
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENT-CHAINED POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study Cooperative Multi-Agent Reinforcement Learning (MARL), where the
aim is to train decentralized policies that maximize a shared return. Existing meth-
ods typically employ either iterative best-response updates, which converge only
to Nash Equilibria (NE) that may be far from the global optimum, or simultaneous
learning with centralized critics, which lack convergence guarantees to the opti-
mal joint policy without strong assumptions on decomposable value functions.
We introduce the Agent-Chained Belief MDP (AC-BMDP), which reformulates
MARL as a serialized decision process where agents act sequentially while main-
taining beliefs over actions taken by preceding agents. This enables the definition
of agent-specific value functions that are naturally chained together. Building on
this framework, we propose Agent-Chained Policy Iteration (ACPI) and prove that
it converges to the globally optimal joint policy. We further develop this frame-
work into a practical actor–critic algorithm, Agent-Chained Policy Optimization
(ACPO). On standard benchmarks, ACPO consistently surpasses state-of-the-art
baselines, with the performance advantage growing significantly as the number of
agents increases.

1 INTRODUCTION

Cooperative multi-agent systems are increasingly employed to tackle complex tasks ranging from
autonomous vehicle fleets to distributed sensor networks, where decentralized coordination is re-
quired (Dafoe et al., 2020). The goal of Cooperative Multi-Agent Reinforcement Learning (MARL)
is to learn a set of policies that enable multiple agents to collectively maximize a shared return. De-
spite substantial progress, achieving decentralized (fully factorized) policies that provably converge
to the global optimum remains an open challenge.

Existing MARL methods largely fall into one of two categories: iterative best-response updates or
simultaneous policy updates. First, iterative best-response updates bypass the problem of joint policy
optimization by instead solving for a game-theoretic equilibrium. For instance, Multi-Agent Policy
Iteration (MA-PI) (Zhong et al., 2024) adopts the iterative best-response approach which is designed
to converge to a Nash equilibrium (NE), and provides the foundation for practical algorithms such
as HAPPO (Kuba et al., 2022) and HATRPO (Zhong et al., 2024). However, NEs are a fixed point
where policies cannot be unilaterally improved, and this can be arbitrarily far from the optimal joint
policy in fully cooperative settings(see Table 1 for a simple illustration). Furthermore, they require
each agent to be updated in turn while holding the other agents fixed. When these methods are
extended to high-dimensional settings, this prolongs training time and prohibits scaling to a larger
number of agents in practice.

The second approach is simultaneous policy updates, which considers the multi-agent problem as
a single-agent MDP defined over the joint action space. A wide range of algorithms follow this
paradigm, which includes, but not limited to, MAPPO (Yu et al., 2022) and MADDPG (Lowe et al.,
2017). These methods are natural extensions of single-agent RL, where all agents are trained in
parallel, making them simple to implement and scalable in practice. However, they typically rely
on a centralized value function defined over the joint action space, while policies must remain de-
centralized during execution. This mismatch creates a gap between training and deployment, and
convergence to an optimal policy often requires additional assumptions such as value decomposi-
tion (Rashid et al., 2018; Zhang et al., 2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Centralized Critics (left) commonly used in prior work and Decentralized Critics (right)
with agent chaining used in ACPO.

In summary, state-of-the-art MARL methods can largely be categorized into iterative best-response
updates or simultaneous updates. Iterative best-response methods offer convergence guarantees, but
only to an NE, and their sequential updates lead to prohibitive training costs as the number of agents
increases. Simultaneous update methods avoid this bottleneck but lack convergence guarantees un-
less strong assumptions are imposed. Ultimately, neither class is fundamentally designed to ensure
convergence to the globally optimal joint policy that maximizes return.

In this work, we leverage a key property of MARL: Any simultaneous problem can be recast as
a sequential one where the agents take actions sequentially. However, this serialized version of
the problem cannot be solved directly since each agent cannot observe the actions executed by
other agents. We formalize this by introducing the Agent-Chained Belief MDP (AC-BMDP), which
is an MDP with the belief over the actions by preceding agents. While the formulation chains
agents sequentially, each agent still executes its own policy independently, consistent with the CTDE
paradigm. The combination of serialization and the notion of a belief creates well-defined agent-
specific value functions which are naturally chained to the value function of the next agent.

Our main theoretical contribution is Agent-Chained Policy Iteration (ACPI), which we prove conver-
gence to the globally optimal joint policy in the underlying Multi-Agent MDP. Building on ACPI, we
introduce Agent-Chained Policy Optimization (ACPO), a practical actor-critic algorithm under the
Centralized Training with Decentralized Execution (CTDE) setting. Unlike iterative best-response
updates, our formulation aims for optimal cooperative policies and facilitates parallel policy updates.
Also, unlike simultaneous policy updates where the centralized value functions and fully factorized
policies are not aligned without proper assumptions, our agent-chained formulation ensures that
value functions and policies are inherently aligned (see Figure 1).

Empirically, we evaluate our approach on a suite of standard MARL benchmarks, including Multi-
Robot Warehouse, SMACv2 and MA-MuJoCo. We show that ACPO consistently outperforms
strong baselines on all tasks, where the gap widens as the number of agents increases. To the best
of our knowledge, ACPO is the first algorithm under CTDE that directly targets convergence to the
globally optimal policy, instead of a Nash equilibrium.

2 BACKGROUND

2.1 MULTI-AGENT MDP

We consider a cooperative multi-agent environment withN = {1, . . . , N} agents, formally defined
as a Multi-Agent Markov Decision Process (MMDP) (Boutilier, 1996). At time step t, each agent
i ∈ N takes action a(i)t ∈ A(i) sampled from policy π(i)(a

(i)
t | st) where st ∈ S is the state. The

state transition is Markovian, i.e. the next state st+1 is given by transition function T (st+1|st, a⃗t)
where a⃗t is the joint action a⃗t = [a

(1)
t , . . . , a

(N)
t]. Each agent receives shared reward rt generated

by the common reward function R(st, a⃗t).

The goal of the multi-agent RL task is to find a set of agent policies π⃗ = [π(1), . . . , π(N)] that
maximize the total expected return J = Eτ∼Pr(τ |π⃗) [

∑
t γ

trt] where γ is the discount factor. As
in previous work on cooperative MARL, we assume that the policies π⃗ are allowed to be trained in
a centralized manner, but require decentralized execution, known as the Centralized Training with
Decentralized Execution (CTDE) setting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 PREVIOUS APPROACHES IN COOPERATIVE MARL

Iterative best-response update (Iterative BR) One way to solve MMDPs is to define a re-
duced MDP for each agent and learn the best response policy in order to converge to a Nash
equilibrium (NE) (Bertsekas, 2020). Formally, each agent i solves its own reduced MDP
⟨S,A(i), T (i), R(i)⟩, where T (i)(st+1|st, a(i)t) := Eπ⃗−i [T (st+1|st, a(i)t , a⃗−i)], and a⃗−i is the joint
action excluding the action of agent i and is distributed according to the most recent policies π⃗−i.
The reward function is marginalized similarly as R(i)

t (st, a
(i)
t) = Eπ⃗−i [R(st, a

(i)
t , a⃗−i)]. Recent

methods such as HATRPO (Kuba et al., 2022) and HAPPO (Zhong et al., 2024) leverage this insight
and use single-agent RL methods such as TRPO (Schulman et al., 2015) and PPO (Schulman et al.,
2017) to train the best response policy for each agent, respectively. However, this only approximates
to an NE where each agent cannot unilaterally improve its policy, or Quantal Response Equilib-
rium (QRE) (Liu et al., 2024) which is an NE defined over the entropy-augmented reward function.
Crucially, there is no guarantee that this NE or QRE will coincide with a globally optimal policy in
the underlying MMDP. Furthermore, Iterative BR does not scale well in practice. Since each agent
is trained sequentially while holding the other agent fixed, training time significantly increases as
the number of agents increase.

Simultaneous policy update An alternative way to solve MMDPs is to simply view the problem
as a single-agent MDP defined over the joint action space. Previous methods such as MAPPO (Yu
et al., 2022) and MADDPG (Lowe et al., 2017) train a centralized critic over this MDP. MAPPO,
for instance, trains each policy via an objective of the form, J(π(i)) = Eπ(i),π⃗−i

[
A(s, a(i), a⃗−i)

]
where A(s, a⃗) is the advantage computed via Generalized Advantage Estimation (GAE) (Schulman
et al., 2016). At first glance, it may seem that this approach is maximizing return over factorized
policies, since each policy π(i) is trained simultaneously. However, a more careful look reveals that
each agent updates its policy to maximizeA(i)(s, a(i)) where a⃗−i is marginalized out. This does not
guarantee that the joint policy will be improved unless we impose strong assumptions such as value
decomposition (Rashid et al., 2018; Zhang et al., 2021). In general, the convergence guarantees
of these methods are not well-understood. In comparison to Iterative BR approaches, the parallel
nature of the policy updates mitigates the bottleneck during training time.

2.3 LIMITATION OF PREVIOUS APPROACHES

Consider the simple Matrix Game in Table 1 with 2 agents and 3 actions, which was considered in
Liu et al. (2024). The three NEs are (A,A), (B,B), (C,C), since there is no incentive for either
agent to change its action at each of those NEs. (C,C) is a global optimum of the game since it
achieves the highest return. As shown in Table 1, Iterative BR and simultaneous policy update, which
are the foundations for HAPPO and MAPPO, respectively, cannot escape suboptimal NEs. The only
way it can converge to (C,C) is for the policy to be initialized with high probability towards (C,C).
However, it is not desirable to rely on the initialization of the policy for finding good NEs, since it
implies that extensive hyperparameter tuning is required. Similarly, Heterogenous-Agent Soft Policy
Iteration (HASPI) (Liu et al., 2024) can only find the global optimum for specific combinations of the
entropy parameter α and the initialization of the policy (e.g. α = 5 and π(1)(A) = π(2)(A) = 0.6),
if it happens to coincide with the QRE. Similar to NE, there is no guarantee that the QRE will
coincide with the global optimum, and thus generally requires extensive hyperparameter tuning to
find the right balance between reward and entropy maximization.

Our goal in the rest of the paper is to derive a principled algorithm which directly targets the globally
optimal policy in the MMDP. In Section 5, we present Agent-Chained Policy Iteration (ACPI) which
converges to the global optimum regardless of the policy initialization. Detailed analysis on how
ACPI is able to solve the Matrix Game introduced in Table 1 is provided in Appendix G.

3 SERIALIZATION

To address the challenges in simultaneous decision-making by multiple agents, we adopt a key
property of MMDPs, namely that we can solve an equivalent serialized version of the problem,
where each agent takes actions sequentially. This serialization approach, while explored in Bertsekas
(2019), Kovařı́k et al. (2023) and Peralez et al. (2025) has not been successfully utilized in the Deep

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A B C
A 5 −20 −20
B −20 10 −20
C −20 −20 20

3x3 Matrix Game
A B C

A 1 0 0
B 0 0 0
C 0 0 0

Simul. Update

A B C
1 0 0
0 0 0
0 0 0
Iterative BR

A B C
1 0 0
0 0 0
0 0 0
HASPI (α=1)

A B C
0 0 0
0 0 0
0 0 1
HASPI (α=5)

A B C
0 0 0
0 0 0
0 0 1

ACPI

Table 1: A 3x3 Matrix Game and converged policy values when initialized to π(1)(A) = π(2)(A) =
0.6. ACPI (Ours) converges to the global optimum (C,C) regardless of the initialization.

MARL setting. Specifically, each time step t is decomposed into N micro-steps. Thus, there are
now two timescales at each decision point: the time step denoted by t and micro-steps denoted by
t′, where ⌊t′/N⌋ = t. Each micro-step t′ corresponds to an agent i committing to individually
executing action a(i). Under this framework, the MMDP state is now augmented to include the
actions taken by previous agents, i.e. [st, a⃗<it], where a⃗<it = [a

(1)
t , . . . , a

(i−1)
t]. The state transitions

within micro-steps are deterministic. A full state transition by T only occurs after all N agents have
committed their actions:

T ([st, a⃗
<i+1
t] | [st, a⃗<it], a

(i)
t) = I{[⃗a<it , a

(i)
t] = a⃗<i+1

t } if i ∈ {1, . . . , N − 1}

T ([st+1, ∅] | [st, a⃗<Nt], a
(N)
t) = T (st+1 | st, a⃗t)

Similarly, rewards are only generated by MMDP reward function R once all the agents have com-
mitted their actions.

R([st, a⃗
<i
t], a

(i)
t) =

{
R(st, a⃗t) if i = N

0 otherwise

Finally, the discount factor is denoted as γ′ where γ′ = γ1/N .

The optimal policy for this serialized problem is in fact optimal for the original MMDP as well.

Theorem 3.1. (Peralez et al., 2025) For every MMDP, there exists a serialized multi-agent problem,
of which its optimal policy is also optimal for the underlying MMDP.

Serialization has a number of practical advantages. First, by defining the action space on individual
actions |A(i)|, the action space of each timestep is reduced. It effectively mitigates the exponential
complexity associated with the joint action space |A| = |A(i)|N for search. Second, serialization
inherently facilitates credit assignment across individual actions as all of the components of the
MDP are defined with respect to individual actions. In contrast, the reward functionR in the original
problem is a function of the joint action a⃗, and thus requires a separate credit assignment mechanism
(e.g. Foerster et al. (2018); Wang et al. (2022)) to attribute contributions of individual actions a(i)
to overall rewards and returns. Finally, serialization changes the perspective of the problem into a
single-agent MDP, thus making it easier to apply single-agent techniques and algorithms.

4 AGENT-CHAINED BELIEF MDP (AC-BMDP)

While serialization transforms the multi-agent problem into a sequential single-agent MDP over
micro-steps and individual actions, a critical challenge remains: the actions taken by other agents
are not observable. This effectively renders the serialized problem as a partially observable one,
even if the underlying problem is fully observable. As a consequence, this necessitates the definition
of a belief MDP, where the belief state represents a distribution over the actions taken by other
agents. To this end, we propose the Agent-Chained Belief MDP (AC-BMDP), which is designed
such that (1) the optimal policy coincides with that of the underlying MMDP and (2) incorporates
the notion of a belief over preceding actions.

Motivated by (Nayyar et al., 2013), The action space in an AC-BMDP is no longer the actions a(i),
but rather an action distribution ϕ(i) ∈ ∆(A(i)). The belief b(i)t (⃗a<it) ≜ Pr(⃗a<it | st, ϕ⃗<it) for agents
i ∈ {2, . . . , N} is defined as the distribution over the previous agent actions within the current time

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

step t. For agent 1, the belief is empty as there are no preceding agents. The state space [st, b
(i)
t]

now augments the state st with agent i’s current belief. The reward function and transition function
are defined as follows:

R
(
[st, b

(i)
t], ϕ

(i)
t

)
=

∑
a⃗<i
t

b
(i)
t (⃗a<it)

∑
a
(i)
t

ϕ
(i)
t (a

(i)
t)R

(
[st, a⃗

<i
t], a

(i)
t

)
.

T
(
[st, b

(i+1)
t] | [st, b(i)t], ϕ

(i)
t

)
=

{
1 if b(i+1)

t = τ
(
[st, b

(i)
t], ϕ

(i)
t

)
0 otherwise

if i ∈ {1, . . . , N − 1}

T ([st+1, ∅] | [st, b(N)
t], ϕ

(N)
t) =

∑
a⃗<N

b
(N)
t (⃗a<Nt)

∑
a
(N)
t

ϕ
(N)
t (a

(N)
t)T (st+1 | st, a⃗<Nt , a

(N)
t)

where τ is the belief update rule provided in Appendix A.

Our formulation as an AC-BMDP highlights the fact that, by the nature of simultaneous action
selection, each agent must infer the previous agents’ actions in order to make optimal decisions. It is
worth noting that opponent modelling and the prediction of other agents’ actions have a rich history
in MARL (Albrecht & Stone, 2018). However, while previous work focused on opponent modelling
as an additional algorithmic module, we derive this formally as something necessary for solving the
underlying MMDP and finding the globally optimal policy.

5 AGENT-CHAINED POLICY ITERATION

In this section, we present a policy iteration procedure called Agent-Chained Policy Iteration (ACPI)
which is defined on the AC-BMDP, and formally prove that the fixed point of this procedure is also
optimal in the underlying MMDP. Unlike Iterative BR (Zhong et al., 2024) where the fixed point of
policy iteration is a NE, we show that ACPI is guaranteed to converge to the global optimum of the
MMDP.

We start by defining the Bellman operator under the AC-BMDP.
Definition 5.1. (Agent-Chained Bellman Operators)

(T π⃗Q(1))([s, b(N)], ϕ(N)) := R
(
[s, b(N)], ϕ(N)

)
+ γ′Es′∼T (·|[s,b(N)],ϕ(N))

ϕ(1)∼π(1)(·|s′)

[
Q(1)

(
s′, ϕ(1)

)]
(T π⃗Q(i+1))([s, b(i)], ϕ(i)) := γ′E b(i+1)=T ([s,b(i)],ϕ(i))

ϕ(i+1)∼π(i+1)(·|s,b(i+1))

[
Q(i+1)

(
[s, b(i+1)], ϕ(i+1)

)]
if i ∈ {1, . . . , N − 1},

where we used the fact that R = 0 for the micro-steps when agents i ∈ {1, . . . N − 1} take actions.
Note that we have defined the Bellman operators separately for agent N since its actions will affect
the actual transitions and rewards.

We immediately see the benefit of serialization, where we now have a well-defined set of decen-
tralized value functions for each agent. This is in sharp contrast to previous approaches which
required restrictions on the environment to decompose the value function into individual utility
functions (Peng et al., 2021; Rashid et al., 2018; Zhang et al., 2021).

The Q-values also have the intended meaning, which is the expected return given that agent i is in
state [s, b(i)] and takes action distribution ϕ(i) (which reduces to action a(i) for deterministic ϕ(i)).
This now provides us with a natural way to assign credit for each agent. Moreover, we have now
chained the agents by their Q-values, as the target for Q(i) is Q(i+1). This provides an intuitive
interpretation for policy evaluation, where Q(i)([s, b(i)], ϕ(i)) considers how taking an action ϕ(i) at
state [s, b(i)] will affect the next agent’s Q-values, Q(i+1).

By repeatedly applying T π⃗ , we can obtain the Q-values for a given joint policy π⃗:
Lemma 5.2. (Agent-Chained Policy Evaluation) The Agent-Chained Bellman Operators in Def-
inition 5.1 are a contraction mapping under the infinity norm. Thus, starting with any Q⃗ =
⟨Q(1), . . . Q(N)⟩ and a joint policy π⃗ = ⟨π(1), . . . , π(N)⟩, the repeated application of T π⃗ will return
a set of Q-values for each agent ⟨Q(1,π⃗), . . . Q(N,π⃗)⟩ in the limit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof. See Appendix C.1.

During policy improvement, each agent’s policy π(i) will be updated to select the greedy action with
respect to their own Q(i),

∀i, b(i), s, π(i)
new([s, b

(i)])← argmax
ϕ(i)

Q(i,π⃗)([s, b(i)], ϕ(i)). (1)

Lemma 5.3. (Agent-Chained Policy Improvement) Given a deterministic policy π⃗ =
⟨π(1), . . . , π(N))⟩, let Q(i,π⃗) denote the i-th agent’s value function for a joint policy π⃗. If we up-
date the new policy π⃗new = ⟨π(1)

new, . . . , π
(N))
new ⟩ by Eq. 1, then

Q(i,π⃗new)(s, b(i), ϕ(i)) ≥ Q(i,π⃗)([s, b(i)], ϕ(i))

Proof. See Appendix C.2.

The policy evaluation step using Definition 5.1 and policy improvement with Eq. 1, also high-
lights an important property of agent-chaining: the policy π(i)(ϕ(i) | s, b(i)) and Q-values
Q(i)([s, b(i)], ϕ(i)) are both defined on the same domain [s, b(i)] and individual actions ϕ(i). While
this fact is taken for granted in single-agent RL, this is unlike previous methods in MARL, where
using a centralized value function results in a mismatch: e.g. Q(s, a⃗) is used to update π(i)(a(i) | s)
for simultaneous policy update methods (Lowe et al., 2017; Yu et al., 2022).

We now provide our main theoretical result, that ACPI converges to the optimal policy in both the
AC-BMDP as well as the underlying MMDP.
Theorem 5.4. (Agent-Chained Policy Iteration) Starting from any deterministic policy π⃗ ∈ Π, the
sequence of value functions Q⃗π⃗n and the improved policies π⃗n+1 converges to the optimal value
functions and the policy of the AC-BMDP.

i.e. Q(i,∗)([s, b(i)], ϕ(i)) = limn→∞Q(i,π⃗n)([s, b(i)], ϕ(i)) ≥ Q(i,π⃗)([s, b(i)], ϕ(i)) for any
π⃗, i, s, b(i), ϕ(i). Furthermore the optimal policy of the AC-BMDP is also optimal in the underlying
MMDP.

Proof. See Appendix C.4.

The proof for Theorem 5.4 makes use of the fact that there is no loss of generality when considering
the space of deterministic action distributions (Corollary C.2). When ϕ(i) is deterministic for all
agents, the belief b(i) is also deterministic, and the AC-BMDP will reduce to a serialized version of
the MMDP.

The full pseudocode for policy iteration is provided in Algorithm 1 in Appendix E. To the best of
our knowledge, ACPI is the first policy iteration procedure which converges to the globally optimal
policy and naturally extends to practical algorithms in the CTDE setting.

Finally, we note one subtle but important difference when comparing ACPI to MA-PI (Algorithm
1 in Zhong et al. (2024)), which serves as the basis for practical Iterative BR approaches, such
as HAPPO and HATRPO. During policy improvement, both MA-PI and ACPI enumerates over all
agents i ∈ {1, . . . N}. However, for MA-PI, the policy needs to be improved in sequence, where π(i)

can only be updated after π⃗<i has been updated. On the other hand, the result of policy evaluation
for ACPI is a set of Q-values Q⃗ = ⟨Q(1,π⃗), . . . Q(N,π⃗)⟩ for each agent, and policy improvement for
each agent π(i) only requires its own Q(i,π⃗). Thus, all agents under ACPI can update their policies
in parallel, This difference will prove to be crucial for developing a practical algorithm (ACPO) in
the following section.

6 AGENT-CHAINED POLICY OPTIMIZATION

Building on the ACPI derived from an AC-BMDP, we introduce Agent-Chained Policy Optimization
(ACPO), a practical algorithm designed to approximate the optimal policy which maximizes return.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

There are several ways to approximate the policy iteration procedure and derive a practical al-
gorithm applicable to high-dimensional domains. One such method is to use Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) combined with Generalized Advantage Estima-
tion (GAE) (Schulman et al., 2016), which is a popular choice in single-agent domains.

Following the Bellman operators in Definition 5.1, the Temporal Difference (TD) residual can be
written as follows:

ζ
(i)
t = γ′V (i+1)

(
[st, b

(i+1)
t]

)
− V (i)

(
[st, b

(i)
t]

)
, ∀i = {1, . . . N − 1}

ζ
(N)
t = R

(
[st, b

(N)
t], ϕ

(N)
t

)
+ γ′V (1)(st+1)− V (N)

(
[st, b

(N)
t]

)
≈ rt + γ′V (1)(st+1)− V (N)

(
[st, b

(N)
t]

)
where again we have used the fact that the reward R is 0 for any agent i ∈ {1, . . . N − 1}.
The advantage is defined as the exponentially weighted sum over the TD residuals,

A
(i)
t =

N∑
j=i

(γ′λ′)j−iζ
(j)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−iζ
(j)
t+k,

where the detailed derivation is provided in Appendix D.

Using the advantage estimates, the PPO objective can be written as a variant of policy gradient with
a clipped probability ratio:

L(i)(θ) = E
ϕ
(i)
t ∼π(i)

θold
(·|st,b(i)t)

[min(w(i)(st, b
(i)
t , ϕ

(i)
t)A

(i)
t , clip

(
w(i)(st, b

(i)
t , ϕ

(i)
t), 1± ϵ

)
A

(i)
t)]

(2)

where w(i)(st, b
(i)
t , ϕ

(i)
t) := π

(i)
θ (ϕ

(i)
t |st, b

(i)
t)/π

(i)
θold

(ϕ
(i)
t |st, b

(i)
t).

The objective in Eq. 2 can be further simplified and defined for a policy that produces actions a(i)

rather than action distribution ϕ(i).

L(i)(θ) = E
a
(i)
t ∼π(i)

θold
(·|st,b(i)t)

[min(w(i)(st, b
(i)
t , a

(i)
t)A

(i)
t , clip

(
w(i)(st, b

(i)
t , a

(i)
t), 1± ϵ

)
A

(i)
t)]

(3)

where w(i)(st, b
(i)
t , a

(i)
t) := π

(i)
θ (a

(i)
t |st, b

(i)
t)/π

(i)
θold

(a
(i)
t |st, b

(i)
t). We provide details on the equiva-

lence between Eq. 2 and Eq. 3 in Appendix F.

Overall, we now have a principled PPO-objective derived from an AC-BMDP, with the probability
ratio w(i) defined for each individual policy π(i). This is unlike previous work, which contains a
probability ratio that is the product of N policies (HAPPO) or ignores the product, resulting in a
biased objective (MAPPO). For instance, HAPPO and HATRPO contains an importance sampling
ratio defined in the form, w(i)

BR(s, a⃗) :=
∏N
j=1 π

(j)
θ (a(j)|s)/

∏N
j=1 π

(j)
θold

(a(j)|s). However, w(i)
BR is

problematic as the importance sampling ratio of a product of policies has variance which scales
exponentially with the number of agents (Wang et al., 2021b). For MAPPO, the correct importance
sampling ratio is also w(i)

BR. However, MAPPO simply ignores the product, and thus results in a
biased PPO-objective.

It is also worth noting that with PPO as the particular choice, ACPO results in a final objective
similar to MAPPO with a few important modifications. Our advantage computation, which uses
agent-chaining, is the most crucial change. In the next section, we show that this modification leads
to a substantial increase in empirical performance compared to MAPPO, especially in complex
domains with many agents.

7 EXPERIMENTAL RESULTS

Environments We focus our empirical evaluation on Multi-Robot Warehouse (RWARE) (Pa-
poudakis et al., 2021) which simulates a real-world warehouse environment consisting of multiple

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40
0

10

20

Ep
iso

de
 R

et
ur

n

Small 2-Easy

0 10 20 30 40
0

20

40

Small 4-Medium

0 20 40 60
0

20

40

60

80
Small 8-Hard

0 25 50 75 100
0

50

100

Small 12-Hard

0 10 20 30 40
Steps (106)

0

10

20

30

40

Ep
iso

de
 R

et
ur

n

Tiny 2-Easy

0 10 20 30 40
Steps (106)

0

25

50

75

100
Tiny 4-Medium

0 10 20 30 40
Steps (106)

0

100

200

Tiny 8-Hard

0 20 40 60
Steps (106)

0

100

200

300

Tiny 12-Hard

ACPO (ours) MAPPO HAPPO HATRPO

Figure 2: Return for Multi-Robot Warehouse (RWARE) where return is the number of items col-
lected and delivered successfully. The mean and standard error over 10 seeds are reported for all
tasks and algorithms except HATRPO and HAPPO on Small 12-Hard (5 seeds) and Tiny 12-Hard
(8 seeds).

0 2 4 6 8 10
Steps (106)

1000

2000

Ep
iso

de
 R

et
ur

n

Walker2d 2 × 3

0 2 4 6 8 10
Steps (106)

0

500

1000

1500

HalfCheetah 2 × 3

0 2 4 6 8 10
Steps (106)

0

500

1000

1500
HalfCheetah 6 × 1

0 2 4 6 8 10
Steps (106)

0

1000

2000

3000

4000
Ant 2 × 4

0 2 4 6 8 10
Steps (106)

0

1000

2000

3000

4000
Ant 4 × 2

0 2 4 6 8 10
Steps (106)

100

200

300

400
2-Agent Humanoid

ACPO (ours) MAPPO HAPPO HATRPO

Figure 3: Mean Return and Standard Error over 10 seeds for MA-MuJoCo (Gymnasium).

robots picking up requested shelves and returning them to a designated location. The main chal-
lenge in RWARE is coordination where the agents must avoid collisions and maximize the number
of shelves successfully delivered. We also evaluate our approach on StarCraft Multi-Agent Chal-
lenge v2 (SMACv2) (Ellis et al., 2023) and Multi-Agent MuJoCo (Peng et al., 2021), which are
popular benchmarks in cooperative MARL with discrete and continuous action spaces, respectively.
For SMACv2 and MA-MuJoCo, we closely follow the experimental setup in Zhong et al. (2024).

Baselines Our main baselines for ACPO are MAPPO which represents Simultaneous policy up-
date methods and HAPPO/HATRPO which represent Iterative BR methods.1 MAPPO and HAPPO
are the current state-of-the-art on-policy methods in the three domains we consider. Following the
baselines considered in Zhong et al. (2024), we also compare against QMIX (Rashid et al., 2018)
an off-policy value-based method for discrete action spaces which shows strong performance in
SMACv2. QMIX is a value decomposition method which aims to learn individual utility functions
which can be aggregated to represent the underlying Q-values.

For a fair comparison, we use the code 2 for all baselines provided in MARLLib (Hu et al., 2023),
with the same PPO backbone. For all baselines, we use the reported hyperparameters from Pa-
poudakis et al. (2021) for RWARE, Ellis et al. (2023) for SMACv2 and Zhong et al. (2024) for MA-
MuJoCo, and only tune appropriate values when it failed to reproduce the reported performance.
For MAPPO, we found the reported hyperparameters to be sufficient for reproducing the results.
For ACPO, the same hyperparameters as MAPPO are used for all experiments in order to isolate
the effect of agent-chaining, and do not conduct any additional hyperparameter tuning specific to
ACPO. We provide details on the hyperparameters in Appendix I.

Comparative Evaluation Our main results in Figure 2 show that ACPO outperforms all base-
lines3 on all tasks in RWARE, despite having the same backbone PPO and the same hyperparameters

1We do not compare HATRPO on SMACv2 as it exceeds our computational budget for this work. Moreover,
the results from Zhong et al. (2024) showed HATRPO had weaker performance in SMACv2 in comparison to
HAPPO, MAPPO and QMIX. Details are provided in Appendix J.

2Our anonymous code is available at https://anonymous.4open.science/r/
anonymous-acpo-BD51.

3We also compared with QMIX (Rashid et al., 2018) on RWARE. However, as QMIX failed to learn any
meaningful behavior, we do not report their full results. This is consistent with the failure of QMIX on RWARE
reported in Papoudakis et al. (2021).

8

https://anonymous.4open.science/r/anonymous-acpo-BD51
https://anonymous.4open.science/r/anonymous-acpo-BD51

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Mean return and standard error over 10 seeds on SMACv2.

VDN QMIX HAPPO MAPPO ACPO (Ours)

protoss 5 vs 5 16.20 ± 0.49 16.53 ± 0.55 15.93 ± 0.54 17.03 ± 0.92 18.21 ± 0.46
zerg 5 vs 5 11.77 ± 0.41 14.33 ± 0.63 11.81 ± 0.63 11.84 ± 0.80 15.16 ± 0.98

protoss 10 vs 11 14.74 ± 0.50 14.53 ± 1.06 13.39 ± 0.50 14.57 ± 0.33 15.06 ± 0.63
terran 10 vs 11 12.19 ± 0.60 13.50 ± 0.73 10.57 ± 0.58 12.03 ± 0.50 13.35 ± 0.69
zerg 10 vs 11 13.38 ± 0.63 14.61 ± 0.66 10.77 ± 0.35 12.48 ± 0.52 13.20 ± 0.33

as MAPPO. We also see that the gap widens substantially as the number of agents increases, where
the widest gap is seen in 8-agent and 12-agent domains. This provides evidence that ACPO per-
forms substantially better when the environment requires higher levels of coordination. Intuitively,
the 12-agent maps require the most coordination among agents since it is the scenario with the most
agents crowded in a tight space. Thus, the performance gap jumps even further for the tiny map.

In the results for MA-MuJoCo (Gymnasium) in Figure 3 and SMACv2 in Table 2, ACPO is on par
with or outperforms all baselines on all tasks. Notably, ACPO outperforms MAPPO on all tasks
with the same hyperparameters, which demonstrates the benefit of agent-chaining. For SMACv2,
ACPO outperforms all on-policy baselines, MAPPO and HAPPO. ACPO is also the only on-policy
algorithm competitive with QMIX.

Ablation Results We ablate the core component of ACPO, which is the advantage computation
based on agent chaining. As shown in Figure 4, the variant ACPO without agent chaining can be
interpreted as MAPPO augmented with belief states as additional policy inputs. The performance of
this variant remains close to MAPPO, indicating that the observed gains of ACPO are not attributable
to the extra input, but rather to the agent-chained advantage computation itself.

0 10 20 30 40
Steps (106)

0

10

20

30

Ep
iso

de
 R

et
ur

n

Small 2-Easy

0 20 40 60 80 100
Steps (106)

0

50

100

Small 12-Hard

0 2 4 6 8 10
Steps (106)

0

500

1000

1500
HalfCheetah 2 × 3

0 2 4 6 8 10
Steps (106)

0

500

1000

1500
HalfCheetah 6 × 1

ACPO ACPO w/o Agent Chaining MAPPO

Figure 4: Ablation

2-Easy 4-Medium 8-Hard 12-Hard
0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e
(h

)
RWARE Small

ACPO (ours) MAPPO HAPPO HATRPO

Figure 5: Runtime

Runtime Statistics In Figure 5, we show the wall-clock training time of running MAPPO,
HAPPO, HATRPO and ACPO on RWARE for 5M timesteps. With the number of agents increasing
from 2 to 12, the runtime of ACPO remains comparable to MAPPO, and is substantially faster than
Iterative BR methods such as HAPPO and HATRPO, which require iteratively updating one agent
at a time. Overall, ACPO significantly outperforms baselines in terms of return with only minimal
additional computational overhead compared to MAPPO.

8 CONCLUSION

In this work, we introduced ACPI, a policy iteration procedure which returns the globally optimal
policy for the underlying Multi-Agent MDP (MMDP), as well as ACPO, its practical approximation
for Deep MARL. ACPO uses a novel architecture with decentralized critics chained together during
centralized training. To the best of our knowledge it is the first algorithm to address the long-
standing challenge of going beyond NEs and directly targeting convergence to the globally optimal
policy under CTDE. Theoretical insights are reflected in experimental results, where we showed
substantial increase in performance, especially in complex domains with many agents.

In single-agent RL, the development of principled yet practical algorithms such as PPO and SAC
have led to the wide application of RL in areas such as self-driving cars (Kiran et al., 2022) and
Large Language Models (LLMs) (Ouyang et al., 2022), among many others. Similarly, we hope
that ACPO forms the basis for better algorithms as well as a wider adoption of MARL to various
domains, including Multi-Agent LLMs (Wu et al., 2024; Liu et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this project, LLMs were used solely as an assist tool for improving the readability of this
manuscript. All ideas, proofs, and analyses are by the authors. The authors have verified and edited
all content generated by LLMs.

REFERENCES

Alekh Agarwal, Nan Jiang, and Sham M. Kakade. Reinforcement learning: Theory and algorithms.
2019. URL https://api.semanticscholar.org/CorpusID:148567317.

Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2018.01.002. URL https://www.sciencedirect.com/
science/article/pii/S0004370218300249.

Christopher Amato. A first introduction to cooperative multi-agent reinforcement learning, 2024.
URL https://arxiv.org/abs/2405.06161.

Dimitri Bertsekas. Multiagent value iteration algorithms in dynamic programming and reinforce-
ment learning, 2020. URL https://arxiv.org/abs/2005.01627.

Dimitri P. Bertsekas. Multiagent rollout algorithms and reinforcement learning. ArXiv,
abs/1910.00120, 2019. URL https://api.semanticscholar.org/CorpusID:
203610631.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proceed-
ings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’96, pp.
195–210, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc. ISBN 1558604179.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2020. doi: 10.1109/TITS.2019.2901791.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo,
Kate Larson, and Thore Graepel. Open problems in cooperative ai, 2020. URL https://
arxiv.org/abs/2012.08630.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.
net/forum?id=5OjLGiJW3u.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11794. URL https://ojs.aaai.
org/index.php/AAAI/article/view/11794.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591.
PMLR, 2018. URL http://proceedings.mlr.press/v80/fujimoto18a.html.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored mdps. In
Proceedings of the 15th International Conference on Neural Information Processing Systems:
Natural and Synthetic, NIPS’01, pp. 1523–1530, Cambridge, MA, USA, 2001. MIT Press.

Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang, Zhihui Li, Xiaojun
Chang, and Yaodong Yang. Marllib: A scalable and efficient multi-agent reinforcement learning
library. Journal of Machine Learning Research, 24(315):1–23, 2023. URL http://jmlr.
org/papers/v24/23-0378.html.

10

https://api.semanticscholar.org/CorpusID:148567317
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://arxiv.org/abs/2405.06161
https://arxiv.org/abs/2005.01627
https://api.semanticscholar.org/CorpusID:203610631
https://api.semanticscholar.org/CorpusID:203610631
https://arxiv.org/abs/2012.08630
https://arxiv.org/abs/2012.08630
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://ojs.aaai.org/index.php/AAAI/article/view/11794
http://proceedings.mlr.press/v80/fujimoto18a.html
http://jmlr.org/papers/v24/23-0378.html
http://jmlr.org/papers/v24/23-0378.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A sur-
vey. IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi:
10.1109/TITS.2021.3054625.

Vojtěch Kovařı́k, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisý. Rethink-
ing formal models of partially observable multiagent decision making (extended abstract). In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJ-
CAI ’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/783. URL https:
//doi.org/10.24963/ijcai.2023/783.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=EcGGFkNTxdJ.

Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet management via
multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pp. 1774–1783, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/
3219819.3219993. URL https://doi.org/10.1145/3219819.3219993.

Jiarong Liu, Yifan Zhong, Siyi Hu, Haobo Fu, QIANG FU, Xiaojun Chang, and Yaodong Yang.
Maximum entropy heterogeneous-agent reinforcement learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=tmqOhBC4a5.

Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent
reinforcement learning, 2025. URL https://arxiv.org/abs/2508.04652.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-
datch. Multi-agent actor-critic for mixed cooperative-competitive environments. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf.

Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentralized stochastic control
with partial history sharing: A common information approach. IEEE Transactions on Automatic
Control, 58(7):1644–1658, 2013. doi: 10.1109/TAC.2013.2239000.

Tianwei Ni, Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Recurrent model-
free RL is a strong baseline for many POMDPs, 2022. URL https://openreview.net/
forum?id=E0zOKxQsZhN.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in RL? decoupling memory from credit assignment. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
APGXBNkt6h.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
URL https://openreview.net/forum?id=cIrPX-Sn5n.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Boehmer, and Shimon Whiteson. FACMAC: Factored multi-agent centralised policy

11

https://doi.org/10.24963/ijcai.2023/783
https://doi.org/10.24963/ijcai.2023/783
https://openreview.net/forum?id=EcGGFkNTxdJ
https://openreview.net/forum?id=EcGGFkNTxdJ
https://doi.org/10.1145/3219819.3219993
https://openreview.net/forum?id=tmqOhBC4a5
https://openreview.net/forum?id=tmqOhBC4a5
https://arxiv.org/abs/2508.04652
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://openreview.net/forum?id=E0zOKxQsZhN
https://openreview.net/forum?id=E0zOKxQsZhN
https://openreview.net/forum?id=APGXBNkt6h
https://openreview.net/forum?id=APGXBNkt6h
https://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=cIrPX-Sn5n

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

gradients. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=wZYWwJvkneF.

Johan Peralez, Aurélien Delage, Jacopo Castellini, Rafael F. Cunha, and Jilles Steeve Dibangoye.
Optimally solving simultaneous-move dec-pomdps: The sequential central planning approach. In
AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February
25 - March 4, 2025, Philadelphia, PA, USA, pp. 23276–23285. AAAI Press, 2025. doi: 10.1609/
AAAI.V39I22.34494. URL https://doi.org/10.1609/aaai.v39i22.34494.

Aswin Raghavan, Saket Joshi, Alan Fern, Prasad Tadepallia, and Roni Khardonb. Planning in fac-
tored action spaces with symbolic dynamic programming. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, AAAI’12, pp. 1802–1808. AAAI Press, 2012.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 4295–4304. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/rashid18a.html.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 1889–1897, Lille, France, 07–
09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/schulman15.
html.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized ex-
ecution: Multi-agent conditional policy factorization. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
znLlSgN-4S0.

Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C. Green. Multi-agent reinforce-
ment learning for active voltage control on power distribution networks. In Proceedings of the
35th International Conference on Neural Information Processing Systems, NIPS ’21, Red Hook,
NY, USA, 2021a. Curran Associates Inc. ISBN 9781713845393.

Li Wang, Yupeng Zhang, Yujing Hu, Weixun Wang, Chongjie Zhang, Yang Gao, Jianye Hao,
Tangjie Lv, and Changjie Fan. Individual reward assisted multi-agent reinforcement learning.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 23417–23432. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/wang22ao.html.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. {DOP}: Off-policy
multi-agent decomposed policy gradients. In International Conference on Learning Representa-
tions, 2021b. URL https://openreview.net/forum?id=6FqKiVAdI3Y.

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2022. ISBN 9781713871088.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and

12

https://openreview.net/forum?id=wZYWwJvkneF
https://openreview.net/forum?id=wZYWwJvkneF
https://doi.org/10.1609/aaai.v39i22.34494
https://proceedings.mlr.press/v80/rashid18a.html
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=znLlSgN-4S0
https://openreview.net/forum?id=znLlSgN-4S0
https://proceedings.mlr.press/v162/wang22ao.html
https://openreview.net/forum?id=6FqKiVAdI3Y

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BAakY1hNKS.

Jianing Ye, Chenghao Li, Jianhao Wang, and Chongjie Zhang. Towards global optimality in
cooperative marl with the transformation and distillation framework, 2023. URL https:
//arxiv.org/abs/2207.11143.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=YVXaxB6L2Pl.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factoriz-
ing optimal joint policy of maximum-entropy multi-agent reinforcement learning. In Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 12491–12500. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/zhang21m.html.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1–67, 2024. URL http://jmlr.org/papers/v25/23-0488.html.

13

https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://arxiv.org/abs/2207.11143
https://arxiv.org/abs/2207.11143
https://openreview.net/forum?id=YVXaxB6L2Pl
https://openreview.net/forum?id=YVXaxB6L2Pl
https://proceedings.mlr.press/v139/zhang21m.html
https://proceedings.mlr.press/v139/zhang21m.html
http://jmlr.org/papers/v25/23-0488.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BELIEF UPDATE

τ
(
[st, b

(i)
t], ϕ

(i)
t

)
(⃗a<i+1
t) =

1

η([st, b
(i)
t], ϕ

(i)
t)

∑
a⃗<i
t

b
(i)
t (⃗a<it)T

(
[st, a⃗

<i+1
t]|[st, a⃗<it], ϕ

(i)
t

)
=

1

η([st, b
(i)
t], ϕ

(i)
t)

∑
a⃗<i
t

b
(i)
t (⃗a<it)

∑
a
(i)
t

ϕ
(i)
t (a

(i)
t)T

(
[st, a⃗

<i+1
t]|[st, a⃗<it], a

(i)
t

)
Finally, η is the normalization factor defined as

η([st, b
(i)
t], ϕ

(i)
t) =

∑
a⃗<i+1
t

∑
a⃗<i
t

b
(i)
t (⃗a<it)

∑
a
(i)
t

ϕ
(i)
t (a

(i)
t)T

(
[st, a⃗

<i+1
t]|[st, a⃗<it], a

(i)
t

)

B PROOF FOR THEOREM 3.1

The serialized multi-agent problem can be described as follows:

• Action space A(i) of individual actions for some i ∈ N
• States [st, a⃗<it] which augments the original state space with actions selected by previous

agents a⃗<it .

• Reward function

R([st, a⃗
<i
t], a

(i)
t) =

{
R(st, a⃗t) if i = N

0 otherwise

• Transition function

T ([st+1, ∅] | [st, a⃗<it], a
(i)
t) = T (st+1 | st, a⃗t) if i = N

T ([st, a⃗
<i+1
t] | [st, a⃗<it], a

(i)
t)

= I{[⃗a<it , a
(i)
t] = a⃗<i+1

t } if i ∈ {1, . . . , N − 1}

• Discount factor γ′ where γ′ = γ1/N

Theorem 3.1. (Peralez et al., 2025) For every MMDP, there exists a serialized multi-agent problem,
of which its optimal policy is also optimal for the underlying MMDP.

Proof. Let π⃗∗ = ⟨π(1,∗), . . . , π(N,∗)⟩ be the optimal policy over the serialized MMDP.

V (i,∗)([s, a⃗<i])

= E

 N∑
j=i

(γ′)j−iR
(
s0, a⃗

<j
0 , a

(j)
0

)
| s0 = s, a⃗<i0 = a⃗<i, π⃗∗

+ E

∑
t=1

N∑
j=1

(γ′)tN+j−iR
(
st, a⃗

<j
t , a

(j)
t

)
| π⃗∗


= E

[
(γ′)N−iR

(
s0, a⃗

<N
0 , a

(N)
0

)
| s0 = s, a⃗<i0 = a⃗<i, π⃗∗

]
+ E

[∑
t=1

(γ′)tN+N−iR
(
st, a⃗

<N
t , a

(N)
t

)
| π⃗∗

]

= E
[
(γ′)N−iR

(
s0, a⃗

<N
0 , a

(N)
0

)
| s0 = s, a⃗<i0 = a⃗<i, π⃗∗

]
+ E

[∑
t=1

(γ′)N−iγtR
(
st, a⃗

<N
t , a

(N)
t

)
| π⃗∗

]

= E

[∑
t=0

(γ′)N−iγtR
(
st, a⃗

<N
t , a

(N)
t

)
| s0 = s, a⃗<i0 = a⃗<i, π⃗∗

]

= (γ′)N−iE

[∑
t=0

γtR
(
st, a⃗

<N
t , a

(N)
t

)
| s0 = s, a⃗<i0 = a⃗<i, π⃗∗

]
(4)

V (1,∗)(s) = (γ′)N−1E
[∑

t=0 γ
tR

(
st, a⃗

<N
t , a

(N)
t

)
| π⃗∗

]
for agent 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

V (N,∗)([s, a⃗<N]) = E
[∑

t=0 γ
tR

(
st, a⃗

<N
t , a

(N)
t

)
| s0 = s, a⃗<N0 = a⃗<N , π⃗∗

]
for agent N .

Thus, we have established that the optimal policy π⃗∗ in the serialized problem will obtain the same
expected value in the MMDP (times a constant factor). The same holds for any policy π⃗, and thus
there is a 1-1 mapping between serialized and simultaneous policies which yield the same value.

C PROOFS FOR POLICY ITERATION CONVERGENCE

C.1 PROOF FOR LEMMA 5.2

Lemma 5.2. (Agent-Chained Policy Evaluation) The Agent-Chained Bellman Operators in Def-
inition 5.1 are a contraction mapping under the infinity norm. Thus, starting with any Q⃗ =
⟨Q(1), . . . Q(N)⟩ and a joint policy π⃗ = ⟨π(1), . . . , π(N)⟩, the repeated application of T π⃗ will return
a set of Q-values for each agent ⟨Q(1,π⃗), . . . Q(N,π⃗)⟩ in the limit.

Proof. First, note that we can view ⟨Q(1), . . . , Q(N)⟩ as a single Q-function with the state space
further augmented by agent ID. Under this perspective, we now have a single policy denoted as π
and a corresponding value function Qπ , defined on the AC-BMDP.

Since the AC-BMDP is a single-agent Belief MDP, the rest follows standard convergence results of
policy evaluation (Agarwal et al., 2019), which we include for completeness.

For any agent i ∈ {1, . . . N − 1}, state [s, b(i), i], action ϕ(i) and arbitrary Q-values Q1, Q2,∣∣∣T πQ1([s, b
(i), i], ϕ(i))− T πQ2([s, b

(i), i], ϕ(i))
∣∣∣

=

∣∣∣∣∣∣E[s,b(i+1),i+1]=T ([s,b(i),i],ϕ(i))

ϕ(i+1)∼π(·|s,b(i+1),i+1)

[
γ′Q1([s, b

(i+1), i+ 1], ϕ(i+1))− γ′Q2([s, b
(i+1), i+ 1], ϕ(i+1))

]∣∣∣∣∣∣
≤ γ′ max

ϕ(i+1)

∣∣∣Q1([s, b
(i+1), i+ 1], ϕ(i+1))−Q2([s, b

(i+1), i+ 1], ϕ(i+1))
∣∣∣

≤ γ′ max
ϕ(i+1),b(i+1),j∈{1,...,N}

∣∣∣Q1([s, b
(i+1), j], ϕ(i+1))−Q2([s, b

(i+1), j], ϕ(i+1))
∣∣∣

For agent N , ∣∣∣T πQ1([s, b
(N), N], ϕ(N))− T πQ2([s, b

(N), N], ϕ(N))
∣∣∣

=

∣∣∣∣∣∣E[s′,1]∼T (·|[s,b(N),N],ϕ(N))

ϕ(1)∼π(·|s′,1)

[
γ′Q1([s

′, 1], ϕ(1))− γ′Q2([s
′, 1], ϕ(1))

]∣∣∣∣∣∣
≤ γ′ max

s′,ϕ(1)

∣∣∣Q1([s
′, 1], ϕ(1))−Q2([s

′, 1], ϕ(1))
∣∣∣

≤ γ′ max
s′,ϕ(1),j∈{1,...,N}

∣∣∣Q1([s
′, j], ϕ(1))−Q2([s

′, j], ϕ(1))
∣∣∣

Thus, T π is a contraction mapping under the infinity norm, i.e. there exists γ′ ∈ [0, 1) such that

∥T πQ1 − T πQ2∥∞ ≤ γ′∥Q1 −Q2∥∞

Since T π is a contraction mapping, we have the following:
∥Qk −Qπ∥∞ = ∥T πQk−1 − T πQπ∥∞

≤ γ′∥Qk−1 −Qπ∥∞
...

≤ (γ′)k∥Q0 −Qπ∥∞

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

If we let k → ∞, ∥Qk −Qπ∥∞ = 0, and limk→∞Qk = Qπ . By the Banach fixed-point theorem,
this solution is unique.

C.2 PROOF FOR LEMMA 5.3

Lemma 5.3. (Agent-Chained Policy Improvement) Given a deterministic policy π⃗ =
⟨π(1), . . . , π(N))⟩, let Q(i,π⃗) denote the i-th agent’s value function for a joint policy π⃗. If we up-
date the new policy π⃗new = ⟨π(1)

new, . . . , π
(N))
new ⟩ by Eq. 1, then

Q(i,π⃗new)(s, b(i), ϕ(i)) ≥ Q(i,π⃗)([s, b(i)], ϕ(i))

Proof. As in the proof for Lemma 5.2, we consider π⃗ to be a single policy π which is augmented by
agent ID in the state space.

For any i ∈ {1, . . . N − 1}, s, b(i), ϕ(i),

Qπ([s, b(i), i], ϕ(i)) = γ′E[s,b(i+1),i+1]=T ([s,b(i),i],ϕ(i))

ϕ(i+1)∼π(·|[s,b(i+1),i+1])

[
Qπ

(
[s, b(i+1), i+ 1], ϕ(i+1)

)]
≤ γ′E[s,b(i+1),i+1]=T ([s,b(i),i],ϕ(i))

[
max
ϕ(i+1)

Qπ
(
[s, b(i+1), i+ 1], ϕ(i+1)

)]
= γ′E[s,b(i+1),i+1]=T ([s,b(i),i],ϕ(i))

ϕ(i+1)∼πnew(·|[s,b(i+1),i+1])

[
Qπ

(
[s, b(i+1), i+ 1], ϕ(i+1)

)]

For i = N and any s, b(i), ϕ(i),

Qπ([s, b(N), N], ϕ(N)) = R([s, b(N), N], ϕ(N)) + γ′E[s′,1]=T ([s,b(N),N],ϕ(N))

ϕ(1)∼π(·|[s′,1])

[
Qπ

(
[s′, 1], ϕ(1)

)]
≤ R([s, b(N), N], ϕ(N)) + γ′E[s′,1]=T ([s,b(N),N],ϕ(N)))

[
max
ϕ(1)

Qπ
(
[s′, 1], ϕ(1)

)]
= R([s, b(N), N], ϕ(N)) + γ′E[s′,1]=T ([s,b(N),N],ϕ(N))

ϕ(1)∼πnew(·|[s′,1])

[
Qπ

(
[s′, 1], ϕ(1)

)]
Thus, for any i ∈ {1, . . . N}, s, b(i), ϕ(i),

Qπ([s, b(i), i], ϕ(i)) ≤ R([s, b(i), i], ϕ(i)) + γ′E[s,b(i+1),i+1]=T ([s,b(i),i],ϕ(i))

ϕ(i+1)∼πnew(·|[s,b(i+1),i+1])

[
Qπ

(
[s, b(i+1), i+ 1], ϕ(i+1)

)]
...

≤ Qπnew([s, b(i), i], ϕ(i))

C.3 CHARACTERIZATION OF Q(i,∗)

Before our main result, we provide a useful property of the optimal Q-values of the AC-BMDP,
which has an affine structure.

Theorem C.1. Let Q(i,∗) denote the i-th agent’s Q-values for the optimal policy under an AC-
BMDP. Then, Q(i,∗) is an affine function of ϕ(i). i.e. for all i ∈ {1, . . . , N}, s, b(i), ϕ(i),

Q(i,∗)([s, b(i)], ϕ(i)) =
∑
a(i)

ϕ(i)(a(i))Q(i,∗)([s, b(i)], δa(i))

where δa(i) denotes a particular action distribution which deterministically selects a(i).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. We prove the claim by induction.

For any s, b(N), ϕ(N) at terminal timesteps,

Q(N)([s, b(N)], δa(N)) = R([s, b(N)], a(N))

Q(N)([s, b(N)], ϕ(N)) = R([s, b(N)], ϕ(N))

=
∑
a(N)

ϕ(N)(a(N))R([s, b(N)], a(N))

=
∑
a(N)

ϕ(N)(a(N))Q(N)([s, b(N)], δa(N))

Q(N)([s, b(N) = a⃗<N], ϕ(N)) = R([s, a⃗<N], ϕ(N))

Q(N)([s, b(N)], ϕ(N)) = R([s, b(N)], ϕ(N))

=
∑
a⃗<N

b(N)(⃗a<N)R([s, a⃗<N], ϕ(N))

=
∑
a⃗<N

b(N)(⃗a<N)Q(N)([s, a⃗<N], ϕ(N))

where a⃗<N in Q(N)([s, a⃗<N], ϕ(N)) denotes the belief that assigns probability 1 to a⃗<N .

For agents i ∈ {1, . . . , N − 1},

Q∗([s, b(i)], δa(i)) = γ′ max
ϕ(i+1)

Q∗([s, b(i+1)], ϕ(i+1))

= γ′ max
ϕ(i+1)

∑
a⃗<i+1

b(i+1)(⃗a<i+1)Q∗([s, a⃗<i+1], ϕ(i+1))(by induction)

= γ′ max
ϕ(i+1)

1

η([s, b(i)], ϕ(i))

∑
a⃗<i

b(i)(⃗a<i)Q∗([s, a⃗<i, a(i)], ϕ(i+1))

where [s, b(i+1)] = T ([s, b(i)], δa(i)).

Q∗([s, b(i)], ϕ(i)) = γ′ max
ϕ(i+1)

Q∗([s, b(i+1)], ϕ(i+1))

= γ′ max
ϕ(i+1)

∑
a⃗<i+1

b(i+1)(⃗a<i+1)Q∗([s, a⃗<i+1], ϕ(i+1))

= γ′ max
ϕ(i+1)

1

η([s, b(i)], ϕ(i))

∑
a⃗<i

b(i)(⃗a<i)
∑
a(i)

ϕ(i)(a(i))Q∗([s, a⃗<i, a(i)], ϕ(i+1))

= γ′ max
ϕ(i+1)

1

η([s, b(i)], ϕ(i))

∑
a⃗<i

b(i)(⃗a<i)Q∗([s, a⃗<i, a(i)], ϕ(i+1))

=
∑
a(i)

ϕ(i)(a(i))Q∗([s, b(i)], δa(i))

where [s, b(i+1)] = T ([s, b(i)], ϕ(i)).

A direct corollary of Theorem C.1 is that only the actions a(i) need to be enumerated rather than the
full space of 1-step policies ϕ(i).

Corollary C.2. For all i ∈ {1, . . . , N}, s, b(i),

max
ϕ(i)

Q(i,∗)
(
[s, b(i)], ϕ(i)

)
= max

a(i)
Q(i,∗)

(
[s, b(i)], δa(i)

)
17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.4 PROOF FOR THEOREM 5.4

Theorem 5.4. (Agent-Chained Policy Iteration) Starting from any deterministic policy π⃗ ∈ Π, the
sequence of value functions Q⃗π⃗n and the improved policies π⃗n+1 converges to the optimal value
functions and the policy of the AC-BMDP.

i.e. Q(i,∗)([s, b(i)], ϕ(i)) = limn→∞Q(i,π⃗n)([s, b(i)], ϕ(i)) ≥ Q(i,π⃗)([s, b(i)], ϕ(i)) for any
π⃗, i, s, b(i), ϕ(i). Furthermore the optimal policy of the AC-BMDP is also optimal in the underlying
MMDP.

Proof. By the monotonic improvement property in Lemma 5.3, we know that for any i ∈
{1, . . . , N}, b(i), s, ϕ(i),

Qπ⃗n+1([s, b(i)], ϕ(i)) ≥ Qπ⃗n([s, b(i)], ϕ(i))

.

If there is no improvement,

Qπ⃗n([s, b(i)], ϕ(i)) = Qπ⃗n+1([s, b(i)], ϕ(i))

= γ′Qπ⃗n+1([s, b(i+1)], π
(i)
n+1([s, b

(i+1)]))

= γ′Qπ⃗n([s, b(i+1)], π
(i)
n+1([s, b

(i+1)]))

= γ′ max
ϕ(i+1)

Qπ⃗n([s, b(i+1)], ϕ(i+1)))

where [s, b(i+1)] = T ([s, b(i)], ϕ(i)). Thus, at the limit limn→∞Qπ⃗n([s, b(i)], ϕ(i)), the Bellman
optimality equations are satisfied.

Due to Corollary C.2, it is sufficient to consider the following policy improvement procedure con-
sidering only the δa(i) , which is the space of deterministic ϕ(i):

∀i, b(i), s, π(i)
new([s, b

(i)])← argmax
a(i)

Qπ⃗([s, b(i)], δa(i)) (5)

Note that if we restrict ourselves to an AC-BMDP defined over the space of deterministic 1-step
policies δa(i) , all of the components in the AC-BMDP are equivalent to that of the serialized version
of the MMDP.

D DETAILS ON ADVANTAGE COMPUTATION

The advantage can be written as an exponentially-weighted sum over the TD residuals,

A
(1)
t =

N∑
j=1

(γ′λ′)j−1ζ
(j)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−1ζ
(j)
t+k

A
(2)
t =

N∑
j=2

(γ′λ′)j−2ζ
(j)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−2ζ
(j)
t+k

...

A
(N)
t = ζ

(N)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−Nζ
(j)
t+k

∴ A
(i)
t =

N∑
j=i

(γ′λ′)j−iζ
(j)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−iζ
(j)
t+k.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E PSEUDOCODES

We first present the pseudocode for ACPI which is defined directly on the action space consisting of
1-step policies. ϕ(i). This is a straightforward policy iteration procedure defined on the AC-BMDP.

Algorithm 1 Agent-Chained Policy Iteration

1: Randomly initialize π⃗ =
(
π(1), . . . , π(N)

)
and Q⃗ =

(
Q(1), . . . , Q(N)

)
.

2: while π⃗ not converged do
3: while Q⃗ not converged do
4: # Policy Evaluation
5:

∀i ∈ {1, . . . , N − 1}, s, b(i), ϕ(i),

Q(i)([s, b(i)], ϕ(i))← γ′E b(i+1)=T ([s,b(i)],ϕ(i))

ϕ(i+1)∼π(i+1)(·|s,b(i+1))

[
Q(i+1)

(
[s, b(i+1)], ϕ(i+1)

)]
6:

∀s, b(N),ϕ(N),

Q(N)([s, b(N)], ϕ(N))

← R
(
[s, b(N)], ϕ(N)

)
+ γ′Es′∼T (·|[s,b(N)],ϕ(N))

ϕ(1)∼π(1)(·|s′)

[
Q(1)

(
s′, ϕ(1)

)]
7: end while
8: # Policy Improvement
9:

∀i ∈ {1, . . . , N}, s, b(i),

π(i)(s, b(i))← argmax
ϕ(i)

Q(i)
(
[s, b(i)], ϕ(i)

)
10: end while

As we showed in Corollary C.2, the AC-BMDP has a special structure which ensures that it is
sufficient to consider the space of deterministic ϕ(i) for finding an optimal policy. Thus, we can also
define an equivalent policy iteration procedure over the action space δa(i) (Algorithm 2).

Finally, we present ACPO which is a practical algorithm that aims to approximate ACPI via the PPO
objective.

We reiterate below the definition of the TD residual.

ζ
(i)
t = γ′V (i+1)

(
[st, b

(i+1)
t]

)
− V (i)

(
[st, b

(i)
t]

)
, ∀i = {1, . . . N − 1}

ζ
(N)
t = R

(
[st, b

(N)
t], ϕ

(N)
t

)
+ γ′V (1)(st+1)− V (N)

(
[st, b

(N)
t]

)
≈ rt + γ′V (1)(st+1)− V (N)

(
[st, b

(N)
t]

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 Agent-Chained Policy Iteration (Deterministic action distribution ϕ(i))

1: Randomly initialize π⃗ =
(
π(1), . . . , π(N)

)
and Q⃗ =

(
Q(1), . . . , Q(N)

)
.

2: while π⃗ not converged do
3: while Q⃗ not converged do
4: # Policy Evaluation
5:

∀i ∈ {1, . . . , N − 1}, s, a⃗<i, a(i),

Q(i)([s, b(i) = a⃗<i], δa(i))← γ′Eb(i+1)=T ([s,b(i)=a⃗<i],δ
a(i))

δ
a(i+1)∼π(i+1)(·|s,b(i+1))

[
Q(i+1)

(
[s, b(i+1)], δa(i+1)

)]
6:

∀s, a⃗<N , a(N),

Q(N)([s, b(N) = a⃗<N], δa(N))

← R
(
[s, a⃗<N], a(N)

)
+ γ′Es′∼T (·|[s,b(N)=a⃗<N],δ

a(N))

δ
a(1)∼π(1)(·|s′)

[
Q(1) (s′, δa(1))

]
7: end while
8: # Policy Improvement
9:

∀i ∈ {1, . . . , N},s, a⃗<i,
π(i)(s, a⃗<i)← argmax

a(i)
Q(i)

(
[s, a⃗<i], δa(i)

)
10: end while

Algorithm 3 Agent-Chained Policy Optimization (PPO-based)

1: Initialize: Actor networks θ0 = [θ
(1)
0 , . . . , θ

(N)
0], Critic networks ψ⃗0 = [ψ

(1)
0 , . . . , ψ

(N)
0].

2: while t ≤ tmax do
3: Collect transitions

(
st, {a(i)t }Ni=1, rt, st+1

)
by running the joint policy π⃗θk .

4: Compute advantages after each episode: ∀i = 1, . . . , N ,

A
(i)
t =

N∑
j=i

(γ′λ′)j−iζ
(j)
t +

∞∑
k=1

N∑
j=1

(γ′λ′)kN+j−iζ
(j)
t+k

5: Update actors with the PPO-Clip objective: ∀i = 1 . . . , N,

E
a
(i)
t ∼π(i)

θold
(·|st,b(i)t)

[min(w(i)(st, b
(i)
t , a

(i)
t)A

(i)
t , clip

(
w(i)(st, b

(i)
t , a

(i)
t), 1− ϵ, 1 + ϵ

)
A

(i)
t)]

where w(i)(st, b
(i)
t , a

(i)
t) :=

π
(i)
θ (a

(i)
t |st,b(i)t)

π
(i)
θold

(a
(i)
t |st,b(i)t)

.

6: Update Decentralized Critics: ∀i = 1 . . . , N,

ψ
(i)
k+1 = argmin

ψ(i)
E
[(
V

(i)
ϕ (st)− R̂(i)

t

)2
]

7: end while

F FINAL PPO OBJECTIVE

To simplify notation, we provide the derivation for agent 1 which does not have belief b(i) in its state
space, and assume that the parameters θ are shared across agents.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

∇θJ(θ) = E
ϕ(1)∼π(1)

θ (·|s)

[
∇θ log π(1)

θ (ϕ(1)|s)Q(1)(s, ϕ(1))
]

=

∫
ϕ(1)

π
(1)
θ (ϕ(1)|s)∇θ log π(1)

θ (ϕ(1)|s)Q(1)(s, ϕ(1))dϕ(1)

=

∫
ϕ(1)

π
(1)
θ (ϕ(1)|s)∇θ log π(1)

θ (ϕ(1)|s)
∫
a(1)

ϕ(1)(a(1))Q(1)(s, a(1))da(1)dϕ(1)

=

∫
a(1)

∫
ϕ(1)

π
(1)
θ (ϕ(1)|s)∇θ log π(1)

θ (ϕ(1)|s)ϕ(1)(a(1))dϕ(1) Q(1)(s, a(1))da(1)

=

∫
a(1)

∫
ϕ(1)

∇θπ(1)
θ (ϕ(1)|s)ϕ(1)(a)dϕ(1) Q(1)(s, a(1))da(1)

=

∫
a(1)
∇θ


∫
ϕ(1)

π
(1)
θ (ϕ(1)|s)ϕ(1)(a(1))dϕ(1)︸ ︷︷ ︸

=π
(1)
θ (a(1)|s)

 Q(1)(s, a(1))da(1)

=

∫
a(1)
∇θπ(1)

θ (a(1)|s)Q(s, a(1))da(1)

=

∫
a(1)

π
(1)
θ (a(1)|s)∇θ log π(1)

θ (a(1)|s)Q(s, a(1))da(1)

= E
a(1)∼π(1)

θ (a(1)|s)

[
∇θ log π(1)

θ (a(1)|s)Q(s, a(1))
]

We can obtain the same conclusion for other agents through a similar derivation.

G EXACT CALCULATION OF POLICIES IN THE MATRIX GAME

A B C
A 5 −20 −20
B −20 10 −20
C −20 −20 20

Figure 6: 3x3 Matrix Game

Here we provide details on how ACPO can solve the Matrix Game provided in Table 1 and repeated
above in Figure 6.

Due to serialization, ACPO considers this as a 2-step game even though the underlying game is a
1-step game. Since we are in a simple toy setting which can be solved by policy iteration, we only
consider deterministic ϕ.

Policy evaluation for agent 1 is conducted as follows.

Q(1)(ϕ(1)) = γ′E b(2)=ϕ(1)

ϕ(2)∼π(2)(·|b(2))

[
Q(2)(b(2), ϕ(2))

]
In general, ϕ(1) ∈ ∆(A(1)) is continuous. However, this can be simplified if we only consider
deterministic ϕ:

Q(1)(δ
(1)
A) = γ′Ea(2)∼π(2)(·|b(2)=A)

[
Q(2)(b(2) = A, a(2))

]
Q(1)(δ

(1)
B) = γ′Ea(2)∼π(2)(·|b(2)=B)

[
Q(2)(b(2) = B, a(2))

]
Q(1)(δ

(1)
C) = γ′Ea(2)∼π(2)(·|b(2)=C)

[
Q(2)(b(2) = C, a(2))

]
where we have used b(2) = A to denote the fact that agent 2 knows with probability 1 that it is
in state A since it knows that π(1) chooses A deterministically. Also, we used the notation δ(1)A to
denote a particular action distribution ϕ which deterministically selects A.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For agent 2, policy evaluation is simply the reward function given in the Matrix game:

Q(2)(b(2) = A,A) = R(A,A) = 5

...

Q(2)(b(2) = B,B) = R(B,B) = 10

...

Q(2)(b(2) = C,C) = R(C,C) = 20

For policy improvement,

π(2)(b(2) = A)← arg max
a(2)∈{A,B,C}

Q(2)(b(2) = A, a(2))

π(2)(b(2) = B)← arg max
a(2)∈{A,B,C}

Q(2)(b(2) = B, a(2))

π(2)(b(2) = C)← arg max
a(2)∈{A,B,C}

Q(2)(b(2) = C, a(2))

.

Thus, π(2) will select A,B,C given agent 1 deterministically selects A,B,C, respectively.

For agent 1,
π(1) ← arg max

a(1)∈{A,B,C}
γ′Q(2)(b(2) = a(1), π(2)(b(2) = a(1)))

Now, let’s say we are in an adversarial starting point where the policy is initialized to deterministi-
cally select (A,A).

Initially, policy improvement for π(1) leads agent 1 to continue selecting A since π(2) deterministi-
cally selects A and R(A,A) = 5 is better than R(B,A) = R(C,A) = −20. However, after the first
iteration, agent 2 will update its policy to select A,B,C for b(2) = A, b(2) = B, b(2) = C, respec-
tively. Thus, agent 1 in iteration 2 will select C since C = argmaxa(1) γ

′Q(2)(b(2) = a(1), π(2)),
where π(2) is now updated.

H LEARNING CURVE FOR SMACV2

0 2 4 6 8 10
Steps (106)

10

15

20

Ep
iso

de
 R

et
ur

n

protoss_5_vs_5

0 2 4 6 8 10
Steps (106)

5

10

15

zerg_5_vs_5

0 2 4 6 8 10
Steps (106)

7.5

10.0

12.5

15.0

protoss_10_vs_11

0 2 4 6 8 10
Steps (106)

5

10

15
terran_10_vs_11

0 2 4 6 8 10
Steps (106)

7.5

10.0

12.5

15.0

zerg_10_vs_11

ACPO MAPPO HAPPO VDN QMIX

Figure 7: Return for SMACv2 with mean and standard error over 10 seeds.

I HYPERPARAMETER DETAILS

For a fair comparison, we set the network type (MLP or GRU) and hidden layer size to be consistent
across all algorithms. The design choices follow the experimental setups of Zhong et al. (2024) and
Papoudakis et al. (2021). The discount factor γ is fixed, as it is inherent to the MMDP rather than a
tunable hyperparameter. In contrast ACPO employs serialization, where the advantage is computed
using γ′ = γ1/N .

For all baselines, we use the reported hyperparameters from Papoudakis et al. (2021) for RWARE,
Ellis et al. (2023) for SMACv2 and Zhong et al. (2024) for MA-MuJoCo. The full set of hyper-
parameters are provided in our anonymous code at the following link: https://anonymous.
4open.science/r/anonymous-acpo-BD51.

22

https://anonymous.4open.science/r/anonymous-acpo-BD51
https://anonymous.4open.science/r/anonymous-acpo-BD51

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 3: Common Parameters for All Algorithms

Parameter RWARE MA-MuJoCo SMACv2

Network MLP MLP GRU
Hidden Sizes [128, 256] [128, 128, 128] [64]

γ 0.99 0.99 0.99

J COMPUTATIONAL RESOURCES

For RWARE experiments, we utilized a single NVIDIA GeForce RTX 3090 graphics processing
unit (GPU). For the 2,4,8, and 12-agent environments, ACPO took 7H, 6H, 8H and 9H, respectively.
The corresponding times were MAPPO (6H, 4H, 4H, 3H), HAPPO (19H, 37H, 71H, 107H) and
HATRPO (21H, 38H, 70H, 105H).

In SMACv2 experiments, the hardware configuration depended on the scenario: a single NVIDIA
GeForce RTX 3090 was used for 5-agent scenarios, whereas a single NVIDIA L40S GPU was used
for 10-agent scenarios. For the 5-agent and 10-agent scenarios, ACPO took 16H and 20H, respec-
tively. QMIX completed training in 24H and 34H, HAPPO required 33H and 51H, and MAPPO’s
training times were 12H and 15H for the respective scenarios.

Due to significant computational requirements, experiments for HATRPO on SMACv2 were not
conducted. We estimated that reaching 10M timesteps would take approximately 14 days for the
5-agent scenarios and 40 days for the 10-agent scenarios, which was deemed computationally pro-
hibitive for our resources. Moreover, Zhong et al. (2024) reported weaker performance in SMACv2
compared to HAPPO, MAPPO, and QMIX.

K DISCUSSION ON CENTRALIZED TRAINING WITH DECENTRALIZED
EXECUTION

In our work, we consider the standard MARL paradigm of Centralized Training Decentralized Ex-
ecution (CTDE), which allows multiple policies to be jointly trained but must be executed in a
decentralized fashion.

Here we introduce related work in three different settings that are often considered in MARL: Cen-
tralized Training Centralized Execution (CTCE), CTDE with Centralized Rollouts (CTDE-CR), and
CTDE with Decentralized Rollouts (CTDE-DR).

Centralized Training Centralized Execution (CTCE) Centralized Training Centralized Execu-
tion (CTCE) methods such as Multi-Agent Transformer (MAT) (Wen et al., 2022) use a joint policy
of the form π(a(1), . . . , a(N)|s) during both training rollouts and execution. MAT is a centralized
Transformer model defined on the joint action space, and uses a joint observation encoder and joint
policies during both training and execution. While a decentralized policy version is also considered,
MAT requires a joint observation encoder during both training and execution. In MMDPs, the CTCE
setting reduces to a Factored-Action MDP (Guestrin et al., 2001; Raghavan et al., 2012), which is a
single-agent MDP with factored action spaces. In this case, single-agent techniques such as policy
iteration and value iteration can be applied directly.

Generally, centralized control (CTCE) is not applicable to many real-world multi-agent systems
such as power grids Wang et al. (2021a), traffic signal control Chu et al. (2020), and large-scale fleet
management Lin et al. (2018) due to the large joint action space and prohibitive communication
costs.

Centralized Training Decentralized Execution with Centralized Rollouts (CTDE-CR) There
are also some work within CTDE but with additional assumptions to make training simpler. (Ye
et al., 2023; Wang et al., 2023) aim to decentralize centralized solutions Amato (2024), by assuming
that a single-agent joint policy can be used for training rollout. This joint policy is used during cen-
tralized training and distilled to decentralized policies before execution. As a single-agent problem,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

this assumption makes convergence to optimal policies straightforward as in the CTCE case. We
can view this setting as a special case of our work where we assume access to a joint policy during
training rollouts (CTDE-CR). With this additional assumption, we can solve the serialized problem
introduced in Section 3 without considering beliefs. However, this line of research inherits similar
weaknesses of CTCE, and cannot be applied to many real-world multi-agent systems with a massive
action space or prohibitive communication costs.

Centralized Training Decentralized Execution with Decentralized Rollouts (CTDE-DR) In
CTDE-DR, the policy must be decentralized (fully factorized) during both training and execution,
with the policy form π⃗ = ⟨π(1), . . . π(N)⟩ where π(i) : S → A(i). This is the natural MARL
paradigm we consider in our work. Algorithms for simultaneous policy update methods Lowe et al.
(2017); Yu et al. (2022), iterative best response methods Kuba et al. (2022); Zhong et al. (2024); Liu
et al. (2024) as well as value decomposition methods Rashid et al. (2018); Zhang et al. (2021) all
fall under CTDE-DR.

L BELIEF APPROXIMATION FOR PRACTICAL IMPLEMENTATIONS

In ACPO (PPO-based), the clipped policy gradient objective in Eq. 3 is similar to MAPPO with an
additional input to the policy, the belief b(i). In high-dimensional domains, the belief update for a
POMDP is intractable to compute exactly and is often approximated with RNNs or Transformers (Ni
et al., 2022; 2023). For AC-BMDPs, the belief is defined as a distribution over the unobservable a⃗<i,
which we approximate by having each agent predict the previous agents’ actions for the current time
step.

Below we show our overall opponent modeling procedure using state inputs for simplicity4.

First, Agent 1 has no notion of belief, so it simply outputs a(1) ∼ π(1)(· | s). Next, agent 2 predicts
the action that agent 1 has taken, i.e. ã(1) ∼ π̃(1)(· | s), where π̃(1) is agent 2’s own policy with an
additional agent ID of 1 as input. Now, agent 2 will output its action, i.e. a(2) ∼ π(2)(· | s, ã(1))
using the predicted action for agent 1.

M RETURN VS RUNTIME COMPARISON ON RWARE

0 5 10 15 20
0

10

20

Ep
iso

de
 R

et
ur

n

Small 2-Easy

0 10 20 30 40
0

20

40

Small 4-Medium

0 25 50 75 100
0

25

50

75
Small 8-Hard

0 100 200
0

50

100

Small 12-Hard

0 5 10 15 20
Wall Clock Time (h)

0

20

40

Ep
iso

de
 R

et
ur

n

Tiny 2-Easy

0 10 20 30 40
Wall Clock Time (h)

0

50

100
Tiny 4-Medium

0 20 40 60 80
Wall Clock Time (h)

0

100

200

Tiny 8-Hard

0 50 100 150
Wall Clock Time (h)

0

100

200

300

Tiny 12-Hard

ACPO (ours) MAPPO QMIX HAPPO HATRPO

Figure 8: Episode return vs training runtime comparison on Multi-Robot Warehouse (RWARE). The
mean and standard error over 10 seeds are reported for all tasks and algorithms except HATRPO and
HAPPO on Small 12-Hard (5 seeds) and Tiny 12-Hard (8 seeds).

Figure 8 compares the episode returns as a function of the training runtime. The experiments were
terminated once the maximum number of timesteps was reached, as depicted in Figure 2. Notably,

4For partially observable environments, we replace the state st with either its own partial observation o
(i)
t

for MLPs or the hidden state of an RNN h
(i)
t which takes the action-observation history ⟨o⃗(i)<t, a⃗

(i)
t ⟩ as input.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ACPO and MAPPO demonstrate substantially better runtime efficiency compared to HAPPO and
HATRPO, primarily due to their simultaneous rather than sequential policy updates. Furthermore,
ACPO consistently outperforms the other methods across all settings while maintaining a runtime
comparable to MAPPO. The slight increase in ACPO’s runtime is attributed to the additional cost of
belief computation.

N AGENT-CHAINED TWIN DELAYED DETERMINISTIC POLICY
GRADIENT (AC-TD3)

Following the Bellman operators in Definition 5.1, the critic loss based on TD3 (Fujimoto et al.,
2018) can be written as follows:

for i = 1, . . . , N − 1,

J
(i)
Q (ψ) = E (s,b(i),ϕ(i))∼D

ϕ(i+1)∼π(i+1)
θ (·|s,b(i),ϕ(i))

[(
Q

(i)
ψ ([s, b(i)], ϕ(i))− y(i)

)2
]

s.t. y(i) = γ′Q
(i+1)
ψ ([s, b(i), ϕ(i)], ϕ(i+1))

J
(N)
Q (ψ) = E(s,b(N),ϕ(N),r,s′)∼D

ϕ(1)
′
∼π(1)

θ (·|s′)

[(
Q

(N)
ψ ([s, b(N)], ϕ(N))− y(N)

)2
]

s.t. y(N) = r + γ′Q
(1)
ψ ([s′, ϕ(1)

′
)

We simplify this objective by considering deterministic ϕ(i),

for i = 1, . . . , N − 1,

J
(i)
Q (ψ) = E (s,⃗a<i,a(i))∼D

a(i+1)∼π(i+1)
θ (·|s,⃗a<i,a(i))

[(
Q

(i)
ψ ([s, a⃗<i], a(i))− y(i)

)2
]

s.t. y(i) = γ′Q
(i+1)
ψ ([s, a⃗<i, a(i)], a(i+1))

J
(N)
Q (ψ) = E(s,⃗a<N ,a(N),r,s′)∼D

a⃗
′
∼π⃗θ(·|s′)

[(
Q

(N)
ψ ([s, a⃗<N], a(N))− y(N)

)2
]

s.t. y(N) = r + γ′Q
(1)
ψ ([s′, a(1)

′
)

For practical implementations, it is often useful to consider k-step returns.

J
(i)
Q (ψ) = E(

st ,⃗a
<i
t ,a

(i)
t ,{rt+j}k

j=0,st+k+1

)
∼D

a⃗t+k+1∼π⃗θ(·|st+k+1)

[(
Q

(i)
ψ ([st, a⃗

<i
t], a

(i)
t)− (γ′)

N−i
y
(i)
t

)2
]

s.t. y(i)t = rt + γrt+1 + · · ·+ γkrt+k + γk+1Q
(i+1)
ψ ([st+k+1, a⃗

<i
t+k+1], a

(i+1)
t+k+1)

We find that using k-step returns in this way works better in practice as each agent now has a dense
reward signal in the targets (rather than only the last agent). We note that γ denotes the discount
factor in the original MMDP and γ′ = γ1/N . The (γ′)

N−i discount is to adjust the micro step
to match with the last agent. For example, for agent 1, the reward given at the current timestep is
(γ′)

N−1
rt.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
Steps (106)

0

2000

4000

6000

Ep
iso

de
 R

et
ur

n

Walker2d-v2 2 × 3

0 2 4 6 8 10
Steps (106)

0

2000

4000

6000

Ant-v2 2 × 4

0 2 4 6 8 10
Steps (106)

0

2000

4000

6000

8000
Walker2d-v2 6 × 1

0 2 4 6 8 10
Steps (106)

2000

4000

6000
Ant-v2 8 × 1

ACTD3 (ours) HATD3 MADDPG

Figure 9: Mean Return and Standard Error over 5 seeds for MA-MuJoCo (Gym).

O OFF-POLICY COMPARISON

We evaluate an off-policy variant of ACPO, termed AC-TD3, by incorporating agent chaining into
the TD3 (Fujimoto et al., 2018) algorithm, as described in Appendix J. The performance of ACTD3
is compared against off-policy baselines, HATD3 (Zhong et al., 2024) and MADDPG (Lowe et al.,
2017). Experiments are conducted on the Ma-MuJoCo (Gym) environment using five random seeds.
As illustrated in Figure 9, AC-TD3 consistently outperforms all baseline methods.

26

	Introduction
	Background
	Multi-Agent MDP
	Previous Approaches in Cooperative MARL
	Limitation of Previous Approaches

	Serialization
	Agent-Chained Belief MDP (AC-BMDP)
	Agent-Chained Policy Iteration
	Agent-Chained Policy Optimization
	Experimental Results
	Conclusion
	Belief Update
	Proof for Theorem 3.1
	Proofs for Policy Iteration Convergence
	Proof for Lemma 5.2
	Proof for Lemma 5.3
	Characterization of Q(i, *)
	Proof for Theorem 5.4

	Details on Advantage Computation
	Pseudocodes
	Final PPO Objective
	Exact Calculation of Policies in the Matrix Game
	Learning Curve for SMACv2
	Hyperparameter Details
	Computational Resources
	Discussion on Centralized Training with Decentralized Execution
	Belief Approximation for Practical Implementations
	Return vs Runtime Comparison on RWARE
	Agent-Chained Twin Delayed Deterministic Policy Gradient (AC-TD3)
	Off-Policy Comparison

