
Knowledge Graphs Can be Learned with Just Intersection Features

Duy Le 1 Shaochen (Henry) Zhong 2 Zirui Liu 2 Shuai Xu 1 Vipin Chaudhary 1 Kaixiong Zhou 3

Zhaozhuo Xu 4

Abstract

Knowledge Graphs (KGs) are potent frameworks
for knowledge representation and reasoning. Nev-
ertheless, KGs are inherently incomplete, leaving
numerous uncharted relationships and facts await-
ing discovery. Deep learning methodologies have
proven effective in enhancing KG completion by
framing it as a link prediction task, where the
goal is to discern the validity of a triple compris-
ing a head, relation, and tail. The significance
of structural information in assessing the validity
of a triple within a KG is well-established. How-
ever, quantifying this structural information poses
a challenge. We need to pinpoint the metric that
encapsulates the structural information of a triple
and smoothly incorporate this metric into the link
prediction learning process. In this study, we rec-
ognize the critical importance of the intersection
among the k-hop neighborhoods of the head, rela-
tion, and tail when determining the validity of a
triple. To address this, we introduce a novel ran-
domized algorithm designed to efficiently gener-
ate intersection features for candidate triples. Our
experimental results demonstrate that a straight-
forward fully-connected network leveraging these
intersection features can surpass the performance
of established KG embedding models and even
outperform graph neural network baselines. Addi-
tionally, we highlight the substantial training time
efficiency gains achieved by our network trained
on intersection features.

1Department of Computer and Data Sciences, Case West-
ern Reserve University 2Department of Computer Science, Rice
University 3Department of Electrical and Computer Engineering,
North Carolina State University 4Department of Computer Science,
Stevens Institute of Technology. Correspondence to: Zhaozhuo
Xu <zxu79@stevens.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Knowledge Graphs (KGs) stand as powerful structures for
knowledge representation and reasoning, facilitating the or-
ganization of vast amounts of information into entities and
relations (Wang et al., 2017; Rossi et al., 2021). Despite
their undeniable utility, KGs inherently harbor incomplete-
ness, leaving a plethora of undiscovered relations and unver-
ified facts concealed within their intricate networks (Shi &
Weninger, 2018; Destandau & Fekete, 2021). In response
to this challenge, deep learning have emerged as invaluable
tools for enhancing knowledge completion (Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015; Yang et al., 2015;
Trouillon et al., 2016; Zhang et al., 2017; Li et al., 2018; Sun
et al., 2019; Nathani et al., 2019; Li et al., 2022a). These
methodologies cast the task of uncovering latent facts within
KGs as a link prediction challenge, with the aim of deter-
mining the validity of a triple, composed of a head, relation,
and tail.

One fundamental aspect that has gained prominence in as-
sessing the validity of triples within KGs is the role of
structural features (Wang et al., 2018; Xie et al., 2020; Shen
et al., 2020; 2022; Zheng et al., 2023). In particular, struc-
tural features of a triple could be attributes derived from
the surrounding subgraph of its head, relation, and tail, en-
compassing information such as their common neighbors
or subgraph structure. For a triple, understanding its head,
relation, and tail’s surrounding subgraph connections in the
KG can provide crucial insights into its reliability. However,
we encounter three challenges when it comes to modeling
the structural features of a triple within a KG. Firstly, we
must pinpoint which specific structural features is crucial for
validating a triple. Secondly, once we identify an effective
method to quantify this information as features, how can we
efficiently compute it for all candidate triples in the KG?
Lastly, we must determine how to harness this triple’s com-
puted structural features in the context of link prediction.
Conquering these challenges is imperative for advancing the
frontiers of KG exploration.

This study recognizes the pivotal significance of the intersec-
tion among the k-hop neighborhoods of the head, relation,
and tail when evaluating the validity of a triple. If we con-
ceptualize both entities and relations as vertices within a KG,

1

Knowledge Graphs Can be Learned with Just Intersection Features

we can discern that triples exhibiting substantial overlap —
a.k.a intersections — in their respective k-hop neighbor-
hoods tend to signify facts. This observation is supported
by statistical evidence demonstrating that valid triples con-
sistently exhibit greater intersections than their non-valid
counterparts. However, translating this insight into com-
putational practice presents significant challenges. KGs
often comprise millions, or even more, triples, rendering the
computation of k-hop neighborhoods’ intersection for each
triple and various values of k prohibitively expensive. This
trade-off between effectiveness and computational efficiency
hinders progress in modeling the structural information in-
herent in triples.

To tackle this crucial aspect of KG, we present an innovative
randomized algorithm aimed at efficiently generating inter-
section features for candidate triples. Our approach dissects
the intersection size of k-hop neighborhoods associated
with each triple’s vertices into a product of 3-way Jaccard
similarity and 3-way union cardinality. When consider-
ing three k-hop neighborhoods within a triple, the 3-way
Jaccard similarity quantifies the percentage of their shared
elements, while the 3-way union cardinality measures the
total elements across three neighborhoods. Subsequently,
we introduce two randomized estimations for 3-way Jac-
card similarity and 3-way union cardinality, independently.
These estimations are then multiplied to derive our estima-
tion of the intersection size. Furthermore, we’ve devised
transformations to calculate the intersection size of 1 to
k-hop neighborhoods through an inductive process. Ulti-
mately, these multi-hop intersection size estimations are
consolidated into intersection features and used to train a
straightforward, fully connected neural network for link
prediction in the KG.

We formally summarize our contributions as follows.

• We recognize the significance of the intersection between
the k-hop neighborhoods of the head, relation, and tail as
crucial for discerning a valid triple. Moreover, we inte-
grate the intersection’s cardinality into our deep learning
methodologies as a vital input feature.

• We present a novel randomized algorithm designed to
estimate the cardinality of the intersection of the k-hop
neighborhoods for entities and the relation within a triple.
Using this algorithm, we efficiently extend the compu-
tation of intersection features to encompass vast KGs
comprising millions of triples.

• We employ the intersection features and develop a deep
neural network for predicting links within knowledge
graphs. Through a comprehensive series of experiments,
our results demonstrate that our simple yet effective fully-
connected network surpasses KG embedding methods and
even outperforms graph convolutional network baselines
in terms of predictive accuracy and training efficiency.

2. Related Works
2.1. Representation Learning for Knowledge Graphs

Representation Learning for KGs has gained significant at-
tention in recent years. It mainly focuses on embedding
entities and relations from a KG into dense vectors. Build-
ing upon the pioneering work of TransE (Bordes et al.,
2013), which learns vector representations of entities while
treating relations as translation functions within a continu-
ous vector space, there are subsequent advancements, such
as TransH (Wang et al., 2014) and TransR (Lin et al., 2015).

However, these methods frequently exhibit lower effective-
ness compared to GNN-based models when applied to large
and heterogeneous knowledge graphs featuring diverse set
of entities and relations. GNN-based models such as KB-
GAT (Nathani et al., 2019) or CompGCN (Vashishth et al.,
2020) exhibit high expressiveness and possess the capability
to learn intricate, non-linear relationships among entities
within a knowledge graph. Furthermore, they are good at
capturing rich representations of an entity’s connections
through the aggregation of information from neighboring
entities and relations.

While GNN-based models (Nathani et al., 2019) (Zhou
et al., 2020b; 2021; 2020a; 2023) (Vashishth et al., 2020)
have demonstrated their effectiveness in knowledge graph
representation learning, they demand a substantial alloca-
tion of computational resources and entail lengthy training
periods. Furthermore, because of their intricate architecture,
GNN-based models typically necessitate extensive datasets
and numerous epochs to capture the knowledge graph repre-
sentation effectively. This limitation hinders the feasibility
of numerous potential applications that emphasize the effi-
cient training times and scalability of the model.

2.2. Randomized Algorithms for Scalable Graph
Learning

Learning on large graphs presents notable challenges re-
lated to scalability and efficiency (Duan et al., 2022; Chen
et al., 2022). This complexity arises from the utilization
of graph-based sparse matrix operations during the aggre-
gation phase, characterized by numerous random memory
accesses and limited data reuse. These characteristics pose
an obstacle in acceleration using community hardware such
as CPUs and GPUs, as discussed in (Liu et al., 2023b). Prior
research has expanded the application of randomized algo-
rithms within the field of graph learning, aiming to enhance
their scalability (Liu et al., 2021). These algorithms trade
off computational precision in favor of reduced memory us-
age and processing time. Specifically, ELPH (Chamberlain
et al., 2022) proposes to encode the subgraph relationship
into pairwise node features with locality-sensitive hashing.
RSC (Liu et al., 2023a) accelerates the graph-based sparse

2

Knowledge Graphs Can be Learned with Just Intersection Features

operations with randomized matrix multiplication, where it
sub-samples the graph adjacency matrix into the subspace
where the computation can be done much faster. Another
direct way to reduce the time complexity is to remove unim-
portant edges. Specifically, the effective resistance serves
as an edge importance score, providing a theoretical guar-
antee for eliminating unimportant edges. However, it is
very expensive to estimate in practice as it requires cal-
culating the inverse of the giant graph Laplacian matrix.
DSpar (Liu et al., 2023b) approximates the effective resis-
tance (Spielman & Srivastava, 2008) using only the node
degree information. Then it sparsifies the graph once before
training with degree-based random sampling. Sketch-GNN
proposes to sketch the graph adjacency matrix. It learns and
updates these sketches in an online fashion using learnable
LSH. In this way, it achieves sub-linear memory and time
complexity with respect to the input graph size (Ding et al.,
2022). However, we encounter challenges when endeavor-
ing to expand the scope of triple learning within KGs. A
triple, comprising three elements, possesses a notably intri-
cate structure. Modeling a 3-way relation effectively with
randomized algorithms remains to be explored in this work.

3. Motivation
While there are many ways to solve the knowledge graph
learning tasks, many methods would rely on a large feature
space with complex learning models, resulting in various
complications or even limitations as mentioned in Section 2.

In our empirical study, we observe the following interesting
pattern during the completion of rp for a triple (h, rp, t)
(given head and tail entities as h and t): Suppose we trans-
form a relation rcandidate into a vertex (as shown in Fig-
ure 1a → Figure 1b) and observe that there is significant
overlap among the neighbors of h, rcandidate, and t vertices,
then it is advisable to select rp = rcandidate.

To illustrate this pattern, we take a snapshot sampled in
dataset FB15K237 (Toutanova & Chen, 2015) shown in
Figure 1a, where we would like to determine the relation rp
for triple (h = U.S., rp, t = Insidious). We first conceptualize
relations (edges) in the snapshot as vertices within the KG,
so that Figure 1a is therefore transformed to Figure 1b. Then,
we store the neighborhood information of h, t, as well as the
three newly formed relation vertices — adjoins, exports to,
and release in — in Figure 1b as sets, which are:

• Neighbors of adjoins: N (adjoins) = {U.S., Canada}.
• Neighbors of exports to: N (exports to) = {U.S., Ire-

land}.
• Neighbors of release in: N (release in) = {Insidious,

Canada, Ireland}.
• Neighbors of U.S.: N (U.S.) = {Canada, Ireland,

adjoins, exports to}.

(a) Original KG

(b) Conceptualization of relation as vertex

Figure 1. Simplified process of solving (h = U.S., rp = ?, t =
Insidious). To quantify the intersection features of the asked triples,
we conceptualize the representation of both entities and relations
as vertices within this KG. Thus, Figure 1a is transformed into
Figure 1b, where the relation vertex with the largest neighborhood
intersection with neighbors of h and neighbors of t is the most
likely candidate for rp. In this case, this would be release in, as the
neighbors of release in vertex in Figure 1b have an intersection of
{Canada, Ireland} (cardinality = 2) with the neighbors of U.S. and
the neighbors of Insidious. Which is larger than the neighborhood
intersection among adjoins, U.S., Insidious ({Canada}, cardinality
= 1) or among exports to, U.S., Insidious ({Ireland}, cardinality =
1). Please refer to Section 3 for a more detailed walk-through.

• Neighbors of Insidious: N (Insidious) = {Canada, Ire-
land, release in}.

After collecting such sets, we calculate the intersections
among h neighbor set, t neighbor set, and a particular rela-
tion vertex’s neighbor set as the following:

• N (U.S.) ∩N (Insidious) ∩N (adjoins) = {Canada}.
• N (U.S.)∩N (Insidious)∩N (exports to) = {Ireland}.
• N (U.S.) ∩N (Insidious) ∩N (release in) = {Canada,

Ireland}.

With such information, we let the relation with the highest
intersection cardinality to be the most likely candidate for
rp

1. In this case, such relation is release in with a cardinality

1We like to note that selecting the relation with the highest
intersection cardinality is a simplified version of our solution for
the ease of demonstration. In practice, such intersection features
are fed into a fully-connected network to determine the most likely

3

Knowledge Graphs Can be Learned with Just Intersection Features

Table 1. The average 1-hop intersection cardinality of valid and
invalid triples

Dataset
Average Cardinality of 1-hop Triple Intersection

Valid w/ Invalid Heads w/ Invalid Tails

YAGO3-10 1.20 0.60 0.06

NELL-995 2.35 0.30 0.24

WN18RR 0.26 0.04 0.003

FB15K237 8.75 1.65 0.65

FB15K 8.46 2.09 1.30

of 2, so we shall have (U.S., release in, Insidious); which
happen to be a valid prediction.

Here, we denote the number of vertices (as entities and
relations) that lie in the intersection among N (h), N (t),
and a certain N (rcandidate) as intersection features or car-
dinality of intersection for (h, rcandidate, t). In this work,
we argue that knowledge graphs can be learned by only
utilizing such kinds of intersection features.

Note that the above example is not a cherry-picked one,
but rather a global phenomenon that exists across multiple
knowledge graph datasets. Here, we demonstrate the ubiq-
uitousness of such phenomenon via two different channels:
1) we count the cardinality of intersections in regard to valid
and invalid triples, where valid triples tend to have a lot
more intersections among the neighborhood of its h, t, and
r-transformed vertices; and 2) we showcase learning upon
the exact measurements of intersection features may yield
dominating performance on KG link prediction task against
various popular alternative approaches.

Specifically for our first setup, we randomly sample 10,000
valid triples from the corresponding training set of the five
showcased datasets in Table 1. Additionally, we generate a
set of 20,000 invalid triples by randomly substituting head
and tail entities, ensuring that these generated invalid triples
do not overlap with any valid triples in the training set.
Our statistical analysis reveals a notable trend: valid triples
exhibit a much higher cardinality of neighborhood intersec-
tion among their head entities, tail entities, and transformed
relation vertices than their invalid counterparts.

Our second phenomenon observing experiment is designed
to assess the effectiveness of learning on the exact mea-
surement of intersection features (see Section 4.4) in link
prediction tasks. Given the high computational expense
associated with calculating the exact cardinality of intersec-
tions of triples, we sample a subset S from the NELL-995
train set (Xiong et al., 2017) by randomly selecting ten valid
triples as well as their 1-hop neighborhood entities. We
then separate such subset S into its own train and test set
to ensure no leakage. Table 2 showcased a landslide domi-

rp. Please refer to Section 4 for full details.

nance of our methods across four different metrics against
multiple SOTA methods. For example, regarding the Mean
Reciprocal Rank (MRR) metric, our method, learned with
exact intersection features, excels with a score of 0.160. In
contrast, several other methods yield only mediocre results,
with one even as low as 0.004.

However, one foreseeable and severe challenge is, again, the
high computing cost of measuring such intersection features
in an exact manner. To mitigate this burden, we proposed a
novel randomized algorithm to provide an efficient but faith-
ful estimation of such intersection features, where learning
on the estimated features may yield a competitive beyond-
SOTA result as learning on the exact features (Table 2).

Table 2. Experimental results of our method learning upon exactly
measured v.s. estimated intersection features v.s. baselines in a
KG link prediction task on sampled subset of NELL-995 (‘≈ x’ is
‘Estimated x’, ‘EM x’ is ‘Exact-Measured x’).

Method Sampled NELL

MRR H@1 H@3 H@10

Intersection Features
(EM Jaccard, EM Union)

0.142 0.059 0.102 0.370

Intersection Features
(EM Jaccard, ≈ Union)

0.073 0.012 0.056 0.269

Intersection Features
(≈ Jaccard, EM Union)

0.146 0.034 0.185 0.395

Intersection Features
(≈ Jaccard, ≈ Union)

0.160 0.102 0.145 0.318

TransE 0.041 0.000 0.043 0.099

TransH 0.043 0.000 0.049 0.102

TransR 0.048 0.000 0.049 0.142

DistMult 0.004 0.000 0.000 0.003

ComplEx 0.078 0.049 0.090 0.117

RotatE 0.005 0.000 0.009 0.015

4. Method
This section formally introduces our approach to generating
K-hop intersection features for KG learning. We start by
defining and decomposing the triple intersection into triple
Jaccard and triple cardinality. Next, we introduce the algo-
rithms to estimate triple Jaccard and cardinality, respectively.
Finally, we introduce our K-hop intersection features and
the neural network trained on them.

Notation: We denote a KG as G, which contains a set of
relations P and a set of entities V . Two entities h, t ∈ V and
one relation r ∈ P form a triple (h, r, t) that represents a
fact. We view all entities in V and relations in P as vertices.
For every entity v ∈ V , if there is a triple (v, r, t), we say
vertex v is connected to vertex r and t with edges, respec-
tively. For every relation r ∈ P , if there is a triple (h, r, t),
we say vertex r is connected to vertex h and t with edges,
respectively. For every entity v ∈ V , we denote its k-hop
neighborhoods asNk(v). Nk(v) consists of all vertices that
can be reached from v by following≤ k edges. We note that

4

Knowledge Graphs Can be Learned with Just Intersection Features

vertices in Nk(v) can be both entities and relations. Also,
for every relation r ∈ P , we denote its k-hop neighborhoods
as Nk(r). We denote |A| as the cardinality of a set A.

4.1. Decomposition of Triple Intersection

Following observations in Section 3, we would like to esti-
mate the size of an intersection of the k-hop neighborhoods
of a triple (h, r, t). Formally, we define the triple intersec-
tion cardinality as follows.

Definition 4.1. Given a triple (h, r, t) in a knowledge graph
G, we define its k-hop triple intersection cardinality as
|Nk(h) ∩Nk(r) ∩Nk(t)|.

In practice, it is challenging to explicitly compute the exact
intersection cardinality for all triples in KG. A strawman
solution to overcome this computation bottleneck is sub-
sampling. However, this Monte-Carlo style strategy is sam-
ple inefficient. It requires a significant amount of samples
to perform an even rough estimate.

As a result, we propose an algorithm to estimate the k-hop
triple intersection (see Definition 4.1) by the decomposition
as below. We show that

|Nk(h) ∩Nk(r) ∩Nk(t)| (1)
=J (Nk(h),Nk(r),Nk(t)) · C(Nk(h),Nk(r),Nk(t)),

where J (Nk(h),Nk(r),Nk(t)) is the 3-way Jaccard
similarity of k-hop neighborhoods of (h, r, t) and
C(Nk(h),Nk(r),Nk(t)) is the cardinality of the union
Nk(h) ∪ Nk(r) ∪ Nk(t). With Eq. (1), we propose to es-
timate 3-way Jaccard similarity J (Nk(h),Nk(r),Nk(t))
and 3-way union cardinality |Nk(h) ∪ Nk(r) ∪ Nk(t)| in-
dependently. Next, we multiply the two estimates together
for k-hop triple intersection estimation.

4.2. 3-Way Jaccard Estimation

We propose an estimator with MinHash (Broder, 1997)
functions to estimate the 3-way Jaccard similarity
J (Nk(h),Nk(r),Nk(t)). To start with, we formally, in-
troduce the MinHash function.

Definition 4.2. Given a set X , we denote their MinHash
value as min(Π(X)), where Π : X → [m] is a permutation
function that maps every element in X into a value in [m]
uniformly at random, m denote the permutation range and
min function takes the minimum value as output. Moreover,
given two sets A and B, we have

Pr[min(Π(A)) = min(Π(B))] =
|A ∩B|
|A ∪B|

= J (A,B).

MinHash function is an effective randomized estimator for
pairwise Jaccard similarity. However, it requires significant

effort to extend it for 3-way Jaccard similarity. Shrivas-
tava and Li used MinHash with a bucketing scheme that
estimates the 3-way Jaccard similarity (Shrivastava & Li,
2013). However, this bucketing scheme restricts the per-
mutation range m to a small value and requires computing
the m · min(Π(A)). Since min(Π(A)) is up to m, larger
m results in overflow issues in practice. On the other hand,
a smaller permutation range m results in an increase in
collisions, which affects the quality of estimation.

In this work, we propose a new approach for estimating
3-way Jaccard similarity. We start with defining a pair of
asymmetric transforms.
Definition 4.3. Given three sets A, B, and C, we define the
function ϕ and ψ as

ϕ(A,B) = CONCAT(Bit(min(Π(A)),Bit(min(Π(B)))

ψ(C) = CONCAT(Bit(min(Π(C)),Bit(min(Π(C))),

where Bit(x) denotes the bit-wise representation of integer
x, CONCAT(b1, b2) denotes the concatenation of two bit
arrays b1 and b2.

In Definition 4.2, function Π maps every element in set A
into an integer in [m]. Let m be a power of 2, min(Π(A))
can be represented as a log2m bit array. As a result, ϕ(A,B)
and ψ(C) produce a 2 log2m bit array through concatena-
tion. Given the asymmetric transforms in Definition 4.3, we
have,
Theorem 4.4. Let min(Π(x)) denote a MinHash function
(see Definition 4.2). Let ϕ, ψ denote the asymmetric trans-
form in Definition 4.3, Given three setA, B and C, we show
that

Pr[ϕ(A,B) = ψ(C)] =
|A ∩B ∩ C|
|A ∪B ∪ C|

= J (A,B,C).

Proof. We start showing that ϕ(A,B) = ψ(C) holds if and
only if min(Π(A)) = min(Π(B)) = min(Π(C)). Given
that Π is an independent permutation function, without loss
of generality, we show that

Pr[min(Π(A)) = min(Π(B)) = min(Π(C))]

=
|A ∩B ∩ C|
|A ∪B ∪ C|

= J (A,B,C).

As a result, Pr[ϕ(A,B) = ψ(C)] = J (A,B,C).

Next, we propose an estimator for J (A,B,C) as below,
Definition 4.5. Let Φ denote a set that contains n pairs
of (ϕi, ψi) (see Definition 4.3). Each pair (ϕi, ψi) ∈ Φ is
initialized independently with a permutation function Πi.
Given three sets A B and C, we define an estimator as

Ĵ (A,B,C) = 1

n
·

n∑
i=1

1{ϕi(A,B) = ψi(C)},

5

Knowledge Graphs Can be Learned with Just Intersection Features

where 1 is an indicator function.

Following Theorem 4.4, we show that Ĵ (A,B,C) is an
asymptotic unbiased estimator of J (A,B,C).

En→∞[Ĵ (A,B,C)] = J (A,B,C). (2)

We can compute the MinHash value of each vertex h’s k-hop
neighborhoods as

πk
h = min

v∈Nh

(πk−1
v). (3)

Next, given a triple, we can apply the asymmetric transform
(see Definition 4.3) to estimate its 3-way Jaccard similarity.
In this way, we do not scan every vertex’s k-hop neighbor-
hoods for a triple’s 3-way Jaccard similarity. Therefore, we
significantly improve the computation efficiency with an
acceptable sacrifice in estimation precision.

4.3. 3-Way Union Cardinality Estimation

We introduce HyperLogLog (Flajolet et al., 2007; Heule
et al., 2013) data structure to estimate 3-way union cardi-
nality |Nk(h) ∪ Nk(r) ∪ Nk(t)|. The HyperLogLog data
structure maintains a sketch of a set X as follows.
Definition 4.6. Let p ∈ [31] denote a parameter. Let Y = 0⃗
denote a 2p-dimensional vector. Let X denote a set. Let
h : X → [232] denote a universal hash function. Let g
denote a function that transforms a bit array into an integer.
Let σ : N+ → N+ denote a function that takes the number
of leading zeros in the bit representation of an integer. For
every x ∈ X , we update Y following the rules below.

• idx← g(Bit(h(x))[: p])
• z ← g(Bit(h(x))[p :]) + 1
• Y [idx]← max(Y [idx], σ(z))

where Bit(h(x))[: p] takes the first p bits of the bit array and
Bit(h(x))[p :] takes the rest. Finally, we output Y as the
HyperLogLog sketch of X .

Given three sets, we are able to estimate their union cardi-
nality based on merging HyperLogLog. We demonstrate it
in the following statement.
Lemma 4.7. Given three sets A, B and C, we first compute
their HyperLogLog sketch following Definition 4.6 with
parameter p. We denote the HyperLogLog sketch of A, B
and C as YA, YB and YC , respectively. Next, we compute

Y = max(YA, YB , YC),

where max is an element-wise max operation on the three
vectors. Next, we have an estimate of |A ∪B ∪ C| below

Ĉ(A,B,C) = α22p(

22p∑
i=0

2−Yi)−1.

In Lemma 4.7, parameter α is determined following (Heule
et al., 2013). We note that the estimator Ĉ is asymptotically
almost unbiased (Flajolet et al., 2007). Moreover, from
Lemma 4.7, we know that the HyperLogLog sketch of every
set can be combined for estimating their union cardinality.
As a result, for each vertex h, we can sketch its k-hop
neighborhoods set with HyperLogLog as

Y k
h = max

v∈Nh

(Y k−1
v) (4)

Next, given a triple, we use Lemma 4.7 to estimate its union
cardinality without scanning each vertex’s k-hop neighbor-
hoods.

4.4. k-Hop Intersection Features

We continue to formally introduce 2 types of intersection
features of triple (h, r, t) that are used for link prediction
tasks as follows:

1. Îkh,kr,kt : the estimated cardinality of common neigh-
borhoods that are exactly kh-hop from vertex h, kr-hop
from vertex r, and kt-hop from vertex t.

2. T̂kv
: the estimated cardinality of nodes that are exactly

kv hop from vertex v where v is in S ={h, r, t}, and
> kv hop from vertices among S \ {v}.

Following Definition 4.5 and Lemma 4.7, we propose an
estimator of kh, kr, and kt-hop triple intersection cardinal-
ity, i.e., the number of distinct nodes at distance ≤ kh from
h, ≤ kr from r, and ≤ kt from t, as follow:

Êkh,klrkt =Ĵ (Nkh
(h),Nkr (r),Nkt(t))· (5)

Ĉ(Nkh
(h),Nkr

(r),Nkt
(t)).

Next, we start computing Îkh,kr,kt
. To start with, we ex-

plicitly show that Î1,1,1 = Ê1,1,1, because the 1-hop neigh-
borhood is the lowest level of neighborhoods. Next, given
k-hop intersection cardinality estimation, we can compute
Îkh,kr,kt

via induction as follow,

Îkh,kr,kt
= Êkh,kr,kt

−
∑

x≤kh y≤kr z≤kt

(x,y,z)̸=(kh,kr,kt)

Îx,y,z. (6)

6

Knowledge Graphs Can be Learned with Just Intersection Features

Next, we define T̂kv
as follow,

T̂kh
=|Nkh

| − T̂kh−1 −
kh∑
i=1

k∑
j=1

k∑
z=1

Îi,j,z,

T̂kr
=|Nkr

| − T̂kr−1 −
k∑

i=1

kr∑
j=1

k∑
z=1

Îi,j,z, (7)

T̂kt
=|Nkt

| − T̂kt−1 −
k∑

i=1

k∑
j=1

kt∑
z=1

Îi,j,z.

where k is the parameter defining the maximum hop of in-
tersection features. There would be k3 of Îkh,kr,kt

features
and 3k of T̂kv where vertex v ∈ S = {h, r, t}, in total of
k3 + 3k intersection features per each triple (h, r, t).

4.5. Learning on Intersection Features

We use the intersection features extracted in Section 4.4
to train a deep neural network (DNN) for link prediction
in KG exploration. Given a triple, we regard its k3 + 3k
intersection features as a vector. Next, we apply a single
fully connected layer to the representation features. Subse-
quently, these features are normalized and go through the
final activation function, e.g. Sigmoid σ, to yield the triple’s
predicted validity. We adhere to the adopted practice and
follow TransE’s (Bordes et al., 2013) convention by utiliz-
ing a margin-based loss as the architecture’s primary loss
function. This approach penalizes invalid triples, pushing
for higher predicted validity, while minimizing the predicted
values of valid triples. We note that the introduced DNN
is simple yet effective. We do not introduce expensive op-
erations such as graph convolution in the proposed DNN,
resulting in a training efficiency improvement. Moreover,
we incorporate multi-hop intersection features in training
DNN, which leads to potential improvements over KG em-
bedding approaches such as TransE (Bordes et al., 2013).

5. Experiment
In this section, we evaluate the performance of Intersection
Features method and compare it against recent advanced
link prediction methods on various LP benchmarks. Firstly,
we introduce the benchmark datasets used in the experi-
ments. Then, we provide an overview of baseline models
and experimental settings. Next, We present our evaluation
results. We also present efficiency profiling and ablation
study in the supplementary materials.

5.1. Datasets

We first introduce knowledge graph completion datasets
used in the experiments. All datasets are publicly avail-
able and widely used. Their statistics are shown in Ta-
ble 4 in the supplementary materials. NELL-995 (Xiong

et al., 2017) contains triples derived from the NELL sys-
tem to benchmark link prediction for multi-hop entity pairs.
WN18RR (Dettmers et al., 2018) is a link prediction dataset
derived from WordNet, a large knowledge graph of se-
mantic relations between words. YAGO3-10 (Mahdis-
oltani et al., 2015) is the largest knowledge graph com-
pletion dataset used in our experiments with more than
one million triples taken from Wikipedia. We also include
FB15K237 (Toutanova & Chen, 2015) and FB15K (Bordes
et al., 2013) are small subsets of knowledge base relation
triples in Freebase, a heterogeneous and well-known knowl-
edge graph. We present the experiment results of FB15K237
and FB15K in the supplementary material.

5.2. Experimental Settings

We evaluated Intersection Features on five introduced knowl-
edge graph completion benchmarks and compared it against
the performance of recent link prediction models. We used
sixteen well-known or recent models as baselines, including
TransE (Bordes et al., 2013), TransH (Wang et al., 2014),
TransR (Lin et al., 2015), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016) with N3 regularizer proposed
in (Lacroix et al., 2018), and RotatE (Sun et al., 2019), KB-
GAT (Nathani et al., 2019), CompGCN (Vashishth et al.,
2020), SE-GNN (Li et al., 2022a), KRACL (Tan et al., 2023),
AdaProp (Zhang et al., 2022b), MEIM (Tran & Takashu,
2022), HousE (Li et al., 2022b), NCRL (Cheng et al., 2023),
and A*Net (Zhu et al., 2023). The performance metrics for
each baseline are extracted either directly from their orig-
inal paper, obtained as the best reproduced result reported
in (Yang et al., 2021) (Tran & Takashu, 2022) (Das et al.,
2018) (Zhang et al., 2022a) (Dettmers et al., 2018) (Li et al.,
2022a), or directly reproduced by us with the best reported
hyperparameters.

Evaluations We train the models on the train graph. Next,
given the train graph and a corrupted triplet from the test
graph (h, r, ?), we would like to predict an ? from entities
within the set of KG’s entities. Note that train and test graphs
are disjoint in terms of triples, but entities from test graphs
can also be present in their respective train graphs. We
follow widely adopted evaluation metrics on link prediction
task (Bordes et al., 2013). For each positive triple (h, r, t) in
the test set, where h & t represent head and tail entities and
r is the relation, we corrupt it by replacing the head and tail
entity with every other entity in the dataset to obtain invalid
triples (h′, r, t) and (h, r, t′), respectively. Each method
attempts to rank each triple on how likely it is a valid one in
the first place. We measure filtered MRR, mean reciprocal
rank, and filtered Hit@k, how many positive triples are
correctly ranked in the top k, given corrupted but positive
triples are not considered. The higher the metrics’ values
are, the better the method performs.

7

Knowledge Graphs Can be Learned with Just Intersection Features

Table 3. Experimental results of link prediction on large-scale, heterogeneous knowledge graph datasets

Method Source YAGO3-10 NELL-995 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Intersection Features (Ours) 0.617 0.590 0.665 0.674 0.789 0.776 0.791 0.813 0.781 0.724 0.891 0.899

TransE
(Bordes et al., 2013)

Self-Replicated 0.275 0.035 0.470 0.640 0.326 0.225 0.399 0.488 0.193 0.005 0.358 0.470
(Yang et al., 2021) 0.510 0.413 0.574 0.681 0.222 0.014 0.399 0.528
(Tran & Takashu, 2022) 0.501 0.406 0.674 0.222 0.031 0.524
(Zhang et al., 2022a) 0.456 0.514 0.678 0.751 0.359 0.289 0.464 0.534
(Li et al., 2022a) 0.223 0.014 0.401 0.529
(Han et al., 2023) 0.466 0.423 0.556

TransH
(Wang et al., 2014) Self-Replicated 0.352 0.233 0.412 0.576 0.333 0.239 0.399 0.483 0.204 0.009 0.378 0.471

TransR
(Lin et al., 2015) Self-Replicated 0.354 0.234 0.421 0.581 0.322 0.218 0.399 0.487 0.202 0.007 0.379 0.471

DistMult
(Yang et al., 2015)

(Tran & Takashu, 2022) 0.501 0.413 0.661 0.465 0.432 0.532
(Yang et al., 2021) 0.566 0.491 0.608 0.704 0.455 0.410 0.467 0.544
(Das et al., 2018) 0.680 0.610 0.733 0.795 0.433 0.410 0.441 0.475
(Li et al., 2022a) 0.439 0.394 0.452 0.533

ComplEx-N3
(Lacroix et al., 2018)

Self-Replicated 0.578 0.501 0.624 0.714 0.401 0.345 0.448 0.495 0.471 0.430 0.489 0.553
(Yang et al., 2021) 0.577 0.502 0.621 0.709 0.489 0.443 0.502 0.580
(Tran & Takashu, 2022) 0.569 0.498 0.609 0.701 0.480 0.435 0.495 0.572
(Lacroix et al., 2018) 0.360 0.550 0.440 0.510

ComplEx
(Trouillon et al., 2016)

Self-Replicated 0.410 0.323 0.449 0.575 0.237 0.197 0.252 0.313 0.471 0.430 0.489 0.553
(Dettmers et al., 2018) 0.360 0.260 0.400 0.550 0.440 0.410 0.460 0.510
(Das et al., 2018) 0.694 0.612 0.761 0.827 0.440 0.410 0.460 0.510

RotatE
(Sun et al., 2019)

Self-Replicated 0.454 0.364 0.505 0.626 0.356 0.298 0.395 0.444 0.394 0.383 0.397 0.416
(Sun et al., 2019) 0.476 0.428 0.492 0.571
(Yang et al., 2021) 0.495 0.402 0.550 0.670 0.476 0.428 0.492 0.571
(Zhang & Yao, 2022) 0.513 0.413 0.637 0.448 0.413 0.513

KBGAT
(Nathani et al., 2019)

Self-Replicated 0.528 0.434 0.580 0.703 0.550 0.461 0.618 0.697 0.428 0.344 0.486 0.570
(Nathani et al., 2019) 0.530 0.447 0.564 0.695 0.440 0.361 0.483 0.581

CompGCN
(Vashishth et al., 2020)

Self-Replicated 0.267 0.179 0.304 0.439 0.412 0.355 0.444 0.503 0.187 0.053 0.242 0.496
(Vashishth et al., 2020) 0.479 0.443 0.494 0.546

SE-GNN
(Li et al., 2022a)

Self-Replicated 0.238 0.164 0.254 0.384 0.214 0.164 0.242 0.300 0.485 0.440 0.503 0.571
(Li et al., 2022a) 0.484 0.446 0.509 0.572

KRACL
(Tan et al., 2023)

Self-Replicated 0.305 0.219 0.335 0.474 0.445 0.380 0.488 0.559 0.373 0.297 0.421 0.501
(Tan et al., 2023) 0.563 0.495 0.602 0.672 0.527 0.482 0.547 0.613

AdaProp (Zhang et al., 2022b) 0.573 0.510 0.685 0.554 0.493 0.655 0.562 0.331 0.585

MEIM (Tran & Takashu, 2022) 0.585 0.514 0.625 0.716 0.499 0.458 0.518 0.577

HousE (Li et al., 2022b) 0.571 0.491 0.620 0.714 0.511 0.465 0.528 0.602

NCRL (Cheng et al., 2023) 0.38 0.274 0.536 0.67 0.563 0.850

A*Net (Zhu et al., 2023) 0.549 0.495 0.573 0.659

Implementation We employ OpenKE (Han et al., 2018) as
the primary framework for training embedding-based mod-
els, and we also integrated publicly available source code for
GNN-based models into OpenKE. We ensured that the best
hyperparameter configurations that are publicly available
for the models were utilized during the training process. Par-
ticularly for our method, the intersection features are within
[1, 2, 3]-hop of each node, learning rate λ is chosen among
[1, 0.1, 0.05, 0.01, 0.005, 0.001], optimizer is chosen from
{Adam, Adagrad, Adadelta, SGD}. Our model is trained at
most 4,000 epochs among all datasets. There are 128 Min-
Hash functions used to estimate 3-way Jaccard similarity of
a triple. We note that the more MinHash functions we have,
the better in estimation. However, due to the robustness

of DNNs, we do not require significantly better estimation.
Similarly, we set HyperLogLog’s size, i.e. p, to be 8. All
model training and evaluations were conducted on a single
NVIDIA A100 GPU with 80G memory.

5.3. Effectiveness of Intersection Features

We present the results on large-scale datasets in Table 3.
Our Intersection Features method consistently outperforms
both the embedding-based and GNN-based baselines on
large-scale, heterogeneous KGs, exhibiting a considerable
lead over the second-best result in each dataset’s metrics.
For instance, in terms of the MRR metric for WN18RR, our
method showcases a significant difference of 0.111 when

8

Knowledge Graphs Can be Learned with Just Intersection Features

compared to the runner-up.

Results on datasets with more homogeneous and smaller-
scale KGs are displayed in Table 5 in the supplementary
materials. Our method continues to exhibit better perfor-
mance compared to embedding-based models across the
majority of the benchmark datasets. Furthermore, we out-
perform GNN-based models in some metrics. In five spe-
cific metrics, our results are on par with the best-performing
GNN-based methods, with only marginal differences.

6. Conclusion
In conclusion, this study has underscored the significance
of considering the intersection of the k-hop neighborhoods
of the head, relation, and tail when evaluating the valid-
ity of triples within a Knowledge Graph (KG). To tackle
this challenge, we introduced a novel randomized algorithm
aimed at efficiently generating intersection features for can-
didate triples. Our experimental findings have not only
demonstrated the effectiveness of a simple fully-connected
network utilizing these intersection features but have also
showcased its superior performance compared to established
KG embedding models and graph neural network baselines.
Furthermore, our approach has achieved substantial gains
in training time efficiency, reinforcing the value of incor-
porating structural features into the learning process for
KGs. These results emphasize the potential of our method
in advancing KG exploration and reasoning, offering new
avenues for addressing the inherent incompleteness of KGs
and uncovering hidden relationships and facts.

Acknowledgement
This research was supported in part by NSF awards 2112606
and 2117439. This work made use of the High Performance
Computing Resource in the Core Facility for Advanced
Research Computing at Case Western Reserve University.
We give our special thanks to the CWRU HPC team for their
timely and professional help and maintenance. Additionally,
Zhaozhuo Xu is supported by the startup fund of Stevens
Institute of Technology.

Impact Statement
We introduce a machine learning method for KG applica-
tions. We focus on reducing the computation cost of KG
modeling to reduce the carbon release of deploying KG-
based services.

References
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and

Yakhnenko, O. Translating embeddings for modeling

multi-relational data. Advances in neural information
processing systems, 26, 2013.

Broder, A. Z. On the resemblance and containment of
documents. In Proceedings. Compression and Complexity
of SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29.
IEEE, 1997.

Chamberlain, B. P., Shirobokov, S., Rossi, E., Frasca, F.,
Markovich, T., Hammerla, N. Y., Bronstein, M. M., and
Hansmire, M. Graph neural networks for link prediction
with subgraph sketching. In The Eleventh International
Conference on Learning Representations, 2022.

Chen, H., Li, X., Zhou, K., Hu, X., Yeh, C.-C. M., Zheng,
Y., and Yang, H. Tinykg: Memory-efficient training
framework for knowledge graph neural recommender
systems. In Proceedings of the 16th ACM Conference on
Recommender Systems, pp. 257–267, 2022.

Cheng, K., Ahmed, N., and Sun, Y. Neural compositional
rule learning for knowledge graph reasoning. In Interna-
tional Conference on Learning Representations, 2023.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar,
I., Krishnamurthy, A., Smola, A., and McCallum, A. Go
for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. In
International Conference on Learning Representations,
2018.

Destandau, M. and Fekete, J.-D. The missing path:
Analysing incompleteness in knowledge graphs. Infor-
mation Visualization, 20(1):66–82, 2021.

Dettmers, T., Pasquale, M., Pontus, S., and Riedel, S. Con-
volutional 2d knowledge graph embeddings. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Ding, M., Rabbani, T., An, B., Wang, E., and Huang, F.
Sketch-gnn: Scalable graph neural networks with sublin-
ear training complexity. Advances in Neural Information
Processing Systems, 35:2930–2943, 2022.

Duan, K., Liu, Z., Wang, P., Zheng, W., Zhou, K., Chen,
T., Hu, X., and Wang, Z. A comprehensive study on
large-scale graph training: Benchmarking and rethinking.
In Advances in Neural Information Processing Systems,
2022.

Flajolet, P., Fusy, É., Gandouet, O., and Meunier, F. Hy-
perloglog: the analysis of a near-optimal cardinality es-
timation algorithm. Discrete mathematics & theoretical
computer science, 2007.

Han, C., He, Q., Yu, C., Du, X., Tong, H., and Ji, H. Logi-
cal entity representation in knowledge-graphs for differ-
entiable rule learning. In International Conference on
Learning Representations, 2023.

9

Knowledge Graphs Can be Learned with Just Intersection Features

Han, X., Cao, S., Xin, L., Lin, Y., Liu, Z., Sun, M., and Li,
J. Openke: An open toolkit for knowledge embedding.
In EMNLP, 2018.

Heule, S., Nunkesser, M., and Hall, A. Hyperloglog in
practice: Algorithmic engineering of a state of the art
cardinality estimation algorithm. In Proceedings of the
16th International Conference on Extending Database
Technology, pp. 683–692, 2013.

Lacroix, T., Usunier, N., and Obozinski, G. Canonical
tensor decomposition for knowledge base completion. In
International Conference on Machine Learning, 2018.

Li, M., Wang, Y., Zhang, D., Jia, Y., and Cheng, X. Link
prediction in knowledge graphs: A hierarchy-constrained
approach. IEEE Transactions on Big Data, 8(3):630–643,
2018.

Li, R., Cao, Y., Zhu, Q., Bi, G., Fang, F., Liu, Y., and Li,
Q. How does knowledge graph embedding extrapolate to
unseen data: a semantic evidence view. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, 2022a.

Li, R., Zhao, J., Li, C., He, D., Wang, Y., Liu, Y., Sun,
H., Wang, S., Deng, W., Shen, Y., Xie, X., and Zhang,
Q. House: Knowledge graph embedding with house-
holder parameterization. In International Conference on
Machine Learning, 2022b.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning
entity and relation embeddings for knowledge graph com-
pletion. AAAI Conference on Artificial Intelligence, 29,
2015.

Liu, Z., Zhou, K., Yang, F., Li, L., Chen, R., and Hu, X. Ex-
act: Scalable graph neural networks training via extreme
activation compression. In International Conference on
Learning Representations, 2021.

Liu, Z., Shengyuan, C., Zhou, K., Zha, D., Huang, X.,
and Hu, X. Rsc: Accelerate graph neural networks
training via randomized sparse computations. In Inter-
national Conference on Machine Learning, pp. 21951–
21968. PMLR, 2023a.

Liu, Z., Zhou, K., Jiang, Z., Li, L., Chen, R., Choi, S.-H.,
and Hu, X. Dspar: An embarrassingly simple strategy for
efficient gnn training and inference via degree-based spar-
sification. Transactions on Machine Learning Research,
2023b.

Mahdisoltani, F., Biega, J., and Suchanek, F. M. Yago3: A
knowledge base from multilingual wikipedias. In Pro-
ceedings of the Conference on Innovative Data Systems
Research, 2015.

Nathani, D., Chauhan, J., Sharma, C., and Kaul, M. Learn-
ing attention-based embeddings for relation prediction in
knowledge graphs. In The 57th Annual Meeting of the
Association for Computational Linguistics. Association
for Computational Linguistics, 2019.

Rossi, A., Barbosa, D., Firmani, D., Matinata, A., and Meri-
aldo, P. Knowledge graph embedding for link prediction:
A comparative analysis. ACM Transactions on Knowl-
edge Discovery from Data, 15(2):1–49, 2021.

Shen, T., Zhang, F., and Cheng, J. A comprehensive
overview of knowledge graph completion. Knowledge-
Based Systems, pp. 109597, 2022.

Shen, Y., Ding, N., Zheng, H.-T., Li, Y., and Yang, M.
Modeling relation paths for knowledge graph completion.
IEEE Transactions on Knowledge and Data Engineering,
33(11):3607–3617, 2020.

Shi, B. and Weninger, T. Open-world knowledge graph
completion. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Shrivastava, A. and Li, P. Beyond pairwise: Provably
fast algorithms for approximate k-way similarity search.
Advances in neural information processing systems, 26,
2013.

Spielman, D. A. and Srivastava, N. Graph sparsification
by effective resistances. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pp.
563–568, 2008.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. The Seventh International Conference on Learning
Representations, 2019.

Tan, Z., Chen, Z., Feng, S., Zhang, Q., Zheng, Q., Li, J., and
Luo, M. Kracl: Contrastive learning with graph context
modeling for sparse knowledge graph completion. In The
Web Conference, 2023.

Teru, K. K., Denis, E. G., and William, H. L. Inductive rela-
tion prediction by subgraph reasoning. In Proceedings of
the 37th International Conference on Machine Learning,
2020.

Toutanova, K. and Chen, D. Observed versus latent fea-
tures for knowledge base and text inference. In The
3rd Workshop on Continuous Vector Space Models and
their Compositionality. Association for Computational
Linguistics, 2015.

Tran, H.-N. and Takashu, A. Meim: Multi-partition embed-
ding interaction beyond block term format for efficient
and expressive link prediction. In International Joint
Conference on Artificial Intelligence, 2022.

10

Knowledge Graphs Can be Learned with Just Intersection Features

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and
Bouchard, G. Complex embeddings for simple link pre-
diction. International Conference on Machine Learning,
2016.

Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P.
Composition-based multi-relational graph convolutional
networks. In The Eighth International Conference on
Learning Representations, 2020.

Wang, Q., Mao, Z., Wang, B., and Guo, L. Knowledge graph
embedding: A survey of approaches and applications.
IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, 2017.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge
graph embedding by translating on hyperplanes. AAAI
Conference on Artificial Intelligence, 28, 2014.

Wang, Z., Lv, Q., Lan, X., and Zhang, Y. Cross-lingual
knowledge graph alignment via graph convolutional net-
works. In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing, pp. 349–357,
2018.

Wang, Z., Xu, Z., Wu, X., Shrivastava, A., and Ng, T. E.
Dragonn: Distributed randomized approximate gradients
of neural networks. In International Conference on Ma-
chine Learning, pp. 23274–23291. PMLR, 2022.

Wang, Z., Jia, Z., Zheng, S., Zhang, Z., Fu, X., Ng, T. E.,
and Wang, Y. Gemini: Fast failure recovery in distributed
training with in-memory checkpoints. In Proceedings of
the 29th Symposium on Operating Systems Principles, pp.
364–381, 2023a.

Wang, Z., Lin, H., Zhu, Y., and Ng, T. E. Hi-speed dnn
training with espresso: Unleashing the full potential of
gradient compression with near-optimal usage strategies.
In Proceedings of the Eighteenth European Conference
on Computer Systems, pp. 867–882, 2023b.

Wang, Z., Wu, X., Xu, Z., and Ng, T. Cupcake: A com-
pression scheduler for scalable communication-efficient
distributed training. Proceedings of Machine Learning
and Systems, 5, 2023c.

Wang, Z., Xu, Z., Shrivastava, A., and Ng, T. Zen: Near-
optimal sparse tensor synchronization for distributed dnn
training. arXiv preprint arXiv:2309.13254, 2023d.

Xie, Z., Zhou, G., Liu, J., and Huang, X. Reinceptione:
relation-aware inception network with joint local-global
structural information for knowledge graph embedding.
In Proceedings of the 58th annual meeting of the associa-
tion for computational linguistics, pp. 5929–5939, 2020.

Xiong, W., Hoang, T., and Wang, W. Y. Deeppath: A
reinforcement learning method for knowledge graph rea-
soning. In Conference on Empirical Methods in Natural
Language Processing, 2017.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. International Conference on Learning
Representations, 2015.

Yang, J., Shi, Y., Tong, X., Wang, R., Chen, T., and Ying,
X. Improving knowledge graph embedding using affine
transformations of entities corresponding to each relation.
In EMNLP, 2021.

Zhang, D., Li, M., Jia, Y., Wang, Y., and Cheng, X. Efficient
parallel translating embedding for knowledge graphs. In
Proceedings of the International Conference on Web In-
telligence, pp. 460–468, 2017.

Zhang, D., Yuan, Z., Liu, H., Lin, X., and Xiong, H. Learn-
ing to walk with dual agents for knowledge graph rea-
soning. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, 2022a.

Zhang, Y. and Yao, Q. Knowledge graph reasoning with
relational digraph. In The Web Conference, 2022.

Zhang, Y., Zhou, Z., Yao, Q., Chu, X., and Han, B. Adaprop:
Learning adaptive propagation for graph neural network
based knowledge graph reasoning. In Conference on
Knowledge Discovery and Data Mining, 2022b.

Zheng, S., Wang, W., Qu, J., Yin, H., Chen, W., and Zhao,
L. Mmkgr: Multi-hop multi-modal knowledge graph
reasoning. In 2023 IEEE 39th International Conference
on Data Engineering, pp. 96–109. IEEE, 2023.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. In Advances in Neural Information
Processing Systems, 2020a.

Zhou, K., Song, Q., Huang, X., Zha, D., Zou, N., and Hu, X.
Multi-channel graph neural networks. In International
Joint Conferences on Artificial Intelligence, 2020b.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021.

Zhou, K., Choi, S.-H., Liu, Z., Liu, N., Yang, F., Chen, R.,
Li, L., and Hu, X. Adaptive label smoothing to regularize
large-scale graph training. In Proceedings of the 2023
SIAM International Conference on Data Mining (SDM),
pp. 55–63. SIAM, 2023.

11

Knowledge Graphs Can be Learned with Just Intersection Features

Zhu, Z., Yuan, X., Galkin, M., Xhonneux, S., Zhang, M.,
Gazeau, M., and Tang, J. A*net: A scalable path-based
reasoning approach for knowledge graphs. In Advances
in Neural Information Processing Systems, 2023.

12

Knowledge Graphs Can be Learned with Just Intersection Features

A. More Experiments
A.1. More Settings

We provide the statistics of the five datasets in Table 4.

Table 4. The statistics of knowledge graph datasets.
YAGO3-10 NELL-995 WN18RR FB15K237 FB15K

Train 1,079,040 149,678 86,835 272,115 483,142
Valid 5,000 543 3,034 17,535 50,000
Test 5,000 3,992 3,134 20,466 59,071

Entities 123,182 75,492 40,943 14,541 14,951
Relations 37 200 11 237 1345

For hyperparameters used in our approach, we refer the readers to our implementation https://github.com/
Escanord/Intersection_Features for details.

A.2. Experiments on Smaller Scale More Homogeneous Knowledge Graph Datasets

We present the results on datasets with more homogeneous and smaller-scale KGs in Table 5 in the supplementary materials.
Our approach consistently demonstrates superior performance when compared to embedding-based models across the
majority of benchmark datasets. Additionally, our results align with the top-performing GNN-based methods in five specific
metrics, showing only marginal differences.

A.3. Efficiency of Intersection Features

We report the total training time of all models on each dataset that is reproduced by us in Table 6. Remarkably, our method,
leveraging straightforward yet highly effective intersection features, attains the training time on par with embedding-based
methods renowned for their simplicity and speed. In fact, it outperforms all GNN baselines, and our method’s efficiency
remains closely comparable to the fastest training method, i.e. TransE. Notably, the training time for our method on all 5
datasets is consistently less than 3 hour, while pre-computing all MinHash & HyperLogLog values to estimate intersection
features of all links takes less than 0.25 seconds. Note that there is a possibility that both our implementation and baselines
can be accelerated. In the future, we would like to further accelerate the learning process with novel distributed learning
techniques (Wang et al., 2023a;c; 2022; 2023b;d).

A.4. Ablation Study on k

In this section, we perform a parameter study on the proposed approach. In Table 7, we vary the k in the k-hop intersection
features in Section 4.4 and test the DNN model’s performance using the NELL-995 dataset. We observe that intersection
features built upon just 1-hop neighborhoods may not be effective enough to achieve the best performance in link prediction.
However, the intersection features with k being 2 and 3 are close to each other. The results across all metrics indicate
that our approach demonstrates a degree of robustness to different k parameters. Consequently, k = 2 may be preferred,
particularly when resources are limited, or when we want to achieve more efficient training and inference times.

A.5. Ablation Study on Hashing Hyperparameters

In this section, we perform a parameter study to examine the effectiveness and robustness of our proposed hashing method’s
hyperparameters, i.e. MinHash and HyperLogLog. In Table 8 and Table 9, we vary the number of MinHash functions
and HyperLogLog’s p respectively. Per each variation, we test the DNN model’s performance using the NELL-995 and
WN18RR datasets. The results across all metrics indicate that our approach demonstrates a degree of robustness to different
hash parameters. Thus, we recommend that 128 MinHash functions and p = 8 are enough for modeling KG with our
proposed method.

A.6. A Study on Semi-Inductive Knowledge Graph Completion Setting

In this section, we provide a simple yet intuitive answer to explain the effectiveness of our proposed method. To start with,
we introduce a semi-inductive setting for the KG completion task. We borrow the design of (Teru et al., 2020), where we

13

https://github.com/Escanord/Intersection_Features
https://github.com/Escanord/Intersection_Features

Knowledge Graphs Can be Learned with Just Intersection Features

Table 5. Experimental results of link prediction on smaller scale, more homogeneous knowledge graph datasets

Method Source FB15K237 FB15K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Intersection Features (Ours) 0.625 0.617 0.620 0.644 0.699 0.689 0.705 0.715

TransE
(Bordes et al., 2013)

Self-Replicated 0.253 0.132 0.310 0.487 0.521 0.390 0.610 0.744
(Bordes et al., 2013) 0.471
(Zhang et al., 2022a) 0.361 0.248 0.401 0.450
(Li et al., 2022a) 0.330 0.231 0.369 0.528

TransH
(Wang et al., 2014)

Self-Replicated 0.284 0.183 0.326 0.483 0.525 0.387 0.626 0.753
(Wang et al., 2014) 0.644

TransR
(Lin et al., 2015)

Self-Replicated 0.253 0.132 0.310 0.487 0.521 0.390 0.610 0.744
(Lin et al., 2015) 0.702

DistMult
(Yang et al., 2015)

(Yang et al., 2015) 0.360 0.585
(Tran & Takashu, 2022) 0.313 0.224 0.490
(Yang et al., 2021) 0.370 0.275 0.417 0.568

ComplEx-N3
(Lacroix et al., 2018)

Self-Replicated 0.354 0.261 0.391 0.542 0.835 0.793 0.863 0.907
(Lacroix et al., 2018) 0.860 0.910
(Yang et al., 2021) 0.365 0.270 0.403 0.558

ComplEx
(Trouillon et al., 2016)

Self-Replicated 0.280 0.193 0.310 0.458 0.618 0.495 0.708 0.818
(Trouillon et al., 2016) 0.692 0.599 0.759 0.840
(Das et al., 2018) 0.394 0.303 0.434 0.572

RotatE
(Sun et al., 2019)

Self-Replicated 0.322 0.221 0.363 0.523 0.724 0.652 0.769 0.848
(Sun et al., 2019) 0.338 0.241 0.375 0.533 0.797 0.746 0.830 0.884

KBGAT
(Nathani et al., 2019)

Self-Replicated 0.526 0.449 0.565 0.665 0.800 0.699 0.892 0.935
(Nathani et al., 2019) 0.518 0.460 0.540 0.626

CompGCN
(Vashishth et al., 2020)

Self-Replicated 0.394 0.129 0.213 0.482 0.694 0.524 0.687 0.844
(Vashishth et al., 2020) 0.355 0.264 0.390 0.535

SE-GNN
(Li et al., 2022a)

Self-Replicated 0.365 0.271 0.401 0.554 0.573 0.465 0.640 0.761
(Li et al., 2022a) 0.365 0.271 0.399 0.549

KRACL
(Tan et al., 2023)

Self-Replicated 0.358 0.264 0.394 0.545 0.602 0.498 0.666 0.784
(Tan et al., 2023) 0.360 0.266 0.395 0.548

AdaProp (Zhang et al., 2022b) 0.417 0.331 0.585

MEIM (Tran & Takashu, 2022) 0.369 0.274 0.406 0.557

HousE (Li et al., 2022b) 0.361 0.266 0.399 0.551 0.811 0.759 0.847 0.898

NCRL (Cheng et al., 2023) 0.30 0.209 0.473

A*Net (Zhu et al., 2023) 0.411 0.321 0.453 0.586

split a dataset into train/val/test set, where there are three graphs disjoint in terms of triples. Methods learn on train graph,
conduct hyperparameter tuning on the validation set, and evaluate on the test set. We would like to note that all entity nodes
within the test set are also included in the train set (though test relation edges are invisible during training). During the
evaluation of the test set, we remove one triple from the full test set, and only feed the test set, without the removed triple, a
triplet as the input. We then conduct the standard (s, r, ?) corruption query.

We report the performance of our method under the introduced semi-inductive setting vs. the typical transductive setting of
the KG completion task in Table 10. When applying our method in the semi-inductive setting, we utilize the test graph
as input, and our method tends to perform better when the (# test triples) / (# test relations) ratio in the Table 4 is large;
as a larger such ratio suggests there will be more intersection features to utilize. For example, our method still performs
pretty well on YAGO3-10, NELL-995, and WN18RR with large (# test triples) / (# test relations) ratios, but not so well on
FB15K237 and FB15K where such ratios are relatively smaller.

14

Knowledge Graphs Can be Learned with Just Intersection Features

Table 6. The training time of methods (hours : minutes)
Method YAGO3-10 NELL-995 WN18RR FB15K237 FB15K

Intersection Features 02:31 00:54 00:32 02:17 01:26

Knowledge
Graph

Embedding

TransE 04:31 00:13 01:15 01:59 02:03

TransH 01:27 00:17 00:11 03:52 00:40

TransR 17:38 03:49 02:01 07:11 12:11

DistMult 05:20 01:56 00:43 02:48 03:24

ComplEx 03:54 01:42 00:43 01:13 04:22

RotatE 37:23 04:17 02:26 05:36 10:17

GNN
Baselines

KBGAT 09:56 01:07 00:39 01:58 03:34

CompGCN 06:54 02:29 02:42 00:55 02:49

SE-GNN 54:11 16:17 17:19 12:14 46:40

KRACL 136:23 6:23 3:03 24:10 108:18

Table 7. Intersection Features performance with different k parameter shown in Section 4.4.
NELL-995

MRR H@1 H@3 H@10

3-hop Intersection Features 0.837 0.835 0.837 0.840

2-hop Intersection Features 0.834 0.827 0.842 0.846

1-hop Intersection Features 0.789 0.776 0.791 0.813

Table 8. Intersection Features performance with different numbers of MinHash functions shown in Section 4.2.

functions NELL-995 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

32 0.767 0.756 0.766 0.767 0.518 0.516 0.517 0.523
64 0.783 0.769 0.795 0.797 0.343 0.341 0.344 0.347
128 0.789 0.776 0.791 0.813 0.781 0.724 0.891 0.899
256 0.644 0.641 0.643 0.650 0.580 0.579 0.581 0.582

Table 9. Intersection Features performance with different p parameter shown in Section 4.3.

p
NELL-995 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

4 0.677 0.668 0.672 0.676 0.500 0.492 0.500 0.520
6 0.719 0.718 0.717 0.719 0.542 0.533 0.535 0.568
8 0.789 0.776 0.791 0.813 0.781 0.724 0.891 0.899
10 0.680 0.660 0.684 0.696 0.599 0.595 0.600 0.610

Subsequently, when we apply our method under the typical transductive setting, where we can utilize the full train graph as
input and only query a triple from the test graph, the (# test triples) / (# test relations) no longer matter, but (# train triples) /
(# test relations) do. However, in such case, even the smallest (# train triples) / (# test relations) (502.75 for FB15K) is much
larger than the largest (# test triples) / (# test relations) (332.67 for NELL-995), so our method’s performance is significantly
boosted. It can be observed that under the typical transductive setting, our method achieves SOTA on FK15K237.

We further note our method is competitive but not good enough on FB15K, this is likely because FB15K’s test set includes
many inverse relations of its train set, where some methods specifically model upon this observation to score on such
inverse relations. Our proposed method does not leverage this leakage and, therefore, might lack the last few points to be
competitive on FB15K.

15

Knowledge Graphs Can be Learned with Just Intersection Features

Table 10. Intersection Features performance under transductive setting vs. semi-inductive setting.
Setting Dataset MRR H@1 H@3 H@10

Transductive

WN18RR 0.781 0.724 0.891 0.899
NELL-995 0.789 0.776 0.791 0.813
YAGO3-10 0.617 0.590 0.665 0.674
FB15K237 0.625 0.617 0.620 0.644
FB15K 0.699 0.689 0.705 0.715

Semi-Inductive

WN18RR 0.886 0.870 0.874 0.966
NELL-995 0.738 0.490 0.984 0.985
YAGO3-10 0.646 0.482 0.960 0.969
FB15K237 0.332 0.155 0.514 0.726
FB15K 0.804 0.803 0.804 0.893

16

