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Abstract

This paper examines two extensions of multi-armed bandit problems: multi-armed
bandits with expert advice and contextual linear bandits. For the former problem,
multi-armed bandits with expert advice, the previously known best upper and lower

bounds have beenO(
√
KT log N

K ) and Ω(
√
KT logN

logK ), respectively. Here, K, N ,
and T represent the numbers of arms, experts, and rounds, respectively. We provide

a lower bound of Ω(
√
KT log N

K ) for the setup in which the player chooses an ex-
pert before observing the advices in each round. For the latter problem, contextual

linear bandits, we provide an algorithm that achieves O(
√
dT log(K min{1, Sd }))

together with a matching lower bound, where d and S represent the dimensionality
of feature vectors and the size of the context space, respectively.

1 Introduction

This paper considers problems of multi-armed bandits with expert advice (MwE) [Auer et al.,
2002, Kale, 2014], linear bandits [Dani et al., 2008, Bubeck et al., 2012, Cesa-Bianchi and Lugosi,
2012], and contextual linear bandits (CLB) [Chu et al., 2011, Abbasi-Yadkori et al., 2011, Neu and
Olkhovskaya, 2020, Hanna et al., 2023, 2024].

One contribution of this paper is to present the minimax regret for MwE, which addresses the open
question posed by Seldin and Lugosi [2016]. For MwE, the well-known EXP4 algorithm [Auer et al.,
2002] achieves O

(√
KT logN

)
-regret, where K, T and N represent the numbers of arms, rounds

and experts. This bound is, however, not always optimal for certain parameter settings of K and
N . In fact, as discussed by Seldin and Lugosi [2016], when N = K, the problem is reduced to the
standard K-armed bandit problem, for which the minimax regret is Θ(

√
KT ) [Audibert and Bubeck,

2009]. This means that the regret bound of EXP4 has a gap of an O(
√

logK)-factor when N = K.
On the side of upper bounds, Kale [2014] addressed this issue by providing an algorithm achieving

O
(√

KT log+
N
K

)
,1 where we denote log+ x := max {log x, 1}. This is minimax optimal for the

case of N = O(K). However, the minimax optimal bound for arbitrary settings of K and N has been

an open question. The best known lower bound Ω
(√

KT logN
logK

)
is shown by Seldin and Lugosi

[2016], who conjectured that this lower bound is minimax optimal. This paper provides a solution to

this open question by providing a lower bound of Ω
(√

KT log+
N
K

)
, which, together with the upper

1Kale [2014] deals with more general settings of the multi-armed bandit with expert advice in which only a
limited number of expert advice are accessible in each round.
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Table 1: Upper bounds (O(·)) and lower bounds (Ω(·)) on regret for three problems. BwE: multi-
armed bandit with expert advice, LB: linear bandit, CLB: contextual linear bandit. K: number of
arms, N : number of experts, d: dimensionality of feature vectors, S: size of the context space.

Setup Reference Bound Parameter

BwE [Auer et al., 2002] O
(√
KT logN

)
[Kale, 2014] O

(√
KT log+

N
K

)
[Seldin and Lugosi, 2016] Ω

(√
KT logN

logK

)
N ≥ K

[This work] Ω
(√

KT log+
N
K

)
N ≥ K

LB [Bubeck et al., 2012] O
(√
dT logK

)
[This work] O

(√
dT log+

K
d

)
[Auer et al., 2002] Ω

(√
dT
)

= Ω
(√

dT log+
K
d

)
K = d

[Dani et al., 2008] Ω
(√

d2T
)

= Ω
(√

dT log+
K
d

)
K = 2d

CLB [Liu et al., 2024] O
(
d
√
T log T

)
[This work] O

(√
dT log+

(
K min

{
1, Sd

}))
[This work] Ω

(√
dT log+

(
K min

{
1, Sd

}))
K ≤ 2d ≤ KS

bound by Kale [2014], implies that the minimax regret is Θ
(√

KT log+
N
K

)
. This lower bound is

shown for the problem setting in which the player need to choose an expert before observing the
advices in each round. As noted in Remark 1 below, though this problem setup is more challenging
than the “classical” setting where the player can observe all expert advice before selecting an arm,
almost all known existing algorithms, including those in Table 1, work for this setting.

Contextual linear bandit problems are a generalization of multi-armed bandit problems in which
each arm i ∈ [K] = {1, 2, . . . ,K} is linked to a feature vector φ(Xt, i) ∈ Rd that depends on the
context Xt at the t-th round, and the expected loss suffered for choosing i is expressed as a linear
function of the feature vector: 〈θt, φ(Xt, i)〉. In particular, this paper considers the problem setting
of the stochastic-context and adversarial-loss model [Neu and Olkhovskaya, 2020, Liu et al., 2024],
i.e., problems with stochastic Xt and adversarial θt. We also assume that we are given access to the
distribution of contexts, similarly to previous studies, such as those by Neu and Olkhovskaya [2020].
Linear bandit problems can be considered as special cases of contextual linear bandits in which the
context space is a singleton.

Upper and lower bounds on regret for (contextual) linear bandits are shown in Table 1. For linear
bandit problems, we show a regret upper bound of O

(√
dT log+(K/d)

)
, which is slightly better

than the known best bounds ofO(
√
dT logK) by previous studies [Bubeck et al., 2012, Cesa-Bianchi

and Lugosi, 2012, Dani et al., 2007]. One notable aspect of this novel bound is that it matches lower
bounds for two important special cases of K = 2d [Dani et al., 2008, Theorem 3], and K = d
(equivalent to the standard K-armed bandits). However, specifying the tight minimax bounds for
arbitrary values of K remains an open problem.

For contextual linear bandits, this paper presents an upper bound of O(
√
dT log+ (K min{1, S/d}))

together with a matching lower bound, where S = |X | is the cardinality of the context space. Note
that the regret upper bound of O(d

√
T log T ) by Liu et al. [2024] applies to the more general setting

of the adversarial-context and adversarial-loss model. We also note that the problem formulation
of contextual linear bandit problems in some existing studies [Neu and Olkhovskaya, 2020, Kuroki
et al., 2024, Olkhovskaya et al., 2024] is different from ours. As noted in Liu et al. [2024], however,
this problem of different formulations can be reduced to our setting with dimension d|A|, where |A|
is the maximum number of actions in their settings. See [Liu et al., 2024] for a more detailed review
of previous studies.
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To show the regret lower bound for BwE, we follow the approach employed in the study [Chen
et al., 2024] on the minimax regret for problems interpolating problems of (full-information) online
learning with expert advice and multi-armed bandit. They have shown that, for the generalization of
a K-armed bandit problem in which each arm is associated with ν different experts, the minimax
regret is Θ

(√
KT log ν

)
. Inspired by their construction of the problem instance, we consider a

BwE instance in which N ′ = Θ(N/K) experts give advice for choosing one of two arms and there
are independent Θ(K) copies of such structures. This yields a lower bound of Ω(

√
KT logN ′) =

Ω(
√
KT log(N/K)).

In the proof of regret upper bounds for (contextual) linear bandits, we develop an algorithm based
on the follow-the-regularized-leader (FTRL) approach with a Tsallis entropy regularizer with a
parameter α ∈ (0, 1): ψα(w) = − 1

1−α
∑
i∈[K](w(i)α − w(i)). This approach can be interpreted

as a generalization of the EXP2 algorithm [Bubeck et al., 2012]. In fact, EXP2 can be regarded
as the FTRL approach with Shannon entropy regularization, which coincides with the limit of
α-Tsallis entropy as α approaches 1. This paper shows that the regret bounds can be further
improved by not fixing α to 1 but by adjusting it appropriately. Similar approaches have been
used successfully in various online learning problems including multi-armed bandits [Audibert and
Bubeck, 2009], bandits with expert advice [Kale, 2014], graph bandits [Eldowa et al., 2024], and
sleeping bandits [Nguyen and Mehta, 2024]. In addition to FTRL with Tsallis entropy regularization,

to achieve O
(√

KT log+

(
KS
d

))
-regret in contextual linear bandits, we combine a novel technique

of context-dependent learning rate. More precisely, we introduce learning rate parameters η(Xt) that
change depending on the observed context Xt ∈ X . We show that tuning η : X → R>0 leads to
improved regret bounds.

Notation For a natural number n, denote [n] = {1, 2, . . . , n}. For two real vectors x =
(x(i))i∈[d], y = (y(i))i∈[d] ∈ Rd, let 〈x, y〉 denote the inner product between x and y, i.e.,

〈x, y〉 =
∑
i∈[d] x(i)y(i). Let P(K) =

{
w ∈ [0, 1]K |

∑
i∈[K] w(i) = 1

}
denote the set of proba-

bility distributions over [K]. For any symmetric matrices A and B, denote A � B if and only if
A−B is positive-semidefinite. Let tr(A) denote the trace of square matrices A.

2 Multi-armed bandit with expert advice

2.1 Problem setting

In the problem of multi-armed bandits with expert advice (BwE), the player is given the number
of arms K and the number of experts N . In each round, each expert j ∈ [N ] select an advice
et(j) ∈ [K], and the player chooses an expert Jt ∈ [N ]. Then, after the player observes the expert
advice (et(j))j∈[N ], the player pulls the arm It = et(Jt) ∈ [K] and gets feedback of the suffered
loss `t(It) ∈ [0, 1]. The performance of the player is measured by means of regret RT defined as

RT = max
j∗∈[N ]

E

[
T∑
t=1

`t(It)−
T∑
t=1

`t(et(j
∗))

]
.

Remark 1. We consider the problem setting in which the player choose the expert Jt before observing
expert advice (et(j))j∈[N ]. This setting is more challenging compared to the one where the player
can observe all expert advice before selecting an arm, because the available information is more
limited. On the other hand, existing algorithms by Auer et al. [2002], Kale [2014] can be applied to
this more challenging setting and achieve the regret upper bounds shown in Table 1. Therefore, we
have decided to adopt this setting in this study.

Best expert identification The best expert identification (BEI) problem is a variant of BwE problem
in which the player aims to identify the expert attaining the minimum value of expected loss from
as few feedbacks as possible. We here assume that (et, `t) follows an identical distribution D
independently for all t = 1, 2, . . .. Note that, for (e, `) ∼ D, all elements of e and ` may be
dependent, and that we impose the independence assumption only between data at different t. For
each expert j ∈ [N ] we define µj = E(e,`)∼D [`(e(j))] and let j∗ ∈ [K] denote the best expert in
terms of the expectation, i.e., j∗ ∈ arg minj∈[N ] µj . In the BEI problem, the player repeats selecting
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arms and obtaining feedback for an arbitrary number of times T , and then outputs the estimated
optimal expert JT ∈ [K].

For a positive number ε, an expert j is called an ε-optimal expert if µj < µj∗ + ε. An algorithm A
for BEI is called (ε, δ)-probably approximately correct (PAC) if it outputs an ε-optimal expert with
probability at least (1− δ). For any algorithm A for BEI, let T (A,D) denote the expected value of
the number of rounds T until A is terminated when it is applied to the problem instance associated
with D.

2.2 Reduction from BEI to BwE

This section shows that BEI problems can be reduced to BwE problems. More precisely, given an
algorithm for BwE problems with a regret upper bound, we can construct an (ε, δ)-PAC algorithm
with a bounded number of queries, as follows:

Lemma 1. Suppose that there exists an algorithm A for BwE such that the regret is bounded as
RT ≤ r(T ) for every T . For an arbitrary ε ∈ (0, 1), let T ∗ be such that T ∗ ≥ 2500·r(T∗)

ε . Then,
there exists an (ε, 0.05)-PAC algorithm A′ for BEI such that T (A,D) ≤ T ∗ for any D.

Proof. Consider the following algorithm A′ for best-expert identification: (i) Run A for T ∗ rounds
and let Tj be the number of rounds in which the expert j is chosen, i.e., Tj = |{t ∈ [T ∗] | Jt = j}|.
(ii) Output Ĵ = j with probability Tj/T ∗, i.e., Ĵ is chosen so that Pr[J = j] = Tj/T

∗ for all
j ∈ [N ]. Let us show that this is an (ε, 0.05)-PAC algorithm.

Let Nε ⊆ [N ] denote the set of ε-optimal experts and let N c
ε = [N ] \ Nε. Let Tε =

∑
j∈Nε Tj

denote the number of choosing ε-optimal experts. We then have RT∗ ≥ E
[
ε ·
∑
j∈N cε

Tj

]
=

εE [(T ∗ − Tε)] as we suffer per-round regret of at least ε in expectation, in every round when an
expert in N c

ε is chosen. Hence, from Markov’s inequality, we have

Pr [Tε ≤ 0.99T ∗] = Pr [T ∗ − Tε ≥ 0.01T ∗] ≤ 100

T ∗
E [T ∗ − Tε]

≤ 100

T ∗
· RT

∗

ε
≤ 100

T ∗
· r(T

∗)

ε
≤ 100

2500
= 0.04,

where the last inequality follows from the assumption of T ∗ ≥ 2500·r(T∗)
ε . Hence, from the construc-

tion of algorithm A′,

Pr
[
Ĵ ∈ N c

ε

]
=
∑
j∈N cε

E

[
Tj
T ∗

]
= E

[
T ∗ − Tε
T ∗

]
≤ Pr [Tε ≤ 0.99T ∗] · 1 + Pr [Tε > 0.99T ∗] · 0.01 ≤ 0.04 + 0.01 = 0.05,

which means that A′ is an (ε, 0.05)-PAC algorithm for BEI.

2.3 Construction of problem instance

For any p ∈ [0, 1], let Ber(p) represent a Bernoulli distribution of parameter p, i.e., if X ∼ Ber(p),
then Pr[X = 1] = p and Pr[X = 0] = 1− p.

Without loss of generality, we consider the case that N and K can be expressed as N = N ′m+ 1
and K = 2m + 1 for some positive integers N ′ and m. We denote the set of experts by E =
{0} ∪ {(u, v)}u∈[m],v∈[N ′] and the set of arms by A = {0} ∪ {(u, b)}u∈[m],b∈{0,1}. The expert
advice et is given so that et(0) = 0 and et((u, v)) ∈ {(u, 0), (u, 1)} for all u ∈ [m] and v ∈ [N ′].

Fix u∗ ∈ [m], v∗ ∈ [N ′], and ε ∈ [0, 1). We define distributions of (e, `) as follows:

• D(ε): When (e, `) follows D(ε), `(0) follows Ber((1− ε)/2). For each u ∈ [m], `((u, 0))
and `((u, 1)) are given by `((u, 0)) = bu and `((u, 1)) = 1 − bu, where bu follows
Ber(1/2). The expert advice is given by e((u, v)) = (u, buv), where each buv follows
Ber(1/2) for u ∈ [m] and v ∈ [N ′]. All elements of `(0), (bu)u∈[m] and (buv)u∈[m],v∈[N ′]
are independent.
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• D(ε, u∗, v∗): When (e, `) followsD(ε, u∗, v∗), ` and e follows the same distribution asD(ε)
except for e((u∗, v∗)). The value of e((u∗, v∗)) is given as e((u∗, v∗)) = (u∗, bu∗v∗) =
(u∗, |`((u∗, 0))−b′|), where b′ is a random variable that follows Ber(1/2−ε) independently
of the other randomness. In other words, the second element of e((u∗, v∗)) is chosen so that
`(e(u∗, v∗)) follows Ber(1/2− ε).

The probability distribution of D(ε, u∗, v∗) is constructed so that the marginal distribution of e
for (e, `) ∼ D(ε, u∗, v∗) is same as that for D(ε). Indeed, the values of e is determined by
(buv)u∈[m],v∈[N ′], and the marginal distribution of bu∗,v∗ for D(ε, u∗, v∗) is a mixture distribution
given as Pr [`((u∗, 0)) = 0] · Ber

(
1
2 − ε

)
+ Pr [`((u∗, 0)) = 1] · Ber

(
1
2 + ε

)
= 1

2Ber
(
1
2 − ε

)
+

1
2Ber

(
1
2 + ε

)
= Ber

(
1
2

)
, which is equivalent to distributions for D(ε). In addition, if (e, `) ∼ D

follows D(ε, u∗, v∗), the expected loss for choosing expert (u, v) is given as

E
(e,`)∼D(ε,u∗,v∗)

[`(e(u, v))] =
1

2
− ε · 1 [(u, v) = (u∗, v∗)] ,

where 1[·] represents the indicator function, i.e., 1[E] = 1 if E is true and 1[E] = 0 otherwise. This
means that, for the problem instance of BEI associated with D(ε, u∗, v∗), the expert (u∗, v∗) is the
only (ε/2)-optimal action.

We denote DT (ε) = (D(ε))T . Let DT (ε, u∗) denote the uniform mixture of
{(D(ε, u∗, v∗))T }v∗∈[N ′]: DT (ε, u∗) = 1

N ′

∑
v∗∈[N ′](D(ε, u∗, v∗))T .

2.4 Lower bound for best-expert identification problems

We first consider the special case of m = 1 and provide an instance-specific lower bound for BEI
associated with D(ε) and {D(ε, 1, v∗)}v∗∈N ′ .
Lemma 2. Suppose m = 1 and let A be an (ε/2, 0.05)-PAC algorithm for BEI. We then have

T (A,D(ε)) ≥ 1
2

⌊
ln(N ′/4)

4ε2

⌋
=: T

∗

2 .

Proof. Let T be the number of rounds the algorithm A proceeds. Let E denote the event that the al-
gorithmA terminate at a round before T ∗+ 1 (i.e., T ≤ T ∗) and output Ĵ = 0. Then, from Pinsker’s
inequality, we have

∣∣Pr
[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]
− Pr

[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε, 1)
]∣∣ ≤

DKL (DT∗(ε, 1)||DT∗(ε)) ≤ 0.25, where the last inequality follows from Lemma 9 in the supple-
mentary. As A is an (ε/2, 0.05)-PAC algorithm, we have Pr

[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε, 1)
]
≤ 0.05.

By applying the union bound, we obtain 1 − Pr
[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]

=

Pr
[
T > T ∗|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]

+ Pr
[
T ≤ T ∗, Ĵ 6= 0|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]

≤
Pr
[
T > T ∗|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]

+ 0.05. Combining these inequalities, we ob-
tain Pr

[
T > T ∗|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]
≥ 0.95 − Pr

[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε)
]
≥

0.95 − 0.25 − Pr
[
E|((et, `t))T

∗

t=1 ∼ DT∗(ε, 1)
]
≥ 0.95 − 0.25 − 0.05 = 0.65, which im-

plies that T (A,D(ε)) ≥ E
[
T | ((et, `t))T

∗

t=1 ∼ DT∗(ε)
]
≥ 0.65T ∗. This completes the proof.

We can obtain a lower bound for BEI for general m by using Lemma 2.

Theorem 1. Let A be an (ε/2, 0.05)-PAC algorithm for BEI. We then have T (A,D(ε)) ≥
m
2

⌊
ln(N ′/4)

4ε2

⌋
= mT∗

2 .

2.5 Lower bound for multi-armed bandits with expert advice

We are now ready to provide a lower bound for BwE.

Theorem 2. For any algorithm for BwE and for any sufficiently large T > 0, there exists a problem

instance for which RT ≥ C
√
TK log+

N
K , where C > 0 is a universal constant.
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Proof. We fix T and set m = b(K − 1)/2c and N ′ = b(N − 1)/mc. Fix ε = Θ

(√
m logN ′

T

)
so

that T < m
2

⌊
ln(N ′/4)

4ε2

⌋
. Assume that RT < C

√
TK log+

N
K := r(T ) = O

(√
Tm logN ′

)
, where

the universal constant C > 0 is sufficiently small so that 2500·r(T )
ε ≤ T holds. Then, from Lemma 1,

there exists an (ε, 0.05)-PAC BEI algorithm A achieving T (A,D) ≤ T for any D. This contradicts

Theorem 1, which implies that RT ≥ C
√
TK log+

N
K .

This lower bound, together with the upper bound presented by Kale [2014], means that the minimax

regret for BwE is of Θ
(√

KT log+
N
K

)
.

3 Contextual linear bandit

3.1 Problem setting

Before the game starts, the player is given a set X of contexts, a finite set [K] of arms, a feature
mapping φ : X × [K] → Rd. In each round, the environment chooses loss vector θt ∈ Rd. Then
a context Xt ∈ X is drawn from a fixed distribution D, and is revealed to the player. The player
chooses an action It ∈ [K] and get feedback of `t ∈ [−1, 1], of which expectation is 〈θt, φ(Xt, It)〉.
For any policy π∗ : X → [K], we define the regret by

RT (π∗) = E

[
T∑
t=1

〈θt, φ(Xt, It)〉 −
T∑
t=1

〈θt, φ(Xt, π
∗(Xt))〉

]
, RT = sup

π∗:X→[K]

RT (π∗).

We assume that |〈θt, φ(x, i)〉| ≤ 1 for all x ∈ X and a ∈ [K]. We also pose the following assumption
regarding the distribution of the context.
Assumption 1. We assume that the set of contexts is a finite set X = [S] and that there exists L ≥ S
such that the probability g(x) := Pr[Xt = x] is bounded from below as g(x) ≥ 1/L for all x ∈ [S].
Assume that the function g is given.

For any randomized policy p : X → P(K), we denote

V (p) = E
X∼D,I∼p(X)

[
φ(X, I)φ(X, I)>

]
, λ(p) = sup

i∈[K],x∈X
φ(x, i)>V (p)−1φ(x, i).

Assumption 2. We assume that there exists an exploration policy p0 : X → P(K) such that
λ(p0) <∞.

Let λ0 > 0 denote (an upper bound of) the value of λ(p0). We may assume that λ0 ≤ Ld without loss
of generality. In fact, if we set p0(x) to be a g-optimal design (see, e.g., [Lattimore and Szepesvári,
2020, Section 21.1]) for Zx = {φ(x, i) | i ∈ [K]}, we then have φ(x, i)>V (p)−1φ(x, i) ≤
1

g(x)φ(x, i)>V (p0(x))−1φ(x, i) ≤ dL holds for all x ∈ X and i ∈ [K].

3.2 Algorithm

The proposed algorithm is based on the framework follow-the-regularized-leader (FTRL) with Tsallis
entropy regularization. For α ∈ (0, 1), define a regularization function ψ : P(K)→ R by

ψ(w) =
1

α

∑
i∈[K]

(w(i)− w(i)α) =
1

α

1−
∑
i∈[K]

w(i)α

 . (1)

Using this regularizer, we define a randomized policy qt : X → P(K) on the basis of FTRL, and set
an arm-selection policy pt, as follows:

qt(x) = arg min
w∈P(A)

∑
i∈[K]

w(i)

t−1∑
s=1

〈
θ̂s, φ(x, i)

〉
+

1

η(x)
ψ(w)

 , pt = (1− γ)qt + γp0 (2)
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Algorithm 1 Contextual linear bandit algorithm based on FTRL with Tsallis entropy
Input: Feature mapping φ, learning rates (η(x))x∈X , exploration policy p0, parameters γ, α
for t = 1, . . . , T do

Compute pt given by (1) and (2).
Observe Xt, choose It drawn from pt(Xt), and get feedback of `t.
Compute θ̂t defined by (3).

end for

where θ̂t is an unbiased estimator defined below, η(x) > 0 is a learning rate parameter that will be
specified later, and γ ∈ (0, 1/2) is a parameter that will be chosen depending on η. In each round t,
we choose It following pt(Xt) and get feedback of `t. We then compute an unbiased estimator θ̂t of
θt defined by

θ̂t = `tV (pt)
−1φ(Xt, It). (3)

This is in fact an unbiased estimator as

E
Xt∼D,It∼pt(Xt)

[
θ̂t

]
= E
Xt∼D,It∼pt(Xt)

[
`tV (pt)

−1φ(Xt, It)
]

= E
Xt∼D,It∼pt(Xt)

[
V (pt)

−1φ(Xt, It)φ(Xt, It)
>θt
]

= V (pt)
−1V (pt)θt = θt. (4)

The procedure of our proposed algorithm is summarized in Algorithm 1.

3.3 Regret upper bound

This section provides an upper bound on the regret for Algorithm 1. In the following, we use the
symbol β = 1− α ∈ (0, 1) for simplicity of notation. We will show a regret upper bound as follows:
Theorem 3. Suppose that 1/2 ≤ α < 1 and that γ satisfies

γ = λ0 ·min

{
8 sup
x∈X

η(x), sup
x∈X

(
16η(x)

g(x)β

)1/α
}
≤ 1

2
. (5)

Then, the regret for Algorithm 1 is bounded as follows:

RT (π∗) = O

(
T

(
1

β
min

{
d · sup

x∈X
η(x), dα · sup

x∈X

η(x)

g(x)β

}
+ γ

)
+
Kβ − 1

α

∑
x∈X

g(x)

η(x)

)
.

From this theorem, by tuning parameters α and η(x) on the basis of T, d,K and g, we obtain the
following:
Corollary 1. For sufficiently large T , Algorithm 1 achieves the following:

• By setting η(x) = η′g(x)β = with η′ = Θ

(√
β(KS)β

αdαT

)
and β = Θ

(
1/
(
log+

(
KS
d

)))
,

we obtain RT = O
(√

dT log+

(
KS
d

)
+ λ0

√
T 1−β

)
.

• By setting η(x) = η = Θ

(√
βKβ

αdT

)
for all x ∈ X and β = Θ

(
1

logK

)
, we obtain

RT = O
(√

dT logK + λ0 min
{√

T
d logK , L

β
α

√
T 1−β

})
.

Remark 2. The proposed algorithm (Algorithm 1) can also work for the infinite context case, in
which it enjoys the second regret upper bound in Corollary 1. In fact, this regret upper bound does
not include S = |X | or L, and the value of g(x) is not required to define η(x) in showing this
second upper bound. Hence, we can show this bound without the assumption that X is a finite set.
In the infinite context case, however, further challenges regarding the computational complexity
of the algorithm should be noted. For example, we need to compute V (pt) in the algorithm as it
appears in the definition of θ̂t in (3), which tend to be computationally expensive, depending on the
computational model and the setup of distributions.
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To prove Theorem 3, we introduce some notations: Denote ˆ̀
t(x) =

(〈
θ̂t, φ(x, i)

〉)
i∈[K]

∈ RK ,

which is an unbiased estimator of (〈θt, φ(x, i)〉)i∈[K]. For any w,w′ ∈ P(K), let D(w,w′) denote
the Bregman divergence associated with ψ, i.e., D(w,w′) = ψ(w) − ψ(w′) − 〈∇ψ(w′), w − w′〉.
From the standard analysis technique for FTRL (see, e.g., [Lattimore and Szepesvári, 2020, Chapter
28]) and the idea of ghost sample X0 ∼ D drawn independently from all other randomness (see, e.g.,
[Neu and Olkhovskaya, 2020]), we obtain the following upper bound:

Lemma 3. For Algorithm 1, the regret is bounded as RT ≤ 2γT + Kβ−1
α

∑
x∈X

g(x)
η(x) +

E
[∑T

t=1

(〈
ˆ̀
t(X0), qt(X0)− qt+1(X0)

〉
− 1

η(X0)
D(pt+1(X0), pt(X0))

)]
.

We note that X0 is a random variable that does not appear in the decision-making process or
algorithms, but appear only in the analysis, and is defined to be independent of X1, X2, . . . , XT (and
therefore is independent of any other variables including qt). The first component of the right-hand
side of this formula can be bounded via the following lemma:

Lemma 4. Suppose that η > 0, ` ∈ RK and w ∈ P(K) satisfy η|`(i)| ≤ 1−α
4 w(i)α−1 for all

i ∈ [K]. We then have 〈`, w − w′〉 − 1
ηD(w′, w) ≤ 4η

1−α
∑
i∈[K] w(i)2−α`(i)2.

This follows, e.g., directly from the first part of Lemma 9 given by Ito et al. [2024]. To check the
sufficient conditions for applying Lemma 4, we use the following lemma:

Lemma 5. It holds for any x ∈ X and i ∈ [K] that

φ(x, i)>V (pt)
−1φ(x, i) ≤ min

{
λ0
γ
,

1

(1− γ)g(x)qt(x, i)

}
. (6)

Consequently, we have

∣∣∣ˆ̀t(x, i)∣∣∣ =
∣∣∣〈θ̂t, φ(x, i)

〉∣∣∣ ≤√λ0
γ
,min

{
λ0
γ
,

1

(1− γ)g(x)qt(x, i)

}
. (7)

Combining Lemmas 4 and 5, we obtain the following:

Lemma 6. Suppose that α ≥ 1/2 and that γ is given as (5). Then it holds for any t and x ∈ X that〈
ˆ̀
t(x), qt(x)− qt+1(x)

〉
− 1

η(x)
D(pt+1(x), pt(x)) ≤ 4η(x)

β

∑
i∈[K]

qt(x, i)
2−α ˆ̀

t(x, i)
2. (8)

Further, the expectation of the right-hand side of (8) can be bounded as in the following, which is the

key lemma for leading to an improved regret bound of O(
√
dT log+

KS
d ).

Lemma 7. We have

E

η(X0)
∑
i∈[K]

qt(X0, i)
2−α ˆ̀

t(X0, i)
2

 ≤ 1

1− γ
min

{
d · sup

x∈X
η(x), dα · sup

x∈X

η(x)

g(x)β

}
. (9)

Proof. From the definition of ˆ̀
t(x, i), for any fixed x ∈ X and i ∈ [K], we have

E
[
ˆ̀
t(x, i)

2
]

= E
[(
`tφ(Xt, It)

>V (pt)
−1φ(x, i)

)2] ≤ E
[(
φ(Xt, It)

>V (pt)
−1φ(x, i)

)2]
= E

[
φ(x, i)>V (pt)

−1φ(Xt, It)φ(Xt, It)
>V (pt)

−1φ(x, i)
]

= φ(x, i)>V (pt)
−1V (pt)V (pt)

−1φ(x, i)

= φ(x, i)>V (pt)
−1φ(x, i) ≤ 1

1− γ
φ(x, i)>V (qt)

−1φ(x, i). (10)
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Denote η1 = supx∈X η(x)/g(x)β . Then, from (10), we have

[LHS of (9)] ≤ η1
1− γ

E

g(X0)β
∑
i∈[K]

qt(X0, i)
1+βφ(X0, i)

>V (qt)
−1φ(X0, i)


=

η1
1− γ

∑
x∈X

g(x)1+β
∑
i∈[K]

qt(x, i)
1+βφ(x, i)>V (qt)

−1φ(x, i)

=
η1

1− γ
∑
x∈X

∑
i∈[K]

u(x, i)βv(x, i), (11)

where we define u(x, i) = g(x)qt(x, i) and v(x, i) = g(x)qt(x, i)φ(x, i)>V (qt)
−1φ(x, i). We

then have (i) u(x, i) ≥ 0 for all x ∈ X and i ∈ [K];
∑
x′∈X

∑
i′∈[K] u(x′, i′) = 1, (ii)∑

x′∈X
∑
i′∈[K] v(x′, i′) = d, and (iii) 0 ≤ v(x, i) ≤ 1 for all x ∈ X and i ∈ [K]. Indeed,

the condition (i) is clear from the fact that u(x, i) is a probability mass function over X × [K]. The
condition (ii) follows from

∑
x′∈X

∑
i′∈[K]

v(x′, i′) = tr

V (qt)
−1
∑
x∈X

∑
i∈[K]

g(x)qt(x, i)φ(x, i)φ(x, i)>


= tr

(
V (qt)

−1V (qt)
)

= tr(Id) = d.

The condition (iii) follows from Lemma 8 and the fact that as g(x)qt(x, i)φ(x, i)φ(x, a)> � V (qt).
Let U ⊆ X × [K] be the top-d subset with respect to the values of u(x, a), i.e., let U be such
that |U | = d and u(x, i) ≥ u(x′, i′) for any (x, i) ∈ U and any (x′, i′) ∈ (X × [K]) \ U .
Then, when we consider maximizing

∑
x∈X

∑
i∈[K] u(x, i)βv(x, i) subject to the constraint of

(ii) and (iii) on v, the maximum is attained by v(x, i) = 1[(x, i) ∈ U ]. We hence have∑
x∈X

∑
i∈[K] u(x, i)βv(x, i) ≤

∑
(x,i)∈U u(x, i)β ≤ |U |1−β

(∑
(x,i)∈U u(x, i)

)β
≤ dα, where

the second inequality follows from Hölder’s inequality and the last inequality follows from the
condition (i). By combining this with (11), we obtain [LHS of (9)] ≤ η1d

α

1−γ . Similarly, denoting η0 =

supx∈X η(x), we obtain [LHS of (9)] ≤ η0
1−γ E

[∑
i∈[K] qt(X0, i)φ(X0, i)

>V (qt)
−1φ(X0, i)

]
=

η0
1−γ E

[
tr
(
V (qt)

−1∑
i∈[K] qt(X0, i)φ(X0, i)φ(X0, i)

>
)]

= η0
1−γ

∑
x∈X

∑
i∈[K] v(x, i) = η0d

1−γ ,

which completes the proof.

Now we are ready to provide an upper bound on regret.

We can easily see that Theorem 3 is a direct consequence of Lemmas 3, 6 and 7.

Proof of Corollary 1. Suppose η(x) = η′g(x)β with η′ = Θ

(√
β(KS)β

αdαT

)
and

β = Θ
(
1/
(
log+

(
KS
d

)))
. We then have RT = O

(
η′dαT
β + γT + Kβ

η′α

∑
x∈X g(x)α

)
=

O
(
η′dαT
β + γT + (KS)β

η′α

)
= O

(√
dT
αβ

(
KS
d

)β
+ λ0(η′)1/αT

)
=

O
(√

dT log+

(
KS
d

)
+ λ0

√
T 1−β

)
.

Suppose η(x) = η = Θ

(√
βKβ

αdT

)
for all x ∈ X and β = Θ

(
1

logK

)
. We then have

RT = O
(
ηdT
β + γT + Kβ

ηα

)
= O

(√
dKβT
αβ + λ0 min

{√
βKβT
d , L

1−α
α

(
βKβ

d

) 1
2α

T 1− 1
2α

})
=

O

(√
dT logK + λ0 min

{√
T

d logK , L
1−α
α

(
1

d logK

) 1
2α √

T 1−β
})

=

O
(√

dT logK + λ0 min
{√

T
d logK , L

β
α

√
T 1−β

})
.
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3.4 Regret lower bound

The following theorem implies that the regret upper bound given in Corollary 1 achieved by the
Algorithm 1 is tight for S ≤ K ≤ 2d.
Theorem 4. Suppose any d′ ≥ 1, S ≥ 1 and T = Ω(d′2S). Then, for any algorithm for contextual
linear bandit problems with K = 2d

′
, d = d′S, and |X | = S there exists a problem instance for

which RT = Ω
(
d′
√
ST
)

.

This theorem implies a regret lower bound of Ω
(√

dT log+

(
K min

{
1, Sd

}))
. To see this, we first

note Theorem 4 implies that, if some d′ satisfies K ≥ 2d
′

and d ≥ d′S, we can obtain a regret lower
bound ofRT = Ω(d′

√
ST ). Let (d,K, S) be an arbitrary given parameter set that satisfiesK ≤ 2d ≤

KS . We then have log2K ≤ d ≤ S log2K. Define d′ := blog2Kc and S′ := bd/ log2Kc ≤ S.
Then, as we have K ≥ 2d

′
and d ≥ S′ log2K ≥ S′d′ = Ω(d), from Theorem 4, we obtain a

regret lower bound of RT = Ω(d′
√
S′T ) = Ω(

√
S′d′Td′) = Ω(

√
dTd′). By combining this with

d′ = Ω(logK) = Ω
(
log+

(
K min{1, Sd }

))
, we obtain RT = Ω

(√
dT log+

(
K min{1, Sd }

))
. We

hence have the following lower bound:
Corollary 2. For any (d,K, S) such that K ≤ 2d ≤ KS and for any algorithm for contextual linear

bandit problems, there exists a problem instance for which RT = Ω
(√

dT log+

(
K min

{
1, Sd

}))
.

Proof of Theorem 4. Theorem 4 can be shown by using the result of Dani et al. [2008, Theorem 3].
They provide a lower bound of Ω(d

√
T ) for (non-contextual) linear bandit problems with K = 2d.

We use S copies of their problem instance of the dimensionality d′, to prove Theorem 4. The context
Xt is drawn from uniform distribution over X = [S], each element of which corresponds to one of
the copies of the linear bandit instance. Then, for any x ∈ X , the number of rounds t ≤ T at which
Xt = x is of Ω(T/S) with a probability at least 1/2. Hence, the expected cumulative regret suffered
for rounds at which Xt = x is of Ω(d′

√
T/S) for each x ∈ X . By summing this for all x ∈ X , we

obtain the lower bound of Ω(Sd′
√
T/S) = Ω(d′

√
ST ). Note that features mapping φ need to be

designed so that φ(x, i) and φ(x′, i′) are orthogonal for any x 6= x′ and i, i′ ∈ [K]. We can satisfy
this condition by setting the dimension of the entire feature space to d = d′S.

4 Conclusion

In this study, we investigated the minimax regret in the contexts of the multi-armed bandit with expert
advice and contextual linear bandit problems. For the former, we established a regret lower bound

of O(
√
KT log N

K ) in the setting where the player selects an expert before observing expert advice.
This bound matches, up to a constant factor, the upper bound provided by Kale [2014]. Additionally,
for the contextual linear bandit problem, we proposed an algorithm that achieves a regret upper bound

of O(
√
dT log(K min{1, Sd })). As illustrated in Table 1, this upper bound aligns with the lower

bound under certain conditions on the parameters (K,S,D).

Remaining challenges in the problem with expert advice include establishing similar lower bounds
when the player can observe expert advice before decision-making in each round. Furthermore,
determining the minimax regret in a broader parameter setting for (contextual) linear bandits remains
an open problem. Relaxing Assumption 1 on the contextual distribution is also an important direction
for enhancing practical applicability.
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A Auxiliary lemma

Lemma 8. For any positive-definite matrix A ∈ Rd×d and a real vector x ∈ Rd, if A � xx>, it
holds that xA−1x ≤ 1.

Proof. From the assumption of A � xx>, we have

x>A−1x = (A−1x)>A(A−1x) ≥ (A−1x)>xx>(A−1x) = (x>A−1x)2,

which implies x>A−1x ≤ 1.

B Omitted lemmas and proofs in Section 2

Lemma 9. Suppose m = 1. It holds for any N ′, T ∗ ∈ N and ε ∈ [0, 1/2] that

DKL (DT∗(ε, 1) || DT∗(ε)) ≤ ln

(
N ′ − 1 +

(
1 + 4ε2

)T∗
N ′

)
≤
(
1 + 4ε2

)T∗ − 1

N ′
.

Consequently, if T ∗ ≤ ln(N ′/4)
4ε2 , then the above value of the KL divergence is at most 1/4.

Proof. For (e, `), let b1 ∈ {0, 1}, (cv)v∈[N ′] ∈ {0, 1}N
′

be binary variables such that `((1, 0)) = bu,
`((1, 1)) = 1 − bu, and e((1, v)) = |bu − cv|. Then, all the values of (e, `) are determined
by `(0), b1 and (cv)v∈[N ′]. When (e, `) follows D(ε), then (`(0), b1, (cv)v∈[N ′]) follows E0 :=

Ber((1−ε)/2)×Ber(1/2)× (Ber(1/2))N
′
. On the other hand, when (e, `) followsD(ε, 1, v∗) then

(`(0), b1, (cv)v∈[N ′]) follows Ev∗ := Ber((1 − ε)/2) × Ber(1/2) × FN ′(ε, v∗), where we define
Fv∗ = (Ber(1/2))v

∗−1 ×Ber(1/2 + ε)× (Ber(1/2))N
′−v∗ . That is, if (cv)v∈[N ′] follows Fv∗ , the

v∗-th element cv∗ follows Ber(1/2) and the other elements follow Ber(1/2) independently. Hence,
from the data processing inequality, recalling the definition of DT∗(ε) and DT∗(ε, v∗) given in
Section 2.3, we obtain

DKL (DT∗(ε, 1) || DT∗(ε)) ≤ DKL

(
1

N ′

∑
v∗∈N ′

(Ev∗)T
∗
|| (E0)

T∗

)

= DKL

(
1

N ′

∑
v∗∈N ′

(Fv∗)T
∗
||
(

(Ber(1/2))N
′
)T∗)

. (12)

Let p0 : {0, 1}T∗×N ′ → R and pv : {0, 1}T∗×N ′ be the probability mass functions for(
(Ber(1/2))N

′
)T∗

and (Fv∗)T
∗
. Then, from the definition of the KL divergence, we have

[RHS of (12)] =
1

N ′

∑
v∗∈[N ′]

E
c∼(Fv∗ )T

∗

ln

 1

N ′

∑
v∈[N ′]

pv(c)

p0(c)


≤ 1

N ′

∑
v∗∈[N ′]

ln

 1

N ′

∑
v∈[N ′]

E
c∼(Fv∗ )T

∗

[
pv(c)

p0(c)

] , (13)

where we used Jensen’s inequality and the fact that ln(x) is a concave function. The ratio pv∗ (c)
p0(c)

of
probabilities can be expressed as

pv(c)

p0(c)
=
∏
t∈[T∗]

(1[ctv = 0] · (1− 2ε) + 1[ctv = 1] · (1 + 2ε)) =
∏
t∈[T∗]

(1 + (4ctv − 2)ε) .

Hence, if v 6= v∗ then

E
c∼(Fv∗ )T

∗

[
pv(c)

p0(c)

]
=
∏
t∈[T∗]

E
(ctv)∼Ber(1/2)

(1 + (4ctv − 2)ε) = 1,
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where we used the condition that elements of (ctv) are independent. Further, if v = v∗, we then have

E
c∼(Fv∗ )T

∗

[
pv(c)

p0(c)

]
=
∏
t∈[T∗]

E
(ctv)∼Ber(1/2+ε)

(1 + (4ctv − 2)ε) =
(
1 + 4ε2

)T
.

Therefore, we have

[RHS of (13)] =
1

N ′

∑
v∗∈[N ′]

ln

(
N ′ − 1 +

(
1 + 4ε2

)T∗
N ′

)
= ln

(
N ′ − 1 +

(
1 + 4ε2

)T∗
N ′

)
,

which completes the proof.

B.1 Proof of Theorem 1

Proof. For each u ∈ [m], let Tu(A,D(ε)) denote the expected value of the number of rounds in
which the algorithm A observes `t((u, 0)) or `t((u, 1)) before termination. Then, we will show that
Tu(A,D(ε)) ≥ T ∗/2 under the assumption that A is an (ε/2, 0.05)-PAC algorithm.

Fix any u ∈ [m] and suppose that A is an (ε/2, 0.05)-PAC BEI algorithm for problems with general
m. Then we can construct an (ε/2, 0.05)-PAC BEI algorithm A′ for problems with m = 1 such that
T (A′,D′(ε)) ≤ Tu(A,D(ε)), whereD′(ε) andD(ε) represent distributions with (m = 1, N ′ = N ′)
and (m = m,N ′ = N ′), respectively. To show this, consider the following procedure for solving
BEI for m = 1 based on A: Run algorithm A. When algorithm A pulls an arm at other than (u, 0)
or (u, 1), then generate et from D(ε) and `(at) from Ber(1/2) independently of et, and feed them to
A. When algorithm A pulls (u, 0) or (u, 1), then query the instance of m = 1 and feed the observed
losses to A. Then, this construction provide an (ε/2, 0.05)-PAC BEI algorithm for the instance of
m = 1, and if the instance is associated with D′(ε), the number of queries to this distributions has
the expected value of Tu(A,D(ε)). We hence have T (A′,D′(ε)) ≤ Tu(A,D(ε)).

From Lemma 2, we have T (A′,D′(ε)) ≥ T ∗/2. As we have T (A,D(ε)) ≥
∑
u∈[m] Tu(A,D(ε)) ≥∑

u∈[m] T (A′,D′(ε)), we obtain T (A,D(ε)) ≥ mT ∗/2.

C Omitted proofs in Section 3

C.1 Proof of Lemma 3

Proof. Fix π∗ : X → [K]. From the definitions of pt in (2) andX0, and the fact that θ̂t is an unbiased
estimator of θt as shown in (4), we have

RT (π∗) = E

[
T∑
t=1

〈θt, φ(Xt, It)− φ(Xt, π
∗(Xt))〉

]

= E

 T∑
t=1

〈
θt,
∑
i∈[K]

pt(Xt, i)φ(Xt, i)− φ(Xt, π
∗(Xt))

〉
≤ E

 T∑
t=1

〈
θt,
∑
i∈[K]

qt(Xt, i)φ(Xt, i)− φ(Xt, π
∗(Xt))

〉+ 2γT

= E

 T∑
t=1

〈
θt,
∑
i∈[K]

qt(X0, i)φ(X0, i)− φ(X0, π
∗(X0))

〉+ 2γT

= E

 T∑
t=1

〈
θ̂t,
∑
i∈[K]

qt(X0, i)φ(X0, i)− φ(X0, π
∗(X0))

〉+ 2γT

= E

[
T∑
t=1

(〈
ˆ̀
t, qt(X0)

〉
− ˆ̀

t(π
∗(X0))

)]
+ 2γT. (14)
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From [Lattimore and Szepesvári, 2020, Theorem 28.5], for any x ∈ X , (qt(x))t∈[T ] defined by the
FTRL procedure (2) satisfies

T∑
t=1

(〈
ˆ̀
t, qt(X0)

〉
− ˆ̀

t(π
∗(X0))

)
≤

T∑
t=1

(〈
ˆ̀
t(x), qt(x)− qt+1(x)

〉
− 1

η(x)
D(pt+1(x), pt(x))

)
− ψ(q1(x))

η(x)
. (15)

Combining (14) and (8) with the fact that ψ(q1(x)) = ψ(1/K) = −K
β−1
α , we obtain the desired

inequality.

C.2 Proof of Lemma 5

Proof. From the definition of pt in (2), as we have V (pt) � γV (p0), we have

φ(x, i)>V (pt)
−1φ(x, i) ≤ φ(x, i)>(γV (p0))−1φ(x, i) =

1

γ
φ(x, i)>V (p0)−1φ(x, i) ≤ λ(p0)

γ
=
λ0
γ
.

(16)

Further, as we have V (pt) � (1 − γ)V (qt) � (1 − γ)g(x)qt(x, i)φ(x, i)φ(x, i)>, from Lemma 8,
we have φ(x, i)>V (pt)

−1φ(x, i) ≤ 1
(1−γ)g(x)qt(x,i) . This, together with (16), yields (6). From the

definition (3) of θ̂t, we have∣∣∣ˆ̀t(x, i)∣∣∣ =
∣∣∣〈θ̂t, φ(x, i)

〉∣∣∣ =
∣∣`tφ(Xt, It)

>V (pt)φ(x, i)
∣∣

≤
√
φ(Xt, It)>V (pt)φ(Xt, It)φ(x, i)>V (pt)φ(x, i),

where we used Cauchy-Schwarz inequality and the assumption that |`t| ≤ 1. From this and (6), we
have (7).
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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Justification: Assumptions are provided in Sections 2.1 and 3.1. Proofs are provided except
in cases where it is obvious from other lemmas/theorems combinations or from existing
literature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This study does not involve numerical experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
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tions to faithfully reproduce the main experimental results, as described in supplemental
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This study does not involve numerical experiments.
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that is necessary to appreciate the results and make sense of them.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The assumptions made should be given (e.g., Normally distributed errors).
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or cloud provider, including relevant memory and storage.
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on theoretical research and is not expected to have any
societal impact.
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• The answer NA means that there is no societal impact of the work performed.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper focuses on theoretical research and is not expected to have any
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
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• At submission time, remember to anonymize your assets (if applicable). You can either
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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