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Abstract
Training large neural networks is possible by train-
ing a smaller hypernetwork that predicts parame-
ters for the large ones. A recently released Graph
HyperNetwork (GHN) trained this way on one
million of smaller ImageNet architectures is able
to predict parameters for large unseen networks
such as ResNet-50. While networks with pre-
dicted parameters lose performance on the source
task, the predicted parameters have been found
useful for fine-tuning on other tasks. We study if
fine-tuning based on the same GHN is still useful
on novel strong architectures that were published
after the GHN had been trained. We found that for
recent architectures such as ConvNeXt, GHN ini-
tialization becomes less useful than for ResNet-50.
One potential reason is the increased distribution
shift of novel architectures from those used to
train the GHN. We also found that the predicted
parameters lack the diversity necessary to success-
fully fine-tune parameters with gradient descent.
We alleviate this limitation by applying simple
post-processing techniques to predicted param-
eters before fine-tuning them on a target task and
improve fine-tuning of ResNet-50 and ConvNeXt.

1. Graph HyperNetworks for Initialization
Initialization of deep neural nets is critical to make them
converge fast and to a generalizable solution (Glorot &
Bengio, 2010; He et al., 2015). When training a neural net
on small training data, an effective approach to initialize it is
to pretrain it on a large dataset (Huh et al., 2016; Kolesnikov
et al., 2020), such as ImageNet (Russakovsky et al., 2015).
The architectures of neural nets keep evolving due to efforts
of humans (Dosovitskiy et al., 2020; Liu et al., 2022) and
neural architecture search (Elsken et al., 2019). So practi-
tioners often need to rerun a costly pretraining procedure on
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Figure 1. Motivating example showing a large amount of GPU
hours (note the log scale) required to pretrain a novel architecture
on ImageNet-1k to use it for initialization. To reduce the computa-
tional burden arising in practice when having own large pretraining
dataset, we study the strategy of reusing an already trained Graph
HyperNetwork (GHN) (Knyazev et al., 2021) for novel architec-
tures, such as ConvNeXt (Liu et al., 2022), even if the architectures
are discovered after the GHN was trained. GHN-orth is the pro-
posed initialization. GPU hours are based on Knyazev et al. (2021).
See Table 1 for the reported accuracies.

their large in-house data1 for every new architecture discov-
ered by the community to initialize it this way (Figure 1).

In the long term, a more efficient approach to initial-
ize neural nets may be to train a Graph HyperNetwork
(GHN) (Zhang et al., 2018; Knyazev et al., 2021) that
can predict parameters for different architectures, includ-
ing those yet to be discovered. GHN HD parameterized
by θ needs to be trained only once on a large pretraining
dataset D (e.g. ImageNet). It can then predict parame-
ters w in fractions of a second for arbitrary2 architectures
a: w = HD(a; θ). GHNs can predict parameters for
much larger architectures than seen during training such
as ResNet-50 (He et al., 2016). While networks with pre-
dicted parameters lose performance on the source task D,
the predicted parameters have been found useful as initial-
ization for fine-tuning on other tasks (Knyazev et al., 2021).
Such an initialization compared favorably to random-based
initialization methods (He et al., 2015).

We study if initialization based on the already available
trained GHN is still useful on novel strong architectures that

1E.g. Google’s JFT-300M and Facebook’s IG-1B-Targeted.
2Any neural network architecture composed of the same primi-

tive operations used during training GHNs.
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Figure 2. The similarities between the channels of convolutional
layers in ResNet-50 measured as Pearson’s correlation. Top: dis-
tribution of correlation for selected layers. Bottom: standard
deviation of correlation distribution for all layers. Lower corre-
lation (around 0) is expected to be beneficial since it implies the
parameters are linearly independent and, thus, can facilitate con-
vergence and generalization (Saxe et al., 2013; Wang et al., 2020).
We found that channels of the parameters predicted by Graph Hy-
perNetworks (GHNs) (Knyazev et al., 2021) are highly correlated
making their fine-tuning challenging. We alleviate this issue by
post-processing (Section 3) predicted parameters (GHN-orth). We
show the benefit of our post-processing in Section 5.

were found after the GHN had been trained. We consider a
real example of such a situation by evaluating the released
GHN of Knyazev et al. (2021) on a recent ConvNeXt ar-
chitecture (Liu et al., 2022). We found that for ConvNeXt
the parameters predicted by the GHN become less useful
for initialization and fine-tuning than for earlier architec-
tures such as ResNet-50. One potential reason for that is
an increased distribution shift of novel architectures from
those used to train the GHN. We also analyzed predicted
parameters (Section 2) and found that when initializing net-
works with predicted parameters, fine-tuning performance
can be improved by reducing (Section 3) the similarities of
predicted parameters.

2. Analysis of Parameters Predicted by GHNs
Since the GHN predicts parameters from a highly-
compressed low-dimensional representation (Knyazev et al.,
2021), we hypothesize that the predicted parameters may
be highly correlated to each other. The benefit of random
initialization is that all parameters are drawn independently
from some probability distribution, e.g. Gaussian: wi ∼ N ,
where i is an index of the individual scalar value of the
parameter tensor. In the GHN case, the parameters become
conditional on a latent representation z of the input com-
putational graph: wi ∼ p(wi|z). To verify if the predicted

parameters are highly correlated, we computed Pearson’s
correlation between channels for a given layer of a given
architecture. We compared these correlations between net-
works with predicted parameters, initialized randomly and
pretrained on ImageNet. We found that predicted param-
eters have generally much higher correlations with each
other compared to other initializations (Figure 2). Methods
such as random initialization and orthogonal regularization
enforce statistical and linear independence of neural net-
work parameters making them converge to a better solution
in terms of generalization (Arora et al., 2019; Bansal et al.,
2018; Wang et al., 2020). As predicted parameters are highly
correlated, their fine-tuning may be difficult with stochastic
gradient descent and non-convex problems. We therefore
propose to decorrelate predicted parameters without fully
destroying their pretraining power.

3. Post-processing of Predicted Parameters
In a given neural net with the parameters predicted by GHNs,
post-processing is performed for each l-th layer indepen-
dently from other layers. We denote the parameters of the
l-th layer as wl. Parameters of convolutional layers are
4D, wl ∈ RK×C×H×W , while in certain post-processing
steps a matrix (2D) form is required. Following (Wang
et al., 2020), to transform 4D to 2D, wl is first reshaped to
wl ∈ RK×CHW and then transposed if K < CHW . Post-
processing consists of two steps: conditional noise addition
(Section 3.1) and orthogonal re-initialization (Section 3.2).

3.1. Conditional Noise Addition

In addition to the channels of parameters being highly cor-
related (Figure 2), we found that many parameters are iden-
tical because the GHN of Knyazev et al. (2021) copies the
same tensor multiple times to make sure the shapes of the
predicted and target parameters match. Furthermore, the or-
thogonal re-initialization step introduced next in Section 3.2
is not beneficial or applicable to some layers (e.g. first lay-
ers or batch normalization layers). Therefore, to break the
symmetry of identical parameters in all layers, we first add
the Gaussian noise to all parameters:

w̃l = wl +N
(
0, βσ(r(wl))

)
, (1)

where r(wl) ∈ RK×K is the correlation between the chan-
nels of the parameters wl (Figure 2), σ(·) is the standard
deviation, while β is a scaling factor shared across all layers.
This way, the noise is added conditionally on the layer statis-
tics to ensure that all layers are perturbed relatively equally.

3.2. Orthogonal Re-initialization

For fully-connected and convolutional layers starting from a
certain depth l ≥ L we perform orthogonal re-initialization.
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Figure 3. Computational graphs of ResNet-50 (left) and ConvNeXt (right) used as inputs to the GHN to predict their parameters. Each
node corresponds to a certain operation such as convolution, pooling, layer normalization, etc. For the detailed description of node shapes
and colors see (Knyazev et al., 2021).

We perform the same steps as in orthogonal initializa-
tion (Saxe et al., 2013)3, but where initial parameters w̃l

are predicted by GHNs (with some noise added according
to (1)) rather than drawn randomly from a Gaussian distri-
bution. Specifically, we first perform QR-decomposition
w̃l = QR to find orthogonal matrix Q and upper-triangular
matrix R. We then obtain new parameters w̃ as following:

w̃l = Q⊙ sign
(

diag(R)
)
. (2)

Parameters w̃l are (transposed and) reshaped back to
K × C ×H ×W and used instead of the original wl.

4. Experimental Setup
We evaluate our parameter post-processing techniques
on the fine-tuning task on CIFAR-10 image classifica-
tion (Krizhevsky et al., 2009) with 1000 (100 labels per
class) labels as in (Knyazev et al., 2021). For ImageNet-
based and GHN-based initializations we replace the last
classification layer and fine-tune all layers. We fine-tune
two neural nets: ResNet-50 and ConvNeXt (the base vari-
ant (Liu et al., 2022)) (Figure 3). We identified five im-
portant hyperparameters: optimizer, initial learning rate,
number of epochs, weight decay and input image size. The
hyperparameters are selected from the following values:

• optimizer: SGD, AdamW (Loshchilov & Hutter, 2017);

• learning rate: {0.025, 0.01, 0.005, 0.0025, 0.001} for SGD
and {0.004, 0.001, 0.0004, 0.0001} for AdamW;

3E.g. see the implementation in PyTorch (Paszke et al., 2019).

• number of epochs: 50, 100, 200, 300;

• weight decay: 0.0001, 0.001, 0.01, 0.05, 0.1;

• image size: 224×224, 32×32 (original CIFAR-10 image
size).

The batch size is fixed to 96 for ResNet-50 as in (Zhang
et al., 2018; Knyazev et al., 2021) and to 48 for ConvNeXt
to fit into the memory of GPUs available to us. The cosine
learning rate schedule is used in all experiments as in (Zhang
et al., 2018; Knyazev et al., 2021). For our method (GHN-
ORTH), we have additional hyperparameters: layer L from
which to perform orthogonal re-initialization (2) and level
of noise β added to parameters in (1). We tune all hyper-
parameters on the held-out validation set of 5,000 images.

Baselines As a baseline, we use random initialization (He
et al., 2015) standard for ResNets, orthogonal initializa-
tion (Saxe et al., 2013) and GHN-2 from (Knyazev et al.,
2021) (denoted as GHN in this paper). Orthogonal initial-
ization (Saxe et al., 2013) is based on the same equation as
(2) but applied to the randomly-initialized parameters drawn
from the Gaussian distribution. As the oracle initialization
we use ImageNet pretrained models. For fair comparison,
we tune hyperparameters the same way for all methods. The
experiments are run three times with different random seeds.
Mean and standard deviation of the accuracy on the test set
of CIFAR-10 is reported in Table 1.

Experiments are done using the GHN code base
of Knyazev et al. (2021): https://github.com/
facebookresearch/ppuda/tree/main/ppuda.

https://github.com/facebookresearch/ppuda/tree/main/ppuda
https://github.com/facebookresearch/ppuda/tree/main/ppuda
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Table 1. Classification accuracies (mean and standard deviation across 3 runs) on reduced CIFAR-10 with 1000 labels.

INITIALIZATION RESNET-50 CONVNEXT
(HE ET AL., 2016) (LIU ET AL., 2022)

# PARAMETERS 23.5M 87.6M

RAND INIT (HE ET AL., 2015) 58.7±0.5 48.3±0.8
ORTH INIT (SAXE ET AL., 2013) 59.5±0.4 51.8±0.1
GHN-2 (KNYAZEV ET AL., 2021) 61.4±0.2 51.9±0.8
GHN-2-ORTH (OURS) 65.4±0.5 53.5±0.3
IMAGENET PRETRAINED (HE ET AL., 2016) 89.0±0.1 95.1±0.3

5. Results
Our initialization based on predicted parameter post-
processing (GHN-ORTH) improves on the direct competi-
tor GHN-2 by 4.0 and 1.6 absolute percentage points for
ResNet-50 and ConvNeXt respectively (Table 1). These
results demonstrate the importance of proposed parame-
ter post-processing. GHN-ORTH also outperforms ORTH-
INIT confirming that our post-processing preserved useful
structure in predicted parameters. GHN-ORTH is signifi-
cantly inferior to ImageNet-based initialization. However,
GHN-ORTH takes only fractions of a second to initialize for
ResNet-50, ConvNeXt and potentially many other upcom-
ing neural architectures in the future. In contrast, pretraining
on ImageNet or large in-house datasets available to practi-
tioners can take days or weeks for every novel architecture,
especially given their increasing scale (Zhai et al., 2022).

Applying our post-processing steps to ImageNet-pretrained
models have not been found helpful and reduced fine-tuning
results (not reported in Table 1). This can be explained by
the fact that the parameters of ImageNet-pretrained mod-
els are not highly correlated (Figure 2). While our post-
processing can make them more linearly and statistically
independent, it can also damage high-quality filters.

6. Discussion
The benefit of GHN-ORTH and GHN is lower on ConvNeXt
than on ResNet-50 (Table 1). The capacities of these archi-
tectures (in terms of the number of trainable parameters) are
not that different to explain this difference. We argue that
even though ConvNeXt is composed of largely the same
primitive operations4 that compose the training architectures
of GHNs (DeepNets-1M (Knyazev et al., 2021)), the compo-
sitions of these primitives in ConvNeXt are quite different

4One of the operations used in ConvNeXt was not supported
by the GHNs, so we did not predict their parameters, which ac-
counted for a small percentage w.r.t. the total number of parameters
in ConvNeXt. There are also some operations without trainable
parameters such as GELU nonlinearities or permutation of dimen-
sions that are not explicitly modeled by GHNs and not included in
the input computational graphs.
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Figure 4. PCA-based projection of 32-dimensional latent repre-
sentations of input computational graphs to two dimensionalities.
These representations are computed based on Knyazev et al. (2021)
on 500 validation architectures of DeepNets-1M.

compared to the other architectures in DeepNets-1M and
ResNet-50. Such a difference in compositions may create a
significant distribution shift confusing the GHN and mak-
ing it predict poor parameters. To visualize this effect, we
first extracted latent representations of input computational
graphs from the validation architectures of DeepNets-1M
as well as of ResNet-50 and ConvNeXt the same way as
in Knyazev et al. (2021). We then projected these repre-
sentations using the principal component analysis (PCA)
into two dimensionalities and color coded the architectures
with the accuracies of the corresponding networks with pre-
dicted parameters (Figure 4). This visualization reveals
distinct clusters for lower and higher performant architec-
tures in GHN’s latent space. While ResNet-50 is located
closely to the clusters with higher performant architectures,
ConvNeXt is grouped together with a few low performant
architectures. A relatively outlying latent representation of
ConvNeXt may be explained by either the lack of similar
architectures in the training set of DeepNets-1M or due to
the difficulty of training the GHN on this kind of architec-
ture. Understanding these reasons better may lead to more
advances in GHNs and may potentially bridge the gap be-
tween computationally-intensive pretraining of networks
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with SGD and almost zero-cost parameter prediction in the
transfer learning scenarios.

Alternative to our approach, efficient pretraining of large
networks is possible by first pretraining a smaller version
of the network and then growing it (Chen et al., 2015; Evci
et al., 2022). However, parameter prediction using GHNs
is even more efficient (assuming the GHN already exists)
as it does not require pretraining networks. We also have
not compared our approach to many other advanced initial-
ization methods such as (Mishkin & Matas, 2015; Knyazev
et al., 2017; Zhang et al., 2019; Huang et al., 2020; Zhang
et al., 2019; Dauphin & Schoenholz, 2019; Zhu et al., 2021;
Elsken et al., 2020), which is left for future work.
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