to the features,
and the output layer has one or more dimensions
representing the target variable. For the main ex-
periments the hidden layer contains 15 neurons and
utilizes the Sigmoid activation function. The choice
of width is just taken by running a number of trials.
Above 15 there is no significant improvement of the
performance. Decreasing it for the non-annealing
mode has the effect that there is an overlap of phase.
Close to transition point some of the models with
lower than critical β converge to the highest possi-
ble accuracy while others get stuck at lower accuracy
regimes.

C.1.2 Data Generation

We used Gaussian data with zero mean for all of the
experiments. The covariance matrix used is of the
form:

Σxy =


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ 1 · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1

 (24)

Where as long ρ ∈ (0, 1) is fulfilled the matrix is pos-
itive definite. ρ determines the correlation strength
between the different dimensions. For the 1D out-
puts we took the very simple cov matrix:

Σxy =

 1 0.999 0.999
0.999 1 0.999
0.999 0.999 1

 (25)

For generalizability of the setup to higher dimension
we use the Cholesky decomposition for sampling.
The sampling process begins with generating a set
of raw data samples from a standard multivariate
normal distribution, which includes generating ran-
dom values with zero mean and unit variance. To
shape these uncorrelated samples into a distribution
with the desired properties, we apply the Cholesky
decomposition of the specified covariance matrix.
This transformation adjusts the samples so they re-
flect the variability and correlation defined by the
covariance. Finally, we add the mean vector (zero
in our experiments) to each sample, ensuring that
the samples are centered around the specified mean
values. This method ensures the resulting samples

faithfully represent the intended multivariate Gaus-
sian distribution characterized by the given mean
and covariance. The first two dimensions are taken
as input (x1, x2) and the last dimension y as the
output. The sample size for training and testing is
N = 104 each. This is chosen by trying a num-
ber of different orders of magnitude. Above this
the performance does not improve significantly. To
test the robustness of the findings we used the fol-
lowing scheme to generate other higher dimensional
covariance matrices. We created a diagonal matrix
of the desired shape and rotated in the given axis
by random very small increments until we get some
covariance matrix with a high enough correlation
strength (close to one) between the x and y dimen-
sions. This approach makes the scheme of choosing
a distribution relatively random and ensures that
the resulting distribution is positive definite. For
the 2D and 3D experiments we picked the first of
the randomly generated covariances.

C.1.3 Training Process

The model was trained for a specified number of
epochs, with a varying β value in each iteration
to examine the impact of regularization on perfor-
mance. The training utilized an optimizer (config-
ured as either SGD, Adam, or AdamW) to minimize
the loss function, which combined the mean-squared
error (MSE) and the L2 regularization term. The
AdamW algorithm gives the best performance with
faster convergence. The resulting epoch outputs are
identical to the SGD ones. We thus argue that the
choice of algorithm is mostly irrelevant to the re-
sults. We only look at the trained model and an-
alyze the properties of the error landscape section
and not the scheme to get to this point.
During the training, the model’s performance was
evaluated, and metrics such as MSE were recorded.
After the last epochs the model parameters, the gra-
dients and the eigenvalues of the Hessian matrix
were evaluated and saved. Also the full hessian ma-
trices were calculated for each trained model and
saved in an array to be evaluated in curvature cal-
culations.

C.1.4 Evaluation

The evaluation was done in a very straight forward
way. There is no transformation or processing done
to the data and its just plotted as viewed in chapters
(3) and (4), except for the Gauss-Kronecker calcula-
tion. We introduce a cut-off at 10−10 for the hessian
eigenvalues and throw out all values below to avoid
a zero determinant. Besides this we calculate the
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log-determinant and get the exponential afterwards
for some numerical stability.

C.2 Setup 2: Variational Autoen-
coder (VAE)

The second experimental setup involved a Varia-
tional Autoencoder (VAE)-type setup. The main
difference here is that, unlike the standard VAE our
model is not trained to regenerate the input x, but
to produce the corresponding output y. The la-
tent representation is used to regularize the model
and probe the range from no regularization to over-
regularization, i.e. the point where the regulariza-
tion is so strong it shifts the model into a trivial
regime as in the L2 setup. The regularizer term in
Eq. 23 takes the latent representation as the mean
and variance of a Gaussian distribution and calcu-
lates Kullback-Leibler divergence with white noise.
For high enough β the minimization of the regular-
izer term becomes the main objective leading to the
latent representation becoming trivial.

C.2.1 Architecture

This VAE consists of an encoder and a decoder. The
encoder takes the input data and transforms maps
into a latent space with 2 dimensions. It outputs
both the mean and log variance of the latent vari-
ables, allowing for sampling during training through
the reparameterization trick. It interprets the la-
tent space as a parametrization of a Gaussian map
and calculates the KL-divergence with white noise.
For high enough β the effective minimum shifts to
the minimum of the KL-divergence term, forcing the
model out of the error minimum and outputting a
trivial model.

C.2.2 Data Generation

To train and test the VAE, synthetic Gaussian data
was generated same as in the first setup.

C.2.3 Training Process

Each training session involved adjusting the hyper-
parameter β. The basic set-up is analogous to the
L2 experiments. One can choose an annealing ap-
proach or a non-annealing one. The outputs here
only consist of the MSE and the KL-divergence val-
ues and the model parameters for each β on the
test data after each final epoch, as well as all epoch
outputs. As in the L2 set-up we used sigmoid acti-
vations.

C.3 Hysteresis and role of Initializa-
tion

The two-layer case displays a sharp transition con-
sistent with a first-order phase transition. Addition-
ally we can see a hysteresis effect. The transition is
delayed when we turn off the annealing an train in-
dependent models, i.e. when we initialize a new NN
for each beta value. The precise initialization, as
well as the step size of the learning algorithm will
play a role for the transition point. There are two
relevant minima in the critical regime. The effec-
tive minimum and the L2 minimum, i.e. the origin.
When the effective minimum does not yet overlap
with the L2 minimum, i.e. when the β value is still
just fulfilling learnability conditions the model still
’jumps’ or gets stuck in the L2 minimum. In the an-
nealing approach the model remains in the effective
minimum for longer than in the random initializa-
tion as one would expect. When we are close to
the transition point βcrit and there are two close by
minima. One is the less accurate local minimum
and one the effective minimum that is still in the
higher accuracy phase. Depending on the starting
point of the model, i.e. the initialization the algo-
rithm may not allow for the ’finding’ of the higher
accuracy phase. We can verify this by turning off
annealing an observing that the transition point is
clearly shifted to lower β values. Additionally we see
a clear phase coexistence. A fraction of the models
transitions to the trivial regime while some models
still find the higher accuracy phase.
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(a) MSE-Beta, 2hidden, 1D, Sigmoid, annealing (b) MSE-Beta, 2hidden, 1D, Sigmoid, no-annealing

Figure 9: We see the clear shift as well as phase coexistence when the annealing is turned off and models are
randomly initialized (initialization from uniformous distribution)
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