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Abstract

One of the major challenges in multi-person pose
estimation is instance-aware keypoint estimation.
Previous methods address this problem by lever-
aging an off-the-shelf detector, heuristic post-
grouping process or explicit instance identifica-
tion process, hindering further improvements in
the inference speed which is an important factor
for practical applications. From the statistical point
of view, those additional processes for identifying
instances are necessary to bypass learning the high-
dimensional joint distribution of human keypoints,
which is a critical factor for another major chal-
lenge, the occlusion scenario. In this work, we pro-
pose a novel framework of single-stage instance-
aware pose estimation by modeling the joint dis-
tribution of human keypoints with a mixture den-
sity model, termed as MDPose. Our MDPose es-
timates the distribution of human keypoints’ co-
ordinates using a mixture density model with an
instance-aware keypoint head consisting simply of
8 convolutional layers. It is trained by minimiz-
ing the negative log-likelihood of the ground truth
keypoints. Also, we propose a simple yet effec-
tive training strategy, Random Keypoint Group-
ing (RKG), which significantly alleviates the un-
derflow problem leading to successful learning
of relations between keypoints. On OCHuman
dataset, which consists of images with highly oc-
cluded people, our MDPose achieves state-of-the-
art performance by successfully learning the high-
dimensional joint distribution of human keypoints.
Furthermore, our MDPose shows significant im-
provement in inference speed with a competitive
accuracy on MS COCO, a widely-used human key-
point dataset, thanks to the proposed much simpler
single-stage pipeline.

1 INTRODUCTION

Multi-person pose estimation is a classical computer vision
task that aims to localize human keypoints in an image.
As it is a fundamental computer vision problem leading to
various practical applications such as action recognition,
human-computer interaction and so on, it has been studied
actively since the development of deep learning.

One of the major challenges in multi-person pose estimation
is instance-aware keypoint estimation and many works have
been studied to tackle this problem, which can be catego-
rized into two major paradigms: top-down [Xiao et al., 2018,
Sun et al., 2019, Li et al., 2021, Papandreou et al., 2017,
Chen et al., 2018, Khirodkar et al., 2021] and bottom-up ap-
proaches [Varamesh and Tuytelaars, 2020, Zhou et al., 2019,
Cao et al., 2017, Kreiss et al., 2019, Cheng et al., 2020, Geng
et al., 2021, Newell et al., 2017]. As shown in Fig. 1 (a) and
(b), the top-down method exploits an off-the-shelf detector
and the bottom-up method performs a post-grouping pro-
cess for a common goal of instance specification. However,
there exist some bottlenecks toward the efficient instance-
aware keypoint estimation. Since the top-down method is
a two-stage method which detects a person then localizes
its keypoints one by one, the more the number of people in
an image, the slower the inference speed. In the case of the
bottom-up method, it depends on a post-grouping process,
which is usually heuristic and takes additional time for key-
point refinement for the instance-aware keypoint estimation.

Recently, there have been approaches to tackle the afore-
mentioned weaknesses for instance-aware keypoint estima-
tion [Tian et al., 2019a, Mao et al., 2021], as shown in Fig.
1 (c). Mao et al. [2021] proposed FCPose, a single-stage
instance-aware framework based on FCOS detector [Tian
et al., 2019b], equipped with a dynamic keypoint head con-
sisting of instance-specific weights. Since it leverages the
capacity of FCOS detector and is a one-stage method at the
same time, it can achieve a reasonably high accuracy at a
relatively fast inference speed. However, it still relies on the
detector’s performance for generating instance weights and
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Figure 1: Illustration of multi-person pose estimation frameworks: (a) Top-down, (b) Bottom-up, (c) previous Single-
stage Instance-aware and (d) Ours. The colored boxes indicate the process for identifying instances, which we successfully
removed by proposing a mixture-model-based architecture.

such instance identification process hinders further improve-
ment in the inference speed.

In this paper, we propose a novel multi-person pose estima-
tion framework using a mixture model. There has been a
line of research utilizing the mixture model in various pose
estimation tasks [Li and Lee, 2019, Prokudin et al., 2018,
Ye and Kim, 2018, Varamesh and Tuytelaars, 2020]. Among
them, MDN3 [Varamesh and Tuytelaars, 2020] showed the
potential in the multi-person pose estimation task by model-
ing the mixture model with a person’s viewpoint as a dom-
inant factor. However, it lags behind other state-of-the-art
methods in terms of accuracy and inference speed.

Inspired by Yoo et al. [2021], which showed competitive
performance with a mixture-model-based architecture in
object detection, we propose a simple architecture modeling
joint distribution of human keypoints with a mixture model,
coined as MDPose. From the statistical point of view, pre-
vious methods need to implement an additional instance
identification process to bypass learning high-dimensional
joint distribution of human keypoints’ coordinates, since
the numerical underflow problem usually occurs during the
training process due to the curse of dimensionality. How-
ever, unless the high-dimensional distribution is considered
sufficiently, the performance degradation is inevitable under
the condition of severe occlusion. To tackle this problem, we
propose Random Keypoint Grouping (RKG) which learns
the joint distribution of continuously changing subsets of
keypoints at every iteration. It alleviates the underflow prob-
lem efficiently and leads to the successful learning of re-
lations between keypoints in the high-dimensional space,
which increases the capacity for distinguishing multiple oc-
cluded persons. Furthermore, since a mixture component
corresponds to a person, we can perform instance-aware
keypoint estimation without any additional instance identifi-
cation process, as shown in Fig. 1 (d). As a result, we could

achieve competitive performances with a simple instance-
aware keypoint head consisting of only 8-convolutional
layer enabling real-time applications. Additionally, unlike
Sun et al. [2019], Xiao et al. [2018], Cheng et al. [2020], Cao
et al. [2017], He et al. [2017], Geng et al. [2021], Newell
et al. [2017], MDPose does not need likelihood heatmap dur-
ing training which requires burdensome computational cost
and storage. In short, MDPose shows strong potential for
practical applications regarding both training and inference
time as well as an occlusion condition.

Our MDPose performs instance-aware keypoint estimation
without bells and whistles through a mixture model frame-
work. Our RKG strategy makes it possible to learn high-
dimensional joint distribution of human keypoints’ coor-
dinates, eliminating additional instance identification pro-
cesses. Specifically, on the OCHuman [Zhang et al., 2019]
validation and test set consisting of images with heavily
occluded persons, our MDPose achieves state-of-the-art per-
formance with 43.5 mAPkp and 42.7 mAPkp, respectively,
by successfully learning human keypoint representation in
a high-dimensional space. Furthermore, on the COCO hu-
man keypoint validation set [Lin et al., 2014], our MD-
Pose achieves 64.6 mAPkp at the speed of 29.8 FPS with a
ResNet-50 backbone [He et al., 2016], which outperforms
other state-of-the-art methods by a large margin in inference
speed.

2 RELATED WORKS

Multi-person pose estimation. One of the major chal-
lenges in multi-person pose estimation is to correctly es-
timate keypoints per each person, i.e. instance-aware key-
point estimation. Many studies have been done to address
this problem which can be classified into two paradigms:
top-down and bottom-up approaches. The top-down ap-



Figure 2: The overall architecture of MDPose. The parameters of mixture model (µ, γ, o and π) are obtained from a
keypoint head consisting of 8 convolutional layers. The mixture components are located along the spatial axis, i.e. the
number of mixture components in a feature map is Hf ×W f .

proach [Papandreou et al., 2017, Chen et al., 2018, Xiao
et al., 2018, Sun et al., 2019, Li et al., 2021, Khirodkar
et al., 2021] leverages an off-the-shelf detector to localize
an instance and performs a single-person pose estimation.
While it can achieve high accuracy, its inference speed is
much slower than bottom-up approaches, especially for an
image with a large number of people. On the other hand,
the bottom-up approach [Newell et al., 2017, Zhou et al.,
2019, Cao et al., 2017, Kreiss et al., 2019, Cheng et al.,
2020, Geng et al., 2021, Xue et al., 2022] performs instance-
agnostic keypoint estimation and assigns them to each in-
stance through a post-grouping process. It shows more ro-
bust and faster inference speed than top-down approaches.
However, the post-grouping process is usually heuristic and
complicated with many hyperparameters.

Single-stage instance-aware pose estimation. Recently,
there have been single-stage instance-aware approaches to
tackle the aforementioned drawbacks of existing frame-
works [Tian et al., 2019a, Mao et al., 2021]. Among them,
Mao et al. [2021] proposed end-to-end trainable FCPose
which performs instance-aware keypoint estimation by a dy-
namic keypoint head consisting of instance-specific weights
generated by FCOS detector [Tian et al., 2019b]. As a re-
sult, it achieves competitive accuracy and inference speed
while eliminating heuristic post-grouping process. However,
it still depends on the performance of the object detector
and the instance-specific weight generation process remains
as a bottleneck for further improvement of inference speed.

Occluded pose estimation. There are various ap-
proaches [Jin et al., 2020, Khirodkar et al., 2021, Li et al.,
2019, Qiu et al., 2020, Zhang et al., 2019] to improve perfor-
mance in occluded human pose estimation, which is another
major challenge. Jin et al. [2020] proposed a hierarchical

graph grouping method to learn relationship between key-
points in the bottom-up style. Among the top-down meth-
ods, Khirodkar et al. [2021] introduced a Multi-Instance
Modulation Block which adjusts feature responses to distin-
guish multiple instances in a given bounding box. Although
they improve performance in the occlusion condition by
specifically devised methods or architectures, they still lack
enough consideration for learning the high-dimensional dis-
tribution of keypoints, which is a fundamental challenge in
the multi-person pose estimation.

3 METHOD

In this work, we propose a novel framework for learning
the joint distribution of human keypoints using a mixture
model, leading to eliminating explicit instance identifica-
tion processes and boosting the capacity of distinguishing
occluded persons. Our MDPose is modeled with a mixture
distribution so that the mixture component corresponds to
a person, i.e. one-to-one matching between mixture com-
ponents and persons, resulting in instance-aware keypoint
estimation without bells and whistles. Since it depends on
neither an off-the-shelf detector nor a post-grouping process,
it can achieve a much simpler pipeline with an accelerated
speed than previous methods.

First, we will describe the mixture model and our problem
formulation in Sec. 3.1 and propose a new architecture and
describe it in detail in Sec. 3.2. After that, we will explain
the Random Keypoint Grouping (RKG) strategy for learning
the high-dimensional joint distribution and our final loss
function in Sec. 3.3. Finally, an inference phase will be
described in Sec. 3.4.



3.1 MIXTURE MODEL

In an image X , there exists a ground truth for each
of N persons, kgt = {kgt1 , · · · , kgtN }, and i-th ground
truth kgti contains the keypoint coordinates kgti =
{ki,1,x, ki,1,y, · · · , ki,K,x, ki,K,y}, where K denotes the
number of keypoints. Our MDPose estimates the distribu-
tion of keypoint locations ki on an image X with a mixture
model. Based on the design of the mixture model for object
detection in Yoo et al. [2021], we develop the architec-
ture for the multi-person pose estimation task. Our mixture
model is formed by a weighted combination of component
distributions, which we set as a Laplace distribution. Al-
though the Laplace distribution has a similar shape with the
Gaussian and the Cauchy distribution, its tails fall off more
rapidly than the Cauchy but less sharply than the Gaus-
sian. We empirically found that the Laplace distribution is
more suitable for the multi-person pose estimation task than
the Gaussian and Cauchy. Related experimental results are
provided in the supplementary material. Every element of
ki is assumed to be independent1 of each other to keep the
mixture model from being over-complicated. Therefore, the
probability density function (pdf) of Laplace distribution is
defined as,

F(ki;µ, γ) =

K∏
j=1

∏
d∈D

F(ki,j,d;µj,d, γj,d)

=

K∏
j=1

∏
d∈D

1

2γj,d
exp

(
−|ki,j,d − µj,d|

γj,d

) (1)

with a set of keypoint coordinates D = {x, y}, where j and
F are the keypoint index and the Laplacian pdf, respectively.
As a result, the 2K-dimensional Laplace represents the
distribution of human keypoints coordinates and the pdf
of our mixture model is as follows:

p(kgti |X) =

M∑
m=1

πmF(ki;µm, γm), (2)

where the m denotes the index of M mixture components.

3.2 ARCHITECTURE

Fig. 2 demonstrates the overall architecture of our MDPose.
The feature maps are forwarded into the keypoint head to
obtain intermediate outputs: µ′, γ′, and o′. The final outputs
µ, γ, o, and π are obtained from intermediate outputs as
parameters of our mixture model. The mixture components
are represented at each position of the cells on the feature
map, i.e. located along the spatial axis.

1Although each element of a mixture component is indepen-
dent of others, they are jointly dependent in the overall joint distri-
bution.

The mean µ is derived from µ′ ∈ RHf×W f×2K , where Hf

and W f indicate the height and width of a feature map in the
feature pyramid, respectively, and note that the number of
mixture components in a feature map is Hf ×W f . Based
on the implementation of Yoo et al. [2021], µ′ is scaled
by a factor of s = 2l−5, where l ∈ {1, · · · , 5} denotes
the level of feature map in the feature pyramid. Then, the
scaled µ′ is added to µ̄ ∈ RHf×W f×2K which is the default
coordinates uniformly distributed in a grid pattern over the
entire feature map. In short, the final location parameter
µ is obtained as follows: µ = µ̄ + sµ′. We can obtain
the positive scale parameter γ ∈ RHf×W f×2K through
softplus [Dugas et al., 2000] activation function from γ′.
The foreground probability o ∈ RHf×W f×1 is calculated
by applying the sigmoid function to o′. Following Yoo et al.
[2022], we use the normalized foreground probability as
π: πm = om/

∑M
n=1 on. Since the mixture components

in a foreground area are likely to have higher π, we can
consider π as the normalized foreground probability so that∑M

m πm = 1.

The keypoint head of MDPose consists of eight 3x3 ker-
nel convolutional layers with Swish [Ramachandran et al.,
2017] activation function except the last layer. The 5-level
Feature Pyramid Network [Lin et al., 2017] is used as
our feature extractor. Since we estimate a mixture distri-
bution from all-level feature maps, the total number of mix-
ture components is equal to the summation of the num-
ber of mixture components in each level of feature map:
M =

∑5
l=1(H

f
l ×W f

l ).

3.3 TRAINING

Our MDPose is trained to maximize the likelihood of kgt for
an input image X . Therefore, we can simply define the loss
function for minimizing the negative log-likelihood (NLL)
of kgt as follows:

LNLL = − log p(kgt|X) = − log

N∏
i=1

p(kgti |X)

= −
N∑
i=1

log

M∑
m=1

πmF(ki;µm, γm).

(3)

Although the foreground probability o is not used, it is
trained through the mixture coefficient π, i.e. the probability
of a mixture component [Yoo et al., 2022].

In the training using (3), the curse of dimensionality arises
due to the high-dimensional joint distribution of human
keypoints, e.g. 34 dimension in the case of 17 keypoints
in COCO keypoint dataset [Lin et al., 2014], leading to a
severe underflow problem. As a result, it is extremely hard
to compute LNLL via a 2K-dimensional joint distribution
in the multi-person pose estimation task.



Figure 3: Illustration of RKG at an iteration with Kg = 3 and Ng = 6. ki,j is a human keypoint, where i and j denote a
person in an image and a keypoint index, respectively. For the simplicity of grouping, we set the center coordinate of the
bounding box as ki,18.

Random keypoint grouping (RKG). To tackle this prob-
lem, we propose RKG. As illustrated in Fig. 3, we shuffle
and split K keypoints into Ng groups, each consisting of Kg

keypoints, where Ng and Kg denote the number of groups
and the number of keypoints in a group, respectively, i.e.
Kg×Ng = K. As a result, we can notate a set of keypoints’
indices in a group g as Ig and reformulate (1) using a group
of keypoints as follows:

F(kgi ;µ
g, γg) =

∏
j∈Ig

∏
d∈D

F(ki,j,d;µj,d, γj,d), (4)

where the superscript g indicates the index of the group.
Therefore, we can alleviate the underflow problem with
2Kg-dimensional joint distribution, whose dimension is
lower than the original 2K dimension if Kg < K. Our final
loss function with RKG is defined as follows:

LGroupNLL =

∑Ng

g=1 L
g
NLL

Ng

= − 1

Ng

N∑
i=1

Ng∑
g=1

log

M∑
m=1

πmF(kgi ;µ
g
m, γg

m).

(5)
Note that RKG is used only for the training process and
the combination of keypoints for a group changes at every
iteration. As shown in (5), the RKG amounts to factoriz-
ing the original joint distribution of 2K dimension into Ng

marginal distributions of 2Kg dimension. Although each
keypoints group is estimated independently at each iteration,
the keypoints end up being dependent on each other through
the whole training process due to RKG, which keeps shuf-
fling and grouping keypoints randomly. As a result, MDPose
is able to learn the relations between keypoints without any
heuristic grouping process. To ease the grouping scheme for
COCO keypoint dataset [Lin et al., 2014] labeled with 17

keypoints, we use the coordinates of bounding box center
of kgti as an auxiliary keypoint only for training, which is
denoted as ki,18 in Fig. 3.

3.4 INFERENCE

In the inference phase, a mixture component of our MDPose
corresponds to an instance, i.e. a person in the multi-person
pose estimation task. Therefore, MDPose is able to perform
an instance-aware keypoint estimation without bells and
whistles. µ and o are used as the estimated keypoint coordi-
nates and confidence scores, respectively. Note that we do
not use µ of the bbox center coordinates for inference. Our
final predictions are obtained by removing duplicate esti-
mations using non-maximum suppression (NMS), which is
applied to pseudo-bboxes, each of which consists of the min-
imum and the maximum coordinates among keypoints as
the left-top and the bottom-right coordinates, respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Dataset. We evaluate MDPose on the widely-used human
keypoint dataset, MS COCO [Lin et al., 2014], consisting
of 200K images including 250K person instances labeled
with 17 keypoints. Following the standard protocol, we split
the dataset into 57K images for training, 5K images for
validation, and 20K images for test-dev set. We adopt the
average precision (AP) based on the object keypoint similar-
ity (OKS) as our evaluation metric. We conduct the analysis
for our MDPose on the validation set and compare with
other state-of-the-art methods on the test-dev set. Further-
more, we evaluate MDPose on OCHuman [Zhang et al.,



Table 1: The performance according to the number of
keypoints per group. Kg and Ng denote the number of
keypoints per group and the total number of groups, respec-
tively.

Kg Ng APkp APkp
50 APkp

75 APkp
M APkp

L

1 18 47.7 76.7 50.2 37.6 61.7
2 9 51.2 79.6 54.1 41.3 64.9
3 6 51.5 80.4 55.1 42.0 64.7
6 3 51.0 80.1 54.5 41.2 64.3
9 2 49.8 78.9 53.4 40.5 62.8

18 1 NaN NaN NaN NaN NaN

2019], which is a testing-only dataset focusing on the heavy
occlusion scenarios. It consists of 4,731 images with 8,110
person instances labeled with 17 keypoints like MS COCO.
While less than 1% of person instances have occlusions with
maxIoU ≥ 0.5 in MS COCO, all instances have occlusions
with maxIoU ≥ 0.5 and 32% of them are more challenging
with maxIoU ≥ 0.75 in OCHuman. Following Zhang et al.
[2019], we use only MS COCO train set for training and
evaluate on OCHuman validation and test set.

Training. As mentioned in 3.1, we represent the distribu-
tion of keypoint coordinates as a Laplace distribution. We
set Kg = 3 and Ng = 6 for RKG as our default setting.
We conduct experiments with different backbones including
ResNet-50/101 [He et al., 2016] and DLA-34 [Yu et al.,
2018], which is especially for further improvement of in-
ference speed. All backbones are pretrained with ImageNet
[Deng et al., 2009] and FPN [Lin et al., 2017] is used as the
feature extractor. For data augmentation, we apply random
rotation in [-30◦, 30◦], expand, random crop in [0.3, 1.0]
(relative range) and random flip. Unless specified, the input
image is resized to 320×320 for the analysis of the RKG
and mixture distributions or 896×896 for the analysis of in-
ference speed and occluded pose estimation and comparison
with other methods. Following Yoo et al. [2021], MDPose
is trained by SGD with a weight decay of 5e-5 and gradient
clipping with an L2 norm of 7.0. The batch size is 32 and the
synchronized batch normalization [Peng et al., 2018] is used
for a consistent learning behavior over different numbers
of GPUs. The initial learning rate is set to 0.01 which is
reduced by a factor of 10 at the 180K and 240K iteration in
the training schedule of total 270K iterations.

Inference. For inference, we use the same size of an image
as in the training phase. The mixture components with low
confidence scores in o are filtered out and NMS is applied
for removing duplicate estimations. We set thresholds of o
and NMS as 1e-4 and 0.7, respectively. Note that our model
does not have any explicit process for identifying instance,
such as post-grouping, weight generation and so on.

Table 2: Randomness of grouping strategy. Non-random
indicates the heuristic grouping method which predefines
the keypoints per group based on the relations of human
body joints.

Randomness APkp APkp
50 APkp

75 APkp
M APkp

L

Non-random 39.5 69.9 40.0 32.4 49.7
Random 51.5 80.4 55.1 42.0 64.7

Kg=1, Ng=18

Kg=2, Ng=9

Kg=3, Ng=6

Kg=6, Ng=3

Kg=9, Ng=2

Kg=18, Ng=1

Underflow Ratio
A

P
47

48
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52

0.00 0.25 0.50 0.75 1.00

Figure 4: The trade-off between accuracy and ratio of
underflowed components.

4.2 ANALYSIS OF RKG

The number of keypoints per group. We conducted an
analysis for the number of keypoints per group, Kg. Since
the number of groups, Ng, is determined according to Kg,
i.e. Kg ×Ng = K, the more the number of keypoints in a
group, the higher the joint distribution’s dimension is.

In Tab. 1, it shows the best performance of 51.5 APkp with
RKG of Kg = 3, which we set as our default setting. Fig. 4
shows the trade-off between the accuracy and the ratio of nu-
merically underflowed components. When we apply RKG of
Kg = 1 or 2, the performance is inferior to that of Kg = 3
despite the lower underflow ratio since our MDPose with
RKG of high Kg can learn the relations of keypoints more
efficiently by modeling the joint distribution with more key-
points. In particular, although there is no underflow problem
due to the low dimension of joint distribution with RKG
of Kg = 1, it cannot learn the relations of keypoints suffi-
ciently during the training, leading to notably lower APkp

than RKG of Kg = 2 and 3 as shown in Tab. 1.

However, with RKG of more than Kg = 3, our MDPose
suffers from the underflow problem as Kg increases, and the
performance is rather lower than that with RKG of Kg = 3.
As expected, with RKG of Kg = 18, i.e. with only one
group, the original joint distribution is impossible to learn,
resulting in NaN in Tab. 1. It is due to the severe under-
flow problem caused by the curse of dimensionality, i.e. the
underflow ratio is 1.0 as shown in Fig. 4.



Table 3: Inference speed comparison with other methods
on COCO val set.

Method Backbone APkp FPS

CenterNet [Zhou et al., 2019] Hourglass 64.0 6.8
DEKR [Geng et al., 2021] HRNet-W32 68.0 8.1

HRNet-W48 71.0 5.2
FCPose [Mao et al., 2021] ResNet-50 63.0 20.7
SimpleBaseline [Xiao et al., 2018] ResNet-50 72.4 6.8

ResNet-101 73.4 5.3
ResNet-152 74.3 4.0

PifPaf [Kreiss et al., 2019] ResNet-152 67.4 4.7

MDPose (Ours) ResNet-50 64.6 29.8
ResNet-101 65.2 20.8
DLA-34 64.2 58.9

Number of People

F
P

S
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40
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20 40 60 80 100

SimpleBaseline 
(ResNet-50)
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FCPose 
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MDPose 
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MDPose 
(ResNet-101)
MDPose      
(DLA-34)

Figure 5: FPS by the number of people in an image.

Randomness in the grouping. Tab. 2 compares RKG
with non-random grouping, which forms a group heuris-
tically based on the relations of human body joints, i.e.
Ng = 6 groups of left arm, left leg, right arm, right leg,
eyes and nose, and ears and bbox center, each consisting
of Kg = 3 keypoints. In comparison to the MDPose with
non-random grouping, RKG improves the performance sig-
nificantly from 39.5 APkp to 51.5 APkp. While non-random
grouping learns only the joint distributions of pre-defined ad-
jacent keypoint groups, RKG enables learning of the overall
joint distributions of every non-adjacent keypoints through
the whole training process by randomly grouping at every
iteration. The comparison through qualitative results is pro-
vided in the supplementary material.

4.3 ANALYSIS OF THE INFERENCE SPEED

Tab. 3 presents the comparison with other methods on
COCO val set. The FPS is measured on a single NVIDIA
TITAN RTX. Ours achieves 64.6 APkp and 29.8 FPS with
ResNet-50 backbone, which is comparable or superior to
others especially in inference speed. It is 44%-faster than
FCPose with an identical backbone, which is a single-stage
instance-aware method enabling real-time application. Fur-

(a) The highest confidence score (b) The 2nd highest confidence score

Figure 6: Comparison between FCPose and MDPose in
the occlusion scenario. FCPose and MDPose are shown
on the 1st and 2nd row, respectively. The red circles in (b)
show the differences of the estimated results for occluded
keypoints between FCPose and MDPose.

thermore, we implement MDPose with DLA-34 as a back-
bone to further boost the inference speed. Following Tian
et al. [2019b], we adopt the 3-level FPN and a training sched-
ule of 360K iterations with learning rate decay by a factor of
10 at 300K and 340K iteration. The input image is resized
to 736x736 for both training and inference. We can achieve
about 3x-higher FPS compared to FCPose (ResNet-50), still
showing higher accuracy of 64.2 APkp.

Fig. 5 illustrates the inference speed by the number of in-
stances in an image. Our MDPose shows the robust infer-
ence speed, regardless of the number of people, even faster
than FCPose. Furthermore, our MDPose with a heavier
backbone ResNet-101 surpasses FCPose with ResNet-50
regarding the inference speed. It shows a strong potential
of MDPose for the practical application enabling real-time
multi-person pose estimation.

4.4 ANALYSIS OF THE OCCLUDED POSE
ESTIMATION

Fig. 6 shows comparison between FCPose (1st-row), a repre-
sentative single-stage instance aware method, and MDPose
(2nd-row) under the occlusion scenario. Fig. 6 (a) and (b) are
the estimation results of person instances with the highest
and 2nd highest confidence score, respectively.

As shown in the Fig. 6 (a), both of FCPose and MDPose
estimate the keypoints of a person in the front successfully.
However, for the person occluded by the other one, there
exist two major drawbacks in FCPose. As demonstrated in
the red circles in the 1st-row of Fig. 6 (b), FCPose misses
a keypoint occluded by the other instance or confuses it
with that of the other instance. As a result, it is not able
to construct a proper form of human pose. Compared to
FCPose, ours estimates the occluded keypoints much more
robustly by successfully learning the high-dimensional joint



Table 4: Comparisons with SOTA methods on COCO test-dev set. We measure the inference speed of other methods on
the identical hardware if possible. † denotes flipping in test time.

Method Backbone APkp APkp
50 APkp

75 APkp
M APkp

L FPS

Top-down

SimpleBaseline† [Xiao et al., 2018] ResNet-152 73.7 91.9 81.1 70.3 80.0 2.3
HRNet† [Sun et al., 2019] HRNet-W32 74.9 92.5 82.8 71.3 80.9 3.0

HRNet-W48 75.5 92.5 83.3 71.9 81.5 2.0
RLE† [Li et al., 2021] ResNet-152 74.2 91.5 81.9 71.2 79.3 -

HRNet-W48 75.7 92.3 82.9 72.3 81.3 -

Bottom-up

CMU-Pose [Cao et al., 2017] VGG-19 61.8 84.9 67.5 57.1 68.2 13.5
MDN†

3 [Varamesh and Tuytelaars, 2020] Hourglass 62.9 85.1 69.4 58.8 71.4 7.0
CenterNet† [Zhou et al., 2019] Hourglass 63.0 86.8 69.6 58.9 70.4 -
PifPaf [Kreiss et al., 2019] ResNet-152 66.7 87.8 73.6 62.4 72.9 -
HigherHRNet† [Cheng et al., 2020] HRNet-W32 66.4 87.5 72.8 61.2 74.2 2.5

HRNet-W48 68.4 88.2 75.1 64.4 74.2 1.7
DEKR† [Geng et al., 2021] HRNet-W32 67.3 87.9 74.1 61.5 76.1 8.5

HRNet-W48 70.0 89.4 77.3 65.7 76.9 5.2

Single-stage Instance-aware

DirectPose [Tian et al., 2019a] ResNet-50 62.2 86.4 68.2 56.7 69.8 13.5
FCPose [Mao et al., 2021] ResNet-50 64.3 87.3 71.0 61.6 70.5 20.3

ResNet-101 65.6 87.9 72.6 62.1 72.3 15.5
MDPose (Ours) ResNet-50 64.0 88.8 71.6 59.7 70.5 28.7

ResNet-101 65.0 88.9 72.8 60.6 71.4 20.5

distribution of keypoints.

4.5 COMPARISON WITH SOTA METHODS

OCHuman. Tab. 5 compares our MDPose with other
state-of-the-art methods on OCHuman validation and test
set. Note that we do not train our MDPose with OCHuman
train set, but with only MS COCO train set. Our MDPose
outperforms other methods without bells and whistles due
to the human keypoint representations successfully learned
in the high-dimensional space by our mixture model with
RKG. Compared to FCPose (ResNet-101), a state-of-the-art
single-stage instance-aware method, our MDPose (ResNet-
101) shows much better performance by a significant margin
of +10.2%p APkp and +9.3%p APkp on the validation and
test set, respectively. Furthermore, our MDPose (ResNet-
101) even outperforms MIPNet (HRNet-W48), which was
devised with more emphasis on the occlusion scenarios,
by +1.5%p APkp and +0.2%p APkp without any delicately
designed heuristic components. It shows that our MDPose
is good at distinguishing multiple overlapping instances,
which is a challenging real-world occlusion scenario.

MS COCO. Tab. 4 compares our MDPose with other
SOTA methods on COCO test-dev set. The FPS is measured

on the identical hardware if possible. Ours shows the fastest
inference speed with a comparable accuracy among the com-
pared methods. Particularly, it achieves a better trade-off
between the accuracy and speed compared to other single-
stage instance-aware methods. Compared to FCPose, our
MDPose speeds up considerably by +8.4 FPS and +5.0 FPS
with the same backbone ResNet-50 and ResNet-101, respec-
tively. Even with ResNet-101 which is heavier than ResNet-
50, our MDPose outperforms FCPose with ResNet-50 in the
inference speed by +0.2 FPS. Compared to CMU-Pose, a
representative real-time bottom-up method in multi-person
pose estimation, ours achieves better accuracy and speed
by a large margin. Furthermore, compared to MDN3 which
leverages a mixture model for multi-person pose estimation
like us, our MDPose shows much improved performance in
both the accuracy and inference speed, e.g. +1.1%p APkp

and +21.7 FPS with ResNet-50 and +2.1%p APkp and +13.5
FPS with ResNet-101. Our work suggests a way for a more
effective application of the mixture model in multi-person
pose estimation with a much simpler architecture. The qual-
itative results are provided in the supplementary material.



Table 5: Comparisons with SOTA methods on OCHuman
val/test set. The evaluation metric is APkp.

Method Backbone Val. Test

Top-down

RMPE [Fang et al., 2017] Hourglass 38.8 30.7
HRNet [Sun et al., 2019] HRNet-W48 37.8 37.2
SimpleBaseline [Xiao et al., 2018] ResNet-50 37.8 30.4

ResNet-152 41.0 33.3
MIPNet [Khirodkar et al., 2021] ResNet-101 32.8 35.0

HRNet-W48 42.0 42.5

Bottom-up

AE [Newell et al., 2017] Hourglass 32.1 29.5
HGG [Jin et al., 2020] Hourglass 35.6 34.8
DEKR [Geng et al., 2021] HRNet-W32 37.9 36.5

HRNet-W48 38.8 38.2
LOGO-CAP [Xue et al., 2022] HRNet-W32 39.0 38.1

HRNet-W48 41.2 40.4

Single-stage Instance-aware

FCPose [Mao et al., 2021] ResNet-50 32.4 31.7
ResNet-101 33.3 33.4

MDPose (Ours) ResNet-50 40.4 39.9
ResNet-101 43.5 42.7

5 CONCLUSION

Our MDPose achieves a simple pipeline by eliminating
additional instance identification processes via a mixture
model. The high-dimensional joint distribution of human
keypoints can be learned efficiently by a simple yet effec-
tive training strategy RKG, which alleviates the underflow
problem caused by the curse of dimensionality and leads
to successful learning of relations between keypoints. As
a result, it enables much more robust estimation under the
condition of severe occlusion. Furthermore, since a mix-
ture component corresponds to an instance, our MDPose
performs instance-aware keypoint estimation without bells
and whistles, enabling real-time applications. Our proposed
MDPose achieves the state-of-the-art performance under
the occlusion condition and is superior to other methods in
the inference speed while achieving comparable accuracy.
Our work shows a strong potential of a mixture model in
the multi-person pose estimation and opens a way toward a
much simpler pipeline for following researches.
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