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ABSTRACT

Gaze target detection is an important task in computer vision, aiming to predict
where people in an image are looking. In our view, this task not only contains
explicit image features, but also implies a large amount of prior knowledge about
the correlations between human visual attention and daily activities. However, ex-
isting gaze target methods rely entirely on visual modality information to detect
salient objects along the gaze direction, limiting their generalization in challenging
scenarios such as activity-related, long-tailed, small-sized, or long-distance gaze
targets. Inspired by the great success of LLM technology, we break away from the
traditional pure-visual approaches and propose GTD-LLM, the first plug-and-play
LLM reasoning module for gaze target detection in visual scenes, providing a new
paradigm for traditional pure-visual approaches. Our GTD-LLM module can be
plug-and-play integrated with any existing gaze target visual models and directly
bring them universal performance improvements, simultaneously demonstrating
strong generalizability and effectiveness. In our GTD-LLM module, we design a
novel prompt engineering method GTD-Prompt, to guide LLMs like GPT-4 to per-
form logical reasoning on possible gaze targets, without the need for any training
or fine-tuning. The proposed GTD-Prompt method can also be easily extended
to downstream tasks by simply adjusting the corresponding task prompt words,
further illustrating its versatility.

1 INTRODUCTION

Gaze target detection is an important task in computer vision, aiming to predict where people in an
image are looking Recasens et al. (2015). Besides, it also extends to multiple downstream tasks, e.g.,
shared attention detection Fan et al. (2018) which predicts the shared gaze target of multiple people,
and mutual gaze detection Marin-Jimenez et al. (2019) which distinguishes whether two people are
looking at each other. These tasks have significant value in understanding human visual attention.

In our view, the gaze target detection task not only contains explicit image features, but also implies
a large amount of prior knowledge about the correlations between human visual attention and daily
activities. However, existing gaze target detection methods Chong et al. (2020); Fang et al. (2021);
Bao et al. (2022) rely entirely on visual modality information to detect salient objects along the gaze
direction, limiting their generalization in challenging scenarios, e.g., activity-related, long-tailed,
small-sized, or long-distance gaze targets. Recently, large language models (LLMs) achieve great
success in natural language processing (NLP) and are also increasingly introduced into computer
vision tasks, e.g., image captioning Li et al. (2023), object detection Wang et al. (2024b), visual
question answering Liu et al. (2024), etc.. Compared to visual models, LLMs, due to its powerful
pre-training of natural language, contain a large amount of prior knowledge about human activities.
Inspired by this, we break away from the traditional pure-visual approaches. We consider how to
leverage the powerful logical reasoning ability of LLMs to address gaze target detection in visual
scenes, and consider how to develop a plug-and-play LLM reasoning module. This module should
be able to integrate with any existing gaze target visual models in a plug-and-play manner, and
directly bring them universal performance improvements.

To achieve this goal, we first analyze the human thought processes in gaze target detection, and
then consider how to use visual models and LLMs to simulate them. As shown in Fig. 1, the human
thought processes can be broken down into three steps: object information extraction, object position
analysis, and gaze target reasoning. Due to the low information density of the image itself, human
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Object Information Extraction Gaze Target ReasoningObject Position Analysis

For person1,   
person2, frisbee1 are near his gaze,
frisbee1 is in his hand,
person3 is outside his FOV;

For person2,   
...

…

person1 is looking at frisbee1

person1, person2, person3, are
looking at frisbee1 together

person1 is catching frisbee1hand1

gaze1

face1

frisbee1
person2

person3
person1

Figure 1: The human thought processes in gaze target detection.

observers will first extract the key object-level information from it, including object categories/lo-
cations and human gaze direction/body pose, etc.. This process is obviously suitable for simulation
using visual detection models which are good at capturing detail features of images. Next, human
observers will analyze the object position relationships based on the extracted information, e.g., “For
a person in the image, which objects are located within his field of view (FOV)? Which are outside?”. This
step can be achieved through manually formulated rules. Finally, based on above analyses, human
observers will reason “What activities the person may be doing? Which object he may be looking at?”. This
logical reasoning process is obviously more suitable for LLMs.

Based on above analyses, we propose GTD-LLM, the first plug-and-play LLM reasoning module
for gaze target detection in visual scenes, providing a new paradigm for traditional pure-visual ap-
proaches. Our GTD-LLM module directly reads the key object-level information extracted from
input images through pre-trained object-level detectors, without reading raw images with low infor-
mation density. This will significantly reduce the computational burden of LLMs. Our GTD-LLM
module uses a specially designed prompt engineering method GTD-Prompt, to guide LLMs like
GPT-4 to perform logical reasoning on possible gaze targets, without the need for any training or
fine-tuning. Besides, our GTD-LLM module introduces a simple modal transformation mechanism
to transform its natural language predictions into the same visual modality as the output of exist-
ing gaze target visual models. It is precisely because of our unique design of the LLM reasoning
method and the input/output interfaces, that our GTD-LLM module can be plug-and-play integrated
with any existing gaze target visual models, demonstrating strong generalizability. Please note that,
the integrated gaze target framework is also called GTD-LLM in this paper. Our GTD-LLM frame-
work utilizes both the logical reasoning ability of LLMs and the ability of existing gaze target visual
models to capture detail features of input images. Therefore, it can bring universal and significant
performance improvements to any existing gaze target visual models, especially in those challenging
scenarios, e.g., activity-related, long-tailed, small-sized, or long-distance gaze targets, demonstrat-
ing strong effectiveness.

In order to guide LLMs to fully mining the prior knowledge about correlations between human visual
attention and daily activities, we decompose gaze target detection into a sequence of atomic-level
tasks in our GTD-Prompt method based on common sense. Specifically, we design the following
task flow prompts, “What kind of scene is this image?”, “For each person, what are they doing?”, “Where
are they looking?”. These atomic-level tasks conform to human logic and are easier for LLMs to
understand. Besides, we also design a series of position relationship rules to transform the extracted
object-level information into structured natural language descriptions. Then, we use our task flow
prompts (i.e., the instruction) to guide LLMs like GPT-4 to reason the possible gaze targets from
these structured object position relationships (i.e., the input content) for each person in the image
step by step. Our GTD-Prompt method can also be easily extended to downstream tasks, e.g., shared
attention detection and mutual gaze detection, by simply adjusting the corresponding task prompt
words. For example, by adding “Is there multiple people looking at the same target?” after the original
task flow prompts, we can guide LLMs to continue reasoning the shared gaze target based on the
analysis results of gaze target detection. This further illustrates the versatility of our method in
understanding the human visual attention in daily activities.

In summary, our main contributions are as follows:
• We propose GTD-LLM, the first plug-and-play LLM reasoning module for gaze target

detection in visual scenes, providing a new paradigm for traditional pure-visual approaches.
• Our GTD-LLM module can be plug-and-play integrated with any existing gaze target visual

models and bring them universal performance improvements, simultaneously demonstrat-
ing strong generalizability and effectiveness.
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Figure 2: Overview of the plug-and-play GTD-LLM module and integrated GTD-LLM framework.

• In our GTD-LLM module, we design a novel prompt engineering method GTD-Prompt, to
guide LLMs like GPT-4 to perform logical reasoning on possible gaze targets, without the
need for any training or fine-tuning.

• The proposed GTD-Prompt method can also be easily extended to downstream tasks by
simply adjusting the corresponding task prompt words, further illustrating its versatility.

2 RELATED WORK

Gaze Target Detection. Recasens et al Recasens et al. (2015) pioneered the field by introducing
the GazeFollow dataset, comprising a substantial collection of images annotated with head positions
and corresponding gaze targets. Chong et al Chong et al. (2020) extended the task to include out-
of-frame scenarios, introducing a video dataset for this purpose. Tu et al Tu et al. (2022) extended
the task to simultaneously detect all human faces and their gaze targets in a single image. Fan et
al Fan et al. (2018) proposed the shared attention detection task, which aims to predict the shared
gaze target of multiple people. Marin et al Marin-Jimenez et al. (2019) introduced the mutual gaze
detection task, aiming to distinguish whether two people are looking at each other.

Large Language Models. Large Language Models have transformed NLP by demonstrating pow-
erful abilities in language understanding and generation. GPT-3 Brown et al. (2020) introduced a
large-scale autoregressive model that excels at few-shot learning across various tasks. GPT-4 Ope-
nAI (2023) extended these capabilities with a larger model architecture and improved handling of
complex reasoning tasks, showcasing remarkable performance in understanding nuanced prompts
and integrating multimodal data, including text and images. Compared to previous LLMs Devlin
et al. (2019); Raffel et al. (2020), GPT-4 exhibits superior generalization and problem-solving abili-
ties, especially in scenarios requiring reasoning and domain adaptation.

Prompt Engineering in Computer Vision. Prompt engineering has gained traction in leveraging
LLMs for vision tasks. CoOp Zhou et al. (2022) extended prompt engineering by learning task-
specific prompts for visual tasks, improving performance on unseen categories. Flamingo Alayrac
et al. (2022) demonstrated how visual and language models can be effectively combined for tasks
like image captioning and visual question answering through flexible multimodal prompts. BLIP-2
Li et al. (2023) proposed a bootstrapping technique that bridges vision-language models with large
language models. These works highlight the increasing importance of prompt-based methods for
unifying vision and language tasks.

3 METHOD

In this section, we provide a detailed introduction to the plug-and-play GTD-LLM module and
the integrated GTD-LLM framework. As shown in Fig. 2, the integrated GTD-LLM framework
consists of four modules: object extraction module, GTD-LLM module, base model module, and
cross-modal fusion mechanism. Fig. 3 shows an example of the proposed GTD-Prompt method.
We chose GPT-4 as the LLM for logical reasoning in our experiments.

3.1 OBJECT EXTRACTION MODULE

We use the pre-trained MM-GroundingDINO Zhao et al. (2024) to detect objects of LVIS categories
Gupta et al. (2019) from the input image. We also use the pre-trained OpenPose Cao et al. (2017)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts  𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}

𝑡𝑡4: Please predict the probabilities of possible 
gaze targets in the following format:

{  
person1: 

{obj1: high, person2: medium, obj2: low}, 
person2:

…   
…  

}

𝑡𝑡3: For each person, where are they looking?

Position Relationship Dictionary Batch 
𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 , 𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Target Probability Dictionary Batch 
𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 ,𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Instruction (Role: System)Batch Content Input (Role: User) Batch Prediction Output

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person2, frisbee1] are close to his gaze, 
[frisbee1] is in his hand,
[person3] is outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑠𝑠𝑠𝑠 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑠𝑠𝑠𝑠′ }

𝑡𝑡𝑠𝑠𝑠𝑠′ : If there is, please output the shared gaze 
target and the corresponding people in the 

following format: 
{

[obj1, person1, person2, ...]: high,
[obj2, person3, person4, ...]: medium,
…

}

𝑡𝑡3: For each person, where are they looking at?

Instruction (Role: System)

𝑡𝑡𝑠𝑠𝑠𝑠: Is there multiple people looking at the 
same target?

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑏𝑏𝑚𝑚 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑏𝑏𝑚𝑚 , 𝑡𝑡𝑏𝑏𝑚𝑚
′ }

𝑡𝑡𝑏𝑏𝑚𝑚
′ : If there is, please output the people who  

look at each other and the corresponding 
probabilities in the following format: 

{
[person1, person2]: high,
[person3, person4]: medium,
…
…

}

𝑡𝑡3: For each person, where are they looking at?

Instruction (Role: System)

𝑡𝑡𝑏𝑏𝑚𝑚: Is there anyone looking at each other?

Figure 3: Example of the proposed prompt engineering method GTD-Prompt.

to detect human body pose (including face, hands, feet), and L2cs-net Abdelrahman et al. (2023) to
estimate gaze direction. Among them, we define all detected human instances as {o1, o2, ..., oM},
all detected object instances as {oM+1, oM+2, ..., oN}. In this way, all detected human and object
instances are represented as {oi | i = 1, 2, ..., N}. Then, we calculate the angle and distance values
between each human and other objects/humans based on their coordinates. For each human {oi |
i = 1, 2, ...,M}, we calculate the angle value ai,j between his gaze vector and the direction vector
from his face center to the center/face of each other object/human {oj | j ∈ {1, 2, ..., N} ∩ j ̸= i}.
We also calculate the minimum distance value di,j between his hands and all points in each other
object/human.

3.2 GTD-LLM MODULE (PLUG AND PLAY)
First, we transform the calculated angle and distance values into human-centered position relation-
ships described by natural language, through a set of position relationship rules. Then, we structure
these natural language descriptions into position relationship dictionaries, and feed these dictionar-
ies as content into GPT-4 in a batch format. Next, we use the specially designed task-flow prompt
sequence, which follows the human thought processes, as the instruction to guide GPT-4 to reason
the possible gaze targets from the batch content input. Finally, we let GPT-4 structure its predictions
into target probability dictionaries, for the convenience of subsequent batch processing and integra-
tion with the output of existing gaze target visual models. The reason why we do not let GPT reason
the out-of-frame classification task is provided in the appendix.

Position Relationship Rules. The reason why we do not directly input the detected object coor-
dinates or the calculated angle/distance values into GPT-4 is provided in the appendix. We pre-
define a set of position relationship rules R = {ra, rd} to transform these angle/distance values
into the human-centered position relationship descriptions which conforms to human expression
habits. These natural language descriptions are easier for GPT-4 to understand. For each human
{oi | i = 1, 2, ...,M}, the angular relationship descriptions between him and other objects/humans
{oj | j ∈ {1, 2, ..., N} ∩ j ̸= i} are created by the angular relationship rule ra as follows,

ra(oi, oj , ai,j) =


“for oi, oj is close to his gaze”, |ai,j | ≤ α1

“for oi, oj is within his FOV ”, α1 < |ai,j | ≤ α2

“for oi, oj is outside his FOV ”, |ai,j | > α2

, (1)

where α1 and α2 are thresholds to distinguish whether other objects/humans are located close to his
gaze, within his FOV, or outside his FOV. Through experiments, we set α1 to 15° and α2 to 45°. The
distance relationship descriptions are created by the distance relationship rule rd,

rd(oi, oj , di,j) =


“for oi, oj is in his hand”, di,j = 0

“for oi, oj is near his hand”, di,j ≤ β

“for oi, oj is far from his hand”, di,j > β

, (2)

where β is the threshold to distinguish whether other objects are located in the human’s hand, near
his hand, or far from his hand. We set β to 0.5 times the width of the human’s face. We can also
use the similar method to generate the position relationship descriptions between human feet and
other objects. Compared to quantitative angle/distance values, these natural language descriptions
are easier for GPT-4, which has powerful natural language pre-training, to understand.

Position Relationship Dictionary. The reason why we need to structure the above position re-
lationship descriptions is provided in the appendix. By using these position relationship rules,
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for each human {oi | i = 1, 2, ...,M}, we generate a set of position relationship descriptions
{{ra(oi, oj , ai,j), rd(oi, oj , di,j)} | j ∈ {1, 2, ..., N} ∩ j ̸= i} between him and other objects/hu-
mans. Among them, we merge the similar position relationships into one description. As shown
in Fig. 3, for “person1”, the objects “person2” and “frisbee1” are both located close to his gaze.
Therefore, we merge them into one description “For person1, [person2, frisbee1] are close to his gaze.”.
Through this mechanism, each human will only have a maximum of six position relationship de-
scriptions, including a maximum of three merged angular relationship descriptions (defined as the
set Da), and a maximum of three merged distance relationship descriptions (defined as the set Dd),
no matter how many objects and humans there are in the image.

As shown in Fig. 3, for an image sample, we take each human {oi | i = 1, 2, ...,M} as the keys and
his position relationship descriptions {Di

a, D
i
d} as the corresponding values, creating a structured

position relationship dictionary Din = {hi : {Di
a, D

i
d} | i = 1, 2, ...,M}. Then, we obtain a

dictionary batch Dk
in, k = 1, 2, ...,K, corresponding to the image batch Ik, k = 1, 2, ...,K. Through

the API of GPT-4, we feed this dictionary batch as the content input (‘Role: User’). Through the
above operations, we can effectively control the length of the input content of GPT-4, and make
batch processing of these data more convenient.

Task Flow Prompts. The reason why we need to decompose gaze target detection into atomic-
level tasks is provided in the appendix. As shown in Fig. 3, we design a coarse-to-fine task-flow
prompt sequence T = {t1, t2, t3, t4}, which follows the human thought processes. We use these
task flow prompts as the instruction (‘Role: System’), to guide GPT-4 to reason the possible gaze
targets from the input position relationship dictionary batch. Specifically, through the instruction t1,
we first guide GPT-4 to analyze what scene each image represents. Then, we use the instruction t2
to guide GPT-4 to analyze what activities each person in the image may be doing. Next, through the
instruction t3, we guide GPT-4 to reason which objects they may be looking at based on previous
analyses. Finally, we use the instruction t4 to let GPT-4 structure its prediction of gaze targets.

Target Probability Dictionary. Under the guidance of {t1, t2, t3}, GPT-4 will output its analysis
processes and prediction results in the form of natural language descriptions, e.g., “This is a scene
of a group of people playing frisbee. For person1, the frisbee1 is located in his hand and close to his gaze,
so he is catching it. According to common sense, when a person is catching a frisbee, he is highly likely
watching it. Therefore, the most likely gaze target of person1 is the frisbee1.” Although these analyses
conform to human logic, the natural language descriptions are difficult to batch process. Therefore,
we need to guide GPT-4 to structure its natural language predictions. As shown in Fig. 3, we
use the instruction t4 to let GPT-4 make a multi-hot prediction of gaze targets for each human
{oi | i = 1, 2, ...,M} in the image, i.e., make GPT-4 predict the probabilities pi,j of each other
object/human {oj | j ∈ {1, 2, ..., N} ∩ j ̸= i} becoming his real gaze target. Due to the difficulty
of quantitatively predicting these probabilities for GPT-4, we instruct GPT-4 to qualitatively predict
them in the following manner, p ∈ {“high”, “medium”, “low”}. Then, for each human {oi | i =
1, 2, ...,M}, we take other objects/humans {oj | j ∈ {1, 2, ..., N} ∩ j ̸= i} as the keys and their
probabilities pi,j as the corresponding values, creating a person-level target probability dictionary
P i
out. For an image sample, we take each human {oi | i = 1, 2, ...,M} in the image as the keys

and their person-level target probability dictionaries P i
out as the corresponding values, creating an

image-level target probability dictionary Dout = {oi : P i
out | i = 1, 2, ...,M}. Finally, we obtain a

dictionary batch Dk
out, k = 1, 2, ...,K, corresponding to the input image batch Ik, k = 1, 2, ...,K.

3.3 BASE MODEL MODULE

Any existing gaze target visual models can be used as our base model module. They directly take
the original image as input. For some models Fang et al. (2021); Yang et al. (2024), it is also
necessary to use the extracted object-level information, e.g., face location, gaze direction, etc., as
input. The base model module will create a corresponding gaze target heatmap M i

bm for each human
{oi | i = 1, 2, ...,M} in the image.

3.4 CROSS-MODAL FUSION MECHANISM

Modal Transformation. Although the natural language predictions of GPT-4 is structured into
dictionaries, it is still difficult to directly integrate them with the target heatmap generated by the
base model module. Therefore, we design a novel modal transformation mechanism to create a
multi-hot target heatmap for each human in the image from their corresponding target probability
dictionaries. Specifically, for each human {oi | i = 1, 2, ...,M}, we set a two-dimensional Gaussian
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Table 1: Evaluation in all COCO-category gaze targets in the GazeFollow test set. ‘Sports Ball’, ...,
‘Kite’: activity-related categories. ‘COCO-LT’: long-tailed categories. ‘COCO-All’: all categories.
‘+ GTD-LLM’: integrating existing gaze target visual models with our GTD-LLM module.

Methods Sports Ball Cell Phone Frisbee Book Kite COCO-LT COCO-All

RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓

Video Chong et al. (2020) 0.622 0.114 0.604 0.093 0.451 0.141 0.750 0.098 0.621 0.178 0.529 0.155 0.798 0.134
Video + GTD-LLM 0.711 0.084 0.698 0.068 0.697 0.093 0.844 0.084 0.793 0.126 0.593 0.138 0.821 0.124
Improvement Ratio 14% 26% 16% 27% 55% 34% 13% 15% 28% 29% 12% 11% 3% 8%

Fang Fang et al. (2021) 0.581 0.097 0.606 0.088 0.492 0.127 0.752 0.089 0.561 0.180 0.562 0.148 0.815 0.120
Fang + GTD-LLM 0.742 0.074 0.728 0.060 0.730 0.086 0.861 0.074 0.779 0.131 0.625 0.120 0.838 0.113
Improvement Ratio 28% 24% 20% 32% 48% 32% 15% 17% 39% 27% 11% 19% 3% 6%

HGTTR Tu et al. (2022) 0.523 0.065 0.408 0.027 0.411 0.073 0.581 0.056 0.241 0.073 0.271 0.102 0.461 0.099
HGTTR + GTD-LLM 0.579 0.064 0.500 0.025 0.500 0.069 0.628 0.054 0.299 0.067 0.346 0.100 0.473 0.098
Improvement Ratio 11% 2% 23% 7% 22% 6% 8% 4% 24% 8% 28% 2% 3% 1%

Tonini Tonini et al. (2023) 0.440 0.057 0.496 0.039 0.427 0.062 0.567 0.038 0.422 0.057 0.489 0.072 0.582 0.068
Tonini + GTD-LLM 0.620 0.055 0.659 0.038 0.606 0.059 0.967 0.035 0.618 0.048 0.593 0.068 0.612 0.065
Improvement Ratio 41% 4% 33% 3% 42% 5% 71% 8% 46% 16% 21% 6% 5% 4%

Yang Yang et al. (2024) 0.740 0.074 0.725 0.061 0.728 0.086 0.859 0.075 0.772 0.133 0.622 0.122 0.835 0.115
Yang* 0.578 0.098 0.604 0.089 0.486 0.129 0.750 0.090 0.552 0.183 0.556 0.150 0.812 0.122
Yang* + GTD-LLM 0.746 0.072 0.729 0.060 0.736 0.084 0.863 0.073 0.784 0.129 0.628 0.119 0.841 0.112
Improvement Ratio 29% 27% 21% 33% 51% 35% 15% 19% 42% 30% 13% 21% 4% 8%

distribution for each other object/human {oj | j ∈ {1, 2, ..., N} ∩ j ̸= i} in the image space,

Gaussi,j = f(x;µj , σ
2
j , Ai,j) = Ai,j ·

1

2πσ2
j

exp

(
− (x− µj)

T (x− µj)

2σ2
j

)
, σ2

j =
(rj
2

)2
(3)

where x = (x, y) denotes any point in the image, rj is the radius of the other object/human oj , µ =
(xj

c, y
j
c) represents the center point of oj , Ai,j is the peak value of the Gaussian distribution. Through

experiments, we set Ai,j ∈ {1.0, 0.3, 0.1} corresponding to the predicted target probabilities pi,j ∈
{“high”, “medium”, “low”}, respectively. For each human {oi | i = 1, 2, ...,M}, we add up all
the other objects’/humans’ Gaussian distributions {Gaussi,j | j ∈ {1, 2, ..., N} ∩ j ̸= i} in the
image space to obtain a multi-hot target heatmap M i

llm, and set all values greater than 1 in it to 1,

M i
llm = min(ΣN

j=1Gaussi,j , 1). (4)

Heatmap Fusion. For each human {oi | i = 1, 2, ...,M}, we directly perform pixel multiplication
on the multi-hot target heatmap M i

llm output by our GTD-LLM module, and the single-hot heatmap
M i

bm output by the base model module, to obtain the final fusion heatmap M i
out,

M i
out = norm(M i

llm + bllm) ·M i
bm, (5)

where bllm denotes the bias added to the heatmap M i
llm to enhance its fault tolerance. norm()

represents the normalization operation. We use the maximum value point in the fusion heatmap
M i

out as the predicted gaze point of human oi, and the object/human corresponding to that point as
the predicted object-level gaze target. Through this fusion mechanism, our GTD-LLM module can
be plug-and-play integrated with any existing gaze target visual models.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Implementation Details. In order to verify that our GTD-LLM module can bring universal per-
formance improvements to any existing gaze target visual methods, we use all recent open-source
models Chong et al. (2020); Fang et al. (2021); Tu et al. (2022); Tonini et al. (2023) as our base
model module separately without any additional training. Among them, the experimental results
of HGTTR Tu et al. (2022) are obtained from the unofficial open-source code 1. Besides, we also
reproduce the SOTA method ‘Yang’ Yang et al. (2024), which combines gaze target detection with
HOI detection, and its variant ‘Yang*’, which abandons the HOI module. In our experiments, we
set the batch size to 20, which means feeding 20 position relationship dictionaries corresponding to
20 input images as the input content into GPT-4 at once.

1https://github.com/francescotonini/human-gaze-target-detection-transformer
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Table 2: Evaluation in long-distance (left) or small-sized (middle) gaze targets of COCO categories
in the GazeFollow test set, and in complete gaze target datasets (right). d: L2 distance between the
designated human and his gaze target. wh: width of the human’s face. w: normalized width of the
gaze target. The image width is considered as 1. D1: GazeFollow dataset. D2: VideoAttnTarget
dataset. D1 → D2: domain adaptation from the source domain D1 to the target domain D2. MD:
minimum L2 distance metric. AD: average L2 distance metric.

Methods d > 5wh d > 2wh w < 0.05 w < 0.2 D1 D2 D1 → D2

RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ RR ↑ Dist. ↓ MD ↓ AD ↓ Dist. ↓ Dist. ↓

Video Chong et al. (2020) 0.406 0.242 0.649 0.152 0.354 0.135 0.501 0.131 0.077 0.137 0.134 0.146
Video + GTD-LLM 0.509 0.211 0.696 0.138 0.478 0.090 0.615 0.107 0.069 0.128 0.129 0.135
Improvement Ratio 25% 13% 7% 9% 35% 33% 23% 18% 10% 7% 4% 8%

Fang Fang et al. (2021) 0.464 0.218 0.665 0.140 0.336 0.098 0.498 0.117 0.067 0.124 0.108 0.117
Fang + GTD-LLM 0.577 0.195 0.710 0.133 0.465 0.078 0.614 0.102 0.060 0.116 0.105 0.111
Improvement Ratio 24% 11% 7% 5% 38% 20% 23% 13% 10% 7% 3% 5%

HGTTR Tu et al. (2022) 0.371 0.169 0.440 0.112 0.332 0.060 0.333 0.088 0.055 0.104 0.229 0.246
HGTTR + GTD-LLM 0.401 0.166 0.457 0.110 0.428 0.058 0.396 0.086 0.053 0.102 0.203 0.213
Improvement Ratio 8% 2% 4% 2% 29% 3% 19% 2% 4% 2% 11% 13%

Tonini Tonini et al. (2023) 0.296 0.087 0.501 0.070 0.294 0.056 0.381 0.061 0.029 0.069 0.102 0.108
Tonini + GTD-LLM 0.415 0.084 0.550 0.068 0.456 0.054 0.523 0.059 0.027 0.067 0.100 0.104
Improvement Ratio 40% 3% 10% 3% 55% 4% 37% 3% 7% 3% 2% 4%

Yang Yang et al. (2024) 0.566 0.197 0.704 0.135 0.456 0.080 0.609 0.104 0.061 0.118 / /
Yang* 0.443 0.223 0.659 0.142 0.323 0.101 0.492 0.119 0.068 0.126 0.106 0.115
Yang* + GTD-LLM 0.585 0.193 0.713 0.132 0.474 0.076 0.617 0.101 0.059 0.115 0.102 0.107
Improvement Ratio 32% 14% 8% 7% 47% 25% 25% 15% 13% 9% 4% 7%

Dataset Pre-processing. Our GTD-LLM module predicts gaze targets at the object level. However,
existing gaze target detection datasets, e.g., GazeFollow Recasens et al. (2015) and VideoAttnTarget
Chong et al. (2020), only label the ground-truth gaze point coordinates at the pixel level. Therefore,
we pre-process the GazeFollow dataset, which contains rich scenes and gaze targets, in our exper-
iments. For the test set, we use the pre-trained YOLOv10 Wang et al. (2024a) to detect COCO-
category objects. Considering that each image sample in it contains up to 10 gaze point annotations
corresponding to the designated human, we take the objects which contain at least 2 gaze points as
the object-level ground truths.

Evaluation Metrics. We use both the object-level metric, Recall Rate (RR), and the pixel-level
metric, L2 Distance, to comprehensively evaluate the performance of the integrated GTD-LLM
framework in the GazeFollow test set. Since our experiments aim to verify the performance im-
provement brought by our GTD-LLM module to existing gaze target visual models, we use the
commonly used recall rate metric to represent the proportion of various difficult samples correctly
predicted by the model, instead of the precision rate. Specifically, we consider the sample with the
predicted gaze point located within the ground-truth gaze target as the positive case, otherwise as
the negative case. The L2 Distance metric denotes the L2 distance between the predicted gaze point
and the corresponding ground truth. Please refer to the appendix for why we abandon other metrics
in our experiments.

4.2 EVALUATION IN COCO-CATEGORY GAZE TARGETS

As shown in Table 1, by integrating with our GTD-LLM module, all these gaze target visual mod-
els achieve universal performance improvements on all COCO-category gaze targets in the Gaze-
Follow test set. Specifically, the recall rate improves by 3%–5%, and L2 distance error reduces
by 1%–8%. Especially in various challenging scenarios for visual models, e.g., activity-related,
long-tailed, small-sized, or long-distance gaze targets, the improvements are particularly significant.
These results demonstrate the strong generalizability and effectiveness of our method.

Activity-Related Category. According to common sense, some specific categories of objects, e.g.,
sports ball, cell phone, frisbee, book, and kite, etc., often become the gaze targets of human in daily
activities. By integrating with our GTD-LLM module, existing gaze target visual models achieve
significant performance improvements in gaze targets of these activity-related categories. The recall
rate improves by 8%–71%, and L2 distance error reduces by 2%–35%. These demonstrate that our
GTD-LLM module can effectively overcome the shortcomings of existing visual models in lacking
the prior knowledge of correlations between human visual attention and daily activities.
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pizza1

person2: [  [pizza2, pizza3, pizza4, cell phone1] are close to his gaze, 
cell phone1 is in his hand,
person3 is within his FOV,
[person1, pizza1] are outside his FOV,  ]

GPT-4

*

pizza2
pizza3
pizza4

person3
face3

person1 person2

gaze2

face1
hand2

cell phone1
face2

person1

person2

frisbee1

face1

gaze2
face2

person2: {  cell phone1: high, 
[pizza2, pizza3, pizza4]: medium, 
[person3, person1, pizza1]: low,  }

person2: [  [person1, frisbee1] are close to his gaze,  ] person2: {  frisbee1: high, 
person1: medium,  }

laptop1
bottle1

face1
person1

bottle2

face4

gaze3
face2

face3

person4person2
person3

face5

person5

person3: [  [person4, laptop1, person5] are close to his gaze, 
[bottle2] is within his FOV,
[person1, person2, bottle1] is outside his FOV,  ]

person3: {  laptop1: high, 
[person4, person5]: medium,
[person1, person2, bottle2, bottle1]: low, }

sports ball1

face1

person1

face2

person2
face3

person3

face4

person4
gaze5

person5

face5

person5: [  [person3, sports ball1] are close to his gaze, 
[person1, person2, person4] is within his FOV,  ]

person5: {  sports ball1: high, 
person3: medium,
[person1, person2, person4]: low, }

Input Image Object Information 𝑀𝑀𝑏𝑏𝑏𝑏 𝑀𝑀𝑙𝑙𝑙𝑙𝑏𝑏 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 Ground Truth

𝐷𝐷𝑖𝑖𝑖𝑖 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜

GPT-4

*

GPT-4

*

GPT-4

*

Prediction of Base Model (Chong et al. (2020) )Designated Person Our Fusion Prediction Ground Truth

Figure 4: Visualized results of the integrated GTD-LLM framework.

Long-Tailed Category. We also evaluate the performance of the integrated GTD-LLM framework
in gaze targets of long-tailed categories with a frequency of less than 0.5% in the GazeFollow train
set. By integrating with our GTD-LLM module, existing gaze target visual models achieve sig-
nificant performance improvements in these long-tailed gaze targets in the test set. The recall rate
improves by 11%–28%, and L2 distance error reduces by 2%–21%. These results demonstrate that
our GTD-Prompt method can effectively reduce the negative impact of imbalanced distribution of
gaze target categories in datasets.

Small-Sized/Long-Distance Gaze Targets. For small-sized gaze targets, visual models are eas-
ily misled by irrelevant objects with strong saliency. For long-distance gaze targets, visual models
struggle to capture the context relationships in the image. Thus, existing gaze target models per-
form relatively poorly in these challenging scenarios. As shown in Table 2, by integrating with our
GTD-LLM module, these shortcomings of existing gaze target visual models are significantly im-
proved. Especially, the smaller the gaze target size or the farther the distance, the more significant
the performance improvement. These demonstrate that our GTD-LLM module, which reasons the
possible gaze targets from a logical level, can effectively avoid the interference of these irrelevant
image features.

Qualitative Experiments. Fig. 4 shows the visualized results of the integrated GTD-LLM frame-
work. By integrating with our GTD-LLM module, existing gaze target visual models achieve signif-
icant improvements in various challenging scenarios, e.g., activity-related, long-tailed, small-sized,
or long-distance gaze targets.
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Table 3: Ablation of
the task flow prompts
T in our GTD-Prompt
method.
T top-1 top-3 top-5
W/o t1 0.782 0.873 0.901
W/o t2 0.724 0.836 0.875
Ours 0.824 0.907 0.932

Table 4: Ablation of
the position relation-
ship rules R in our
GTD-Prompt method.
R top-1 top-3 top-5
W/o ra 0.327 0.529 0.596
W/o rd 0.760 0.865 0.898
Ours 0.824 0.907 0.932

Table 5: Ablation of the peak value A corre-
sponding to the predicted target probabilities.

A
Video + GTD-LLM Yang* + GTD-LLM

Avg. Dist. ↓ Avg. Dist. ↓
1.0 0.7 0.4 0.131 0.118
1.0 0.1 0.0 0.130 0.117
1.0 0.3 0.1 0.128 0.115

Table 6: Ablation of the bias bllm in
the multi-hot target heatmap Mllm.

bllm
Video + GTD-LLM Yang* + GTD-LLM

Avg. Dist. ↓ Avg. Dist. ↓
0.2 0.130 0.117

0.05 0.131 0.118
0.1 0.128 0.115

Table 7: Ablation of the
threshold β in the dis-
tance relationship rule rd.

β top-1 top-3 top-5
0.25wh 0.786 0.882 0.913
0.75wh 0.798 0.890 0.921
wh 0.781 0.875 0.906

0.5wh 0.824 0.907 0.932

Table 8: Ablation of the
thresholds α1 and α2 in the
angular relationship rule ra.

α1 α2 top-1 top-3 top-5
10° 45° 0.802 0.893 0.921
20° 45° 0.807 0.896 0.923
15° 30° 0.786 0.883 0.914
15° 60° 0.795 0.889 0.918
15° 45° 0.824 0.907 0.932

4.3 DOMAIN ADAPTATION

As shown in Table 2, we provide the experimental results of the integrated GTD-LLM framework
in the complete gaze target datasets. By integrating with our GTD-LLM module, all these gaze tar-
get visual models achieve universal performance improvements in the complete GazeFollow test set
and VideoAttnTarget test set. We also evaluate the domain adaptation performance of the integrated
GTD-LLM framework across different gaze target datasets. Considering that the GazeFollow dataset
contains richer scenes and gaze targets, we use it as the source domain D1. Then, the VideoAttnTar-
get dataset is set as the target domain D2. D1 → D2 represents integrating our GTD-LLM module
with existing gaze target visual models which are only trained in the source domain, and let them
reason in the target domain directly. By integrating with our GTD-LLM module, all these gaze
target visual models achieve significant performance improvements in the target domain with the
L2 distance error reducing by 4%–13%. These results demonstrate that our method can effectively
improve the domain adaptation ability of existing visual models across different gaze target datasets.

4.4 ABLATION STUDY

We conduct a series of ablation experiments in the GazeFollow test set to validate the effectiveness of
the integrated GTD-LLM framework. Due to the guidance of GPT-4 for multi-hot prediction of gaze
targets in our GTD-Prompt method, we use the common used Top-N Accuracy metric to evaluate
the prediction accuracy and fault tolerance of our GTD-LLM module. This metric indicates whether
the Top-N most likely gaze targets predicted by GPT contain the ground truth.

Ablation of Task Flow Prompts. As shown in Table 3, we implement several variants of the task
flow prompts T in our GTD-Prompt method. ‘W/o t1’ represents abandoning the instruction “What
kind of scene is this image?”. ‘W/o t2’ denotes abandoning the instruction “For each person, what are
they doing?”. These results demonstrate that the proposed task flow prompts, which decompose gaze
target detection into atomic-level tasks, are easier for GPT-4 to understand and reason.

Ablation of Position Relationship Rules. As shown in Table 4, we implement several variants of
the position relationship rules R in our GTD-Prompt method. ‘W/o ra’ represents abandoning the
angular relationship rule ra, which means only using the distance relationship descriptions. These
results demonstrate that without the angular relationship descriptions between objects and human
gaze, GPT-4 is difficult to predict the correct gaze target. ‘W/o rd’ denotes abandoning the distance
relationship rule rd, which means only using the angular relationship descriptions. These results
demonstrate that the distance relationship descriptions between objects and human hands/feet can
help GPT analyze what activities the human is doing, thereby improving the accuracy of gaze target
prediction. As shown in Table 8 and 7, we also implement several variants of thresholds α1 and α2

in the angular relationship rule ra, and the threshold β in the distance relationship rule rd.

Ablation of Cross-Modal Fusion Mechanism. As shown in Table 5, we implement sev-
eral variants of the peak value A corresponding to the predicted target probabilities p ∈
{“high”, “medium”, “low”}. As shown in Table 6, we also conduct ablation experiments on the
bias bllm of the multi-hot target heatmap Mllm generated by our GTD-LLM module.
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Table 9: Evaluation on shared atten-
tion detection.
Method Accuracy ↑ L2 Dist. ↓
Video Chong et al. (2020) 83.3 57
Video + GTD-LLM 86.5 52
Improvement Ratio 4% 9%
HGTTR Tu et al. (2022) 90.4 46
HGTTR + GTD-LLM 92.7 43
Improvement Ratio 3% 7%

Table 10: Evaluation on mutual gaze detection.

Methods UCO-LAEO AVA-LAEO
AP ↑ AP ↑

LAEO-Net Marin-Jimenez et al. (2019) 79.5 50.6
LAEO-Net + GTD-LLM 83.0 60.4
Improvement Ratio 4% 19%
MGTR Guo et al. (2022) 64.8 66.2
MGTR + GTD-LLM 68.3 69.5
Improvement Ratio 5% 5%

4.5 EXPANSION TO DOWNSTREAM TASKS

We conduct a series of experiments to demonstrate that our method can be easily extended to down-
stream tasks, e.g., shared attention detection and mutual gaze detection, by simply adjusting the
corresponding task flow prompts.

Shared Attention Detection. This task aims to detect the shared gaze target of multiple people
in the image Fan et al. (2018). By adjusting the original task flow prompts T , we guide GPT-
4 to first perform gaze target detection, and then perform this downstream task and structure its
outputs. The detailed explanation is provided in the appendix. As shown in Table 9, by integrating
with our GTD-LLM module, these shared attention models achieve universal improvements on the
VideoCoAtt benchmark Fan et al. (2018).

Mutual Gaze Detection. This is a classification task, aiming to distinguish whether the two desig-
nated people in the image are looking at each other Marin-Jimenez et al. (2019). While adjusting the
corresponding task flow prompts, we also need to adjust the cross-modal fusion mechanism in the
integrated GTD-LLM framework. The detailed explanation is provided in the appendix. As shown
in Table 10, by integrating with our GTD-LLM module, these mutual gaze models achieve universal
improvements on the UCO-LAEO and AVA-LAEO benchmarks Marin-Jimenez et al. (2019).

5 LIMITATIONS AND BROADER IMPACT

Although GTD-LLM achieves notable improvements in gaze target detection, it still has limita-
tions. The reliance on pre-trained LLMs like GPT-4 introduces a computational overhead during
the reasoning phase, which may limit its deployment in real-time applications. In experiments, our
GTD-LLM module, which uses GPT-4 as the LLM, takes an average of 0.2 to 2 seconds to com-
plete reasoning on a position relationship dictionary corresponding to an input image. The reasoning
speed is affected by the content complexity of the dictionary. The more humans and objects con-
tained in the input image, the longer the LLM reasoning process takes. Meanwhile, this speed is also
affected by the latency of GPT’s API. This is the current limitation encountered in the engineering
of LLMs, and is expected to be solved in the future with the progress of LLM itself. Therefore,
these current limitations do not affect our exploration of leveraging LLMs to address gaze target
detection in visual scenes. Future work could focus on further enhancing the generalization of the
prompt-guided reasoning module across diverse visual tasks. Exploring hybrid approaches that inte-
grate both visual and textual knowledge at a deeper level could further improve gaze target detection
performance.

6 CONCLUSION

In this paper, we introduced GTD-LLM, the first plug-and-play LLM reasoning module for gaze tar-
get detection in visual scenes, providing a new paradigm for traditional pure-visual approaches. The
plug-and-play nature of our GTD-LLM module makes it adaptable to any existing gaze target visual
models. The integrated GTD-LLM framework effectively bridges the gap between visual data and
logical reasoning, universally improving the performance of existing visual models. Through the
specially designed prompt engineering method GTD-Prompt, LLMs fully mining the prior knowl-
edge about correlations between human visual attention and daily activities, achieving significant
improvements in challenging scenarios. Moreover, its adaptability to downstream tasks, e.g., shared
attention detection and mutual gaze detection, further underscores the versatility of the proposed
method. Our work offers a new avenue for integrating LLMs into visual reasoning tasks. Future
work will extend our approach to other complex visual reasoning tasks.
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A APPENDIX

Why not feed the object coordinates into GPT? If we directly feed these coordinates as input to
GPT-4, it will bring a huge reasoning burden to GPT-4 in understanding object position relation-
ships. When there are many object and human instances in the image, this burden will significantly
increase. Besides, this may also lead to some misunderstandings of object position relationships in
GPT-4, especially when analyzing angular relationships.

Why not feed the calculated angle/distance values into GPT? Although this can avoid the above
problems, we find that in many cases GPT-4 still struggles to understand the logical relationships
between these angle/distance values and human visual attention. Therefore, we consider how to
transform these angle/distance values into natural language descriptions which are easier for GPT-4
to understand.

Why need to structure the position relationship descriptions? Through the above operation, we
create 2 × M × (N − 1) position relationship descriptions for each image, where M denotes the
number of human instances, N denotes the number of all object and human instances. When M and
N are relatively large, directly inputting these natural language descriptions into GPT-4 will cause
the input context to be too long, increasing the reasoning burden of GPT-4.

Why need to decompose the gaze target detection task? Directly having GPT-4 reason each hu-
man’s gaze targets, may still lead to GPT-4 ignoring the correlations between human visual attention
and daily activities, resulting in incorrect predictions. Therefore, we consider how to decompose the
gaze target detection task into atomic-level tasks, which are more easier for GPT-4 to understand
and reason.

Why not let GPT-4 reason the out-of-frame classification task? Due to the excellent performance
of existing gaze target models in this classification task, up to 0.944 on the AP metric Tonini et al.
(2023), we do not make GPT-4 reason whether the gaze target is located within or outside the image.
Besides, according to common sense, human visual attention may be focused on the objects which
are difficult to detect, e.g., walls, sky, ground, etc.. Therefore, using GPT-4 reason the out-of-frame
classification task from the detected objects may result in errors.
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𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts  𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}

𝑡𝑡4: Please predict the probabilities of possible 
gaze targets in the following format:

{  
person1: 

{obj1: high, person2: medium, obj2: low}, 
person2:

…   
…  

}

𝑡𝑡3: For each person, where are they looking?

Position Relationship Dictionary Batch 
𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 , 𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Target Probability Dictionary Batch 
𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 ,𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Instruction (Role: System)Batch Content Input (Role: User) Batch Prediction Output

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person2, frisbee1] are close to his gaze, 
[frisbee1] is in his hand,
[person3] is outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑠𝑠𝑠𝑠 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑠𝑠𝑠𝑠′ }

𝑡𝑡𝑠𝑠𝑠𝑠′ : If there is, please output the shared gaze 
target and the corresponding people in the 

following format: 
{

[obj1, person1, person2, ...]: high,
[obj2, person3, person4, ...]: medium,
…

}

𝑡𝑡3: For each person, where are they looking?

Instruction (Role: System)

𝑡𝑡𝑠𝑠𝑠𝑠: Is there multiple people looking at the 
same target?

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑏𝑏𝑚𝑚 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑏𝑏𝑚𝑚 , 𝑡𝑡𝑏𝑏𝑚𝑚
′ }

𝑡𝑡𝑏𝑏𝑚𝑚
′ : If there is, please output the people who  

look at each other and the corresponding 
probabilities in the following format: 

{
[person1, person2]: high,
[person3, person4]: medium,
…
…

}

𝑡𝑡3: For each person, where are they looking?

Instruction (Role: System)

𝑡𝑡𝑏𝑏𝑚𝑚: Is there anyone looking at each other?

Figure 5: Adjusted task flow prompts
Tsa for shared attention detection.

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts  𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}

𝑡𝑡4: Please predict the probabilities of possible 
gaze targets in the following format:

{  
person1: 

{obj1: high, person2: medium, obj2: low}, 
person2:

…   
…  

}

𝑡𝑡3: For each person, where are they looking?

Position Relationship Dictionary Batch 
𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 , 𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Target Probability Dictionary Batch 
𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 ,𝑘𝑘 ∈ 1, 2, … ,𝐾𝐾

Instruction (Role: System)Batch Content Input (Role: User) Batch Prediction Output

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person3, frisbee1] are near his gaze, 
[frisbee1] is in his right hand,
[person2, person4] are outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

[
[person2, frisbee1] are close to his gaze, 
[frisbee1] is in his hand,
[person3] is outside his FOV,

],
person2:

…    
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

{  
person1:  

{
frisbee1: high, 
person2: medium, 
person3: low

},
person2:

…
…  

}

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑠𝑠𝑠𝑠 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑠𝑠𝑠𝑠′ }

𝑡𝑡𝑠𝑠𝑠𝑠′ : If there is, please output the shared gaze 
target and the corresponding people in the 

following format: 
{

[obj1, person1, person2, ...]: high,
[obj2, person3, person4, ...]: medium,
…

}

𝑡𝑡3: For each person, where are they looking?

Instruction (Role: System)

𝑡𝑡𝑠𝑠𝑠𝑠: Is there multiple people looking at the 
same target?

𝑡𝑡2: For each person, what are they doing? 

𝑡𝑡1: What kind of scene is this image?

Task Flow Prompts 𝑇𝑇𝑏𝑏𝑚𝑚 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡𝑏𝑏𝑚𝑚 , 𝑡𝑡𝑏𝑏𝑚𝑚
′ }

𝑡𝑡𝑏𝑏𝑚𝑚
′ : If there is, please output the people who  

look at each other and the corresponding 
probabilities in the following format: 

{
[person1, person2]: high,
[person3, person4]: medium,
…
…

}

𝑡𝑡3: For each person, where are they looking?

Instruction (Role: System)

𝑡𝑡𝑏𝑏𝑚𝑚: Is there anyone looking at each other?

Figure 6: Adjusted task flow prompts
Tmg for mutual gaze detection.

Why abandon the AUC metric? Due to the pixel multiplication operation performed on the multi-
hot target heatmap output by our GTD-LLM module and the single-hot heatmap output by existing
gaze target visual models, the final fusion heatmap no longer follows a two-dimensional Gaussian
distribution like the ground-truth target heatmap which is generated from the annotated gaze points.
Therefore, calculating the similarity between them, i.e., the area under curve (AUC) metric, is not
appropriate. Besides, we also abandon the AP metric for out-of-frame classification in the VideoAt-
tnTarget benchmark, since we do not have GPT-4 reason this task.

Adjustment of the Task Flow Prompts in Shared Attention Detection. The adjusted task flow
prompts Tsa in this task is shown in Fig. 5. We use Tsa to guide GPT-4 to reason the shared gaze
target and the corresponding people. Then, we transform the predictions of GPT-4 into heatmaps
through our modal transformation mechanism, and integrate them with the output of existing shared
attention visual models through our fusion mechanism in a plug-and-play manner.

Adjustment of the Task Flow Prompts in Mutual Gaze Detection. The adjusted task flow
prompts Tmg in this task is shown in Fig. 6. We use Tmg to guide GPT-4 to reason the people
who are looking at each other. Then, we transform the qualitative predictions of GPT-4 into quanti-
tative confidence scores, and integrate them with the confidence score output by existing mutual gaze
visual models through a simple multiplication operation to obtain the final classification prediction.
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