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ABSTRACT

Optimal Transport (OT) theory, particularly the Wasserstein distance, is pivotal in
comparing probability distributions and has significant applications in signal and
image analysis. The Gromov-Wasserstein (GW) distance extends OT to structured
data, effectively comparing different graph structures. This paper presents the
Intra-fused Gromov-Wasserstein (IFGW) distance, a novel metric that combines
the Wasserstein and Gromov-Wasserstein distances to capture both feature and
structural information of graphs within a single optimal transport framework. We
review related work on graph neural networks and existing transport-based metrics,
highlighting their limitations. The IFGW distance aims to overcome these by
providing an efficient, isometry-aware method for graph comparison that applies to
tasks such as domain adaptation, word embedding, and graph classification, with
applications in computer vision, natural language processing, and bioinformatics.
We detail the mathematical foundation of IFGW and discuss optimization strategies
for practical implementation.

1 INTRODUCTION

Optimal Transport (OT) Optimal transport theory (Villani et al., 2009), a branch of mathematics
that studies the efficient transportation of resources between two distributions, has found increasing
applications in various fields, including computer vision, machine learning, and natural language
processing. In recent years, the theory has been extended to handle structured data, such as graphs,
trees, and point clouds, enabling new and powerful techniques for data analysis and synthesis.

1.1 RELATED WORK

Graph neural networks rely on training on structured data for various graph-related tasks. However,
a common limitation is its difficulty of explaining the isomorphism in graph data. Identification of
similarities between graphs is an essential problem in graph learning areas. In these areas, graph
isomorphism problem is known as the exact graph matching (Xu et al., 2019b), which is not solvable
in polynomial time nor to be NP-complete. Two graphs are considered isomorphic if there is a
mapping between the nodes of the graphs that preserves their adjacencies. The graph isomorphism
testing is used in a wide range of applications, such as the identification of chemical compound
(Demetci et al., 2020), the generation of molecular graphs in chemical dataset (Titouan et al., 2019),
and the electronic design automation (EDA) with placement and routing operations (Chan et al.,
2000). Graph Isomorphism Network (GIN) (Xu et al., 2018) is recently proposed to implement
Weisfeiler-Lehman (WL) graph isomorphism test (Shervashidze et al., 2011). However, such kind of
approach only deals with graphs of same size, and hard to distinguish the difference between graphs
with arbitrary sizes.

Notably, the optimal transport (OT) associated with their Gromov-Wasserstein (GW) discrepancy
(Peyré et al., 2016), which extends the Gromov-Wasserstein distance (Mémoli, 2011), has emerged
as an effective transportation distance between structured data, alleviating the incomparability issue
between different structures by aligning the intra-relational geometries. GW discrepancy is isometric,
meaning that the unchanged similarity under rotation, translation and permutation. Thanks to its
favorable properties such as efficiency and isometry-awareness, GW has been extensively applied
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to domain adaptation (Yan et al., 2018), word embedding (Alvarez-Melis & Jaakkola, 2018), graph
classification (Vayer et al., 2018), metric alignment (Ezuz et al., 2017), generative modeling (Bunne
et al., 2019), and graph matching and node embedding (Xu et al., 2019b;a; Xu, 2020).

The Fused Gromov-Wasserstein distance, a unified metric that interpolates between Wasserstein and
Gromov-Wasserstein distances, offers a powerful approach for comparing graphs and structured
data. By encoding both feature and structural information in a single OT formulation, it achieves
strong performance in graph classification and clustering tasks. The Kantorovich formulation,
which underlies the Wasserstein distance, emphasizes features while treating elements independently,
whereas the Gromov-Wasserstein distance focuses on inter-element relationships, capturing structure
but neglecting features.

Another method named CO-Optimal Transport (CO-OT) (Redko et al., 2020), is an innovative
approach designed to address the limitations of traditional Optimal Transport (OT) frameworks,
particularly in scenarios involving heterogeneous data spaces. COOT simultaneously optimizes
transport maps for both samples and features, allowing for meaningful correspondences across
different distributions without requiring a predefined cost function. However, despite its advantages,
COOT faces certain shortcomings. One notable limitation is its computational complexity, which
can become prohibitive in high-dimensional settings due to the need for managing large matrices
and tensor operations. Additionally, while COOT provides a more interpretable mapping between
datasets, its reliance on uniform weights can lead to suboptimal performance in cases where data
distributions are imbalanced.

Table 1: Comparison of different methods based on structural and feature information, smoothness,
and cross-domain capability.

Graph Data Structural
Information

Feature
Information Smooth Cross-domain

Wasserstein Villani et al. (2009) X X ✓ X
Unbalanced Wasserstein Liero et al. (2018) X X ✓ X
Gromov-Wasserstein Mémoli (2011) ✓ ✓ X X
Sample Gromov-Wasserstein Kerdoncuff et al. (2021) ✓ ✓ X X
Fused Gromov-Wasserstein Vayer et al. (2018) ✓ ✓ ✓ X
Our Proposed Methods ✓ ✓ ✓ ✓

To highlight, in this paper we proposed Intra-fused Gromov-Wasserstein (IFGW) distance combining
the Wasserstein and Gromov-Wasserstein distances to capture both feature and structural information
of graphs within a single optimal transport framework. Table 1 provides a comparison of different
methods based on their handling of structural and feature information, smoothness, and cross-domain
capability. The IFGW distance aims to overcome the limitations of existing transport-based metrics
by providing an efficient, isometry-aware method for graph comparison that applies to tasks such as
domain adaptation, word embedding, and graph classification. The proposed method has applications
in computer vision, natural language processing, and bioinformatics, offering a versatile solution for
comparing structured data across different domains.

2 INTRA-FUSED GROMOV-WASSERSTEIN DISCREPANCY

Before introducing our proposed IFGW, we first review the Wasserstein distance, Gromov-Wasserstein
distance, and Fused Gromov-Wasserstein. Let Ω be an arbitrary Hilbert space, D a metric on that
space and P (Ω) be the set of Borel probability measures on Ω. For any point x ∈ Ω, δx is the Dirac
unit mass on x.
Definition 1 (Gromov-Wasserstein Distance). Formally, Peyré et al. (2016) define the Gromov-
Wasserstein (GW) distance between two measured similarity matrices (C,µ) ∈ Rn×n ×

∑
n and

(D,ν) ∈ Rm×m ×
∑

m as follows

GW(C,D) = min
T∈Cµ,ν

∑
i,j,k,l

ℓ(Ci,j ,Dk,l)Ti,kTj,l, (1)

where C and D are matrices representing structural metric between nodes within the graph. One
common example is the all-pair shortest path (APSP) . ℓ(·, ·) is the loss function either in square loss
ℓ(a, b) = |a− b|2, or KL-divergence ℓ(a, b) = KL(a|b) = a log(a/b) − a + b (Peyré et al., 2016).
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Figure 1: Illustration of IFGW, with two structured data from different domains. Domain G andH
have two different types of nodes (with different dimension of features) and different structures. The
IFGW distance aims to find the optimal transportation between the two domains by considering both
feature and structural information.

Noting that KL divergence is a not a symmetric loss function, without loss of generality, we will keep
using square loss in our following notations. {µ ∈ R+

n :
∑

i µi = 1} is the simplex of histograms
with n bins, which represents the node distribution. And T is the coupling between the two spaces
on which the structural distance matrices are defined. Specifically,

Cµ,ν =
{
T ∈ Rn×m

+ ,T1 = µ,T⊤1 = ν
}
= E ∩ N . (2)

Here, we denote the domain E :=
{
T ∈ Rn×m,T1 = p,T⊤1 = q

}
and N := Rn×m

+ . Basically,
T is so-called doubly stochastic matrix. Furthermore, we can rewrite the problem in Koopmans-
Beckmann form Koopmans & Beckmann (1957):

GW(C,D) =
∥C∥2F
n2

+
∥D∥2F
m2

− 2 max
T∈Cµ,ν

tr(CTDT⊤). (3)

Therefore, given the structural matrices C and D, we primarily optimize with the trace of a quadratic
form in (3) over the domain of E ∩N . GW distance is non-convex and highly related to the quadratic
assignment problem (QAP), where it optimizes over the set of all permutation matrices. And QAP
can be thought of finding the alignment of the nodes from two graphs that minimizes cost transfer
from one to another, and it is a well-known NP-hard with no algorithm for solving this problem
exactly in polynomial time. Basically, in the quadratic assignment problem, it optimizes over the
domain of E ∩ N ∩O, where O is the orthonormal domain. Noting that E ∩ N is a convex hull of
E ∩ N ∩ O, indicating GW distance provides lower bounds of QAP.

Optimization The GW discrepancy problem can be solved iteratively by conditional gradient
method (Peyré et al., 2016) and the proximal point algorithm (Xu et al., 2019a).
Definition 2 (Fused Gromov-Wasserstein Distance). Fused Gromov-Wasserstein (Titouan et al.,
2019, FGW) distance defines the metric between structured object with the additional features from
nodes. Formally, it can be written as:

FGW(C,D,X,X′) (4)
= min

T∈Cµ,ν
⟨(1− α)MX,X′ + αL(C,D)⊗T,T⟩ (5)

= min
T∈Cµ,ν

(1− α) ⟨M,T⟩F + α
∑
i,j,k,l

(Ci,j −Dk,l)
2Ti,kTj,l (6)

= min
T∈Cµ,ν

(1− α) ⟨M,T⟩F + αGW(C,D). (7)

which can be simplified as minT∈Cµ,ν −2 tr(TX′X⊤). The pairwise feature distance MX,X′ =

(d(Xi,X
′
j))i,j is a n × m matrix standing for the distance between the features. Normally, we

have the Euclidean distance on as d(·, ·) to measure the similarity between features. FGW distance
measures transportation cost from both structural and feature information by constructing a linear
combination of GW distance along with a feature transportation.
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Intra-Fused Gromov-Wasserstein One key observation from FGW distance is that for the
structural distance C measures the distance within the same graph. However, M measures the
optimal distance cross different graphs. Therefore, it has the fundamental assumption that those two
graphs need to have the same graph order, i.e., Xi,X

′
j ∈ Rh. This is not always true in real scenarios,

especially when the graphs have similar properties but with different types of nodes involved. To
tackle this issue, we propose a new GW-based metric to measure optimal transportation considering
both structural and feature information, named “Intra-Fused Gromov-Wasserstein” (IFGW) distance.

Let’s revisit FGW distance first, it can be also rewrite as

FGW(C,D,X,X′) = min
T∈Cµ,ν

∑
i,j,k,l

[
(1− α)d(Xi,X

′
k) + α(Ci,j −Dk,l)

2
]
Ti,kTj,l. (8)

Now, instead of taking the feature distance cross metric-measure spaces, denoted as d(Xi,X
′
k), we

try to revise the Fused Gromov-Wasserstein distance based on intra feature distance. Specifically, we
define Intra Fused-Gromov-Wasserstein Distance as:

IFGW(C,D,X,X′) = (9)

min
T∈Cµ,ν

∑
i,j,k,l

{
(1− α)[d(Xi,Xj)− d(X′

k,X
′
l)]

2
+ α(Ci,j −Dk,l)

2
}
Ti,kTj,l

= min
T∈Cµ,ν

∑
i,j,k,l

{
(1− α)

(
Hi,j −H′

k,l

)2
+ α(Ci,j −Dk,l)

2
}
Ti,kTj,l, (10)

where we denote Hi,j := d(Xi,Xj) as the intra feature distance within the graph. Noting that in
Eq (9), it takes the measure of both structural and feature internally, i.e., Hi,j and Ci,j . It’s clear that
this problem can be split into two GW distance formulations separately. However, those two GW
distances need to be solved jointly with the same transportation matrix T.

Therefore, we want to resort the optimization into the framework of vanilla Gromov Wasserstein.
Considering the non-negativity of (Hi,j −H′

k,l)
2 and (Ci,j −Dk,l)

2, we will just split them apart
so that no coupling term is involved.

Let’s denote Di,j(α) = αCi,j +(1−α)Hi,j , where Ci,j and Hi,j represent the metrics on topology
(shortest path) and feature (ℓ2-norm), respectively. Thus, we take the linear combination of both intra
topological metric distance and intra feature metric. Overall, we have our final IFGW defined as

IFGWα(C,D,X,X′) (11)

= min
T∈Cµ,ν

∑
i,j,k,l

[
αCi,j + (1− α)Hi,j − αDk,l − (1− α)H′

k,l

]2
Ti,kTj,l

= min
T∈Cµ,ν

∑
i,j,k,l

(Di,j −D′
k,l)

2Ti,kTj,l. (12)

From the Eq (11) we can see that it has the exact form of GW distance defined in Eq (1). And by
setting α = 1, IFGW distance induces to GW distance exactly. Figure 1 illustrates the metric-measure
space of IFGW distance cross two different domains.

Entropic Regularization of IFGW (Sinkhorn version). Due to the non-convexity of the IFGW
distance, we propose to use the entropic regularization to approximate the solution. Considering the
following entropic approximation of the vanilla IFGW formulation Eq (11)

IFGWϵ(C,D,X,X′)
def
= min

T∈Cµ,ν
IFGW(C,D,X,X′)− ϵH(T), (13)

where H(T) = −
∑

i,j Ti,j logTi,j is the entropy of T, it is non-convex optimization problem, and
we propose to use projected gradient descent, where both the gradient step and the projection are
computed according to the KL metric. Iteration of this algorithm are given by

T← ProjKL
Cµ,ν

(
T⊙ e−τ(∇IFGW(C,D,X,X′)−ϵ∇H(T))

)
, (14)

where τ ≥ 0 is a small enough step size, and KL projection of any matrix K is

ProjCKL
µ,ν

=
def
= arg min

T′∈Cµ,ν
KL(T′ | K). (15)
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Proposition 1. In the special case τ = 1/ϵ, iteration in Eq. (14) reads

T← T (IFGW(C,D,X,X′)⊗T,µ,ν). (16)

Proof. Proof sketch is similar to Peyré et al. (2016). With the findings in Benamou et al. (2015), the
project of a matrix can be understood as the solution to the regularized transport problem (Sinkhorn
problem). Specifically, we can express the KL projection of any matrix K as

Proj
Cp,q

KL (K) = T(−ϵ log(K),p,q) (17)

Additionally, we can derive the following equation:

∇IFGWϵ,C,D(T)− ϵ∇H(T) = IFGW(C, ,D)⊗T− ϵT, (18)

where we obtain the desired formula for the iteration when τ is specifically set to 1/ϵ.

From Distance to Discrepancy The GW distance is originally defined on the metric-measure
space (mm-space), where the C is a strict metric from the structured data, e.g., all-pair shortest
path on graphs. However, we can replace the strict structural measure C with a pseudo-metric or
semi-metric to generalize the GW distance to GW discrepancy. Examples like the adjacency matrix,
Laplacian matrix and diffusion distance can be used in order to reduce the complexity of calculating
the strict metric, while it still preserves the structural properties.

• GW is equivalent to IFGW with α = 1, which is the same as FGW.

• FGW measures the feature distance cross mm-spaces.

• IFGW measures the feature distance within mm-space first, then takes the differences cross
mm-spaces.

Given the α as an interpretation between the topological information and feature information, we can
easily retrieve the lower bound of IFGW from an efficient algorithm Mémoli (2011) provides the
FLB, SLB and TLB accordingly. (starting from definition 6.1 of Mémoli (2011)).

IFGW Barycenters We also define the Intra Fused Gromov-Wasserstein (IFGW) barycenters of
measured similarity matrices (Cs)

S
s=1, (Xs)

S
s=1, where Cs ∈ RNs×Ns and Xs ∈ RNs×Hs , using a

Fréchet mean formulation:

min
C∈RN×N

X∈RN×B

∑
s

λsIFGWα(C,Cs,X,Xs). (19)

However, noting that D is defined as the linear combination of structure distance C and feature
distance H. Therefore, we resort the problem into two parts. For the structure barycenter, we take
benefits from Peyré et al. (2016, Prop. 4), where for the square loss, there is a closed form solution

C← 1

pp⊤

∑
s

λsT
⊤
s CsT. (20)

This basically indicates an evaluation after each optimal transportation obtained from IFGW. For the
feature barycenter, we need to recover the proximal features so that the Eq. (19) is minimized. First,
we reuse the trick in GW barycenter. Noting that Hs and Cs have the same dimension, therefore,
instead of taking the structural similarity, we take intra feature similarity, i.e.,

H← 1

pp⊤

∑
s

λsT
⊤
s HsT. (21)

Second, we would need to find the feature barycenter by optimizing least square loss over

min
X∈RN×B

∥H− d(X,X)∥2, (22)

where B is the dimension of feature in on barycenter, and it is not necessary to be one of the dimension
in the original feature spaces. Due to the inherit of the convexity of the squared Euclidean distance,
the optimization problem is convex.
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Figure 2: Comparison between FGW (first row) and IFGW (second row). Pairwise distance is
calculated from MUTAG dataset, by setting different α.

Proposition 2. If the Cs and Hs are positive semidefinite (PSD) matrices, then the C and H
corresponding to the barycenter are also PSD.

Proof. Consider the derivative of IFGW given the cost distance combining the topological information
and feature information, we have

∂IFGW

∂C
= 2 (D−D′)⊙TT⊤. (23)

Formulations Eq (20) and (21) shows that the update of C corresponds to a linear averaging of the
matrices diag(1/p)T⊤

s CsTs, which are all PSD since Cs are PSD and Ts are doubly stochastic.

3 EXPERIMENTS

3.1 STRUCTURED DATA - GRAPH CLUSTERING

First and foremost, we utilize benchmark datasets to evaluate the clustering performance of the IFGW
discrepancy, specifically focusing on structured graph datasets such as the MUTAG and QM9 for
small molecules and PROTEINS and ENZYMES for bioinformatics. These datasets contain graphs
of varying sizes and types, representing molecular structures, protein compounds, and enzymes with
different relational properties. The graphs differ in both topological structures and node features,
making them suitable for clustering tasks where both feature and structural information need to be
considered.

Graph clustering aims to group similar graphs based on their structure and features, with applica-
tions ranging from bioinformatics (e.g., protein structure comparison) to chemistry (e.g., molecular
compound classification). Traditional graph clustering methods, such as those based on graph edit
distance or subgraph isomorphism, either suffer from computational inefficiency or ignore key aspects
like feature similarity. Our goal is to demonstrate the effectiveness of IFGW in addressing these
challenges by integrating both the structural and feature information into the clustering process.

Table 2 summarizes the clustering performance (mean accuracy scores with std.) of different methods
on the benchmark datasets, including KMeans, spectral clustering, FGW, and IFGW. We evaluate
the clustering results using two common metrics of features: normalized mutual information (NMI)
and adjusted Rand index (ARI), serving as pairwise distance between feature matrices. Without
explicitly tuning the hyperparameter, we take α = 0.5 in both FGW and IFGW. To note that, KMeans
and Spectral clustering are methods only consider the features, without accessing the geometric
information of graphs. Our experiments show that IFGW outperforms FGW in clustering tasks across
all evaluated datasets in general. Specifically, IFGW provides more nuanced clustering by considering
both intra-graph feature distances and structural relationships, resulting in improved performance in
scenarios where graphs have similar structures but different feature distributions, or vice versa.

FGW v.s. IFGW . To further analysis the rationals behind the experiment results, we also explore
the reasons of the improved clustering performance of IFGW compared to FGW. Figure 2 illustrates
the pairwise distance between graphs in the MUTAG dataset using FGW and IFGW with different
α values. To note that when α = 1, both FGW and IFGW degenerate to GW with same pair-wise
distance matrix in the MUTAG dataset. We observe that FGW tends to sensitive to the feature
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Table 2: Clustering performance of different methods on benchmark datasets.

Dataset Feature metric d(·, ·) NMI ARI Cosine Vector pair-wise

MUTAG KMeans 0.63 ± 0.04 0.43 ± 0.05 0.59 ± 0.07 0.41 ± 0.06
Spectral clustering 0.68 ± 0.03 0.48 ± 0.04 0.64 ± 0.05 0.46 ± 0.04

FGW 0.74 ± 0.03 0.75 ± 0.02 0.71 ± 0.04 0.58 ± 0.05
IFGW 0.81 ± 0.02 0.71 ± 0.03 0.77 ± 0.05 0.66 ± 0.04

QM9 KMeans 0.56 ± 0.05 0.39 ± 0.06 0.53 ± 0.05 0.38 ± 0.05
Spectral clustering 0.61 ± 0.04 0.44 ± 0.05 0.57 ± 0.06 0.41 ± 0.05

FGW 0.67 ± 0.03 0.52 ± 0.04 0.62 ± 0.05 0.69 ± 0.02
IFGW 0.72 ± 0.03 0.60 ± 0.03 0.68 ± 0.04 0.65 ± 0.03

PROTEINS KMeans 0.46 ± 0.06 0.42 ± 0.07 0.40 ± 0.06 0.30 ± 0.06
Spectral clustering 0.49 ± 0.05 0.44 ± 0.05 0.44 ± 0.06 0.33 ± 0.05

FGW 0.54 ± 0.04 0.51 ± 0.04 0.49 ± 0.04 0.42 ± 0.05
IFGW 0.60 ± 0.05 0.47 ± 0.04 0.56 ± 0.03 0.47 ± 0.04

ENZYMES KMeans 0.42 ± 0.06 0.27 ± 0.07 0.37 ± 0.06 0.43 ± 0.07
Spectral clustering 0.47 ± 0.04 0.31 ± 0.05 0.42 ± 0.06 0.49 ± 0.05

FGW 0.52 ± 0.04 0.38 ± 0.05 0.47 ± 0.04 0.46 ± 0.04
IFGW 0.58 ± 0.03 0.43 ± 0.02 0.53 ± 0.03 0.60 ± 0.03

distances between graphs, leading significant difference once the feature information is introduced to
the distance. In contrast, IFGW captures both feature and structural information in a balanced way,
resulting in a more smooth clustering that considers both intra-graph feature distances and structural
relationships. These findings suggest that the IFGW distance provides flexibility in clustering graphs
with heterogeneous characteristics, making it a versatile tool for clustering tasks in domains such as
bioinformatics and chemistry.

3.2 COMPUTER VISION - POINT CLOUD CLASSIFICATION

We also consider the tasks in computer vision, but with the data representation of point clouds. The
MNIST and USPS datasets are widely used benchmarks for image classification tasks. The MNIST
dataset 1 consists of 70,000 28x28 grayscale images of handwritten digits from 0 to 9. The USPS
dataset 2, though similar in nature, contains 9,298 grayscale images, each of size 16x16, and serves as
an alternative for evaluating machine learning models on digit recognition. Both datasets, originally
consisting of rasterized images, were converted into point cloud representations for this experiment.
A point cloud represents each image as a set of 2D points in pixel space, where only non-zero pixel
values are retained. The goal is to test how a kernel-based classification model performs on point
cloud data, which is inherently sparse compared to full image representations.

We introduce γ to filter out the pixels with values greater or equal to γ, resulting a set of point
clouds (examples are provided in Appendix). We follow the same setting as Nguyen & Tsuda (2023),
converting a distance into a kernel matrix through the exponential function„ ie.e, K = exp((−ηD)),
where D is the pairwise distance (Euclidean distance between pixels) calculated based on IFGW.
Due to the indirect computation of the kernel matrix, we can apply the kernel-based classification
model, such as SVM, to classify the point clouds. Figure 3 shows the classification results of SVM on
the MNIST and USPS datasets using IFGW with different γ values (threshold). The results suggest
that with more pixels involved in the graph, the classification performance improves, indicating that
the IFGW distance can effectively handle sparse data and capture the underlying structure of point
clouds.

1MNIST point cloud: https://www.kaggle.com/datasets/cristiangarcia/
pointcloudmnist2d

2USPS point cloud: https://www.kaggle.com/datasets/bistaumanga/usps-dataset
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Figure 3: Point cloud classification on MNIST and USPS datasets (SVM).

3.3 GRAPH SIMILARITY SEARCH: APPLICATIONS AND CHALLENGES

Graph similarity search has numerous applications across various domains, including image retrieval,
document retrieval, protein structure comparison, and chemical compound discovery. More specifi-
cally, scientists can use graph similarity to identify proteins with similar structures, which may have
similar functions and serve as potential drug targets in protein structure comparison. For chemical
compound discovery, chemists can use graph similarity to identify compounds with similar structures
and potentially analogous properties, which may lead to similar applications or candidates for further
research.

SMILES (Simplified Molecular Input Line Entry System), a widely used representation of chemical
compounds, converts molecular structures into graph form for comparison. However, traditional
SMILES-based comparisons rely on Jaccard similarity, which focuses solely on structural similarity
without considering atom or bond properties. This approach, while useful, can overlook critical
aspects of chemical behavior determined by node features (e.g., atom types) and edge properties (e.g.,
bond types).

Alternatively, the Intra-Fused Gromov-Wasserstein (IFGW) distance offers a more holistic approach
by combining structural and feature-based comparisons in a single framework. Unlike methods that
focus solely on structure, IFGW integrates the node features, making it suitable for more complex
applications requiring a comprehensive similarity metric. Additionally, IFGW is isometry-aware,
which means it accounts for the intrinsic geometric properties of graphs. This feature is particularly
valuable for applications such as protein structure comparison and chemical compound discovery,
where both the geometry and chemical properties of molecules or proteins influence their function.

Cross-domain similarity. To demonstrate, consider the structure of (-)-L-Carnitine (SMILES:
C[N+](C)(C)CC(CC(=O)[O-])O), which exists as one of two stereoisomers: the enantiomers D-
carnitine (S-(+)-) and L-carnitine (R-(-)-). Both are biologically active, but only L-carnitine naturally
occurs in animals, while D-carnitine is toxic as it inhibits the activity of the L-form. We extracted
both the 2D structure and 3D conformer of L-carnitine from the PubChem database and converted
them into graphs. In these graphs, the nodes represent the atoms (excluding hydrogens), and the
features include either 2D or 3D coordinates, along with atom type information. Using IFGW, we
compared the 2D and 3D graphs of L-carnitine to measure the similarity between different domain
representations of the same structure. The results showed that IFGW effectively captured both
structural and feature differences between the 2D and 3D graphs, yielding a dissimilarity score of
0.0013 for the same molecule. Notably, we did not adjust the hyperparameter α, leaving it at 0.5. The
lower the score, the greater the similarity, indicating that the 2D and 3D graphs are highly similar,
even without prior knowledge of the structure.
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(a) 2D Structure of L-Carnitine (b) 3D Conformer of L-Carnitine

Figure 4: Comparison of 2D and 3D structures of L-Carnitine under IFGW distance is 0.0013.

4 CONCLUSION

This paper introduces the Intra-Fused Gromov-Wasserstein (IFGW) distance, a novel metric combin-
ing the strengths of Wasserstein and Gromov-Wasserstein distances to compare both structural and
feature information of graphs. IFGW’s flexibility and isometry-awareness make it a powerful tool for
cross-domain structured data comparisons, offering substantial improvements over existing methods.
In our experiments, IFGW demonstrated its versatility across tasks such as graph clustering, point
cloud classification, and graph similarity search. For graph clustering, it consistently outperformed
other methods by integrating feature and structural information, particularly in bioinformatics datasets
like MUTAG and QM9. In point cloud classification of MNIST and USPS datasets, IFGW handled
sparse data effectively, showcasing its potential for image-based tasks.

Crucially, IFGW can be extended to more complex domains like 3D molecular structure comparison,
where 3D coordinates serve as features. This capability is especially valuable for tasks such as protein
structure analysis, where both the spatial arrangement of atoms and their relationships are critical.
Additionally, IFGW’s framework is adaptable to mRNA sequential data, where the sequential order of
nucleotides can be treated as a graph feature, making it useful for genomic applications. The metric
of structured data could also be used in contrastive learning, where the distance between data points
is minimized in the same class and maximized in different classes. We will leave this as future work.

4.1 LIMITATIONS

While IFGW offers a robust and flexible approach to graph similarity search, several challenges
remain:

Computational Complexity: Traditional approaches like subgraph isomorphism and graph edit
distance are computationally expensive, especially for large graphs or databases. IFGW, though more
efficient, still requires optimization to handle very large datasets.

Scalability: As datasets grow in size, efficiently searching large databases of graphs becomes
increasingly challenging. Methods that rely on pairwise comparisons, such as graph edit distance,
often struggle with scalability. IFGW helps mitigate this by offering a smooth distance function that
facilitates faster computation .

Data Heterogeneity: Graphs can vary in size, structure, and feature types. A universal similarity
metric must be flexible enough to handle this heterogeneity. IFGW addresses this by incorporating
both structural and feature information in a single framework, however, validating the success of such
metric still domain experts to be involved intensively.

Interpretability: Some graph similarity metrics, including IFGW, can be difficult to interpret, making
it challenging to understand why two graphs are considered similar or dissimilar. Future work could
focus on improving the interpretability of these metrics.

Robustness: Graph similarity metrics may be sensitive to noise, outliers, or missing data, which can
lead to inaccurate or unstable results. Ensuring robustness in graph similarity search remains an open
research question .
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Original 0 =0.005, n=234 =0.01, n=234 =0.05, n=228 =0.1, n=224 =0.5, n=192

Original 1 =0.005, n=67 =0.01, n=67 =0.05, n=63 =0.1, n=57 =0.5, n=37

Original 2 =0.005, n=118 =0.01, n=118 =0.05, n=106 =0.1, n=99 =0.5, n=73

Original 3 =0.005, n=143 =0.01, n=142 =0.05, n=138 =0.1, n=132 =0.5, n=90

Original 4 =0.005, n=146 =0.01, n=146 =0.05, n=139 =0.1, n=135 =0.5, n=105

Original 5 =0.005, n=189 =0.01, n=187 =0.05, n=176 =0.1, n=170 =0.5, n=125

Original 6 =0.005, n=101 =0.01, n=101 =0.05, n=97 =0.1, n=95 =0.5, n=68

Original 7 =0.005, n=144 =0.01, n=142 =0.05, n=132 =0.1, n=122 =0.5, n=99

Original 8 =0.005, n=177 =0.01, n=177 =0.05, n=173 =0.1, n=168 =0.5, n=130

Original 9 =0.005, n=151 =0.01, n=151 =0.05, n=145 =0.1, n=138 =0.5, n=93

Figure 5: MNIST point cloud with threshold filter
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Original 0 =0.005, n=193 =0.01, n=178 =0.05, n=155 =0.1, n=137 =0.5, n=70

Original 1 =0.005, n=96 =0.01, n=95 =0.05, n=64 =0.1, n=64 =0.5, n=29

Original 2 =0.005, n=176 =0.01, n=161 =0.05, n=133 =0.1, n=120 =0.5, n=42

Original 3 =0.005, n=197 =0.01, n=185 =0.05, n=157 =0.1, n=145 =0.5, n=73

Original 4 =0.005, n=201 =0.01, n=193 =0.05, n=167 =0.1, n=148 =0.5, n=87

Original 5 =0.005, n=185 =0.01, n=171 =0.05, n=147 =0.1, n=130 =0.5, n=61

Original 6 =0.005, n=192 =0.01, n=182 =0.05, n=161 =0.1, n=143 =0.5, n=90

Original 7 =0.005, n=171 =0.01, n=162 =0.05, n=143 =0.1, n=134 =0.5, n=84

Original 8 =0.005, n=229 =0.01, n=218 =0.05, n=190 =0.1, n=175 =0.5, n=82

Original 9 =0.005, n=162 =0.01, n=150 =0.05, n=131 =0.1, n=122 =0.5, n=64

Figure 6: USPS point cloud with threshold filter
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