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Figure 1: Our method achieves satisfying rendering results being only trained 100 iterations per
frame. Leveraging learned deformation information, we also demonstrate successful articulated
object segmentation.

ABSTRACT

Dynamic novel-view synthesis and point tracking have emerged as promising
tasks. However, existing methods often struggle with efficiency and accu-
rately capturing deformations. In this paper, we propose LayeredGS, a novel
Deformation-based Dynamic Gaussian Splatting method that excels in both 3D
tracking of dense scene elements and real-time dynamic scene rendering. By
learning Gaussian deformations between frames, LayeredGS preserves their
point-like characteristics while capturing motion. Unlike previous methods,
our approach optimizes efficiency by grouping Gaussians with similar deforma-
tions using a coarse-to-fine clustering structure. Experimental results show the
rapid convergence within 100 iterations per time frame on fast-moving dynamic
datasets, maintaining rendering quality and tracking accuracy comparable to state-
of-the-art methods using only 1/20 training iterations. Additionally, we introduce
the application of self-supervised articulated object segmentation, highlighting the
utility of deformation information for the first time.

1 INTRODUCTION

Dynamic novel-view synthesis offers a groundbreaking approach to modeling the 3D world, with
promising applications in fields such as AR/VR, robotics, and self-driving cars. The learned dynamic
rendering can enable immersive and interactive experiences. In recent years, various attempts (Chen
et al., 2022; 2023a; Fridovich-Keil et al., 2022; Hu et al., 2023; Müller et al., 2022; Chen et al.,
2023b; Garbin et al., 2021; Hedman et al., 2021; Reiser et al., 2023; Wizadwongsa et al., 2021;
Chen et al., 2021; Niemeyer et al., 2022; Wynn & Turmukhambetov, 2023; Yu et al., 2021) have
been made to solve this task. These works are inspired by the success of Neural Radiance Field
(NeRF) (Mildenhall et al., 2020) and use radiance field to model the 3D scenes. However, the time-
consuming network querying and volume rendering procedure make real-time rendering difficult.
Moreover, the implicit representation of NeRF limits the possibility of some downstream applica-
tions like tracking.

Recently, the emergence of 3D Gaussian Spatting (3DGS) (Kerbl et al., 2023) significantly improves
the efficiency of static scene rendering. By modeling a 3D scene as a set of 3D Gaussians and
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utilizing efficient rasterization, 3DGS can achieve real-time rendering speed and fast training speed.
Such insight also inspires research in dynamic scenes (Wu et al., 2023; Duan et al., 2024; Sun
et al., 2024; Luiten et al., 2023). In contrast to implicit approaches that utilize a single module
to encode entire dynamic scenes, some explicit online methods (Luiten et al., 2023; Abou-Chakra
et al., 2023; Zhang et al., 2023) that try to directly learn the change of position, rotation, and other
parameters of each Gaussian between adjacent frames have shown to be more effective in capturing
the deformation across time.

These methods (Luiten et al., 2023) can realistically capture the deformation of the scene over time
rather than merely accomplishing the rendering task. They preserve the point-like structural char-
acteristics of “3D” Gaussian Splatting, enabling effortless tracking of the evolution of any Gaus-
sian within the dynamic process without the need for any further processing. In particular, Dy-
namic3DGS (Luiten et al., 2023) uniquely enables 3D tracking across all frames for every scene
element, offering the capability to track all Gaussians throughout the entire sequence. This makes
it an effective method for tasks requiring fine-grained tracking, but its optimization process is slow.
Per-frame optimization often requires a large number of iterations (e.g., 2000 per frame), signifi-
cantly hindering its use in real-time applications. In addition, simply modeling the translation and
rotation of each Gaussian cannot yield good enough results for longer videos, making it difficult to
fully utilize the motion information.

These observations motivate us to study for a better deformation strategy. In real-world dynamic
scenes, objects are often composed of multiple parts, with Gaussians within each part exhibiting
similar deformations. It is thus natural to leverage this structural information and reduce the need
for training each 3D Gaussian individually. To achieve this, we organize the Gaussians into clusters
and optimize the deformation of the entire cluster rather than individual Gaussians. Moreover, the
covariance matrix and centroid position of each Gaussian are coupled during deformation. This
means we do not need to learn the changes in the covariance matrix and centroid positions separately.
By making these changes, we can significantly reduce the number of parameters that need to be
optimized, thereby improving the efficiency of the optimization process.

However, the size of the clusters is a trade-off. Training efficiency cannot significantly improve if
a cluster contains too few Gaussians. On the other hand, if a cluster contains too many Gaussians,
the large cluster tends to move as a whole, making it difficult to model the deformation among
the Gaussians within the cluster. This can reduce the modeling capability for objects with detailed
movements. Therefore, we adopt a coarse-to-fine multi-layer cluster structure. In our experiments,
we demonstrate that this approach greatly enhances optimization efficiency, ensuring high rendering
quality and 3D tracking performance in complex dynamic scenes. Notably, our method achieves
20⇥ speed up compared with Dynamic3DGS (Luiten et al., 2023).

A remaining challenge lies in learning the deformation information for each cluster. We address
this issue by explicitly constructing a trainable deformation function with parameters that represent
a cluster’s rotation, translation, and fine-grained scaling. This enables us to learn the deformation
information efficiently via backpropagation of a 2D image loss.

Following the acquisition of deformation information, we introduce a straightforward yet important
application that is enabled by our method: Self-supervised Articulated Object Segmentation. Specif-
ically, we propose clustering the object’s parts by our deformation, achieving superior segmentation
to real scenes and objects, as shown in Figure 1.

In summary, the contributions of our paper are four-fold:
• We present LayeredGS, a method for online dynamic rendering that achieves both real-

time rendering and rapid convergence. LayeredGS delivers rendering quality comparable
to state-of-the-art methods, requiring only 1/20 of the iterations and consuming just 1 to 3
seconds per frame for training. Meanwhile, LayeredGS enables 3D point tracking across
all frames, providing accurate motion tracking for dynamic scenes.

• We introduce a multi-layer, coarse-to-fine, cluster-based optimization strategy that signifi-
cantly improves the efficiency of the optimization process.

• We propose a trainable deformation function for clusters, enabling efficient learning of
deformation information via backpropagation of a 2D image loss.

• We demonstrate one novel application, Self-supervised Articulated Object Segmentation,
showcasing the utility of deformation information for the first time.
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2 RELATED WORKS

Static Novel-View Synthesis has become popular in 3D vision in recent years. Specifically, given
a set of images from different camera poses, high-fidelity rendered images on novel views are ex-
pected. The potential of achieving photorealistic results on this task is revealed by Neural Radiance
Field (NeRF) (Mildenhall et al., 2020), which encodes the scene as a fully connected deep network.
Following this, a series of works are proposed to improve the efficiency, rendering quality, storage
consumption, and other aspects of NeRF (Chen et al., 2022; 2023a; Fridovich-Keil et al., 2022;
Hu et al., 2023; Müller et al., 2022; Chen et al., 2023b; Garbin et al., 2021; Hedman et al., 2021;
Reiser et al., 2023; Wizadwongsa et al., 2021; Chen et al., 2021; Niemeyer et al., 2022; Wynn &
Turmukhambetov, 2023; Yu et al., 2021). However, the design of costly volume rendering and neu-
ral networks makes the improvements very challenging, especially in balancing the time efficiency
and rendering quality. Recently, 3D Gaussian Splatting (Kerbl et al., 2023) is proposed to elegantly
solve this problem by explicit 3D Gaussian representation and differentiable rasterization.

Our work is highly inspired by this but extends from static scenes to dynamic scenes. In particular,
we start from static 3D Gaussians and optimize towards the dynamic scene. The natural represen-
tation of 3D Gaussians allows for explicit modeling of deformation and high efficiency for both
training and inference.

Dynamic Novel-View Synthesis is a more challenging task in dynamic scenes. Inspired by the
success of NeRF (Mildenhall et al., 2020), various attempts have been made to model the dynam-
ics (Attal et al., 2023; Cao & Johnson, 2023; Fang et al., 2022; Li et al., 2022b;d; 2021; 2023; Park
et al., 2021a;b; Pumarola et al., 2021; Fridovich-Keil et al., 2023; Yang et al., 2022; Weng et al.,
2022). These works solve the dynamic problem by different routes. Specifically, some works (Li
et al., 2022b; Weng et al., 2022; Yang et al., 2022; Zhao et al., 2022) focus on certain scenarios
like human motion and leverage prior knowledge, such as human skeletons, to facilitate the synthe-
sis. While achieving impressive results, the modeling strategy cannot be applied to general cases.
Deformation-based methods (Attal et al., 2023; Park et al., 2021a;b; Pumarola et al., 2021) build
a canonical stage and warp the other frames to this stage. This approach can be applied to more
general scenes but can’t work well on complex scenes with high variations. Impressed by the high
rendering speed of 3DGS (Kerbl et al., 2023), many recent works focus on dynamic scenes with the
idea of 3DGS (Wu et al., 2023; Luiten et al., 2023; Yang et al., 2024; Duan et al., 2024; Sun et al.,
2024). Dynamic3DGS (Luiten et al., 2023) optimize the attributes of existing Gaussians to deal with
new frames and perform tracking. 4DGS (Wu et al., 2023) build a multi-resolution voxel planet to
compute voxel feature with timesteps. Realtime4DGS (Yang et al., 2024) build a 4D Gaussian struc-
ture and condition it to 3D Gaussian with a given timestep. 3DGStream (Sun et al., 2024) focuses
on online training and builds a transformation cache for optimization. However, despite being an
online method, 3DGStream continuously prunes Gaussians during training, making it impossible to
perform 3D point tracking across all time frames. While all these methods benefit from the effi-
ciency of differentiable rasterization, they fail to leverage the internal structural information of the
real world and still suffer from notable training time.

Our method is mainly inspired by Dynamic3DGS (Luiten et al., 2023) and focuses on the online
dynamic scenes (Sun et al., 2024; Li et al., 2022a; Wang et al., 2023; Song et al., 2023), where
the method must continually deal with new incoming frames. To make online training much more
efficient, we propose a multi-level structure for 3D Gaussians with a new deformation optimiza-
tion strategy. In addition, our explicit deformation format allows for broad applications like object
insertion and part segmentation.

Recent advances in dynamic Gaussian splatting, such as SC-GS (Huang et al., 2024), utilize control
points to compress the motion information of Gaussians, transitioning from per-Gaussian training
to per-control point training. While SC-GS (Huang et al., 2024) also seeks to optimize Gaussian
representations, unlike our method, it focuses on using a single-layer Gaussian structure to improve
rendering quality and conducting tasks like scene editing. In contrast, our approach leverages a
multi-layer, coarse-to-fine structure to significantly enhance training efficiency. Furthermore, our
method is designed for online tasks, while SC-GS is tailored for offline tasks.

Dynamic Novel-View Synthesis Datasets for online methods must provide multi-view inputs for
each frame. As opposed to offline methods, online methods can only reconstruct one timestep of
the scene at a time, with each timestep being initialized using the previous timestep’s representation.
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Figure 2: Our method first utilizes the Gaussians from the previous frame t � 1 and the new inputs
for frame t to learn the deformation D between these two frames. These Gaussians are organized
into coarse-to-fine multi-layer clusters with K layers. For each cluster layer, we learn a deformation
function. Finally, the deformation D of each Gaussian is obtained by nesting these deformation
functions.

Therefore, datasets commonly used in offline dynamic synthesis, such as Pumarola et al. (2021)
and Park et al. (2021b), cannot be applied in our case. Moreover, our multi-layer, coarse-to-fine
design offers a more efficient way to model dynamic Gaussians. It significantly accelerates the
convergence during training while preserving the ability to model detailed deformations. Datasets
such as Li et al. (2022c) and Broxton et al. (2020), although appearing complex, involve only small-
scale movements. As a result, they are not suitable for evaluating our method’s capability to model
Gaussian dynamics. In the end, we selected accelerated versions of datasets Abou-Chakra et al.
(2023) and Luiten et al. (2023) for testing, which meet the aforementioned requirements. For further
details, please refer to Sec 4.1.

3 METHOD

Overview Our method utilizes online dynamic scene reconstruction, meaning that for each new
time frame, we only need the reconstruction result from the previous frame and perform a single
deformation prediction. Firstly, we need to perform static scene reconstruction for the initial frame
(frame 0) of the entire video. This process follows a standard 3D Gaussian Splatting (Kerbl et al.,
2023) procedure. Given multi-view observations of a static scene (I0,1, I0,2, . . . , I0,N ) and their cor-
responding camera poses (C1, C2, . . . , CN ), we need to train a module ⇥0 that contains parameters
of all the Gaussians. This enables us to generate a predicted image Î for any input camera pose C,
such that Î = ⇥0(C).

Based on this, we can proceed with subsequent online dynamic scene reconstruction. To be more
specific, we use S0, S1, . . . , ST to represent the dynamic scene from time frame 0 to time frame T .
For each time frame t, we have a sequence of images It,1, It,2, . . . , It,N from the cameras. Our goal
is to train a representation ⇥ that can fit the scenes S0, S1, . . . , ST . Given an arbitrary camera C at
time frame t, we can predict the image as Î = ⇥t(C).

3.1 DYNAMIC GAUSSIAN SPLATTING

In this section, we present our method for learning the dynamic scene representation ⇥ for the
dynamic scene {S0, S1, . . . , ST }. In online dynamic scene reconstruction, we only need to predict
the deformation of the scene between two frames based on the reconstruction results of the previous
frame and the input observations of the current time frame.

Assuming that the Gaussians of frame t � 1 have been reconstructed, we need to predict the defor-
mation for frame t and obtain the scene representation ⇥t for it. To be concrete, we want to predict
the deformation Dt that satisfies the following equation:

⇥t = Dt(⇥t�1). (1)
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Figure 3: Illustration of the deformation function parameters: Rotation (second), translation (third),
and scaling (fourth) applied to a cluster. Initial state (first).

Thus, for any given t and C, we have

⇥(t, C) = Dt(Dt�1(· · ·D1(⇥0) · · · ))(C). (2)

Consider the changes of a single Gaussian gi in the scene at time frame t during deformation. Recall
that its representation is defined as

Gt,i(X) = e�
1
2 (X�pt,i)

T⌃�1
t,i (X�pt,i). (3)

This is a probability density function of the position X in which pt,i is the centroid position, and
⌃t,i is the covariance matrix. In the deformation process Dt, we assume that the corresponding
deformation function of position x is �t which satisfies

�t(pt�1,i) = pt,i. (4)

If we substitute Eq. (4) into Eq. (3), we can obtain the Gaussian expression at time frame t:

Gt,i(X) = exp (�1

2
(��1

t (X)� pt�1,i)
T⌃�1

t�1,i(�
�1
t (X)� pt�1,i)). (5)

If we approximate �t with a first-order approximation as mentioned in Xie et al. (2024), we can
obtain the following,

Gt,i(X) = exp (�1

2
(X� pt,i)T (rpt�1,i

(�t)⌃t�1,irpt�1,i
(�t)

T )�1(X� pt,i)). (6)

Therefore, if we compare Eq. (6) with Eq. (3), we can obtain the deformed centroid position pt and
the covariance matrix ⌃t as follows:

pt,i = �t(pt�1,i),

⌃t,i = rpt�1,i
(�t)⌃t�1,irpt�1,i

(�t)
T .

(7)

This means that if we can learn the deformation function �t of the scene, we can use Eq. (7) directly
to update the parameters of all the Gaussians. Thus, our task is transformed into learning �t, which
will be discussed in the following sections.

3.2 COARSE-TO-FINE CLUSTERING STRUCTURE

The deformation function �t can be a complicated non-linear one for the entire scene, making it
hard for us to directly learn it. An intuitive idea is that if we can cluster points that are close in space
and make an approximation that all the Gaussians within one cluster follow the same deformation
function, then the difficulty of learning the deformation function as a whole will be reduced. Also,
with this clustering structure, we can make the learning process more efficient than learning it for
each Gaussian independently. Which will be revealed in the experiment results. Furthermore, the
deformation function within one cluster can be constructed using deformations such as rotation,
translation, and scaling, making it possible to parameterize �t in an explicit form.

The intuition is that one small chunk of the object is nearly rigid, thus its movement can be repre-
sented by a transformation and a rotation around its centroid. Also, to increase the flexibility, we
can add a scaling factor. The deformation function �t within one cluster j can be represented as

xd = (Rj(x � pcj) + tj) · (tanh (c>j (x � pc
j) + sj) + 1), (8)

5
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where x is the position of the point, xd is the corresponding position after deformation, pcj is the
centroid of the cluster, Rj is the rotation matrix (stored as a quaternion to ensure that it represents
a rotation), tj is the translation vector, and (tanh (c>j (x � pcj) + sj) + 1) as a whole is the scaling
factor. This design ensures the scaling factor remains in the range (0, 2), preventing potential NaN
problems during training. Additionally, the scaling factor is a flexible, trainable linear function of
(x � pcj), with cj and sj as its parameters, allowing for adaptable scaling within a single cluster.
Fig. 3 illustrates the specific meaning of each parameter. In summary, to represent the deformation
function �t within cluster j, we need to learn trainable parameters Rj , tj , cj and sj .

The previously discussed content addresses the deformation formulation problem within a single-
layer cluster. To provide more flexibility in learning the deformation of the entire scene, we employ a
coarse-to-fine multi-layer cluster structure. Initially, we cluster all Gaussians using K-means based
on their centroids. Subsequently, by merging neighboring clusters, we acquire a coarser layer of
clusters. This process is iteratively repeated until we obtain the coarsest layer of clusters. Specif-
ically, suppose a point pt�1 belongs to clusters j1, j2, . . ., jK at each layer respectively (K is the
number of layers), and the deformation function within cluster jk is �k,jk . Then, for the point pt�1
at the t� 1-th frame

pt = �K,jK (· · · (�2,j2(�1,j1(pt�1))) · · · ). (9)

In our implementation, K = 3. The multi-layer clustering process is shown in Fig. 2.

At the coarsest level, clusters are expected to make broad approximations of the scene’s deforma-
tion. While this coarse clustering might not always align perfectly with the underlying rigid parts,
the purpose is to rapidly bring the Gaussians closer to an optimal solution. Fine-level clusters, oper-
ating at higher resolutions, can then start optimization from an improved baseline, requiring fewer
iterations to refine the deformation. This hierarchical approach reduces training cost while retaining
the ability to express detailed motion.

To further enhance the fine-tuning capability of each Gaussian, we introduce three additional param-
eters for each Gaussian, which are �p, �R, and �s, corresponding to delta in centroids positions,
rotations, and scalings. These delta values are applied to the Gaussians after they have been de-
formed by the deformation function.

3.3 LEARNING THE DEFORMATION

Based on the previously mentioned deformation process, we present our method for learning defor-
mation. Specifically, our method for learning deformations consists of two key stages.

Initialization Stage: We begin by training Gaussians on a static scene using observations from the
first frame. Following this, we perform a coarse-to-fine multilevel clustering of the Gaussian cen-
troids, which typically needs to be done only once during initialization. However, if there are sig-
nificant changes in the scene, this clustering can be recomputed mid-training to adapt to the new
conditions.

Training Stage: Once initialization is complete, we proceed to the training phase, where we optimize
deformation parameters frame by frame. For each input frame, we combine the current input images
with the Gaussians from the previous frame to predict the deformation. Through backpropagation
of 2D loss, we iteratively refine the deformation function. The deformation parameters for each
frame are initialized by inheriting those from the previous frame, based on the assumption that the
deformations between consecutive frames will be similar.

3.4 OPTIMIZATION DETAILS

In this subsection, we introduce some optimization details. In addition to the 2D image losses
used in most Gaussian Splatting methods, following Luiten et al. (2023), we also use local-rigidity
loss, isometry loss, and rotation loss to restrict the movement of Gaussians in large regions of the
same color. Furthermore, we add ratio loss Lratio and scale loss Lscale to prevent the generation of
Gaussians that are excessively large or elongated, helping to reduce artifacts during the deformation
process. The explicit forms of these losses are Lratio = 1

N

PN
i=1 max

⇣
0, max(scalei,t)

min(scalei,t)
� max ratio

⌘

and Lscale = 1
N

PN
i=1 max(0, scalei,t�max scale), where scalei,t is the scaling vector of Gaussian i

at time t, and max ratio and max scale are hyper-parameters. After the first round of the static stage,
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Table 1: Online methods rendering results on the FastParticle and Panoptic datasets. Values repre-
sent mean metrics across all testing views. Top-2 methods are bolded.

Metrics Method FastParticle Panoptic
Robot Spring Wheel Pendulums Robot-Task Cloth Basketball Boxes Football Juggle Softball Tennis

PSNR"
Ours100 29.46 30.28 27.95 30.6 27.67 31.68 30.25 29.46 30.47 31.12 31.02 30.21

Dynamic3DGS100 (Luiten et al., 2023) 21.28 23.66 24.14 24.98 23.41 21.44 29.48 29.20 30.05 30.96 30.64 29.77
Dynamic3DGS2000 (Luiten et al., 2023) 30.23 30.88 28.59 31.23 29.36 32.91 30.01 29.29 30.4 31.04 30.88 30.11

SSIM"
Ours100 0.96 0.97 0.94 0.97 0.95 0.97 0.93 0.93 0.94 0.94 0.94 0.94

Dynamic3DGS100 (Luiten et al., 2023) 0.90 0.93 0.89 0.94 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94
Dynamic3DGS2000 (Luiten et al., 2023) 0.97 0.97 0.94 0.97 0.97 0.98 0.92 0.93 0.93 0.94 0.94 0.94

LPIPS#
Ours100 0.09 0.04 0.07 0.06 0.10 0.06 0.21 0.20 0.20 0.20 0.20 0.19

Dynamic3DGS100 (Luiten et al., 2023) 0.15 0.08 0.11 0.09 0.13 0.11 0.22 0.21 0.21 0.20 0.21 0.21
Dynamic3DGS2000 (Luiten et al., 2023) 0.08 0.04 0.06 0.05 0.09 0.05 0.22 0.21 0.21 0.21 0.21 0.21

Table 2: General dynamic methods rendering results on the FastParticle and Panoptic datasets. Val-
ues represent mean metrics across all testing views. The best method is bolded.

Metrics Method FastParticle Panoptic
Robot Spring Wheel Pendulums Robot-Task Cloth Basketball Boxes Football Juggle Softball Tennis

PSNR"

Ours 29.46 30.28 27.95 30.60 27.67 31.68 30.25 29.46 30.47 31.12 31.02 30.21

Dynamic3DGS (Luiten et al., 2023) 21.28 23.66 24.14 24.98 23.41 21.44 29.48 29.2 30.05 30.96 30.64 29.77
RealTime4DGS (Yang et al., 2024) 25.97 22.54 23.86 26.25 24.72 22.16 25.51 27.59 26.48 27.63 26.73 27.09

4DGS (Wu et al., 2023) 25.86 24.93 26.56 27.35 28.00 27.89 23.26 28.02 27.04 28.10 26.01 27.54
SC-GS(no-pretraining) (Huang et al., 2024) 15.76 17.08 16.89 17.90 16.42 14.58 19.72 21.43 20.66 20.87 21.03 21.10

SC-GS(pretraining) (Huang et al., 2024) 22.31 25.60 24.10 27.32 26.49 26.95 19.42 21.02 20.17 20.62 21.11 21.02

SSIM"

Ours 0.96 0.97 0.94 0.97 0.95 0.97 0.93 0.93 0.94 0.94 0.94 0.94

Dynamic3DGS (Luiten et al., 2023) 0.90 0.93 0.89 0.94 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94

RealTime4DGS (Yang et al., 2024) 0.93 0.91 0.89 0.93 0.93 0.91 0.89 0.92 0.91 0.92 0.91 0.92
4DGS (Wu et al., 2023) 0.93 0.93 0.91 0.94 0.95 0.95 0.87 0.92 0.91 0.92 0.91 0.92

SC-GS(no-pretraining) (Huang et al., 2024) 0.75 0.78 0.80 0.66 0.76 0.73 0.69 0.70 0.69 0.71 0.72 0.70
SC-GS(pretraining) (Huang et al., 2024) 0.90 0.95 0.87 0.95 0.94 0.94 0.68 0.69 0.68 0.71 0.71 0.70

LPIPS#

Ours 0.09 0.04 0.07 0.06 0.10 0.06 0.21 0.20 0.20 0.20 0.20 0.19

Dynamic3DGS (Luiten et al., 2023) 0.15 0.08 0.11 0.09 0.13 0.11 0.22 0.21 0.21 0.20 0.21 0.21
RealTime4DGS (Yang et al., 2024) 0.13 0.11 0.12 0.10 0.13 0.13 0.26 0.22 0.23 0.22 0.23 0.23

4DGS (Wu et al., 2023) 0.12 0.08 0.10 0.09 0.11 0.09 0.32 0.25 0.27 0.25 0.26 0.25
SC-GS(no-pretraining) (Huang et al., 2024) 0.27 0.17 0.15 0.21 0.26 0.25 0.44 0.44 0.43 0.42 0.41 0.42

SC-GS(pretraining) (Huang et al., 2024) 0.12 0.04 0.12 0.04 0.07 0.07 0.45 0.43 0.44 0.41 0.41 0.42

we fix the opacity and background logit of the Gaussians. For better rendering results, we make
the color trainable, allowing it to better adapt to different lighting conditions. Specifically, in terms
of appearance modeling, we follow the approach of Dynamic3DGS (Luiten et al., 2023), assigning
each Gaussian a trainable 3D RGB vector instead of using spherical harmonics (SH). Additionally,
we add a soft RGB loss to constrain the changes in color. Regarding the coarse-to-fine clustering, in
our experiments, we use a structure with K = 3, where the clusters in the coarser layer are obtained
by merging clusters from the finer layer. The finest layer clusters are obtained using KMeans of
Gaussian centroid positions. The merging method involves calculating the average centroid position
of Gaussians in each cluster, and then performing Agglomerative Clustering based on this. The final
numbers of clusters at each layer are 64, 320, 1280.

4 EXPERIMENTS

4.1 DATASET PREPARATION

We conduct our experiments on two datasets: the Panoptic dataset (Luiten et al., 2023), which
includes six real-world dynamic scenes (Basketball, Boxes, Football, Juggle, Softball, and Tennis),
and the synthetic FastParticle dataset (Abou-Chakra et al., 2023), containing six highly dynamic
scenes (Robot, Spring, Wheel, Pendulums, Robot-Task, and Cloth). As mentioned in Sec. 2, we
deliberately chose these datasets with challenging motion patterns to evaluate our method’s ability
to quickly converge Gaussians in a very short training period. The large motion between frames
in these datasets increases the difficulty of rapid convergence, making them ideal for testing the
robustness of our approach. To further amplify this challenge, we accelerated the motion in the
FastParticle dataset. Additional details are available in the appendix.

4.2 COMPARISONS

In this section, we compare our method with the state-of-the-art dynamic Gaussian Splatting meth-
ods on View-Synthesis tasks. These methods include Dynamic3DGS (Luiten et al., 2023), Real-
Time4DGS (Yang et al., 2024), 4DGS (Wu et al., 2023) and SC-GS (Huang et al., 2024). Among
them, Dynamic3DGS (Luiten et al., 2023) adopts the same online dynamic scene reconstruction
approach as ours, while the other two are offline methods.

For evaluation metrics, we use the PSNR, SSIM, and LPIPS (Wang et al., 2004; Zhang et al., 2018).
In the experiments, since training speed is greatly influenced by implementation and hardware, for a
fair comparison, it is most reasonable to compare the rendering results at the same iteration number.
To eliminate concerns about runtime speed. On our single NVIDIA A40 GPU, training 100 iterations
takes 1-3 seconds.
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Table 3: 2D tracking results on the FastParticle and Panoptic datasets. Values represent mean metrics
across all testing trajectories. The best method is bolded.

Metrics Method FastParticle Panoptic
Robot Spring Wheel Pendulums Robot-Task Cloth Basketball Boxes Football Juggle Softball Tennis

2D MTE# Ours100 0.80% 0.17% 14.88% 0.50% 0.82% 0.24% 0.57% 0.22% 7.64% 8.15% 0.39% 1.72%

Dynamic3DGS100 (Luiten et al., 2023) 7.84% 2.26% 18.53% 3.51% 4.42% 2.33% 15.85% 4.95% 9.29% 12.42% 16.43% 25.19%

Figure 4: Left: Comparing our tracking result
(blue) to the ground truth (red). Right: Visualiza-
tion of our tracking results.

w/o Entangle w/ Entangle Ground Truth
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Figure 5: Ablation study of the entangled co-
variance matrix.

For online dynamic methods, we conducted experiments comparing our method with Dy-
namic3DGS (Luiten et al., 2023) on both the FastParticle and Panoptic datasets. The results are
shown in Table 1. Since both methods follow the paradigm of first training a static scene and then
performing Gaussian Splatting training frame by frame, we fixed the number of training iterations
between every two frames to 100 and 2000 for comparison. Here, we provide the same static check-
points for both methods for fairness. As mentioned earlier, our method significantly reduces the
number of iterations required to achieve satisfactory rendering results. From the results in the ta-
bles, it can be seen that our method achieves results comparable to Dynamic3DGS (Luiten et al.,
2023) at 2000 iterations with only 100 iterations of training between frames, and it far surpasses
Dynamic3DGS (Luiten et al., 2023) at 100 iterations. Fig. 6 shows the rendering results of both
methods at 100 iterations, qualitatively demonstrating that our method can converge and achieve
satisfactory visual results after being trained for only 100 iterations per time frame.

For general dynamic methods (both online and offline), we compared our method with the other
four methods on both datasets. For fairness, the two online methods trained 100 iterations per
frame, while for the offline methods, we set their total iterations to 100 multiplied by the total
number of frames. Similarly, we provided all methods with the same static scene checkpoints for
fair comparisons. SC-GS (Huang et al., 2024) is a special case because it involves two stages: the
first stage requires 10,000 iterations solely to establish control points, and the second stage begins
the actual rendering training. Therefore, we provide two metrics: pretraining refers to the scenario
where SC-GS undergoes 10,000 iterations to establish control points before continuing with the
same number of iterations as our method, effectively adding 10,000 extra iterations. No-pretraining
refers to the case where we skip the additional 10,000 iterations and directly start the rendering
training. The results are shown in Table 2. As can be seen from the table, our method achieved the
best results across both datasets.

Additionally, we evaluated our method’s point-tracking capability. Due to the challenge of obtaining
3D ground-truth tracking labels, we manually annotated keypoints for all frames from a selected
camera view in each scene, using these as ground-truth data. Details of the annotation process are
provided in the appendix. For tracking, we projected all Gaussian centroids in each frame onto the
camera plane to obtain predicted 2D points. We then selected candidate points within 10 pixels of
the ground-truth 2D keypoint from the first frame, choosing the one with the highest metric value
as the final tracked point. This step was necessary because the candidates corresponded to different
depths, and the 2D ground-truth coordinates alone were insufficient for determining which point to
track. The candidate with the best metric was considered the 3D-consistently aligned point. We
used the 2D Median Trajectory Error (MTE) as the metric, following Dynamic3DGS (Luiten et al.,
2023). In Table 3, we report the normalized MTE, which is the pixel error normalized by the image
diagonal length, along with visualizations of the tracking results in Fig. 4. We compare our method
against Dynamic3DGS (Luiten et al., 2023), selected for its superior rendering performance and as
the only baseline aligning with our settings. Our tracking outcomes significantly outperform the
baseline across all scenes with the same number of training iterations. Notably, the “Wheel” scene
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Figure 6: Visual comparison of rendering results on
FastParticle after 100 iterations per frame training.

Figure 7: Articulated objects segmenta-
tion results.

Figure 8: Convergence speed comparison between our method and Dynamic3DGS (Luiten et al.,
2023) on the FastParticle dataset. The x-axis shows the number of training iterations per frame, and
the y-axis represents the mean PSNR across all testing views.

exhibits a high 2D MTE due to the object’s strong symmetry, leading to ambiguity in its rotational
trajectory (see the appendix for the scene image).

4.3 ABLATION STUDY

In this section, we conduct ablation studies to analyze the effectiveness of our method. We first
analyze the convergence speed of our method and compare it with Dynamic3DGS (Luiten et al.,
2023). Then, we study the influence of the number of clustering layers on the rendering results.
Finally, we analyze the effect of the entangled covariance matrix on the rendering results.

Analyse of training iterations To compare the convergence speed of our method and Dy-
namic3DGS (Luiten et al., 2023), we trained both methods for different iterations and evaluated
their rendering results at these iterations. We trained both methods on the FastParticle dataset. We
show the results in Fig. 8, where the x-axis represents the number of training iterations between ev-
ery two time frames, and the y-axis represents the mean PSNR among all of the testing views. It can
be observed that our method converges much faster than Dynamic3DGS (Luiten et al., 2023), con-
sistently outperforming Dynamic3DGS (Luiten et al., 2023) at the same number of iterations. After
2000 iterations, both methods converge at the same point, which also confirms that our method is
very close to convergence after training for just 100 iterations.

Number of Cluster Layers In our multi-layer clustering design, we choose the number of layers
K to be 3. Here, we conduct experiments to analyze the influence of K on the rendering results, and
also to validate the effectiveness of our multi-layer clustering design. We conduct our experiments
on the FastParticle dataset, and the results are shown in Table 4. It can be seen that the results of our
method with K = 3 are much better than those with K = 1 across all metrics and scenes, revealing
that the coarse-to-fine structure can significantly reduce the number of training iterations, validating
the intuition that moving large clusters of Gaussians at once can more quickly find suitable positions,
thereby reducing unnecessary adjustments of Gaussian positions.

Entangled Covariance Matrix As shown in Eq. (7), in our method, our Gaussians’ covariance
matrixes are not separately learned. Instead, they are coupled with the deformation of centroid
positions. This makes it easier for our method to learn the correct rotations and scaling of the

9
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Metrics Method Particle
Robot Spring Wheel Pendulums Robot-Task Cloth

PSNR" Ours, K=3 29.46 30.28 27.95 30.60 27.67 31.68

Ours, K=1 24.56 26.16 25.12 25.94 24.73 27.77

SSIM" Ours, K=3 0.96 0.97 0.94 0.97 0.95 0.97

Ours, K=1 0.94 0.95 0.91 0.95 0.94 0.96

LPIPS# Ours, K=3 0.09 0.04 0.07 0.06 0.10 0.06

Ours, K=1 0.12 0.07 0.10 0.08 0.12 0.07

Table 4: Ablation study for the number of cluster layers.

Gaussians. In Fig. 5, we show a comparison between learning the covariance matrix separately from
positions and our full implementation.

Using the wheel as an example, it should rotate around its own center. As shown in the left, without
coupling, although the positions of the Gaussians are learned correctly, the Gaussians themselves
do not rotate accordingly with the wheel, resulting in suboptimal final rendering. In our full im-
plementation, as long as the deformation function is learned correctly, the rotations and scalings
of the Gaussians are naturally adjusted accordingly, preventing artifacts where the Gaussians are
incorrectly oriented.

5 APPLICATIONS: SEGMENT ARTICULATED OBJECTS

Next, we demonstrate another application of the learned deformation information: performing seg-
mentation on articulated objects without any semantic knowledge. Many objects in daily life, al-
though not rigid as a whole, are composed of many rigid parts. As humans, we can distinguish
these parts by watching a dynamic video and observing their motions. In this section, we show
how to perform segmentation of different parts of an object in a zero-shot manner by only utilizing
deformation information.

After training, we can obtain the centroid positions and rotations of Gaussians at each time frame.
We then use KMeans clustering to group Gaussians into different clusters based on this information.
Specifically, for a given Gaussian i, we use the notations pi,t and Ri,t to represent its position and
rotation matrix at time frame t, respectively. The KMeans feature for each Gaussian is a tensor of
shape [T, 15], where T is the total number of time frames. This tensor is the concatenation of pi,t,
flattened Ri,t, and pi,0 repeated T times. Additionally, we multiply three hyperparameters: �p, �R,
and �p0 to these three parts before concatenation, respectively, to balance their importance.

The intuition behind the KMeans design is that, (1) Gaussians belong to the same part of the object
should be close to each other at all times, and (2) the rotations of Gaussians within the same rigid
part should be the same.

As illustrated in Fig. 7, we present our segmentation results on the Panoptic and FastParticle datasets.
To enhance visualization, we assign different colors to Gaussians belonging to distinct categories
before rendering the final outcomes. Notably, our simple K-means algorithm yields highly intuitive
segmentation results, regardless of whether the scene comprises synthetic objects (left) or intricate
real-world environments (right). This observation serves as indirect evidence that the deformation
information captured by our learned Gaussians closely aligns with the actual motion of objects in
dynamic scenes.

6 CONCLUSION

In this paper, we show that a natural multi-layer structured 3D Gaussian can greatly improve the
training speed in dynamic scene rendering. Based on this, a trainable deformation function for
multi-level clusters is proposed to achieve high-fidelity rendering results. With these strategies, our
LayeredGS can perform very efficient per-frame training with only 1/20 iterations of the state-of-the-
art (Luiten et al., 2023), maintaining comparable rendering performance. Compared with previous
methods, our LayeredGS explicitly models the deformation and allows applications like articulated
object segmentation. As we use the standard 3D Gaussian format, experiments with other 3DGS
variants can be future directions.
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7 ETHICS STATEMENT

As an efficient and accurate dynamic novel-view synthesis method, LayeredGS has the potential to
have significant positive social impacts. Specifically, efficient dynamic rendering can make immer-
sive experiences more accessible to a broader audience, potentially enhancing education, training,
and entertainment. Due to its capacity for online training, it can also help with the digital twin model
in the industry, facilitating remote collaboration and communication. In addition, layeredGS can be
applied in robotics and autonomous systems, helping in perception, manipulation, and decision-
making.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will open-source the entire project, including the code and the datasets
used in our experiments. The code will be made available after publication, and we will provide all
the necessary steps to reproduce the results presented in the paper. Additionally, in Sec. A of the
appendix, we provide a detailed description of the process for constructing our datasets, ensuring
that other researchers can replicate the data preparation pipeline.
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LAYEREDGS: EFFICIENT DYNAMIC SCENE RENDER-
ING AND POINT TRACKING WITH MULTI-LAYER DE-
FORMABLE GAUSSIAN SPLATTING
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In this supplementary material, we offer additional details regarding our FastParticle and Panoptic
datasets, which provide the necessary context for our experiments. We delve into our method for
articulated objects segmentation, presenting full qualitative results that demonstrate its effectiveness
across various scenarios. Additionally, we clarify our rationale for maintaining the same number of
iterations in our comparisons and present a comparison under equal wall-clock time, showing that
our method still outperforms Dynamic3DGS Luiten et al. (2023). We also include visualizations il-
lustrating the multi-layer clustering structure we employ, as well as the manually annotated tracking
labels used for evaluating 2D tracking results. Furthermore, we discuss our approach to learning
the deformation, emphasizing the two-phase training strategy. Finally, we reflect on limitations,
identifying potential areas for future improvement.

A FASTPARTICLE AND PANOPTIC DATASETS

In this section, we introduce the FastParticle and Panoptic datasets used in our experiments in details.
The real-world Panoptic dataset includes six scenes: Basketball, Boxes, Football, Juggle, Softball,
and Tennis. Each frame in these scenes comes with segmentation provided by the original authors.
Following Luiten et al. (2023), we distinguish between foreground and background in these scenes
and utilize background loss and floor loss accordingly. Each scene in this dataset contains 150
frames captured by a total of 31 cameras, with 27 cameras used for training and 4 for testing.

The synthetic FastParticle dataset, which we have accelerated, contains six dynamic scenes: Robot,
Spring, Wheel, Pendulums, Robot-Task, and Cloth. After acceleration, these scenes respectively
have 35, 18, 38, 24, 35, and 35 frames. As illustrated in fig. I, we show the dynamic evolution of
some scenes, highlighting the significant changes between frames. This dataset includes 40 cameras
in total, from which we randomly select 4 as testing cameras and the remaining 36 as training
cameras.

For all experiments, we provide the same static checkpoints to all baselines. For the 12 scenes
across the two datasets, we train for 20,000 iterations to obtain the checkpoints. Due to the varying
complexity of the static scenes, 3,000 iterations are sufficient for most FastParticle scenes.

B ARTICULATED OBJECTS SEGMENTATION

As mentioned in Sec. 5.1. The intuition behind the KMeans design is that, (1) Gaussians belong
to the same part of the object should be close to each other at all time, and (2) the rotations of
Gaussians within the same rigid part should be the same. The first one can be trivial, here we
provide more explanations about the second point. As shown in fig. II, suppose we have a rigid
body with its centroid denoted as C0. This rigid body can be considered as a combination of two
smaller rigid bodies, with their centroids denoted as C1 and C2, respectively. After rotation, C1 and
C2 move to C 0

1 and C 0
2. Taking C0 as the origin of the coordinate system, the movement of the rigid

body can only be a rotation R around C0, and the two smaller rigid bodies move accordingly. When
considering the left smaller rigid body alone, its motion should consist of a translation of its centroid
C1 and a rotation R1 around C1. We aim to prove that R1 = R. Therefore, consider a point P on
the left rigid body, which moves to point P 0 after the movement. From the perspective of C0, we

1
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Figure I: This figure shows the evolution of three scenes from the FastParticle dataset, demonstrating
the high dynamic characteristics of the accelerated dataset.

C0C1
C2

𝑅

𝑃

𝑃′

Figure II: Illustration of a rigid body rotating R around its centroid. When considering the rigid
body as composed of two smaller rigid bodies, it can be shown that the rotation of each smaller rigid
body around its own centroid is the same with R.

have ���!
C0P

0 = R
��!
C0P . (1)

Also, from the perspective of C1, we can have
���!
C0P

0 = R1
��!
C1P +

���!
C0C

0
1

= R1
��!
C1P +R

���!
C0C1.

(2)

Therefore, we have
R
��!
C1P = R1

��!
C1P . (3)

Since the choice of P is arbitrary, we can conclude that R1 = R. Similarly, we can prove that the
rotation of the smaller rigid body on the right is also R. The above demonstrates the case where
the rigid body is divided into two parts. This conclusion can be generalized to any case of multiple
divisions, meaning that all parts of the same rigid body have the same rotation. Returning to our
problem, since the rotation of Gaussians is around their centroids, the Gaussians belonging to the
same rigid body should have the same rotation.
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C FULL QUALITATIVE RESULTS

Dynamic3DGS Ours Ground Truth
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Figure III: Qualitative results on FastParticle

In this section, we provide qualitative results on all 12 scenes from the two datasets. As shown in
fig. III and fig. IV, both our method and Luiten et al. (2023) are trained 100 iterations between two
consecutive frames.

D SAME WALL-CLOCK TIME COMPARISONS

In our experiments, we use the same number of iterations across different methods for consistency.
While wall-clock time may vary depending on the specific implementation (e.g., whether CUDA
acceleration is employed), the number of iterations reflects the convergence speed of the algorithms.
A lower number of iterations indicates faster convergence, showing that the optimization problem is

3
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Figure IV: Qualitative results on Panoptic

Metrics Method FastParticle
Robot Spring Wheel Pendulums Robot-Task Cloth

PSNR" Ours100 29.46 30.28 27.95 30.60 27.67 31.68
Dynamic3DGS300 Luiten et al. (2023) 27.66 27.16 26.67 29.57 26.79 30.41

SSIM" Ours100 0.96 0.97 0.94 0.97 0.95 0.97
Dynamic3DGS300 Luiten et al. (2023) 0.95 0.95 0.93 0.96 0.95 0.97

LPIPS# Ours100 0.09 0.04 0.07 0.06 0.10 0.06
Dynamic3DGS300 Luiten et al. (2023) 0.10 0.06 0.08 0.06 0.10 0.07

Table I: Comparison of our method trained with 100 iterations per time frame against Dy-
namic3DGS.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Layer_0 Layer_1 Layer_2

Cl
ot
h

Ro
bo

t

Figure V: Coarse-to-fine multi-layer clustering structures for two objects in the FastParticle dataset.

easier to solve. This practice is commonly used in the evaluation of online methods, as demonstrated
in the Dynamic3DGS Luiten et al. (2023) comparison (see Table 1 in their paper), where different
methods are also compared using the same number of iterations.

Even when comparing with equivalent wall time, our method remains superior. To further illus-
trate this, we provide a comparison of our method trained for 100 iterations per frame versus Dy-
namic3DGS Luiten et al. (2023) trained for 300 iterations per frame on the FastParticle dataset. The
results show that our method has an average training speed per iteration approximately twice as fast
as Dynamic3DGS Luiten et al. (2023). As seen in table I, despite the difference in iteration count,
our method still outperforms Dynamic3DGS Luiten et al. (2023) in terms of both efficiency and final
performance.

E ILLUSTRATION OF THE MULTI-LAYER STRUCTURE

In fig. V, we show the coarse-to-fine multi-layer clustering structures for two objects in the FastPar-
ticle dataset. Different colors in the figure represent different clusters, and for clarification, the same
color in different layers does not indicate any correlation between the clusters.

F TRACKING LABELS

Here, as shown in fig. VI, we present all manually annotated 2D tracking ground truths. Since the
human eye can only track points with distinct features across multiple frames, we only selected such
points for annotation.

G LEARNING THE DEFORMATION

algorithm 1 summarizes our training process. Initially, we train our Gaussians on the static scene
using observations from the first frame. Subsequently, we perform multilevel coarse-to-fine cluster-
ing for the centroids of the Gaussians. For each input in every time frame, we use an optimization
approach to backpropagate loss and subsequently update our deformation functions.

For potential negative impacts, since LayeredGS can learn deformation information and be used for
creating new motions or inserting objects, such applications can be used for fake news to convince
people by multi-view renderings. More censorship needs to be established in such cases.
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Figure VI: Illustration of our manually annotated tracking ground truths.
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Algorithm 1: Deformation-based Dynamic Scene Reconstruction Algorithm
Input: Images from all frames
⇥prev  Initialization stage (Static Gaussian Splatting);
Do Clustering;
for t in time frames do

Initialize the Deformation D;
for iter in max iters do

⇥curr  D(⇥prev);
Images Render(⇥curr);
loss Loss(gt Images, Images);
Backpropagate(loss);

end
end

H LIMITATIONS

While our method significantly reduces training iterations to 100 per frame, achieving real-time
training and rendering remains a challenge. Additionally, the learned deformation information is not
fully utilized, and the presented articulated object segmentation results are not well refined. Future
work will focus on addressing these limitations by exploring real-time training approaches, refining
deformation utilization techniques, and developing more sophisticated segmentation methods.
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