
Multi-Stage Manipulation with
Demonstration-Augmented

Reward, Policy, and World Model Learning
Adrià López Escoriza12, Nicklas Hansen1, Stone Tao13, Tongzhou Mu1, Hao Su13

1UC San Diego 2ETH Zürich 3Hillbot

https://adrialopezescoriza.github.io/demo3

Abstract—Long-horizon tasks in robotic manipulation present
significant challenges in reinforcement learning (RL) due to the
difficulty of designing dense reward functions and effectively
exploring the expansive state-action space. However, despite a
lack of dense rewards, these tasks often have a multi-stage
structure, which can be leveraged to decompose the overall
objective into manageable subgoals. In this work, we propose
Demonstration-Augmented Reward, Policy, and World Model
Learning (DEMO3), a framework that exploits this structure for
efficient learning from visual inputs. Specifically, our approach
incorporates multi-stage dense reward learning, a bi-phasic
training scheme, and world model learning into a carefully
designed demonstration-augmented RL framework that strongly
mitigates the challenge of exploration in long-horizon tasks.
Our evaluations demonstrate that our method improves data-
efficiency by an average of 40% and by 70% on particularly
difficult tasks compared to state-of-the-art approaches. We vali-
date this across 16 sparse-reward tasks spanning four domains,
including challenging humanoid visual control tasks using as few
as five demonstrations.

I. INTRODUCTION

Reinforcement learning (RL) with dense rewards has en-
abled significant progress in high-dimensional control tasks.
Many such tasks are now solvable when the reward function is
carefully designed for the specific goal. In particular, model-
based RL (MBRL) has demonstrated strong performance in
these high-dimensional problems [12, 58, 24, 13, 54, 16,
18, 40]. However, designing accurate reward functions is
challenging. Poorly designed rewards can lead agents to be-
come trapped in local minima or exploit unintended shortcuts,
resulting in undesirable behaviors [6]. More critically, scaling
reward design to complex tasks is highly impractical: the larger
the state space and the longer the horizon, the more intricate
the reward must be. While recent approaches leveraging Large
Language Models [26, 28, 52] and Vision-Language Models
[37, 4] for reward generation show promise, they still struggle
with high-precision requirements, particularly in manipulation
problems. In contrast, sparse rewards, such as binary signals
indicating task or subtask completion, are much easier to
obtain. However, traditional RL methods still struggle to learn
effectively from sparse rewards.

Fortunately, long-horizon tasks do offer opportunities to
simplify the problem. Typically, such tasks exhibit a natural

multi-stage structure. For example, a pick-and-place task can
be broken down into subtasks such as grasping, lifting, and
placing. Each of these can be associated with stage indicators
or rewards that can easily be queried from the environment.
This multi-stage structure allows these tasks to be decomposed
into more manageable subgoals, enabling the agent to collect
rewards more frequently [43, 7]. However, subgoal sparse re-
wards can still be insufficient if the distance between subgoals
is too great, leading back to the exploration problem.

Prior work shows that Learning from Demonstrations (LfD)
can help mitigate exploration issues in sparse reward settings.
Algorithms such as CoDER [57] and MoDem [17, 27] leverage
demonstrations to populate the replay buffer of an off-policy
RL algorithm [44], but they often scale poorly with task
complexity as they need demonstrations that sufficiently cover
the behavior space. Inverse RL methods [47, 50, 29, 10] train
RL on a reward function that is learned from demonstrations,
but inverse RL alone often struggles as the learned reward
function can have poor predictions on unseen states. Lastly,
these methods typically require many samples to learn a
reward function [25, 30] before any policy learning can begin.

In this paper, we build on demonstration-augmented RL to
tackle multi-stage manipulation tasks with sparse stage-wise
rewards. We introduce DEMO3, a model-based RL algorithm
that leverages a limited number of demonstrations for three
key purposes: learning a policy, a world model, and a
dense reward. DEMO3 exploits the multi-stage structure of
long-horizon tasks to transform sparse stage indicators into
a stage-wise dense reward. This enables dense feedback in a
structured way, prioritizing achieving subgoals over following
demonstrations. Unlike prior work, our dense reward is learned
online, alongside policy and world model learning.

We evaluate our method on a range of challenging ma-
nipulation tasks from Meta-World [55], Robosuite [60], as
well as both humanoid and tabletop manipulation tasks from
ManiSkill3 [46]. Our results (see Figure 1) demonstrate that
our method outperforms state-of-the-art methods by 40% on
average, and for more complex tasks this increases to 70%.
Our main contributions can be summarized as follows:

1) We introduce DEMO3, an MBRL algorithm for highly
data-efficient robotic manipulation from visual inputs

https://adrialopezescoriza.github.io/demo3

0%

50%

100%
76.4

0.0

33.8

4.4 7.6

ManiSkill Manipulation

78.0

16.0

71.4

7.7
18.0

Meta-World
92.0

16.7

41.7

3.5
24.0

ManiSkill Humanoids
87.5

0.0

25.3

90.5

31.0

Robosuite

Ours TD-MPC2 MoDem LaNE BC

Fig. 1. Summary of results. Final success rate (%) achieved by DEMO3 and a set of strong baselines, averaged across all tasks
within 4 domains. Average of 5 seeds. Given a handful of demonstrations, DEMO3 achieves high success rates in challenging
visual manipulation tasks with sparse rewards, far exceeding previous methods. See Appendix A for per-task results.

and sparse rewards. Our method integrates online dense
reward learning into RL for multi-stage tasks.

2) We conduct extensive experiments in 16 tasks across 4
domains to demonstrate the data-efficiency and robust-
ness of our approach. Additionally, we analyze the rel-
ative importance of each component of our framework.

II. PRELIMINARIES

Problem formulation. We aim to learn control policies for
multi-stage, long-horizon tasks, which we model as infinite-
horizon Markov Decision Processes [5] defined by the tuple
(S,A,P,R, γ). Here, S and A denote the state and action
spaces, respectively, P is the (unknown) state transition prob-
ability function, R is a sparse reward function, and γ ∈ [0, 1)
is the discount factor. Our goal is to learn a policy πθ : S → A
parameterized by θ that maximizes the expected cumulative
reward (return) over an infinite time horizon, formalized as
maxEπθ

[
∑∞

t=0 γ
trt].

Multi-stage sparse rewards. In this work, we focus on
multi-stage tasks where the overall objective can be decom-
posed into a sequence of N subgoals or stages. Stage indica-
tors are often easy to obtain; for example, in manipulation
tasks, it is straightforward to query whether the agent has
grasped an object. We model the (sparse) reward as a stage in-
dicator function r : S → {1, 2, . . . , N} that maps each state to
its corresponding stage. We assume no access to any privileged
information from the environment (e.g. object configurations),
and instead consider multi-modal observations o = (x,q)
where x denotes raw RGB images coming from the agent’s
cameras, and q denotes the proprioceptive state of the robot.

TD-MPC2 [16, 18] is a model-based RL algorithm that
combines Model Predictive Control (MPC), a learned latent-
space world model, and a terminal value function learned
via temporal difference (TD) learning. Specifically, TD-MPC2
learns a representation z = hθ(o) that maps a high-
dimensional observation o into a compact representation z, as
well as a dynamics model in this latent space z′ = dθ(z,a).
In addition, TD-MPC2 also learns prediction heads, Rθ, Qθ,
πθ, for (i) instantaneous reward r = Rθ(z,a), (ii) state-
action value Qθ(z,a), and (iii) a policy prior a ∼ πθ(z). The
policy prior πθ serves to “guide” planning towards high-return
trajectories and is optimized to maximize temporally weighted

Fig. 2. Task domains. We evaluate methods on 16 multi-
stage image-based sparse-reward tasks spanning four domains:
Meta-World [55], Robosuite [60], as well as manipulation and
humanoid tasks from ManiSkill3 [46]. See Appendix E for a
complete overview of tasks.

Q-values. The remaining components are jointly optimized to
minimize TD-errors, and reward and latent state prediction
errors, minimizing

LTD-MPC(θ) =

t+H∑
i=t

λi−t [LQ(θ) + LR(θ) + Lh(θ)] , (1)

During environment interaction, TD-MPC2 selects actions via
sample-based planner MPPI [49] and the learned world model.
We adopt TD-MPC2 as our choice of visual MBRL algorithm
due to its simplicity and strong empirical performance but
emphasize that our framework can be instantiated with any
MBRL algorithm.

III. METHOD

In this work, we address the challenge of solving multi-
stage manipulation tasks from sparse rewards. Such long-
horizon tasks are particularly difficult due to the combinatorial
complexity of the state-action space and the lack of informa-
tive feedback across extended horizons. To overcome these
issues, we propose DEMO3, a novel RL method that uses
demonstrations for a three-fold purpose: to learn a policy, a
world model, and a dense reward function simultaneously.

As our main algorithmic contribution, we introduce stage-
specific reward learning. In particular, we extend the strategy
on reward learning from demonstrations (LfD) presented in
Mu et al. [30] to online reward learning within a world model.
By learning structured, multi-stage rewards online alongside
world model and policy, our method provides more frequent
and meaningful training signals to the agent than prior work
on demonstration-augmented RL.

Environment

Phase 1: Pretraining

Phase 2: Interactive Learning

50%

Replay buffer

Demo dataset

Latent state

Disc.

Sparse reward

Learned dense reward

Planning

Fig. 3. Method overview. We present a two-phase framework for multi-stage visual manipulation from sparse rewards that
leverages a handful of demonstrations for dense reward learning and MBRL. Phase 1 (left): policy and encoder is pre-trained
on the available demonstrations using behavioral cloning, which serve as initialization for the next phase. Phase 2 (right):
the agent iteratively collects environment data via planning and uses all available data to update its world model as well as a
latent state discriminator; this discriminator is used to transform sparse environment rewards into a learned dense reward for
world model learning and subsequent planning.

Our approach builds directly upon the strengths of prior
work. In particular, we leverage MoDem’s multi-phase accel-
erated learning framework and use TD-MPC2 as our backbone
for its robustness and generalizability.

A. Model-based RL with online reward learning

Sparse rewards are a major challenge in RL, particularly
for long-horizon tasks comprising multiple stages. To over-
come this, we learn to densify sparse rewards with a small
number of demonstrations. For this, we introduce a series of
discriminators {δk}Nk=0, each corresponding to a task stage
k ∈ {0 . . . N}. The objective of each discriminator is to predict
the likelihood of progressing to the next stage based on the
latent state representation zt produced by the back-bone world
model.

Therefore, each discriminator δk acts as a stage classifier
trained to distinguish states as either leading or not leading to
successful stage transitions. For each stage k, we use a typical
Binary Cross Entropy (BCE) loss:

Lδk = E
(ot,rt=k,st)∼B

[BCE(1st>k, δk(h(ot)))] , (2)

where h denotes the world model encoder, B is the replay
buffer, and st represents the maximum stage that will be
reached by the trajectory after the given sample:

st = max
t′≥t

rt′ , (3)

We refer to st as the maximum stage label of a sub-trajectory.
Thus, each trajectory, τi = {(ot,at, rt,ot+1, st)}T−1

t=0 , is
annotated with maximum stage labels st that serve as success
labels for the stage discriminators. Then, as presented in Algo-

rithm 1, at each update of the world model, the discriminators
are updated as an additional part of the model. Specifically, for
a given sample from the replay buffer (ot,at,ot+1, rt, st) ∼
B, the sparse reward associated with a given stage, k = rt, will
tell us which discriminator, δk, will be updated by that sample.
If the maximum stage label st is greater than the current
stage reward k = rT , the sample belonging to a trajectory
with a successful stage transition will be treated as a positive
example in the classifier loss. Note that in the event that no
samples with a stage reward, rt = k, would appear in a given
batch, the discriminator δk for that stage would simply not
get updated at that step. Therefore, while the algorithm is
capable of working without any demonstrations, using a small
demonstration dataset can significantly accelerate the training
of the world model and discriminators.

While training the world model, the discriminators are used
to generate dense rewards as per

r̂δt = rt + β · tanh(δrt(zt)) (4)

where the output of the discriminator is mapped to the [−β, β]
interval. The process is illustrated by Figure 4. We set β to
be a hyperparameter with β ≤ 1/3 to ensure that rewards
never cross between different stage regions. This is to ensure
that states belonging to a more advanced stage always get a
higher reward than lower-stage states. Effectively, our method
rewards states that have a higher chance of transitioning to
the next stage and penalizes those that do not, encouraging the
agent to explore regions with a higher probability of transition.

The total world model loss integrating these signals be-
comes

LP = LR + LQ + Lh + Lδ, (5)

Demos + Replay

Discriminator Learned dense reward

Fig. 4. Dense reward learning. At each update step, the
continuous output of a stage discriminator is added to the envi-
ronment sparse reward. The discriminator output is normalized
to the [−β, β] interval with a tanh operator.

where LR, LQ, and Lh represent the TD-MPC2 world model
losses: (i) reconstruction, (ii) value estimation, and (iii) latent
dynamics losses. Importantly, LR is computed to predict the
learned dense reward produced by the discriminator, r̂δt , thus
providing a richer learning signal than pure sparse rewards.
Finally, Lδ is the average loss of all the stage discriminators.
As in Hansen et al. [18], the total loss is used to compute
gradients for the world model, meaning that Lδ is also used
to learn the observation encoder.

B. Training scheme

In order to further boost the data-efficiency of DEMO3,
we build upon previous work on accelerating MBRL with
demonstrations. Specifically, we draw inspiration from Mo-
Dem [17] and propose a bi-phase training scheme in which we
first use demonstrations to pre-train an initial policy through
behavioral cloning [1, 35], πBC to collect informative samples
during early stages of training. In phase 2, we gradually
phase out the (frozen) pre-trained policy and start collecting
samples by planning through the world model, which is
learned via interactive learning. An overall diagram of our
training strategy can be found in Figure 3.

Phase 1: Pretraining. One of the main bottlenecks of RL
in long-horizon sparse reward tasks is the low-informative data
that is collected at the early stages of training. As early data
tends to contain no rewards, learning a meaningful representa-
tion for such states becomes challenging. Traditional methods
tend to start collecting data with a randomly initialized policy
that usually struggles to find any rewards in the environment.
For this reason, we jointly pre-train a policy πBC and an
encoder hBC on the full demonstration dataset D using the
classic behavioral cloning (BC) loss as an objective function:

LBC(θ) = E
(o,a)∼D

[− log πθ(a|hθ(o))] , (6)

where the policy learns to imitate the behaviors encoded in the
dataset. At interaction time, the interactive policy πRL and the
world model encoder, h, are initialized with their pre-trained
analogs πBC, hBC.

Given that we focus on datasets with limited demonstra-
tions, behavioral cloning can be prone to overfitting [34, 33, 9].

TABLE I. Experimental setup. We consider 16 challenging
visual manipulation tasks in 4 different domains. Domains that
empirically present a slower convergence are given a bigger
budget of interactions. The number of stages is determined
according to the nature of the task and by the typical horizon
of demonstrations.

Domain Tasks Demos Interactions Stages

ManiSkill 5 5-100 500k 3
Meta-World 5 5 500k 2
Robosuite 4 5-25 100k 1

Humanoids 2 5 100k 3

To mitigate this, we regularly evaluate πBC during pretraining
by rolling out episodes in the environment. We use early stop-
ping on the evaluation set [53] to select the best-performing
policy for the interactive learning phase.

Phase 2: Interactive Learning. After initial pretraining of
the encoder and policy, the agent starts collecting data from
the environment to learn using offline reinforcement learning
(RL). In order to utilize the demonstrations, we follow Hansen
et al. [17] by sampling from the replay buffer B and the
demonstration dataset D at each update step. Specifically,
every time we sample a batch, a fraction of the samples
come from D while the remaining fraction comes from. This
approach prevents collected data from quickly outnumbering
the demonstrations. While the sampling ratio is a tunable
hyperparameter, we empirically found that an initial 50%
demonstration ratio works well for most tasks.

Therefore, as detailed in Algorithm 1, at each update step,
the world model gets updated as explained in Section III-A.
The agent will then proceed to interact with the environment
to collect more data that will be stored in the replay buffer.

Similar to Lancaster et al. [27], we use annealing to control
the probability of a sample coming from πBC or from the
planning module of the world model. In this way, the data
distribution of the replay buffer B is initially biased toward
the one of the dataset D. This technique aims to collect more
informative data than the one a purely random policy would
collect during early stages of training. As the world model
starts learning and πRL is able to collect more meaningful
samples, we increase the annealing coefficient αt to improve
the diversity of collected samples and stop relying on the sub-
optimal pre-trained policy πBC. Eventually, αt will converge
to 1, at which point all samples will come from planning with
πRL (see Algorithm 1).

IV. EXPERIMENTS

We consider 16 challenging visual multi-stage manipulation
tasks with a long-horizon for our experimental evaluation.
This includes 5 manipulation tasks from ManiSkill3 [46], 5
manipulation tasks from Meta-World [55] and 4 manipula-
tion tasks from Robosuite [60]. Additionally, we include 2
humanoid manipulation tasks from ManiSkill3 with a high-
dimensional action space, which we refer to as ManiSkill
Humanoids in our evaluations. We place a strong emphasis

0 250K 500K
0%

50%

100% ManiSkill Manipulation

0 250K 500K

Meta-World

0 50K 100K

ManiSkill Humanoids

0 50K 100K

Robosuite

Interaction Steps

Ours TD-MPC2 MoDem LaNE BC

Fig. 5. Learning curves. Success rate as a function of interaction steps for each of the four domains that we consider, averaged
across all tasks and 5 random seeds. The shaded area corresponds to a 95% confidence interval.

on long-horizon precise manipulation, which is why we select
the most challenging tasks from each domain. We relate the
difficulty to the required precision of a task, its horizon, and
the level of randomization in the scene (see Appendix G for
further details on difficulty categorization). For each task, the
agent is given a constrained budget of demonstrations and
interaction steps (see Table I). To allow most baselines to solve
the task, we set the interaction budget and demonstrations to a
different amount for each task. For a complete list of details on
our experimental setup, please refer to Table I and Appendix
E. Through our evaluations, we aim to answer the following
questions:

1) Can our proposed method effectively accelerate MBRL
with demonstrations in long-horizon multi-stage tasks?

2) What is the relative importance of each algorithmic com-
ponent of Demonstration-Augmented Reward, Policy,
and World Model Learning (DEMO3), and how does
it scale with the amount of demonstration data?

3) How do sparse reward functions compare to our learned
rewards at different levels of stage granularity?

A. Baselines

To assess our method’s effectiveness, we compare it against
three relevant approaches. A complete comparison of other
methods can be found in Appendix B.

MoDem [17] is a MBRL algorithm designed to enhance
data-efficiency in visual control tasks with sparse rewards.
Similarly to our method, MoDem employs a three-phase
framework: policy pretraining, seeding, and interactive learn-
ing with oversampling of demonstration data. The authors
show state-of-the-art performance on Meta-World and Adroit
domains from visual inputs and sparse rewards.

LaNE [59] is a data-efficient model-free RL method for
sparse-reward tasks from visual inputs. LaNE utilizes a pre-
trained feature extractor to learn an embedding space and
rewards the agent for exploring regions near the demon-
strations within this latent space. The authors also show
state-of-the-art data-efficiency in the Robosuite environment
with a limited amount of demonstrations.

TD-MPC2 [16, 18] is the state-of-the art MBRL algorithm
for control tasks. It combines temporal difference learning with

model predictive control (MPC) and constitutes the backbone
of our approach. Compared to TD-MPC, TD-MPC2 includes
a series of algorithmic changes that improve robustness and
scaling.

B. Benchmark Results

The main result of our evaluations (see Figure 5) com-
pares the data-efficiency of our method against the proposed
baselines. On average, our method achieves 40% better data-
efficiency than the proposed baselines. Notably, in ManiSkill3,
our most difficult domain, our method averages a 75% suc-
cess rate after only 500k steps, performing 50% better than
the second-best baseline. Furthermore, our DEMO3 can deal
better with the high-dimensional action space in ManiSkill
Humanoids. Interestingly, while our DEMO3 does better on
average, it thrives in the most difficult tasks where the horizon
and precision of the task are the highest.

Particularly, the ManiSkill tasks, Peg Insertion, and Stack
Cube, require a very high level of precision and a long horizon.
As shown in 8, DEMO3 is the only algorithm to reliably solve
both tasks in the interaction budget. While performance is
quite matched with LaNE [59] in Robosuite, LaNE uses a
pre-trained encoder to preprocess image observations while
our method is completely learned from scratch. Finally, TD-
MPC2 struggles to get any performance as is typical for pure
RL algorithms learning from sparse rewards. Overall, DEMO3

shows the highest degree of robustness and efficiency on the
proposed long-horizon tasks.

C. Analysis

a) Relative importance of each component: Figure 6
shows the effect of removing dense reward learning, policy
pretraining, and demonstration oversampling in the 5 manip-
ulation tasks from ManiSkill3. Interestingly, a considerable
jump in performance is brought by pretraining and over-
sampling from the demonstration dataset with the TD-MPC2
backbone (no learned reward). The effect of reward learning
becomes evident in long-horizon tasks where advancing stages
can be very challenging without rewards (e.g., Peg Insertion,
Pick Place), especially when reducing the number of demon-
strations (see Appendix A).

0%

50%

100% Average Stack Cube Peg Insertion

0 250K 500K
0%

50%

100% Lift Peg Upright

0 250K 500K

Poke Cube

0 250K 500K

Pick Place

Interaction Steps
Ours MoDem TD-MPC2

no learned reward TD-MPC2 + learned reward

Fig. 6. Ablations. Success rate as a function of interaction
steps for variations of our method on all 5 ManiSkill ma-
nipulation tasks. Averaged across 5 random seeds. Baselines
included for completeness. Shaded areas correspond to 95%
confidence intervals.

b) Demonstration efficiency: In Figure 7, we experiment
with different dataset sizes and evaluate the data-efficiency of
different baselines using demonstrations. While most meth-
ods scale well with the number of demonstrations, DEMO3

shows the strongest performance in the lowest regime of
demonstrations. This is particularly evident in challenging
tasks such as Peg Insertion and Stack Cube, where DEMO3 is
the only method capable of reaching meaningful performance
within the interaction budget (see Appendix A) with only 5
demonstrations.

V. RELATED WORK

a) Model-based RL: Model-based Reinforcement Learn-
ing (MBRL) improves data-efficiency by leveraging a model
of the environment to guide decision-making. These models
can be either prior-based, such as physics-based simulators,
or learned, where the agent approximates a dynamic model of
the world from data. World models [38, 12] are an internal
representation of the environment that enables planning and
policy learning without direct interaction. A notable exam-
ple is MuZero [39], which extends value-based planning by
implicitly learning environment dynamics. Recent advances,
such as Dreamer [13, 14, 15] and TD-MPC [16, 18], improve
learning in high-dimensional spaces, allowing MBRL to scale
to complex visual and continuous control tasks.

b) Demonstration-Augmented RL: Learning policies
purely through trial and error can be inefficient and unstable,
prompting research into leveraging demonstrations to enhance
RL. During online interactions, demonstrations can serve as
off-policy experience [19, 23, 3, 31, 10] or for on-policy
regularization [22, 36]. Alternatively, demonstrations can be
used to estimate reward functions for RL [51, 2, 48, 62, 41].
In this work, we leverage demonstrations in multiple ways

5 10 25 50 100 200
Number of Demos

100

200

300

400

500

St
ep

s t
o

re
ac

h
30

%
 su

cc
es

s ↓

Ours
no learned reward

TD-MPC2 + learned reward
MoDem

Fig. 7. Demonstration efficiency. Number of steps to reach
a critical success rate (30%) as a function of demonstration
count. Data points that did not converge are assigned a 500k
step count. Results are aggregated over 2 challenging manip-
ulation tasks (Stack Cube and Peg Insertion) and averaged
across 5 seeds. 95% confidence interval.

simultaneously: learning an initial policy, the world model,
and a reward function.

c) Reward Learning: The design of rewards is difficult
due to the need for extensive domain knowledge, which
prompts development of data-driven reward learning methods.
Rewards can be learned from offline datasets by classifying
goals [42, 21, 8] or estimating goal distances [56]. Alterna-
tively, inverse RL approaches [32, 61, 20, 11] leverage online
interactions to infer a reward function from expert demonstra-
tions. Additionally, reward shaping techniques [47, 50, 29, 10]
transform sparse rewards into dense rewards using specific
domain knowledge. The reward learning in this work builds
upon DrS [30], with modifications tailored to MBRL.

VI. CONCLUSION

In this work, we tackle the challenge of learning long-
horizon manipulation skills with sparse rewards using only
proprioceptive and visual feedback. We propose DEMO3, a
demonstration-augmented MBRL algorithm that simultane-
ously learns a reward, policy and world-model for multi-stage
manipulation. Our experiments (Section IV) show that our
method achieves 40% better performance than the current
state-of-the-art. Additionally, DEMO3 excels at the most dif-
ficult tasks, converging up to 4x faster than current methods.
As future work, we will evaluate how diverse data sources,
such as human teleoperation, impact performance and validate
DEMO3 on physical robots to assess performance in the real
world. Given prior work’s successful sim-to-real transfers [27],
we remain optimistic that our method’s gains will translate to
physical environments.

Acknowledgements. NH is supported by NVIDIA Grad-
uate Fellowship. ST is supported in part by the NSF Grad-
uate Research Fellowship Program grant under grant No.
DGE2038238.

REFERENCES

[1] Christopher G. Atkeson and Stefan Schaal. Robot learn-
ing from demonstration. In Proceedings of the Fourteenth
International Conference on Machine Learning, ICML
’97, page 12–20, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc. ISBN 1558604863.

[2] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine,
Ziyu Wang, and Nando De Freitas. Playing hard explo-
ration games by watching youtube. Advances in neural
information processing systems, 31, 2018.

[3] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey
Levine. Efficient online reinforcement learning with
offline data. In International Conference on Machine
Learning, pages 1577–1594. PMLR, 2023.

[4] Kate Baumli, Satinder Baveja, Feryal Behbahani, Har-
ris Chan, Gheorghe Comanici, Sebastian Flennerhag,
Maxime Gazeau, Kristian Holsheimer, Dan Horgan,
Michael Laskin, Clare Lyle, Hussain Masoom, Kay
McKinney, Volodymyr Mnih, Alexander Neitz, Dmitry
Nikulin, Fabio Pardo, Jack Parker-Holder, John Quan,
Tim Rocktäschel, Himanshu Sahni, Tom Schaul, Yannick
Schroecker, Stephen Spencer, Richie Steigerwald, Luyu
Wang, and Lei Zhang. Vision-language models as a
source of rewards, 2024. URL https://arxiv.org/abs/2312.
09187.

[5] Richard Bellman. A markovian decision process. Indiana
Univ. Math. J., 6:679–684, 1957. ISSN 0022-2518.

[6] Jack Clark and Dario Amodei. Faulty reward functions
in the wild. OpenAI Blog, 2016.

[7] Norman Di Palo and Edward Johns. Learning multi-
stage tasks with one demonstration via self-replay. In
Conference on Robot Learning (CoRL), 2021.

[8] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil
Raju, Jessica Landon, Felix Hill, Nando de Freitas,
and Serkan Cabi. Vision-language models as success
detectors. arXiv preprint arXiv:2303.07280, 2023.

[9] Yan Duan, Marcin Andrychowicz, Bradly C. Stadie,
Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-shot imitation
learning, 2017. URL https://arxiv.org/abs/1703.07326.

[10] Alejandro Escontrela, Xue Bin Peng, Wenhao Yu,
Tingnan Zhang, Atil Iscen, Ken Goldberg, and Pieter
Abbeel. Adversarial motion priors make good substitutes
for complex reward functions, 2022. URL https://arxiv.
org/abs/2203.15103.

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust
rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248, 2017.

[12] David Ha and Jürgen Schmidhuber. World models. 2018.
doi: 10.5281/ZENODO.1207631. URL https://zenodo.
org/record/1207631.

[13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination, 2020. URL https://arxiv.org/abs/
1912.01603.

[14] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi,
and Jimmy Ba. Mastering atari with discrete world
models, 2022. URL https://arxiv.org/abs/2010.02193.

[15] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timo-
thy Lillicrap. Mastering diverse domains through world
models, 2024. URL https://arxiv.org/abs/2301.04104.

[16] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. In
ICML, 2022.

[17] Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang,
Vikash Kumar, and Aravind Rajeswaran. Modem: Accel-
erating visual model-based reinforcement learning with
demonstrations. 2023.

[18] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2:
Scalable, robust world models for continuous control,
2024.

[19] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanc-
tot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, An-
drew Sendonaris, Ian Osband, et al. Deep q-learning from
demonstrations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[20] Jonathan Ho and Stefano Ermon. Generative adversar-
ial imitation learning. Advances in neural information
processing systems, 29, 2016.

[21] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar,
Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous
multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[22] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy op-
timization with demonstrations. In International con-
ference on machine learning, pages 2469–2478. PMLR,
2018.

[23] Steven Kapturowski, Georg Ostrovski, John Quan, Remi
Munos, and Will Dabney. Recurrent experience replay
in distributed reinforcement learning. In International
conference on learning representations, 2018.

[24] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netra-
palli, and Thorsten Joachims. Morel : Model-based
offline reinforcement learning. ArXiv, abs/2005.05951,
2020.

[25] Sateesh Kumar, Jonathan Zamora, Nicklas Hansen,
Rishabh Jangir, and Xiaolong Wang. Graph inverse
reinforcement learning from diverse videos. Conference
on Robot Learning (CoRL), 2022.

[26] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. Reward design with language models. In
The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?
id=10uNUgI5Kl.

[27] Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran,
and Vikash Kumar. Modem-v2: Visuo-motor world mod-
els for real-world robot manipulation. In International
Conference on Robotics and Automation (ICRA), 2024.

[28] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu,

https://arxiv.org/abs/2312.09187
https://arxiv.org/abs/2312.09187
https://arxiv.org/abs/1703.07326
https://arxiv.org/abs/2203.15103
https://arxiv.org/abs/2203.15103
https://zenodo.org/record/1207631
https://zenodo.org/record/1207631
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2301.04104
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=10uNUgI5Kl

Linxi Fan, and Anima Anandkumar. Eureka: Human-
level reward design via coding large language models.
arXiv preprint arXiv: Arxiv-2310.12931, 2023.

[29] Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott
Niekum, and Ufuk Topcu. Self-supervised online re-
ward shaping in sparse-reward environments. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2369–2375. IEEE, 2021.

[30] Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning
reusable dense rewards for multi-stage tasks. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

[31] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wo-
jciech Zaremba, and Pieter Abbeel. Overcoming ex-
ploration in reinforcement learning with demonstrations.
In 2018 IEEE international conference on robotics and
automation (ICRA), pages 6292–6299. IEEE, 2018.

[32] Andrew Y Ng, Stuart Russell, et al. Algorithms for
inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[33] Simone Parisi, Aravind Rajeswaran, Senthil Purush-
walkam, and Abhinav Gupta. The unsurprising effec-
tiveness of pre-trained vision models for control, 2022.
URL https://arxiv.org/abs/2203.03580.

[34] Jan Peters, Katharina Mülling, and Yasemin Altün. Rel-
ative entropy policy search. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI’10, page 1607–1612. AAAI Press, 2010.

[35] Dean A. Pomerleau. Alvinn: An autonomous land
vehicle in a neural network. In D. Touretzky,
editor, Advances in Neural Information Processing
Systems, volume 1. Morgan-Kaufmann, 1988. URL
https://proceedings.neurips.cc/paper files/paper/1988/
file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

[36] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipula-
tion with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[37] Juan Rocamonde, Victoriano Montesinos, Elvis Nava,
Ethan Perez, and David Lindner. Vision-language models
are zero-shot reward models for reinforcement learning,
2024. URL https://arxiv.org/abs/2310.12921.

[38] J. Schmidhuber. Making the world differentiable: on
using self supervised fully recurrent neural networks for
dynamic reinforcement learning and planning in non-
stationary environments. Forschungsberichte Künstliche
Intelligenz. Inst. für Informatik, 1990. URL https://
books.google.ch/books?id=9c2sHAAACAAJ.

[39] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, Timothy Lillicrap, and David Silver. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, December 2020.
ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4.

URL http://dx.doi.org/10.1038/s41586-020-03051-4.
[40] Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin,

Youngwoon Lee, and Pieter Abbeel. Humanoidbench:
Simulated humanoid benchmark for whole-body locomo-
tion and manipulation, 2024.

[41] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea
Finn, and Sergey Levine. End-to-end robotic reinforce-
ment learning without reward engineering. arXiv preprint
arXiv:1904.07854, 2019.

[42] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter
Abbeel, and Sergey Levine. Avid: Learning multi-stage
tasks via pixel-level translation of human videos. arXiv
preprint arXiv:1912.04443, 2019.

[43] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter
Abbeel, and Sergey Levine. Avid: Learning multi-stage
tasks via pixel-level translation of human videos, 2020.
URL https://arxiv.org/abs/1912.04443.

[44] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. The MIT Press, sec-
ond edition, 2018. URL http://incompleteideas.net/book/
the-book-2nd.html.

[45] Stone Tao, Arth Shukla, Tse-kai Chan, and Hao Su.
Reverse forward curriculum learning for extreme sample
and demonstration efficiency in rl. 2024.

[46] Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin,
Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong
Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li,
Tongzhou Mu, Nan Xiao, Arnav Gurha, Zhiao Huang,
Roberto Calandra, Rui Chen, Shan Luo, and Hao Su.
Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai, 2024. URL
https://arxiv.org/abs/2410.00425.

[47] Alexander Trott, Stephan Zheng, Caiming Xiong, and
Richard Socher. Keeping your distance: Solving sparse
reward tasks using self-balancing shaped rewards. Ad-
vances in Neural Information Processing Systems, 32,
2019.

[48] Mel Vecerik, Oleg Sushkov, David Barker, Thomas
Rothörl, Todd Hester, and Jon Scholz. A practical
approach to insertion with variable socket position using
deep reinforcement learning. In 2019 international
conference on robotics and automation (ICRA), pages
754–760. IEEE, 2019.

[49] Grady Williams, Andrew Aldrich, and Evangelos
Theodorou. Model predictive path integral control using
covariance variable importance sampling, 2015. URL
https://arxiv.org/abs/1509.01149.

[50] Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi
Tomizuka, and Stefan Schaal. Learning dense rewards
for contact-rich manipulation tasks. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 6214–6221. IEEE, 2021.

[51] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn.
Few-shot goal inference for visuomotor learning and
planning. In Conference on Robot Learning, pages 40–
52. PMLR, 2018.

https://arxiv.org/abs/2203.03580
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://arxiv.org/abs/2310.12921
https://books.google.ch/books?id=9c2sHAAACAAJ
https://books.google.ch/books?id=9c2sHAAACAAJ
http://dx.doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1912.04443
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2410.00425
https://arxiv.org/abs/1509.01149

[52] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu,
Qian Luo, Victor Zhong, Yanchao Yang, and Tao Yu.
Text2reward: Reward shaping with language models for
reinforcement learning. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tUM39YTRxH.

[53] Y. Yao, Lorenzo Rosasco, and Andrea Caponnetto. On
early stopping in gradient descent learning. Constructive
Approximation, 26:289–315, 2007. URL https://api.
semanticscholar.org/CorpusID:8323954.

[54] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Y. Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization.
ArXiv, abs/2005.13239, 2020.

[55] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Avnish Narayan, Hayden Shively, Adithya Bellathur,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning, 2021. URL https://arxiv.
org/abs/1910.10897.

[56] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tomp-
son, Jeannette Bohg, and Debidatta Dwibedi. Xirl:
Cross-embodiment inverse reinforcement learning. In
Conference on Robot Learning, pages 537–546. PMLR,
2022.

[57] Albert Zhan, Ruihan Zhao, Lerrel Pinto, Pieter Abbeel,
and Michael Laskin. Learning visual robotic control
efficiently with contrastive pre-training and data augmen-
tation, 2022. URL https://arxiv.org/abs/2012.07975.

[58] Marvin Zhang, Sharad Vikram, Laura Smith, P. Abbeel,
Matthew J. Johnson, and Sergey Levine. Solar: Deep
structured latent representations for model-based rein-
forcement learning. ArXiv, abs/1808.09105, 2018.

[59] Ruihan Zhao, ufuk topcu, Sandeep P. Chinchali, and Mar-
iano Phielipp. Accelerating visual sparse-reward learning
with latent nearest-demonstration-guided explorations. In
8th Annual Conference on Robot Learning, 2024. URL
https://openreview.net/forum?id=3NI5SxsJqf.

[60] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation frame-
work and benchmark for robot learning, 2022. URL
https://arxiv.org/abs/2009.12293.

[61] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

[62] Konrad Zolna, Alexander Novikov, Ksenia Konyushkova,
Caglar Gulcehre, Ziyu Wang, Yusuf Aytar, Misha Denil,
Nando de Freitas, and Scott Reed. Offline learning from
demonstrations and unlabeled experience. arXiv preprint
arXiv:2011.13885, 2020.

https://openreview.net/forum?id=tUM39YTRxH
https://api.semanticscholar.org/CorpusID:8323954
https://api.semanticscholar.org/CorpusID:8323954
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/2012.07975
https://openreview.net/forum?id=3NI5SxsJqf
https://arxiv.org/abs/2009.12293

APPENDIX

A. Additional Results

0%

50%

100% Stack Cube Stick Push Place Apple Door

0 250K 500K
0%

50%

100% Peg Insertion

0 250K 500K

Stick Pull

0 50K 100K

Transport Box

0 50K 100K

Pick Place Can

Interaction Steps
Ours MoDem TD-MPC2 LaNE

Fig. 8. Challenging tasks. Success rate of our method and baselines on the 2 hardest tasks from each domain. Averaged
across 5 random seeds. LaNE results in Robosuite are kindly provided by Zhao et al. [59]. Shaded areas correspond to 95%
confidence intervals.

0%

50%

100% Average Stack Cube Peg Insertion

0 250K 500K
0%

50%

100% Lift Peg Upright

0 250K 500K

Poke Cube

0 250K 500K

Pick Place

Interaction Steps
Ours MoDem TD-MPC2 LaNE

Fig. 9. ManiSkill Manipulation results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence
interval.

0%

50%

100% Average Assembly Peg Insert Side

0 250K 500K
0%

50%

100% Pick Place

0 250K 500K

Stick Push

0 250K 500K

Stick Pull

Interaction Steps
Ours MoDem TD-MPC2 LaNE

Fig. 10. Meta-World results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.

0 250K 500K
0%

50%

100% Average

0 250K 500K

Place Apple

0 250K 500K

Transport Box

Interaction Steps
Ours MoDem TD-MPC2 LaNE

Fig. 11. ManiSkill Humanoids results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence
interval.

0 50K 100K
0%

50%

100% Lift

0 50K 100K

Door

0 50K 100K
0%

50%

100% Pick Place Can

0 50K 100K

Stack

Interaction Steps
Ours MoDem TD-MPC2 LaNE

Fig. 12. Robosuite results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.

0%

50%

100% 5 demos 10 demos 25 demos

0 250K 500K
0%

50%

100% 50 demos

0 250K 500K

100 demos

0 250K 500K

200 demos

Interaction Steps
Ours MoDem no learned reward TD-MPC2 + learned reward

Fig. 13. Demonstration ablation. Success rate on an increasing number of demonstrations (5-200) in the 2 most challenging
manipulation tasks in ManiSkill (Stack Cube and Peg Insertion). DEMO3 is the only method that has a relative success with
only 5 demonstrations. Results are aggregated over both tasks and averaged across 5 seeds.

0 100K 200K
Interaction Steps

0%

20%

40%

60%

80%

100%

Dense 3 stages 2 stages 1 stage

Fig. 14. Reward granularity. Success rate of our method with increasing granularity in the stage division of a task. Results
are aggregated over 2 challenging manipulation tasks (Stack Cube and Peg Insertion) and averaged across 5 seeds. The shaded
area corresponds to a 95% confidence interval.

Fig. 15. Learned reward animation. Visualization of the learned dense reward across three representative rollouts—successful,
failed, and semi-successful. The reward curves closely track task progress.

B. Baselines

a) TD-MPC2: We use the official implementation1 with default parameters. We add two extra layers to the convolutional
encoders to handle the higher image resolution of the Meta-World and Robosuite benchmarks.

b) MoDem: We use the official implementation2 with default parameters. To process observations containing multiple
images, we add an extra encoder to the world model and average all the embeddings.

c) LaNE: We use the code from the official implementation3 with default parameters. To adapt it to our experimental
setup, we add extra encoders to handle the additional observations. The proprioceptive state is passed through an MLP, and
its embedding is averaged with the other inputs. Additionally, we adapt the algorithm to handle infinite-horizon MDPs by
removing value function bootstrapping from the MDP.

TABLE II. Comparison to prior work. We compare DEMO3 to relevant approaches and ablations. Selected baselines are
highlighted . Our approach is the only one incorporating online reward learning in multi-stage settings for visual inputs and

sparse rewards.

Method Visual Inputs Sparse Rewards Multi-Stage Online Reward Learning

Ours ✓ ✓ ✓ ✓

LaNE [59] ✓ ✓ ✗ ✓

MoDem [17] ✓ ✓ ✗ ✗

CoDER [57] ✓ ✓ ✗ ✗

SAC + DrS [30] ✗ ✓ ✓ ✗

AMP [10] ✗ ✗ ✗ ✓

1https://github.com/nicklashansen/tdmpc2
2https://github.com/facebookresearch/modem
3https://github.com/PhilipZRH/LaNE

https://github.com/nicklashansen/tdmpc2
https://github.com/facebookresearch/modem
https://github.com/PhilipZRH/LaNE

C. DEMO3 RL training algorithm

Algorithm 1 DEMO3 (Phase 2)

Require: Demonstration dataset D, number of stages N
1: Initialize discriminators {δk}Nk=0

2: Initialize replay buffer B ← {Ø}
Rollout

3: for each environment step do
4: if rand() ≥ α then
5: Agent step: at ∼ πBC(a|h(ot))
6: else
7: Agent step: at ←WMplan(ot)
8: end if
9: Env step: (ot+1, rt)← Env(ot,at)

10: Save sample: τ ← τ ∪ (ot,at,ot+1, rt)
11: if episode done then
12: Reset environment
13: Compute maximum stage labels: {st}T0
14: Save trajectory: B ← B ∪ (τ ∪ {st}T0)
15: end if
16: α← min(1, α0 · t)
17: end for

Update
18: for each update step do
19: Sample:

{
(ot,ot+1,at, rt, st)

t0+H
t0

}
∼ (B ∪ D)

20: Predict dense reward (r̂δt)
t+H
t0

21: Compute world model losses: LR,LQ,Lh,Lπ

22: Compute discriminator loss: Lδ = 1
N

∑
k Lk

δ

23: Gradient step: θ ← θ + ρ∇LP

24: end for

D. Demonstrations

All of our demonstrations are obtained by training a TD-MPC2 model with dense rewards and state observations. The model
trained on state observations is then used to rollout N episodes in the stage-based environment, from where we query image
observations, proprioceptive states, and sparse stage rewards. Please find below a detailed table on the number of demonstrations
used per task.

TABLE III. Number of demonstrations for each task. We use the minimum amount of demonstrations (empirically determined)
to ensure that the best-performing algorithm can solve the task in the given interaction budget.

Domain Task Number of Demonstrations

ManiSkill Manipulation

Peg Insertion 100
Pick Place 100
Stack Cube 25
Poke Cube 5

Lift Peg Upright 5

Meta-World

Assembly 5
Peg Insert Side 5

Stick Push 5
Stick Pull 5
Pick Place 5

ManiSkill Humanoids
Place Apple 5

Transport Box 5

Robosuite

Lift 5
Door 10

Pick Place Can 10
Stack Blocks 20

E. Task Details

Stack Cube Peg Insertion Poke Cube Pick Place Lift Peg Upright

Assembly Peg Insert Stick Push Stick Pull Pick Place

Place Apple Transport Box

Lift Door Pick Place Can Stack Blocks

Fig. 16. All tasks. Visual description of all tasks organized by domains. In descending order: ManiSkill Manipulation, Meta-
World, ManiSkill Humanoids, and Robosuite.

TABLE IV. Implementation details for each of our four domains. Time horizon is measured in agent steps (policy forward
passes). Proprio. stands for Proprioceptive State. Each domain uses different image resolutions according to the detail of the
scene.

ManiSkill Manipulation Meta-World ManiSkill Humanoids Robosuite

Time Horizon 100 100 100 100

Image Size 128× 128 224× 224 128× 128 128× 128

Observations RGB(x2) + Proprio. RGB + Proprio. RGB(x2) + Proprio. RGB(x2)
Cameras Hand + Front Front Head + Front Hand + Front

Action Repeat 2 2 2 1

Action Dim 7 4 25 7

F. Stage Definitions

TABLE V. ManiSkill Manipulation stage definitions.

Task Stage 1 Stage 2 Success Criteria

Stack Cube Cube A grabbed. Cube A above Cube B. Cube A stacked on top of Cube B.
Peg Insertion Peg grabbed. Peg aligned with hole. Peg inserted in hole.

Pick Place Cube grabbed. Cube close to goal. Cube at goal.
Poke Cube Peg grabbed. Peg touching Cube. Cube at goal.

Lift Peg Upright Peg grabbed. Peg upright. Peg upright on desk.

TABLE VI. Meta-World stage definitions.

Task Stage 1 Success Criteria

Assembly Grab hook. Pass nut through pole.
Peg Insert Peg grabbed. Peg inserted in hole.
Stick Push Stick grabbed. Object pushed to goal location.
Stick Pull Stick grabbed. Object pulled to goal location.
Pick Place Cube grabbed. Cube is static at goal.

TABLE VII. ManiSkill Humanoids stage definitions.

Task Stage 1 Stage 2 Success Criteria

Place Apple Apple is grabbed. Apple is above bowl. Apple is inside bowl.
Transport Box Box grabbed with 2 hands. Box above table 2. Box is on table 2.

TABLE VIII. Robosuite stage definitions.

Task Success Criteria

Lift Block lifted above the desk.
Door Door is open.

Pick Place Can Can is at goal location.
Stack Block A is in contact with Block B and above the ground.

G. Difficulty Categorization

Across this paper, we often refer to some tasks as more difficult than others. To characterize task difficulty, we follow [45]. As
in previous work on demonstration-augmented reinforcement learning (RL), we observe that environments with high complexity
and substantial initial state randomization are typically more difficult to solve and require a larger number of demonstrations.
For example, the Peg Insertion task from ManiSkill exhibits significant variability in the peg’s position, orientation, and the
hole’s size. Consequently, around 100 demonstrations are needed to solve the task from visual inputs. In contrast, a task like
Meta-World Assembly requires only 5 demonstrations to be successfully solved. Figure 17 qualitatively compares the different
initial states of these two tasks. We hypothesize that this effect is related to the distributional coverage of the demonstration
dataset: higher randomization reduces the likelihood that the agent encounters familiar states during training if the dataset
is limited. Therefore, as the variability in a task’s initial state increases, this variability must also be well-represented in the
dataset to ensure effective learning.

Fig. 17. Randomization comparison. Qualitative comparison of both Peg Insertion tasks in the ManiSkill and Meta-World
domain and Door task in Robosuite. Visibly, ManiSkill presents the highest level of randomization, not only varying the initial
state at reset but also changing the geometric properties of the objects.

H. Model Architecture

Following TD-MPC2, all modules are implemented as MLPs. Here, as an example, we summarize our architecture for a
single-camera Meta-World task using PyTorch-like notation:

Architecture: TD-MPC2 World Model
Encoder: ModuleDict(
(rgb_frontview): Sequential(
(0): ShiftAug()
(1): PixelPreprocess()
(2): Conv2d(3, 32, kernel_size=(7, 7), stride=(2, 2))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU(inplace=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(9): ReLU(inplace=True)
(10): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
(11): Flatten(start_dim=1, end_dim=-1)
(12): Linear(in_features=512, out_features=512, bias=True)
(13): SimNorm(dim=8)

)
)
Dynamics: Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, bias=True, act=SimNorm)

)
Reward: Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
Policy prior: Sequential(
(0): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=14, bias=True)

)
Q-functions: Vectorized [Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

), Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

), Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)]
Learnable parameters: 5,448,748
Discriminator Architecture: Discriminator(
(nets): ModuleList(
(0): Sequential(

(0): Linear(in_features=512, out_features=32, bias=True)
(1): Sigmoid()
(2): Linear(in_features=32, out_features=1, bias=True)

)
)

I. Hyperparameters

Most of the hyperparameters remain unchanged from our backbone algorithm, TD-MPC2. Here, we list some of the most
relevant to our method and highlight the ones that are unique to our approach. Please refer to the TD-MPC2 paper [18] for
a complete list of hyperparameters.

TABLE IX. Hyperparameters used in the training setup.

Hyperparameter Value

Replay buffer
Capacity 300, 000
Sampling Uniform

Architecture (5M)
Encoder arch. ConvNet (image inputs)

MLP (state inputs)
Conv. layers 7 (Meta-World)

5 (Otherwise)
Encoder MLP dim 256
Dynamics MLP dim 512
Latent state dim 512
Task embedding dim 96

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Pretraining
Pretraining loss Behavioral cloning
BC Policy Architecture MLP
MLP dim 512
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 3× 10−4

α0 5× 10−5

Reward learning
Discriminator architecture MLP
MLP dim 32
Discriminator learning rate 3× 10−4

Discriminator optimizer Adam
Batch size 256
β 1/3
Demo. sampling ratio 50%

J. Computational Resources

All our experiments run in a single NVIDIA GeForce RTX 3090 GPU and 32GB of RAM to store collected samples. Our
method achieves competitive wall-time performance, ranking as the second fastest among all evaluated algorithms (Table X).
While slightly slower than TD-MPC2, we attribute the overhead to the additional computation required for reward learning.
Importantly, DEMO3 performs much faster than other demonstration-augmented RL approaches, such as Modem and LaNE.

TABLE X. Wall-time. Hours per 100k interaction steps, averaged across 5 seeds and all tasks in Robosuite. Lower is better.

Algorithm Time (hours) ↓

LaNE 20.40
MoDem 8.37
TD-MPC2 4.84
Ours 5.19

	Introduction
	Preliminaries
	Method
	Model-based RL with online reward learning
	Training scheme

	Experiments
	Baselines
	Benchmark Results
	Analysis

	Related work
	Conclusion
	Appendix
	Additional Results
	Baselines
	name RL training algorithm
	Demonstrations
	Task Details
	Stage Definitions
	Difficulty Categorization
	Model Architecture
	Hyperparameters
	Computational Resources

