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Abstract
The number of agents can be an effective curricu-
lum variable for controlling the difficulty of multi-
agent reinforcement learning (MARL) tasks. Ex-
isting work typically uses manually defined cur-
ricula such as linear schemes. We identify two po-
tential flaws while applying existing reward-based
automatic curriculum learning methods in MARL:
(1) The expected episode return used to measure
task difficulty has high variance; (2) Credit assign-
ment difficulty can be exacerbated in tasks where
increasing the number of agents yields higher re-
turns which is common in many MARL tasks. To
address these issues, we propose to control the
curriculum by using a TD-error based learning
progress measure and by letting the curriculum
proceed from an initial context distribution to the
final task specific one. Since our approach main-
tains a distribution over the number of agents and
measures learning progress rather than absolute
performance, which often increases with the num-
ber of agents, we alleviate problem (2). Moreover,
the learning progress measure naturally alleviates
problem (1) by aggregating returns. In three chal-
lenging sparse-reward MARL benchmarks, our
approach outperforms state-of-the-art baselines.

1. Introduction
Curriculum reinforcement learning (CRL) (Portelas et al.,
2020b) consists of a teacher generating a sequence of tasks
of varying difficulty to train agents in order to bypass the
difficulty of exploration in target tasks with sparse rewards.
In single-agent CRL, the teacher usually controls the initial
states or environmental parameters to change the task diffi-
culty. When considering curriculum learning in multi-agent
reinforcement learning (MARL) settings (Li et al., 2025;
Zhao et al., 2024; Li et al., 2024), it is natural to employ

1Department of Electrical Engineering and Automation, Aalto
University, Espoo, Finland. Correspondence to: Wenshuai Zhao
<wenshuai.zhao@aalto.fi>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the number of agents as a potential curriculum in addition
to the environmental parameters in single-agent CRL, as
the number of agents is critical for the difficulty of MARL
tasks. However, prior work is limited to controlling the
number of agents manually or heuristically, for example,
FewToMore (Wang et al., 2020) and EPC (Long et al., 2020)
simply train the agents starting from tasks with fewer agents
and gradually move to the target task in a predefined way.
Variational automatic curriculum learning (VACL) (Chen
et al., 2021) proposes a general automatic CRL method that
can control both the initial states and the number of agents.
However, the number of agents is still manually set in a
linear scheme.

Existing works that assume a curriculum proceeding from
fewer to more agents (Wang et al., 2020; Long et al., 2020)
are typically based on the intuition that coordinating a larger
number of agents is inherently more challenging than coor-
dinating fewer agents to complete a task (Lowe et al., 2017;
Rashid et al., 2018; Chao et al., 2021). However, this as-
sumption does not always hold. For example, in the MPE
Simple-Spread (Lowe et al., 2017) task shown in Figure 1,
several agents (blue circles) try to cover as many landmarks
(red circles) as possible. Intuitively, if the number of agents
increases sufficiently, the most naive policy such as random
moving can work well and achieve high episode returns. On
the contrary, with fewer agents, the agents have to learn
a complicated cooperation strategy to accomplish the task.
Moreover, while an increased number of agents can lead to
higher returns, this may also exacerbate credit assignment
challenges in policy learning. We argue in this paper that
more sophisticated control of the number of agents is needed
in multi-agent curriculum reinforcement learning.

Therefore, we first directly apply the state-of-the-art single-
agent automatic curriculum reinforcement learning (ACRL)
method, self-paced reinforcement learning (SPRL) (Klink
et al., 2021), to adaptively control the number of agents. We
name this method as SPRLM. SPRLM explores a range of
tasks with different contexts (Schaul et al., 2015a) and seeks
easier ones with higher performance while making progress
towards the target task, hence generating a reasonable task
sequence as a curriculum. In our experiments, SPRLM
outperforms heuristic baselines by successfully generating
effective task distributions without being restricted to pre-
defined task sequences. However, current ACRL methods,
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(a) 8 agents (b) 20 agents

Figure 1. In Simple-Spread task, agents (blue circles) need to cover
as many landmarks (red circles) as possible. With the number of
landmarks fixed, 20 agents shown on the right can easily complete
the task and achieve higher returns compared to 8 agents on the
left. However, a higher number of agents exacerbates the credit
assignment problem in policy learning.

including SPRL, typically evaluate task difficulty based on
expected episode returns, which introduces two issues in
multi-agent settings. First, the episode returns of a task
c, G(c) =

∑T
t=0 γ

trt, are usually sparse and can be only
evaluated once per episode, leading to high variance in the
estimated task difficulty (Sutton & Barto, 2018). Second,
a curriculum focused on maximizing rewards may result
in tasks that are ineffective for policy improvement. For
instance, in the extreme case of the Simple-Spread task with
an infinite number of agents, the initial random policy may
suffice to be optimal, resulting in a zero policy gradient. In
many Dec-POMDP (Amato et al., 2013) tasks where agents
share the same reward, increasing the number of agents
can lead to higher returns while also complicating credit
assignment.

Inspired by the above findings, we further introduce self-
paced multi-agent reinforcement learning (SPMARL). SP-
MARL tackles the two issues of high variance returns and
complex credit assignment with many agents by optimiz-
ing a novel objective based on learning progress instead of
expected episode returns. We use the expected temporal
difference (TD) error to measure learning progress, that is,
the value loss in multi-agent reinforcement learning. This
new approach leverages the advantageous properties of the
value function V π(s). As V π(s) reflects the performance of
the current policy, the associated value loss w.r.t. different
tasks naturally indicates the extent of policy changes on
these tasks, given that converged value estimates typically
imply no further policy updates. Moreover, the value loss is
evaluated across all state transitions, significantly reducing
estimation variance compared to episode returns.

We evaluate our methods on three benchmarks including
MPE Simple-Spread (Lowe et al., 2017), the XOR matrix
game (Fu et al., 2022), and four SMAC-v2 Protoss tasks (El-
lis et al., 2022). Each benchmark is modified to introduce
severe sparse rewards, posing significant exploration chal-
lenges. The results show that the number of agents can

serve as an effective curriculum variable to facilitate explo-
ration. SPRLM outperforms heuristic baselines on most
tasks, while SPMARL consistently surpasses all baselines,
including other ACRL methods applied to MARL.

Our contributions are threefold: (1) SPRLM extends single-
agent SPRL to a multi-agent context and shows that a princi-
pled curriculum based on the number of agents outperforms
manually designed baselines; (2) We identify two flaws in
the straightforward extension and propose SPMARL to ad-
dress these issues; (3) Our experiments on three distinct
benchmarks demonstrate that SPMARL outperforms base-
line methods1.

2. Related Work
In this section, we discuss general automatic curriculum gen-
eration methods and existing works that apply curriculum
learning to multi-agent tasks, especially those employing
the number of agents as a curriculum variable in order to
scale up the current MARL methods.

Automatic Curriculum Reinforcement Learning: Cur-
riculum learning has been extensively studied in the single-
agent domain and sometimes in the context of unsupervised
environment design (UED) (Teoh et al., 2024). A set of auto-
matic curriculum generation methods are proposed (Portelas
et al., 2020b) to control initial states (Florensa et al., 2017),
goal positions (Florensa et al., 2018) or environment dy-
namics (Matiisen et al., 2019; Klink et al., 2021). Common
objectives in the literature aim to optimize controllable con-
texts based on criteria such as reward (Colas et al., 2019;
Klink et al., 2021) and difficulty (Florensa et al., 2018).
Reward-based methods usually generate tasks with high re-
turns, while the latter seeks tasks of intermediate difficulty
rather than the easiest tasks. Several studies (Florensa et al.,
2017; Mysore et al., 2019; Portelas et al., 2020a) employ
the concept of learning progress to maximize training ef-
ficiency, similar to our approach. However, we note that
these methods still measure the learning progress based
on the sparse episode return increases, while our method
estimates learning progress based on the critic loss from
the underlying MARL updates which is much more stable.
More importantly, the extensive literature on single-agent
ACRL largely overlooks the credit assignment problem that
emerges when using the number of agents as a curriculum
variable in multi-agent settings. In the following, we sim-
ply refer to these ACRL methods as reward-based ACRL
methods and build our work primarily on one representative
ACRL method, SPRL (Klink et al., 2021). We argue that
the improvements we propose in SPMARL can also be ap-
plied to other reward-based ACRL methods in the context
of MARL tasks.

1Source Code: https://github.com/wenshuaizhao/spmarl
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Multi-Agent Curriculum Reinforcement Learning: Com-
pared to extensive study in the single-agent realm, only a
few works have explored multi-agent curriculum reinforce-
ment learning. Dynamic Multi-Agent Curriculum Learning
(DyMA-CL) (Wang et al., 2020) solves large-scale problems
by learning from a small-size multi-agent scenario and pro-
gressing to the target number of agents, where the number of
agents is manually chosen. EPC (Long et al., 2020) expands
the number of agents in the order of N → 2N , training
multiple parallel agents at each stage and selecting the best
ones for the next stage through a crossover process. Varia-
tional Automatic Curriculum Learning (VACL) (Chen et al.,
2021) presents a principal method for curriculum learning,
framing the optimization of a curriculum distribution as a
variational inference problem. Although VACL provides
a general framework for controlling environment parame-
ters, it adheres to a predetermined sequence k′ = k + 1 or
k′ = 2k for adjusting the number of agents. Consequently,
we categorize these curriculum MARL approaches as a Lin-
ear baseline, incorporating both increasing (from fewer to
more agents) and decreasing (from more to fewer agents)
curricula in our experiments. Recently, (Wu et al., 2024) in-
troduced a method for accounting for both performance and
similarity to target tasks. However, the similarity is assessed
using state visitation distributions, which are challenging
to apply directly to tasks with differing state spaces as the
number of agents varies.

3. Problem Formulation
In this section, we introduce the multi-agent reinforcement
learning framework Dec-POMDP and the curriculum learn-
ing framework contextual reinforcement learning.

3.1. Dec-POMDP

We study the decentralized partially observable Markov
decision process (Dec-POMDP) problem (Amato
et al., 2013), which can be formulated as a tuple:
⟨S, {Oi}i∈N , {Ai}i∈N , r,P, γ⟩, where N = {1, · · · , n}
denotes a set of agents. At time step t of, each agent
i observes local observation oi from the full state st
in the state space S of the environment and performs
an action ait in the action space Ai based on its policy
πi(·|hi), where hi encodes the history information of
partial observations and actions. The joint policy consists
of all the individual policies π(·|st) = π1 × · · · × πn.
The environment takes the joint action of all agents
at = {a1t , · · · , ant }, changes its state following the
dynamics function P : S × A× S 7→ [0, 1] and generates
a common reward r : S × A 7→ R for all the agents.
γ ∈ [0, 1) is a reward discount factor. The agents learn
their individual policies and maximize the expected return:
π∗ = argmaxπ Es,a∼π,P [

∑∞
t=0 γ

tr(st,at)], where at is

the joint action at time step t sampled from decentralized
policies πi(·|ht).

3.2. Contextual Reinforcement Learning

Different from a typical Markov decision process (MDP)
with fixed transition properties M = ⟨S,A,P, r,P0⟩,
contextual reinforcement learning (Neumann et al., 2011;
Schaul et al., 2015a) parameterizes MDPs by a contextual
parameter c ∈ C ⊆ Rm which can be certain environ-
mental parameters, goals or initial states, while assuming
a shared state-action space over these MDPs, M(c) =
⟨S,A,Pc, rc,P0,c⟩. The objective of contextual RL is de-
fined as: maxθ J(θ, µ) = maxθ Eµ(c),P0,c(s)[Vθ(s, c)],
where we have the target context distribution c ∼ µ(c) and
initial state distribution s ∼ P0,c(s). The value function
Vθ(s, c) denotes the expected discounted return in states s
and under the context c following the conditioned policy
π(a|s, c, θ). Generally, contextual RL aims to generalize
behavior over different tasks by exploiting the continuation
between MDPs. In curriculum learning, we usually set the
target context distribution µ(c) as a Dirac delta function,
since we are interested in solving one specific task with
fixed context c while exploiting other tasks from different
distributions ν(c) as curriculum.

4. SPRL for Multi-Agent Curriculum
SPRLM directly applies self-paced reinforcement learning
(SPRL) (Klink et al., 2021) to control the number of agents
as a curriculum to address hard exploration problems in
sparse-reward tasks.

Similar to general homotopy optimization methods (Allgo-
wer & Georg, 2012), CRL works by assuming the contin-
uation between tasks with varying contexts, i.e. the policy
learned from one task can be a good initialization for an-
other task. In tasks where directly learning from the target
context µ(c) is difficult, i.e. the maximization of the follow-
ing objective is hard due to sparse reward under the target
contexts,

max
θ

Eµ(c)[J(θ, c)] = max
θ

Eµ(c),P0,c(s)[Vθ(s, c)], (1)

SPRL solves the hard exploration problem by first train-
ing the agent on easier tasks in contextual MDPs and then
progressing to the target task. Formally, SPRL can be for-
mulated as a constrained optimization problem

min
ν

DKL(p(c|ν) ∥ µ(c))

s.t. Ep(c|ν)[J(θ, c)] ≥ VLB,

DKL(p(c|νk) ∥ p(c|νk+1)) ≤ ϵ,

(2)

where µ(c) is the target context distribution, usually set as a
Dirac delta distribution. p(c|ν) denotes the context distribu-
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tion parameterized by ν such as the mean and variance of a
Gaussian distribution. νk+1 represents the context distribu-
tion to be updated. This distribution is supposed to generate
easier tasks compared to the target task. We manually set
a performance threshold VLB in order to find task distribu-
tions with satisfying performance. In the first constraint
in Equation 2, we maximize Ep(c|ν)[J(θ, c)] by estimating
the expected values over the new context distribution via
importance sampling,

max
νk+1

1

M

M∑
i=1

p(ci|νk+1)

p(ci|νk)
Vθ(si,0, ci), (3)

in which M is the number of rollouts we collect. Vθ(si,0, ci)
represents the initial state value under current context ci and
indicates the difficulty of current task with ci. Usually,
Vθ(si,0, ci) is estimated by the sparse episode returns.

Prob.

Agent
Num.

Stage 2

Minimize 

s.t. ,

Prob.

Stage 1

Return

Maximize 

s.t.  

Teacher

Agent Agent 

Environment

Student

data

Figure 2. SPRL involves a two-stage optimization.

In practice, the constrained optimization problem in
Equation 2 can be solved in a two-stage paradigm as
shown in Figure 2. At first, when the expected per-
formance Ep(c|ν)[J(θ, c)] is lower than VLB, we maxi-
mize Ep(c|ν)[J(θ, c)] under the constraint DKL(p(c|νk) ∥
p(c|νk+1)) ≤ ϵ and obtain the new context distribution
p(c|νk+1), which can be done by existing trust-region opti-
mizer (Virtanen et al., 2020). Secondly, once the perfor-
mance achieves the threshold VLB, we start to progress
to the target context distribution µ(c) by minimizing
DKL(p(c|ν) ∥ µ(c)) while still constrained by the KL diver-
gence threshold ϵ. Note that in this stage, SPRL maintains
the performance always above VLB by setting the context
distribution unchanged until the performance is higher than
the threshold again. In a multi-agent setting, SPRLM adap-
tively controls the number of agents as the context variable
c to generate curriculum.

Algorithm 1 Self-Paced Multi-Agent Reinforcement Learn-
ing (SPMARL)

1: Input: Initial context with number of agents distribu-
tion ν0, initial policy parameters θ0, target context with
number of agents distribution µ(c), expected perfor-
mance threshold VLB, number of iterations K, rollouts
M for each policy update, relative entropy bound ϵ

2: for k = 1 to K do
3: Policy Learning:
4: for i = 1 to M do
5: Sample context, i.e., the number of agents, ci ∼

p(c|νk)
6: Rollout trajectory τi ∼ p(ci, θk)
7: end for
8: Obtain θk+1 by the chosen MARL method and col-

lected trajectories Dk = {(ci, τi) | i ∈ [1,M ]}
9: Estimate Vθk+1

(si0, c
i) for context ci, i ∈ [1,M ]

10: Context Distribution Update:
11: Stage 1: Optimize the learning progress
12: if 1

M

∑M
i=1 Vθk+1

(si0, c
i) < VLB then

13: Obtain νk+1 from Equation 5 under the KL diver-
gence constraint

14: Stage 2: Progress to the target
15: else
16: Obtain νk+1 from Equation 2
17: end if
18: end for

5. Self-Paced MARL
While SPRLM is supposed to be able to successfully find
easier tasks with high performance and eventually miti-
gate the hard exploration problem due to sparse reward, the
reward-based objective in SPRLM could lead to slow learn-
ing progress and unstable estimation. We improve SPRLM
by proposing self-paced MARL (SPMARL) to optimize a
new objective measuring the learning progress (LP) instead
of directly optimizing task performance.

The primary requirement for the proposed concept of learn-
ing progress is that it should be an easily estimable measure
of policy improvement. To this end, we draw inspiration
from the advantageous properties of value function V π(s),
which estimates the expected return of current policy πθ.
Specifically, value loss inherently measures the extent of pol-
icy change over a particular task and can be approximated
by the expected temporal difference (TD) error across all
state transitions. Therefore, we posit that value loss can
serve as an effective instantiation of learning progress, ad-
dressing the two key issues identified in reward-based CRL
methods. In the SPMARL framework, the value loss is com-
puted following the underlying MARL algorithm MAPPO
(see appendix) defined as:
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LP(c) =
1

2
Es,a∼π(a|s,c)[∥R(s,a)− V (s)∥2], (4)

where R(s,a) is the discounted return since state action
pair (s,a). Thanks to the CTDE framework allowing us
to access the full state information during training, the es-
timation is sufficiently accurate. In SPMARL, we follow
the two-stage optimization scheme in SPRL, but replace the
reward objective of Equation 3 in the first stage with our
new learning progress measurement

max
νk+1

1

M

M∑
i=1

p(ci|νk+1)

p(ci|νk)
LPθ(ci). (5)

We keep the second stage optimization the same as SPRL,
i.e. keeping the same performance threshold VLB. This is
reasonable because even though we do not directly opti-
mize returns over different contexts, the optimized learning
progress objective will implicitly result in higher perfor-
mance. As validated in our experiments, the curriculum
generated by SPMARL even triggers a faster performance
increase than SPRL. The detailed SPMARL is shown in
Algorithm 1.

Intuition on Learning Progress: The idea of using TD
error as the objective to generate tasks in SPMARL is
analogous to the concept of Prioritized Experience Re-
play (PER) (Schaul et al., 2015b) in Deep Q-Networks
(DQN) (Mnih et al., 2015), where samples with higher TD
error are prioritized. However, unlike PER, SPMARL esti-
mates the averaged TD error across different contexts and
selects tasks with higher TD error, which are expected to
enhance the policy learning progress.

6. Experiments
We evaluate our method on three challenging benchmarks
with severe sparse rewards, including (1) MPE Simple-
Spread task (Lowe et al., 2017) with 8 agents, (2) XOR
game (Fu et al., 2022) with 20 agents, and (3) four SMAC-
v2 Protoss tasks (Ellis et al., 2022). The specified number of
agents pertains to the target task, while the curriculum learn-
ing methods generate a set of tasks with varying numbers
of agents to train the policy for optimal performance on the
target tasks. The hyper-parameters used in our experiments
are listed in the appendix. We compare SPMARL with both
SPRLM and several baselines:

• SPRLM: Our first algorithm, which directly applies
SPRL (Klink et al., 2020) to MARL settings to adap-
tively control the number of agents. SPRLM also rep-
resents a set of general automatic CRL methods based
on rewards (Portelas et al., 2020b) that can be applied
to multi-agent settings.

• Linear: The linear scheme can be seen as an abstract of
existing multi-agent curriculum learning works (Wang
et al., 2020; Long et al., 2020; Chen et al., 2021). In
Simple-Spread and XOR matrix game, we set a linearly
increasing curriculum while in SMAC-v2 Protoss 5 vs.
5 task we use a linearly decreasing scheme in order to
diversify the baselines.

• ALPGMM: Absolute learning progress with Gaussian
mixture models (ALPGMM) (Portelas et al., 2020a)
uses Guassian mixture models to sample tasks with
maximum absolute learning progress. However, the
estimation of learning progress in ALPGMM is still
based on differences in rewards, which may be prone to
the same high variance issues that affect other reward-
based curriculum learning methods.

• VACL: Variational Automatic Curriculum Learning
(VACL) utilizes Stein Variational Gradient Descent
(SVGD) to update the task distribution, prioritizing
tasks associated with higher returns, akin to SPRL.
However, unlike SPRL, VACL does not enforce strict
convergence to the target task distribution, which can
potentially hinder performance on the target tasks.

• W/O teacher: This is the default MARL algorithm
MAPPO trained directly on the target task without any
curriculum. In our experiments, due to the challenging
sparse reward settings across all benchmarks, W/O
teacher consistently fails on all tasks, yielding zero
rewards. Consequently, we exclude its performance
from the figures for clarity.

Note that ALPGMM was originally designed for single-
agent tasks to optimize environmental parameters. In this
work, we adapt it to dynamically control the number of
agents. Similarly, while VACL employs a linear scheme for
adjusting the number of agents in its original formulation,
we extend its variational inference framework to enable
adaptive agent control.

0 1

1 0

A B

A
B

Player 2

Pl
ay

er
 1

(a) XOR game. (b) Protoss 5 vs. 5.

Figure 3. (a): The payoff matrix of 2-player XOR game. (b):
Scenario from Protoss 5 vs. 5 in SMACv2 showing agents battling
the built-in AI.
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Figure 4. Comparison on the Simple-Spread task, where the target is set with 8 agents and 8 landmarks. The plots are averaged over 5
random seeds and the shadow area denotes the 95% confidence intervals. The left figure shows the evaluation returns on the target task
with 8 agents. Note that the x-axis represents the samples collected from the environment, which is proportional to the number of agents.
The middle figure presents the generated curriculum from different methods, where SPMARL and SPRLM first generate more agents
and then converge to the target 8 agents while ALPGMM and VACL always generates more agents. The right figure shows the episode
returns on the training tasks. The ALPGMM algorithm achieves the highest because it samples tasks with more than 14 agents.
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Figure 5. Comparison on the 20-player XOR game where each agent needs to output different actions to succeed. While the linear
curriculum from few to more (linear) and alpgmm successfully achieve optima eventually, SPRLM and SPMARL demonstrate a faster
convergence.

6.1. MPE Simple-Spread

As shown in Figure 1, Simple-Spread involves several agents
trying to cover all the landmarks as soon as possible. The
original Simple-Spread task is designed with a dense reward
function denoted by the negation of summed distances to
each landmark. However, we test our method on a modi-
fied version featuring sparse rewards which becomes chal-
lenging. In this modified version, agents can only receive
rewards when at least 4 landmarks are covered and the re-
ward is the number of landmarks successfully covered at
each timestep. We set the target task with 8 agents and 8
landmarks.

Analysis of the evaluation performance: The experimen-
tal results are presented in Figure 4, demonstrating that the
number of agents serves as an effective curriculum variable
for addressing the sparse reward problem. In the left figure,
which depicts episode returns evaluated on the target task
during training, both SPMARL and SPRLM outperform

other baselines. SPMARL further surpasses SPRLM by
achieving faster convergence, attributed to its more rapidly
updated context distribution. ALPGMM generates a larger
number of agents during training, leading to the highest
training rewards. However, unlike the SPRL framework,
it does not enforce convergence of the context distribution
to the target distribution, resulting in lower evaluation per-
formance. It is reasonable that Linear completely fails to
learn any valid policies because of the severe sparse rewards.
Linear generating curriculum from few to more agents even
exacerbates the problem as in this task few agents have less
chance to receive any non-zero rewards.

Analysis of the generated curriculum: It is noteworthy
to observe the different curricula generated by SPMARL
and SPRLM in the middle figure. SPMARL rapidly updates
the context distribution to include more agents, whereas
SPRLM continues to explore for a longer duration. As
a result, SPMARL starts early to converge to the target
task after achieving the performance threshold VLB of 50.
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Figure 6. Comparison on SMACv2 Protoss tasks. From top to bottom row, the tasks are 5 vs. 5, 6 vs. 6, 7 vs. 7 and 8 vs. 8. Across all four
tasks, SPMARL achieves performance that is comparable to or better than all baseline methods.

The faster context updates in SPMARL highlight two key
advantages provided by our proposed learning progress
objective compared to the performance objective in SPRLM:
more stable estimation and more effective task generation
for policy improvement.

Analysis of the training process: The episode returns dur-
ing training are closely influenced by the curriculum gen-
erated by different methods. As shown in the right figure,

ALPGMM achieves the highest training episode returns,
as it consistently samples tasks with a larger number of
agents without considering the target task. However, de-
spite the apparent advantage of training with more agents,
ALPGMM does not lead to improved performance on the
target task. Similarly, VACL fails to converge to the target
context distribution.
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6.2. XOR Matrix Game

In this subsection, we conduct experiments on a cooperative
task called N -player XOR game. In this game, each player
has N possible actions and they receive a positive reward
only if they each select different actions. A simple example
of 2-player XOR game is given by the payoff matrix shown
in Figure 3(a). While learning the optimal policy for a
2-player XOR game is relatively simple, the complexity
increases dramatically with the number of players due to the
exponentially expanding joint policy space. Consequently,
a curriculum learning approach becomes essential. In our
experiments, we set the target task for 20 players.

As shown in Figure 5, VACL fails to learn an effective policy.
The Linear baseline follows the human prior assumption
that tasks with fewer agents are easier, gradually increasing
the number of agents over time. While Linear eventually
converges to the optimal policy, its need to explore the
entire context space results in inefficiency and instability, as
shown in the fluctuating training curves in the right figure.
ALPGMM also converges to the optimal policy but only
after extensive exploration, as its generated curriculum fails
to converge to the target task.

In contrast, our methods automatically identify effective
curricula. As shown in the middle figure, both SPRLM
and SPMARL efficiently explore the context space and ul-
timately converge to the target 20 agents task. Notably,
SPMARL further outperforms SPRLM by achieving faster
convergence.

6.3. SMAC-v2

We further test our method on SMAC-v2 (Ellis et al., 2022),
a new version of the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019), which increases the dif-
ficulty by imposing higher stochasticity. Specifically, we
evaluate SPMARL on the Protoss tasks (Figure 3(b)) with
sparse reward. In this setting, the agents can only receive 1
if win or −1 if lose at the end of the game.

As illustrated in Figure 6, baseline methods incorporating
curriculum learning successfully learn effective policies,
highlighting the significance of curriculum learning for this
task. Among these methods, SPMARL and ALPGMM
outperform other curriculum learning approaches, namely
Linear and VACL, in terms of both convergence speed and
final performance. In contrast, SPRLM fails to generate an
effective curriculum except for the 5v5 task, likely due to
the extreme reward setting {−1, 0, 1}, which hinders the
optimization of the curriculum distribution from converging
to a viable solution.

It is notable that in the Linear baseline, even though with
superior prior knowledge designing curriculum from suffi-
ciently as high as 15 agents to the target number of agents, it

fails to show better evaluation performance on the target task
despite much higher training performance in the right figure.
These can be attributed to the exacerbated credit assignment
difficulty due to too many agents. On the contrary, our
method SPMARL learns to decrease the number of agents
when the current context distribution has a sufficient number
of agents to meet the performance threshold.

6.4. Comparison of the Objective Variances

We visualize the standard deviation (std.) of the objectives
for SPMARL and SPRLM, specifically the std. of the TD
error and episode return. As shown in Figure 7, SPMARL
exhibits significantly lower variance compared to SPRLM in
both Protoss 7v7 and 8v8. This observation further supports
our hypothesis that a lower estimation variance in the TD
error facilitates more effective curriculum generation. More
results and significance analysis can be found in Section A.3.
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Figure 7. Comparison of the std. of the TD error objective used in
SPMARL and the std. of the episode return used in SPRLM.

7. Discussion
We explore the potential of employing a controllable number
of agents to alleviate the challenges inherent to multi-agent
systems. Our second proposed method, SPMARL, enhances
the convergence speed of the first straightforward algorithm
SPRLM by introducing a novel learning progress objective
but retains the two-stage optimization paradigm under the
KL constraint, as shown in Figure 2. Although the KL con-
straint was initially proposed to maintain performance con-
tinuity during context updates in reward-based SPRL, SP-
MARL demonstrates superior performance improvements
when not directly optimizing performance. While the KL
constraint aids in stabilizing training and benefits the initial
phase of this work, its necessity can be reconsidered when
utilizing our learning progress as the new optimization ob-
jective. We leave this investigation as our future work.

8. Conclusion
In this paper, we investigate the control of agent numbers
as an effective curriculum strategy. Existing works are typ-
ically limited to predefined curriculum that rely on heuris-
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tics, such as a linear scheme. To address this limitation, we
first directly extend the state-of-the-art single-agent curricu-
lum method SPRL to the multi-agent setting. Our analysis
reveals two potential flaws in general reward-based cur-
riculum methods for MARL: unstable estimation based on
sparse episode returns (Sutton & Barto, 2018), and the in-
creased credit assignment difficulty in tasks where more
agents tend to yield higher returns. These problems can
eventually lead to slow learning progress. Therefore, we
further propose SPMARL that prioritizes tasks based on
learning progress instead of the episode returns. SPMARL
optimizes value loss over the context distribution. Impor-
tantly, value loss naturally indicates policy improvement
as tasks with higher value loss represents more significant
policy change. Moreover, the expected value loss can be
accurately estimated w.r.t. all the state transitions rather than
sparse episode returns. Consequently, SPMARL generates
tasks that benefit policy learning as much as possible. Al-
though SPMARL does not focus directly on performance, it
implicitly increases episode returns more effectively by im-
proving learning progress. Evaluation on three challenging
benchmarks demonstrates the effectiveness of SPMARL in
addressing difficult sparse-reward problems. In experiments,
SPMARL outperforms comparison methods.
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A. Appendix
A.1. Implementation Factors

Several implementation details need to be considered when applying curriculum learning to control the number of agents.
First, the changing number of agents usually leads to varying vector lengths of agents’ observation and we need to handle
the new coming agents. Second, the context distribution in SPRL is usually implemented as a Gaussian distribution which is
continuous while we need to optimize the discrete number of agents. Third, the existing MARL benchmarks rarely support
setting different numbers of agents in a convenient way.

In SPMARL, we tackle the first difficulty by simply setting a fixed-length observation vector for each agent when it doesn’t
impact the performance much (Zhao et al., 2023) or padding zeros to the state vectors. To handle the newly joined agents,
we adopt parameter sharing for all the agents so that the new agents can use the learned policy. For the second problem, we
retain the Gaussian distribution and simply discretize the sampled float contexts, which works well in practice. In the third
problem, we create a set of environment wrappers for existing MARL benchmarks to easily change the number of agents.

In addition, VLB is an important hyper-parameter in SPRL and SPMARL. In our experiments, VLB can be usually set as 80%
of the expected return on the target task. We perform an ablation in Section A.3.5.

A.2. MAPPO

Multi-agent PPO (MAPPO) (Chao et al., 2021) is a popular MARL algorithm with strong performances on various
benchmarks. MAPPO works in a straightforward way by applying single-agent PPO (Schulman et al., 2017) to multi-agent
learning while using a centralized critic with additional full-state information. In MAPPO, each agent learns a centralized
state value function V (s), and the individual policy is updated by maximizing the following objective

max
πθi

E(s,ai)∼πi [min(r(θ)A(s, ai), clip(r(θ), 1± ϵ)A(s, ai))], (6)

where r(θ) is the importance ratio between the current policy and the previous policy used to generate the data,

r(θ) =
πθi(ait|hi

t)

πθi
old
(ait|hi

t)
(7)

The advantage A(s, ai) is usually estimated by the generalized advantage estimator (GAE) (Schulman et al., 2015) defined
as Equation 8, where we use the full state information s thanks to the centralized training and decentralized execution
(CTDE) (Lowe et al., 2017) framework,

A
GAE(λ,γ)
t =

∞∑
l=0

(γλ)lδt+l, (8)

and δt denotes the TD error
δt = rt + γV (st+1)− V (st). (9)

In our implementation, in order to transfer to different numbers of agents, we use parameter sharing (Chao et al., 2021)
among agents.

A.3. More Results

In this section, we present additional experimental results to provide a comprehensive evaluation and analysis of our
method. Section A.3.1 reports a significance analysis of the experiments presented in the main text. We extend the empirical
comparison to four additional SMAC-v2 tasks in Section A.3.2, and to two BenchMARL benchmarks (Bettini et al., 2024)
in Section A.3.3. In Section A.3.4, we further compare the variance of SPMARL and SPRLM across four tasks. Finally,
Section A.3.5 provides an ablation study on the hyperparameter VLB using two SMAC-v2 tasks.

A.3.1. SIGNIFICANCE ANALYSIS

In addition to the learning curves presented in the main text, we report the statistical results of the experiments in the
following tables. Table 1 summarizes the mean evaluation performance of various algorithms during training, showing that
SPMARL consistently outperforms the baselines or achieves comparable best-case results.
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Table 1. Mean and standard deviation of the evaluation performance during training on all tasks. Results for methods compared to
SPMARL with p-value higher than 0.05 according to the Mann-Whitney U test (see Table 2) are highlighted in bold.

Algorithm SimpleSpread XOR 5v5 6v6 7v7 8v8
W/O Teacher 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Linear 0.00 (0.00) 26.80 (1.16) 0.25(0.02) 0.25 (0.02) 0.25 (0.01) 0.25 (0.01)
VACL 24.43 (4.53) 0.00 (0.00) 0.47 (0.02) 0.37 (0.02) 0.28 (0.01) 0.22 (0.01)
ALPGMM 24.65 (1.98) 104.80 (14.73) 0.55 (0.02) 0.45 (0.01) 0.36 (0.01) 0.28 (0.01)
SPRLM 27.48 (5.38) 141.45 (16.98) 0.54 (0.05) 0.13 (0.15) 0.08 (0.11) 0.11 (0.07)
SPMARL 33.36 (1.84) 143.08 (7.72) 0.55 (0.01) 0.45 (0.01) 0.38 (0.02) 0.31 (0.01)

To further assess the significance of these differences, we perform a one-sided Mann–Whitney U test (Mann & Whitney,
1947) to evaluate whether the evaluation returns of SPMARL are stochastically greater than those of the baselines. As shown
in Table 2, the test yields p-values below 0.05 in most cases.

Table 2. Statistical significance (p-values) of SPMARL compared to baseline methods.

Algorithm SimpleSpread XOR 5v5 6v6 7v7 8v8
Linear 0.0060 0.0085 0.0079 0.0079 0.0040 0.0040
VACL 0.0040 0.0052 0.0040 0.0079 0.0079 0.0079
ALPGMM 0.0040 0.0097 0.7222 0.4524 0.0079 0.0317
SPRLM 0.0159 0.8395 0.4206 0.0079 0.0022 0.0040

A.3.2. EXPERIMENTS ON MORE SMAC-V2 TASKS

We conduct additional experiments on four SMAC-v2 tasks: Terran 5 vs. 5, Terran 6 vs. 6, Zerg 5 vs. 5, and Zerg 6 vs. 6.
As shown in Figure 8, SPMARL consistently outperforms baseline methods and generates coherent and effective curricula
across all tasks.

A.3.3. EXPERIMENTS ON BenchMARL TASKS

We further evaluate our method on two additional tasks from the recent BenchMARL benchmark (Bettini et al., 2024), beyond
the already-included SMAC-v2 and Simple-Spread environments. As shown in Figure 9, SPMARL achieves performance
comparable to other baselines. It is important to note that the two new tasks, Balance and Wheel, employ the same
dense-reward setting as in the original BenchMARL, which may reduce the presence of exploration challenges and thus
diminish the benefits of curriculum learning. Nonetheless, SPMARL remains the only method that generates curricula
which converge to the desired target distributions.

A.3.4. VARIANCE COMPARISON ON MORE TASKS

How to compute the variance: Mathematically, assume we have collected a set of contexts {c1, c2, . . . , cn}, n ≈ 25, the
corresponding episode returns {R1, R2, . . . , Rn}, the TD-errors {TD1,TD2, . . . ,TDn} are computed as TDi = LP(ci) =
Es,a∼π(a|s,ci)

[
∥R(s,a)− V (s)∥2

]
. Note that the return used in computing TD-errors is usually estimated as the critic in

RL, R(st,at) = rt + γVst+1
, further reducing the estimation variance (Schulman et al., 2015). The standard deviation is

then computed as σ =
√

1
n

∑n
i=1(xi − x̄)2, where xi can be Ri or TDi and x̄ represents the mean. Since TD-error on each

context has been averaged over the samples of the whole episode, it usually shows lower estimation variance.

We present additional results in Figure 10 comparing the standard deviation of objective estimations between SPMARL and
SPRLM on four more tasks, further highlighting the stability of our proposed approach.

A.3.5. ABLATION ON VLB

The hyperparameter VLB plays a crucial role in SPRL methods (Klink et al., 2020; 2021). As our approach adopts the
two-stage optimization framework from SPRL, we follow a similar strategy for setting VLB. Specifically, in our experiments,
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Figure 8. Comparison on SMACv2 Terran and Zerg tasks. From top to bottom row, the tasks are Terran 5 vs. 5 Terran 6 vs. 6, Zerg 5 vs.
5, and Zerg 6 vs. 6. Across all four tasks, SPMARL achieves performance that is comparable to or better than all baseline methods.

we empirically set VLB to approximately 80% of the final task performance. For instance, in the SMACv2 Protoss 5 vs. 5
task, where the final performance is around 0.8, we choose VLB = 0.6. To evaluate the sensitivity of our method to this
hyperparameter, we conduct an ablation study. The results, shown in Figure 11, demonstrate that our method performs
robustly across a wide range of VLB values.

A.4. Hyper-Parameters

We list the hyper-parameters of both the underlying multi-agent reinforcement learning algorithm MAPPO and our curriculum
learning algorithm SPMARL. Note that we always set the same hyper-parameters for both SPMARL and SPRLM. The
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Figure 9. Comparison on BenchMARL Balance and Wheel tasks. From top to bottom, the tasks are Balance and Wheel. On these two
non-sparse tasks, SPMARL shows comparable performance as other baselines, which could be due to that these tasks do not present
exploration challenges. However, note that SPMARL is the only method generating curriculum that converges to target distributions.

shared parameters across all the domains are listed in Table 3 for MAPPO and Table 4 for SPMARL. Benchmark-specific
parameters are listed in Table 5 for MPE, Table 6 for XOR game, Table 7 for SMAC v2, and Table 8 for BenchMARL.

Table 3. Common hyper-parameters of MAPPO across all domains

Parameter Value
use recurrent neural network True
recurrent data chunk length 10
gradient clip norm 10.0
hidden layer dim 64
gae lambda 0.95
gamma 0.99
optimizer Adam
optimizer epsilon 1e-5
entropy coefficient 0.01
ppo-clip 0.2
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(a) Protoss 5v5.
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(b) Protoss 6v6.
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Figure 10. Comparison of the standard deviation of the TD error objective used in SPMARL and that of the episode return used in SPRLM.
The results show that the estimation variance of TD error used in SPMARL is usually lower than the variance of returns used in SPRLM.
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Figure 11. Ablation of VLB on SMACv2 Protoss tasks. From top to bottom, the tasks are Protoss 5 vs. 5 and Protoss 6 vs. 6.The results
indicate that SPMARL performs robustly across a broad range of VLB.
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Table 4. Common hyper-parameters of SPMARL across all domains

Parameter Value
max kl 0.05
context kl threshold 8000
target var 4e-3
std lower bound 0.2

Table 5. Hyper-parameters for MPE

Parameter Value
MAPPO

actor lr 7e-4
critic lr 7e-4
ppo epoch 10
hidden layer 1
episode length 25
number of mini batch 1
number of rollout threads 256

SPMARL
lower context bound 6
upper context bound 20
init mean 10
init var 25
target mean 8
perf lb 50

Table 6. Hyper-parameters for XOR

Parameter Value
MAPPO

actor lr 5e-4
critic lr 5e-4
ppo epoch 10
hidden layer 1
episode length 200
number of mini batch 1
number of rollout threads 50

SPMARL
lower context bound 2
upper context bound 20
init mean 6
init var 16
target mean 20
perf lb 0.5
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Table 7. Hyper-parameters for SMAC v2 tasks

Parameter Value
MAPPO

actor lr 5e-4
critic lr 5e-4
ppo epoch 5
hidden layer 1
episode length 400
number of mini batch 1
number of rollout threads 25

SPMARL
lower context bound 5
upper context bound 15
init mean 10
init var 25
target mean (5v5) 5
target mean (6v6) 6
target mean (7v7) 7
target mean (8v8) 8
perf lb (Protoss 5v5, 6v6, 7v7) 0.6
perf lb (Protoss 8v8) 0.4
perf lb (Terran 5v5, 6v6) 0.5
perf lb (Zerg 5v5, 6v6) 0.5

Table 8. Hyper-parameters for BenchMARL tasks

Parameter Value
MAPPO

actor lr 5e-4
critic lr 5e-4
ppo epoch 5
hidden layer 1
episode length 200
number of mini batch 1
number of rollout threads 25

SPMARL
lower context bound 2
upper context bound 10
init mean 5
init var 25
target mean (Balance) 6
target mean (Wheel) 6
perf lb (Balance) 80
perf lb (Wheel) -6
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