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Abstract

Cross-modal representation learning learns a shared embedding between two or more modalities to
improve performance in a given task compared to using only one of the modalities. Cross-modal
representation learning from different data types – such as images and time-series data (e.g., au-
dio or text data) – requires a deep metric learning loss that minimizes the distance between the
modality embeddings. In this paper, we propose to use the triplet loss, which uses positive and neg-
ative identities to create sample pairs with different labels, for cross-modal representation learning
between image and time-series modalities (CMR-IS). By adapting the triplet loss for cross-modal
representation learning, higher accuracy in the main (time-series classification) task can be achieved
by exploiting additional information of the auxiliary (image classification) task. Our experiments on
synthetic data and handwriting recognition data from sensor-enhanced pens show improved classi-
fication accuracy, faster convergence, and better generalizability.

1 Introduction

Cross-modal retrieval (CMR) such as cross-modal representation learning (Peng et al., 2017) for learning across two
or more modalities (i.e., image, audio, text and 3D data) has recently garnered substantial interest from the machine
learning community. CMR can be applied in a wide range of applications, such as multimedia management (Lee
et al., 2020) and identification (Sarafianos et al., 2019). Extracting information from several modalities and adapting
the domain with cross-modal learning allows using the information in all domains (Ranjan et al., 2015). Cross-modal
representation learning, however, remains challenging due to the heterogeneity gap (i.e., inconsistent representation
forms of different modalities) (Huang et al., 2020).

A limitation of cross-modal representation learning is that many approaches require the availability of all modalities
at inference time. Image-to-caption CMR methods solve this via a separate encoder (Faghri et al., 2018; Chen et al.,
2022). However, in many applications, certain data sources are only available during training by means of elaborate
laboratory setups (Lim et al., 2019). For instance, consider a human pose estimation task that uses inertial sensors
together with color videos during training, where a camera setup might not be available at inference time due to bad
lighting conditions or other application-specific restrictions. Here, a model that allows inference on only the main
modality is required, while auxiliary modalities may only be used to improve the training process (as they are not
available at inference time) (Hafner et al., 2022). Learning using privileged information (Vapnik & Izmailov, 2015) is
one approach in the literature that describes and tackles this problem. During training, in addition to X , it is assumed
that additional privileged information X∗ is available. However, this privileged information is not present in the
inference stage (Momeni & Tatwawadi, 2018).

For cross-modal representation learning, we need a deep metric learning (DML) technique that aims to transform
training samples into feature embeddings that are close for samples that belong to the same class and far apart for
samples from different classes (Wei et al., 2016). As DML requires no model update (simply fine-tuning for training
samples of new classes), DML is an often applied approach for continual learning (Do et al., 2019). Typical DML
methods use not only simple distances (e.g., Euclidean distance), but also highly complex distances (e.g., canonical
correlation analysis (Ranjan et al., 2015) and maximum mean discrepancy (Long et al., 2015)). While cross-modal
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Figure 1: Method overview: Cross-modal representation learning between image and time-series data using the triplet
loss based on DML functions to improve the time-series classification task.

representation learning learns representations from all modalities, single-modal learning commonly uses pair-wise
learning. The triplet loss (Schroff et al., 2015) selects a positive and negative triplet pair for a corresponding anchor
and forces the positive pair distance to be smaller than the negative pair distance. While research of triplet selection
for single-modal classification is very advanced (Do et al., 2019; Ott et al., 2022a; Deldari et al., 2022b; Jain et al.,
2022; Venkataramanan et al., 2022; Hafner et al., 2022; Wan & Zou, 2021; Li et al., 2021; Kim et al., 2020), pair-wise
selection for cross-modal representation learning has mainly been investigated for specific applications (Zhen et al.,
2015; Lee et al., 2020; Zhang & Zheng, 2020), i.e., visual semantic embeddings (Chen et al., 2022; Biten et al., 2022;
Diao et al., 2021; Radford et al., 2021).

One exemplary application for cross-modal learning is handwriting recognition (HWR), which can be categorized into
offline and online HWR. Offline HWR – such as optical character recognition (OCR) – concerns only analysis of the
visual representation of handwriting and cannot be applied for real-time recognition applications (Fahmy, 2010). In
contrast, online HWR works on different types of spatio-temporal signals and can make use of temporal information,
such as writing speed and direction (Plamondon & Srihari, 2000). As an established real-world application of online
HWR, many recording systems make use of a stylus pen together with a touch screen surface (Alimoglu & Alpaydin,
1997). There also exist prototypical systems for online HWR when writing on paper (Chen et al., 2021b; Schrapel
et al., 2018; Wang et al., 2013; Deselaers et al., 2015), but these are not yet suitable for real-world applications.
However, a novel sensor-enhanced pen based on inertial measurement units (IMUs) may enable new online HWR
applications for writing on normal paper. This pen has previously been used for single character (Ott et al., 2020;
2022a;b; Klaß et al., 2022) and sequence (Ott et al., 2022c) classification. However, the accuracy of previous online
HWR methods is limited, due to the following reasons: (1) The size of datasets is limited, as recording larger amounts
of data is time-consuming. (2) Extracting important spatio-temporal features is important. (3) Training a writer-
independent classifier is challenging, as different writers can have notably different writing styles. (4) Evaluation
performance drops for under-represented groups, i.e., left-handed writers. (5) The model overfits to seen words that
can be addressed with generated models. A possible solution is to combine datasets of different modalities using cross-
modal representation learning to increase generalizability. In this work, we combine offline HWR from generated
images (i.e., OCR) and online HWR from sensor-enhanced pens by learning a common representation between both
modalities. The aim is to integrate information on OCR – i.e., typeface, cursive or printed writing, and font thickness
– into the online HWR task – i.e., writing speed and direction (Vinciarelli & Perrone, 2003).

Our Contribution. Models that use rich data (e.g., images) usually outperform those that use a less rich modality
(e.g., time-series). We therefore propose to train a shared representation using the triplet loss between pairs of image
and time-series data to learn a cross-modal representation between both modality embeddings (cf. Figure 1). This
allows for improving the accuracy of single-modal inference in the main task. We prove the efficacy of our DML-
based triplet loss for cross-modal representation learning both with simulated data and in a real-world application.
More specifically, our proposed cross-modal representation learning technique 1) improves the multivariate time-series
(MTS) classification accuracy and convergence, 2) results in a small MTS-only network independent from the image
modality while allowing for fast inference, and 3) has better generalizability and adaptability (Huang et al., 2020). We
provide an extensive overview and technical comparison of related methods. Code and datasets are available upon
publication.1

1Code and datasets: https://www.anonymous-submission.org (will be updated after acceptance)
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The paper is organized as follows. Section 2 discusses related work followed by the mathematical foundation of our
method in Section 3. The methodology is described in Section 4 and the results are discussed in Section 5.

2 Related Work

In this section, we discuss related work – particularly, methods of offline HWR (in Section 2.1) and online HWR
(in Section 2.2). We summarize approaches for learning a cross-modal representation from different modalities (in
Section 2.3), pairwise and triplet learning (in Section 2.4), and DML (in Section 2.5) to minimize the distance between
feature embeddings.

2.1 Offline Handwriting Recognition

In the following, we give a detailed overview of offline HWR methods to select a suitable lexicon and language
model-free method. To our knowledge, there is no recent paper summarizing published work for offline HWR. For an
overview of offline and online HWR datasets, see (Plamondon & Srihari, 2000; Hussain et al., 2015). Table 1 presents
related work. Methods for offline HWR range from hidden Markov models (HMMs) to deep learning techniques
that became predominant in 2014, such as convolutional neural networks (CNNs), temporal convolutional networks
(TCNs), and recurrent neural networks (RNNs). RNN techniques are well explored, including long short-term memo-
ries (LSTMs), bidirectional LSTMs (BiLSTMs), and multidimensional RNNs (MDRNN, MDLSTM). Recent methods
are generative adversarial networks (GANs) and Transformers. In Table 1, we refer to the use of a language model as
LM with k and identify the data level on which the method works – i.e., paragraph or full-text level (P), line level (L),
and word level (W). We present evaluation results for the IAM-OffDB (Liwicki & Bunke, 2005) and RIMES (Grosicki
& El-Abed, 2011) datasets, including the word error rate (WER) and character error rate (CER).

HMMs. In the past, various methods based on HMMs have been proposed (Bertolami & Bunke, 2018; Dreuw et al.,
2011; Li et al., 2014; Pastor-Pellicer et al., 2015). Recently, España-Boquera et al. (2011) proposed HMM+ANN,
an HMM modeled with Markov chains in combination with a multilayer perceptron (MLP) to estimate the emission
probabilities. Kozielski et al. (2013) presented Tandem GHMM that uses moment-based image normalization, writer
adaptation, and discriminative feature extraction with a 3-gram open-vocabulary of size 50k with an LSTM for recog-
nition. Doetsch et al. (2014) proposed an LSTM unit that controls the shape of the squashing function in gating units
decoded in a hybrid HMM. This approach yields the best results based on HMMs.

RNNs: MDLSTMs. The 2DLSTM approach by Graves & Schmidhuber (2008) combines multidimensional LSTMs
(MDLSTMs) with the CTC loss. The MDLSTM-RNN approach (Bluche, 2016) works at paragraph level by replacing
the collapse layer with a recurrent version. A neural network performs implicit line segmentation by computing atten-
tion weights on the image representation. Voigtlaender et al. (2016) proposed an efficient GPU-based implementation
of MDLSTMs by processing the input in a diagonal-wise fashion. SepMDLSTM (Chen et al., 2017) is a multi-task
learning method for script identification and HWR based on two classification modules by minimizing the CTC and
negative log-likelihood losses. While the MDLSTM by Bluche et al. (2017) contains covert and overt attention without
prior segmentation, the Castro et al. (2018) integrated MDLSTMs within a hybrid HMM. However, these architectures
come with expensive computational cost. Furthermore, they extract features visually similar to those of convolutional
layers (Puigcerver, 2017). End2End (Krishnan et al., 2018) jointly learns text and image embeddings based on LSTMs.

RNNs: LSTMs and BiLSTMs. RNNs for HWR marked an important milestone in achieving impressive recogni-
tion accuracies. Sequential architectures are perfect to fit text lines, due to the probability distributions over sequences
of characters, and due to the inherent temporal aspect of text (Kang et al., 2022). Graves et al. (2009) introduced the
BiLSTM layer in combination with the CTC loss. Pham et al. (2014) showed that the performance of LSTMs can be
greatly improved using dropout. Voigtlaender et al. (2015) investigated sequence-discriminative training of LSTMs
using the maximum mutual information (MMI) criterion. While Bluche (2015) utilized an RNN with an HMM and a
language model, Menasri et al. (2012) combined an RNN with a sliding window Gaussian HMM. GCRNN (Bluche &
Messina, 2017) combines a convolutional encoder (aiming for generic and multilingual features) and a BiLSTM de-
coder predicting character sequences. Additionally, Puigcerver (2017) proposed a CNN+BiLSTM architecture (CNN-
1DLSTM-CTC) that uses the CTC loss. The start, follow, read (SFR) (Wigington et al., 2018) model jointly learns
text detection and segmentation. Dutta et al. (2018) used synthetic data for pre-training and image normalization for
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Table 1: Evaluation results (WER and CER in %) of different methods on the IAM-OffDB (Liwicki & Bunke, 2005)
and RIMES (Grosicki & El-Abed, 2011) datasets. We state information about the method and the size of the language
model (LM). LN = layer normalization. P = paragraph or full text level. L = line level. W = word level. The table is
sorted by year.

LM Level IAM-OffDB RIMES
Method Information size k P L W WER CER WER CER

HMM
HMM+ANN (España-Boquera et al., 2011) Markov chain with MLP w/ (5) 15.50 6.90 - -
Tandem GHMM (Kozielski et al., 2013) GHMM and LSTM, writer adaptation w/ (50) × 13.30 5.10 13.70 4.60
LSTM-HMM (Doetsch et al., 2014) Combination of LSTM with HMM w/ (50) × 12.20 4.70 12.90 4.30

Multi-

2DLSTM (Graves & Schmidhuber, 2008) Combined MDLSTM with CTC w/o 27.50 8.30 17.70 4.00

dim.

MDLSTM-RNN (Bluche, 2016) 150 dpi w/o × 29.50 10.10 13.60 3.20

LSTM

150 dpi w/ (50) × 16.60 6.50 - -
300 dpi w/o × 24.60 7.90 12.60 2.90
300 dpi w/ (50) × 16.40 5.50 - -

Voigtlaender et al. (2016) GPU-based, diagonal MDLSTM 9.30 3.50 9.60 2.80
SepMDLSTM (Chen et al., 2017) Multi-task approach w/o 34.55 11.15 30.54 8.29
Bluche et al. (2017) MDLSTM, attention w/o × - 16,20 - -

Line segmentation 150 dpi w/o × - 11.10 - -
Line segmentation 150 dpi w/o × - 7.50 - -

MDLSTM (Castro et al., 2018) 10.50 3.60 - -

RNN

BiLSTM (Graves et al., 2009) w/ (20) 18.20 25.90 - -
HMM+RNN (Menasri et al., 2012) Sliding win. Gaussian HMM, RNN × × - 4.75 -
Dropout (Pham et al., 2014) LSTMs with dropout w/o 35.10 10.80 28.50 6.80
Voigtlaender et al. (2015) Maximum mutual information 12.70 4.80 12.10 4.40
Bluche (2015) 10.90 4.40 11.20 3.50

w/ (50) 13.60 5.10 12.30 3.30
GCRNN (Bluche & Messina, 2017) CNN+BiLSTM w/ (50) 10.50 3.20 7.90 1.90
CNN-1DLSTM-CTC (Puigcerver, 2017) CNN+BiLSTM+CTC (128 x W) w/o × 18.40 5.80 9.60 2.30

NN+BiLSTM+CTC w/ (50) × 12.20 4.40 9.00 2.50
End2End (Krishnan et al., 2018) Without line level w/ 16.19 6.34 - -

Line level w/ × 32.89 9.78 - -
SFR (Wigington et al., 2018) Text detection and segmentation w/o × 23.20 6.40 9.30 2.10
CNN-RNN (Dutta et al., 2018) Unconstrained w/o 12.61 4.88 7.04 2.32

Full-Lexicon w/ 4.80 2.52 1.86 0.65Text-Lexicon w/ 4.07 2.17
Unconstrained w/o × 17.82 5.70 9.60 2.30

Chowdhury & Vig (2018) Seq2seq, w/o LN w/o 25.50 17.40 19.10 12.00
w/ LN w/o 22.90 13.10 15.80 9.70
w/ LN + Focal Loss w/o 21.10 11.40 13.50 7.30
w/ LN + Focal Loss + Beam Search w/o 16.70 8.10 9.60 3.50

Sueiras et al. (2018) LSTM encoder-decoder, attention 15.90 4.80 - -
Chung & Delteil (2019) ResNet+LSTM, segmentation w/ × - 8.50 - -
Ingle et al. (2019) BiLSTM × 30.70 12.80 - -

GRCL × 35.20 14.10 - -
Michael et al. (2019) Seq2seq CNN+BiLSTM (64 x W) × - 5.24 - -
FPN (Carbonell et al., 2019) Feature Pyramid Network, 150 dpi × - 15.60 - -
AFDM (Bhunia et al., 2019) AFD module w/ 8.87 5.94 6.31 3.17

CNN

Poznanski & Wolf (2016) CNN + connected branches, CCA w/ 6.45 3.44 3.90 1.90
GTR (Yousef et al., 2018) CNN+CTC (32 x W) w/o × - 4.90 - -
OrigamiNet (Yousef & Bishop, 2020) VGG (500x500) × × - 51.37 - -

VGG (500x500), w/o LN w/o × × - 34.55 - -
ResNet26 (500x500), w/o LN w/o × × - 10.03 - -
ResNet26 (500x500), w/ LN w/o × × - 7.24 - -
ResNet26 (500x500), w/o LN w/o × × - 8.93 - -
ResNet26 (500x500), w/ LN w/o × × - 6.37 - -
ResNet26 (500x500), w/o LN w/o × × - 76.90 - -
ResNet26 (500x500), w/ LN w/o × × - 6.13 - -
GTR-8 (500x500), w/o LN w/o × × - 72.40 - -
GTR-8 (500x500), w/ LN w/o × × - 5.64 - -
GTR-8 (750x750), w/ LN w/o × × - 5.50 - -
GTR-12 (750x750), w/ LN w/o × × - 4.70 - -

DAN (Wang et al., 2020b) Decoupled attention module w/o × 19.60 6.40 8.90 2.70

GAN

ScrabbleGAN (Fogel et al., 2020) Original data w/o 25.10 - 12.29 -
Augm. w/o 24.73 - 12.24 -
Augm + 100k synth. w/o 23.98 - 11.68 -
Augm + 100k synth. + Refine w/o 23.61 - 11.32 -

Trans- Kang et al. (2022) Self-attention for text/images w/o × 15.45 4.67 - -
for- FPHR (Singh & Karayev, 2021) CNN encoder, Transformer decoder w/o × - 6.70 - -
mer With augmentation w/o × - 6.30 - -
Other FST (Messina & Kermorvant, 2014) Finite state transducer (lexicon) n-gram 19.10 - 13.30 -
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slant correction. The methods by Chowdhury & Vig (2018); Sueiras et al. (2018); Ingle et al. (2019); Michael et al.
(2019) also make use of BiLSTMs. While Carbonell et al. (2019) uses a feature pyramid network (FPN), the adver-
sarial feature deformation module (AFDM) (Bhunia et al., 2019) learns ways to elastically warp extracted features in
a scalable manner. Further methods that combine CNNs with RNNs are (Liang et al., 2017; Sudholt & Fink, 2018;
Xiao & Cho, 2016), while BiLSTMs are utilized in (Carbune et al., 2020; Tian et al., 2019).

TCNs. TCNs use dilated causal convolutions and have been applied to air-writing recognition by Bastas et al. (2020).
As RNNs are slow to train, Sharma et al. (2020) presented a faster system that is based on text line images and
TCNs with the CTC loss. This method achieves 9.6% CER on the IAM-OffDB dataset. Sharma & Jayagopi (2021)
combined 2D convolutions with 1D dilated non-causal convolutions that offer high parallelism with a smaller number
of parameters. They analyzed re-scaling factors and data augmentation and achieved comparable results for the IAM-
OffDB and RIMES datasets.

CNNs. Poznanski & Wolf (2016) utilized a CNN with multiple fully connected branches to estimate its n-gram
frequency profile (set of n-grams contained in the word). With canonical correlation analysis (CCA), the estimated
profile can be matched to the true profiles of all words in a large dictionary. As most attention methods suffer from
an alignment problem, Wang et al. (2020b) proposed a decoupled attention network (DAN) that has a convolutional
alignment module that decouples the alignment operation from using historical decoding results based on visual fea-
tures. The gated text recognizer (GTR) (Yousef et al., 2018) aims to automate the feature extraction from raw input
signals with a minimum required domain knowledge. The fully convolutional network without recurrent connections
is trained with the CTC loss. Thus, the GTR module can handle arbitrary input sizes and can recognize strings with
arbitrary lengths. This module has been used for OrigamiNet (Yousef & Bishop, 2020) which is a segmentation-free
multi-line or full-page recognition system. OrigamiNet yields state-of-the-art results on the IAM-OffDB dataset, and
shows improved performance of GTR over VGG and ResNet26. Hence, we use the GTR module as our visual feature
encoder for offline HWR (see Section A.3).

GANs. Handwriting text generation is a relatively new field. The first approach by Graves (2014) was a method to
synthesize online data based on RNNs. The technique HWGAN by Ji & Chen (2020) extends this method by adding
a discriminator D. DeepWriting (Aksan et al., 2018) is a GAN that is capable of disentangling style from content and
thus making digital ink editable. Haines et al. (2016) proposed a method to generate handwriting based on a specific
author with learned parameters for spacing, pressure, and line thickness. Alonso et al. (2019) used a BiLSTM to obtain
an embedding of the word to be rendered and added an auxiliary network as a recognizer R. The model is trained
with a combination of an adversarial loss and the CTC loss. ScrabbleGAN by Fogel et al. (2020) is a semi-supervised
approach that can arbitrarily generate many images of words with arbitrary length from a generator G to augment
handwriting data and uses a discriminator D and recognizer R. The paper proposes results for original data with
random affine augmentation using synthetic images and refinement.

Transformers. RNNs prevent parallelization, due to their sequential pipelines. Kang et al. (2022) introduced a non-
recurrent model by the use of Transformer models with multi-head self-attention layers at the textual and visual stages.
Their method works for any pre-defined vocabulary. For the feature encoder, they used modified ResNet50 models.
The full page HTR (FPHR) method by Singh & Karayev (2021) uses a CNN as an encoder and a Transformer as a
decoder with positional encoding.

2.2 Online Handwriting Recognition

Motion-based handwriting (Chen et al., 2021b) and air-writing (Zhang et al., 2022) from sensor-enhanced devices
have been extensively investigated. While such motions are spacious, the hand and pen motions for writing on paper
are comparatively small-scale (Bu et al., 2021). Research for classifying text from sensor-enhanced pens has recently
attracted substantial interest. He et al. (2022) use acceleration and audio data of handwritten actions for character
recognition. The novel sensor-enhanced pen based on IMUs (Ott et al., 2020) enables new applications for writing on
paper. Ott et al. (2020) published the OnHW-chars dataset containing single characters. Klaß et al. (2022) evaluated the
aleatoric and epistemic uncertainty to show the domain shift between right- and left-handed writers. Ott et al. (2022a)
reduced this domain shift by adapting feature embeddings based on transformations from optimal transport techniques.
Kreß et al. (2022) presented an approach for distributing the computational workload between a sensor pen and a
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mobile device (i.e., smartphone or tablet) for handwriting recognition, as interference on mobile devices leads to high
system requirements. Ott et al. (2022b) reconstructed the trajectory of the pen tip for single characters written on tablets
from IMU data and cameras pointing at the pen tip. A more challenging task than single-character classification is the
classification of sequences (i.e., words or equations). Ott et al. (2022c) proposed several sequence-based datasets and
a large benchmark of convolutional, recurrent, and Transformer-based architectures, loss functions, and augmentation
techniques. While Wegmeth et al. (2021) combined a binary random forest to classify the writing activity and a
CNN for windows of single-label predictions, Bronkhorst (2021) highlighted the effectiveness of Transformers for
classifying equations. Methods such as (Singh & Karayev, 2021) cannot be applied to this online task, as these methods
are designed for image-based (offline) HWR, and traditional methods such as (Carbune et al., 2020) for online HWR
are based on online trajectories written on tablets. Recently, Azimi et al. (2022) evaluated further machine and deep
learning models as well as deep ensembles on the single OnHW-chars dataset.

2.3 Cross-Modal Representation Learning

For traditional methods that learn a cross-modal representation, a cross-modal similarity for the retrieval can be calcu-
lated with linear projections (Rasiwasia et al., 2010). However, cross-modal correlation is highly complex, and hence,
recent methods are based on a modal-sharing network to jointly transfer non-linear knowledge from a single modal-
ity to all modalities (Wei et al., 2016). Huang et al. (2020) use a cross-modal network between different modalities
(image to video, text, audio and 3D models) and a single-modal network (shared features between images of source
and target domains). They use two convolutional layers (similar to our proposed architecture) that allow the model
to adapt by using more trainable parameters. However, while their auxiliary network uses the same modality, the
auxiliary network of the proposed method in this paper is based on another modality. Lee et al. (2020) learn a cross-
modal embedding between video frames and audio signals with graph clusters, but both modalities must be available
at inference. Sarafianos et al. (2019) proposed an image-text modality adversarial matching approach that learns
modality-invariant feature representations, but their projection loss is only used for learning discriminative image-text
embeddings. Hafner et al. (2022) propose a model for single-modal inference. However, they use image and depth
modalities for person re-identification without a time-series component, which makes the problem considerably dif-
ferent. Lim et al. (2019) handled multi-sensory modalities for 3D models only. For an overview of CMR, see Deldari
et al. (2022a).

2.4 Pairwise and Triplet Learning

Networks trained for a classification task can produce useful feature embeddings with efficient runtime complexity
O(NC) per epoch, where N is the number of training samples and C is the number of classes. However, the classical
cross-entropy (CE) loss is only partly useful for DML, as it ignores how close each point is to its class centroid (or
how far apart each point is from other class centroids). CE variations (e.g., for face recognition) that learn angularly
discriminative features have also been developed (Liu et al., 2017). The pairwise contrastive loss (Chopra et al.,
2005) minimizes the distance between feature embedding pairs of the same class and maximizes the distance between
feature embedding pairs of different classes depending on a margin parameter. The drawback is that the optimization
of positive pairs is independent of negative pairs, but the optimization should force the distance between positive pairs
to be smaller than negative pairs (Do et al., 2019).

The triplet loss (Yoshida et al., 2019) addresses this by defining an anchor and a positive point as well as a negative
point and forces the positive pair distance to be smaller than the negative pair distance by a certain margin. The
runtime complexity of the triplet loss is O(N3/C) and can be computationally challenging for large training sets.
Hence, several approaches exist to reduce this complexity, such as hard or semi-hard triplet mining (Schroff et al.,
2015) and smart triplet mining (Harwood et al., 2017). Often, data evolve over time, and hence, Semedo & Magalhães
(2020) proposed a formulation of the triplet loss where the traditional static margin is superseded by a temporally
adaptive maximum margin function. While Zeng et al. (2017); Li et al. (2021) combine the triplet loss with the CE
loss, Guo et al. (2019) use a triplet selection with L2-normalization for language modeling, but considered all negative
pairs for triplet selection with fixed similarity intensity parameter. The proposed method uses a triplet loss with a
dynamic margin together with a novel word-level triplet selection. The TNN-C-CCA (Zeng et al., 2020) also uses the
triplet loss on embeddings between an anchor from audio data and positive and negative samples from visual data and
the cosine similarity for the final representation comparison. In image-to-caption CMR tasks, the most common design
is separated encoders that allow the separated inference without the other modality (Faghri et al., 2018; Chen et al.,
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Table 2: Overview of cross-modal and pairwise learning techniques using the modalities video (V), images (I), audio
(A), text (T), sensors (S), or haptic (H). Data from sensors are represented by time-series from inertial, biological, or
environmental sensors. We indicate cross-modal learning from the same modality with ×n with n modalities. If n is
unspecified, the method can potentially work with an arbitrary number of modalities.

Method Modality Pairwise Deep Metric Learning Application
(sorted by year) V I A T S H Learning Loss/Objective

Chopra et al. (2005) ×2 Pairwise L1 similarity Face verification
Rasiwasia et al. (2010) × × Pairwise Canonical correlation Multimedia documents: emb.

analysis mapping to common space
DeViSE (Frome et al., 2013) × × Hinge rank Cosine similarity Visual semantic embedding
OxfordNet (Kiros et al., 2014) × × Contrastive Cosine similarity Visual semantic embedding
Young et al. (2014) × × Denotion graph Pointwise MI Visual semantic embedding
DAN (Long et al., 2015) ×2 Pairwise Kernelized MMD Domain adaptation
ml-CCA (Ranjan et al., 2015) × × Not pairwise CCA extended Multi-label annotations
FaceNet (Schroff et al., 2015) × Triplet Euclidean Face recognition, clustering
deep-SM (Wei et al., 2016) ×2 × Pairwise CCA, T-V CCA Universal representation for

semantic matching various recognition tasks
Gordo & Larlus (2017) × × Triplet non-Mercer match kernel Visual semantic embedding
TristouNet (Bredin, 2017) × Triplet Euclidean Speech classification
Triplet+FANNG (Harwood et al., 2017) × Smart triplet Nearest neighbour graph General
Zeng et al. (2017) × Triplet CE, conditional Handwritten Chinese

random field characters recognition
Huang et al. (2018) × × Pairwise Cosine similarity Visual semantic embedding
GXN (Gu et al., 2018) × × Triplet Similarity: order- Visual semantic embedding

-violation penalty
TDH (Deng et al., 2018) ×2 × Triplet Hamming space Visual semantic embedding
VSE++ (Faghri et al., 2018) × × Triplet Similarity: inner product Visual semantic embeddings
SCAN t-i (Lee et al., 2018) × × Triplet Similarity LSE Visual semantic embedding
Discriminative (Do et al., 2019) × Triplet Class centroids Image classification
VSRN (Li et al., 2019) × × Triplet Similarity: inner product Visual semantic embedding
PIE-Nets (Song & Soleymani, 2019) × × × Pairwise Diversity, MIL, MMD Visual semantic embedding
LIWE (Wehrmann et al., 2019) × × Contrastive Sum/Max of Hinges Visual semantic embedding
Zhang et al. (2019) × STriplet+triplet Cosine similarity Relationship understanding
TIMAM (Sarafianos et al., 2019) × × Pairwise Norm-softmax CE Visual question answering
GMN (Lim et al., 2019) ×n ×n ×n Pairwise Cross-modal generation Multisensory 3D scenes
CTM (Guo et al., 2019) × × Triplet CTC, CE , L2 correlation Sentence translation
UniVSE (Wu et al., 2019) × × Contrastive Alignment losses Visual semantic embedding
ActiveSet+RRPB (Yoshida et al., 2019) × Smart triplet Semidefinite constraint General
CPC (van den Oord et al., 2019) × × × Contrastive CE, MI One modality classification
CrossATNet (Chaudhuri et al., 2020) ×2 × Triplet MSE Zero-shot learning, sketches
MHTN (Huang et al., 2020) × × × × Pairwise, contr. MMD, Euclidean CMR
GCML (Lee et al., 2020) ×2 × Triplet Hierarchical relational Retrieval, search,

graph clustering video-to-video similarity
CSVE (Wang et al., 2020a) × × Bidirect. triplet Correlation graph Visual semantic embedding
TXS-Adapt × × Triplet Recency-based Social media domain

(Semedo & Magalhães, 2020) (adaptive) correlation
Proxy-Anchor (Kim et al., 2020) × Pair+proxy Cosine similarity Image classification
TNN-C-CCA (Zeng et al., 2020) × × Triplet CCA Multimedia
AdapOffQuin (Chen et al., 2020) × × Quintuplet Cosine similarity Visual semantic embedding
ROMA (Li et al., 2021) ×2 Soft triplet CE, random Unsupervised representation

(fixed margin) perturbation learning
CLIP (Radford et al., 2021) × × Contrastive CE, Cosine similarity OCR, action/object recognition
SGRAF (Diao et al., 2021) × × Pairwise Vector similarity Visual semantic embedding
PCME (Chun et al., 2021) × × Triplet Euclidean Visual semantic embedding
MCN (Chen et al., 2021a) × × × Contrastive Similarity, reconstruction Multimodal clustering
VATT (Akbari et al., 2021) × × × Contrastive CC, NCE, MIL-NCE Transformer for CMR
Wan & Zou (2021) × Dual triplet Euclidean Signature verification
Wang et al. (2021) × ×2 Contrastive Cosine similarity Audio classification
Hafner et al. (2022) ×2 Triplet Softmax, MSE Person re-identification
AlignMixup ×2 Pairwise Sinkhorn transport Data augmentation

(Venkataramanan et al., 2022) for interpolation
SAM (Biten et al., 2022) × × Triplet Cosine similarity Visual semantic embedding
VSE∞ (Chen et al., 2022) × × Triplet Similarity Visual semantic embedding
AudioCLIP (Guzhov et al., 2022) × × × Contrastive Cosine similarity, Environmental sound

symmetric CE classification
data2vec (Baevski et al., 2022) × × × Predicts latent representations Self-supervision with masks
ColloSSL (Jain et al., 2022) ×n Contrastive CE, Cosine similarity Human-activity recognition
COCOA (Deldari et al., 2022b) ×n Contrastive Cosine similarity General time-series
ELo (Piergiovanni et al., 2022) × × × × Contrastive L2, evolutionary Cross-modal, multi-task
Ott et al. (2022a) ×2 Classwise CE, HoMM/CC/PC Online HWR
CMR-IS (Ours, 2022) × × Contr., triplet CTC, MSE/CC/PC/KL Online HWR
Abbreviations. CE: cross-entropy, CTC: connectionist temporal classification, MSE: mean squared error, CC: cross-correlation,
PC: Pearson correlation, MMD: maximum mean discrepancy, HoMM: higher-order moment matching, CCA: canonical correlation analysis,
MIL: multiple-instance learning, MI: mutual information, NCE: noise contrastive estimation
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2022). We choose a similar separate cross-modal encoder for single-modal inference. CrossATNet (Chaudhuri et al.,
2020), another triplet loss-based method that uses single class labels, defines class sketch instances as the anchor, the
same class image instance as the positive sample, and a different class image instance as the negative sample. While
the previous methods are based on a triplet selection method using single-label classification, related work exists for
using the triplet loss for sequence-based classification (i.e., from texts) (Gordo & Larlus, 2017; Deng et al., 2018;
Zhang et al., 2019; Bredin, 2017). To the best of our knowledge, no approach so far has used triplet-based cross-modal
learning based on the Edit distance (ED) between words. Furthermore, there is also no existing work that uses triplet
losses for cross-modal learning between image and inertial sensor modalities.

2.5 Deep Metric Learning

As DML is a very broad and advanced field, only the most related work is described here. For an overview of DML
metrics, see Musgrave et al. (2020). Most of the related work uses the Euclidean metric as distance loss, although
the triplet loss can be defined based on any other (sub-)differentiable distance metric. Wan & Zou (2021) proposed a
method for offline signature verification based on a dual triplet loss that uses the Euclidean space to project an input
image to an embedding function. While Rantzsch et al. (2016) use the Euclidean metric to learn the distance between
feature embeddings, Zeng et al. (2017) use the Cosine similarity. Hermans et al. (2017) state that using the non-squared
Euclidean distance is more stable, while the squared distance made the optimization more prone to collapsing. Recent
methods extend the canonical correlation analysis (CCA) (Ranjan et al., 2015) that learns linear projection matrices by
maximizing pairwise correlation of cross-modal data. To share information between the same modality (i.e., images),
the maximum mean discrepancy (MMD) (Long et al., 2015) is typically minimized.

3 Methodological Background

We define the problem of cross-mdoal representation learning and present DML loss functions in Section 3.1. In
Section 3.2, we propose the triplet loss for cross-modal learning.

3.1 Cross-Modal Representation Learning

A multivariate time-series (MTS) U = {u1, . . . , um} ∈ Rm×l is an ordered sequence of l ∈ N streams with ui =
(ui,1, . . . , ui,l), i ∈ {1, . . . , m}, where m ∈ N is the length of the time-series. The MTS training set is a subset of
the array U = {U1, . . . , UnU

} ∈ RnU ×m×l, where nU is the number of time-series. Let X ∈ Rh×w with entries
xi,j ∈ [0, 255] represent an image from the image training set. The image training set is a subset of the array X =
{X1, . . . , XnX

} ∈ RnX ×h×w, where nX is the number of time-series. The aim of joint MTS and image classification
tasks is to predict an unknown class label y ∈ Ω for single class prediction or y ∈ Ω for sequence prediction for a
given MTS or image (see also Section 4.2). The time-series samples denote the main training data, while the image
samples represent the privileged information that is not used for inference. In addition to good prediction performance,
the goal is to learn representative embeddings fc(U) and fc(X) ∈ Rq×t to map MTS and image data into a feature
space Rq×t, where fc is the output of the convolutional layer(s) c ∈ N of the latent representation and q × t is the
dimension of the layer output.

We force the embedding to live on the q × t-dimensional hypersphere by using softmax – i.e., ||fc(U)||2 = 1 and
||fc(X)||2 = 1 ∀c (see (Weinberger et al., 2005)). In order to obtain a small distance between the embeddings fc(U)
and fc(X), we minimize DML functions LDML(fc(X), fc(U)). Well-known DML metrics are the distance-based
mean squared error (MSE) LMSE, the spatio-temporal cosine similarity (CS) LCS, the Pearson correlation (PC) LPC,
and the distribution-based Kullback-Leibler (KL) divergence LKL. In our experiments, we additionally evaluate the
kernalized maximum mean discrepancy (kMMD) LkMMD, Bray Curtis (BC) LBC, and Poisson LPO losses. We study
their performance in Section 5. A combination of classification and cross-modal representation learning losses can be
realized by dynamic weight averaging (Liu et al., 2019) as a multi-task learning approach that performs dynamic task
weighting over time (see Appendix A.1).
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3.2 Contrastive Learning and Triplet Loss
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Figure 2: Triplet pair.

While the training with the previous loss functions uses inputs where the image and
MTS have the same label, pairs with similar but different labels can improve the train-
ing process. This can be achieved using the triplet loss (Schroff et al., 2015), which
enforces a margin between pairs of image and MTS data with the same identity to all
other different identities. As a consequence, the convolutional output for one and the
same label lives on a manifold, while still enforcing the distance – and thus, discrim-
inability – to other identities.

Therefore, we seek to ensure that the embedding of the MTS Ua
i (anchor) of a spe-

cific label is closer to the embedding of the image Xp
i (positive) of the same la-

bel than it is to the embedding of any image Xn
i (negative) of another label (see

Figure 2). Thus, we want the following inequality to hold for all training samples(
fc(Ua

i ), fc(Xp
i ), fc(Xn

i )
)

∈ Φ:

LDML
(
fc(Ua

i ), fc(Xp
i )

)
+ α < LDML

(
fc(Ua

i ), fc(Xn
i )

)
, (1)

where LDML
(
fc(X), fc(U)

)
is a DML loss, α is a margin between positive and negative pairs, and Φ is the set of all

possible triplets in the training set. The contrastive loss minimizes the distance of the anchor to the positive sample
and separately maximizes the distance to the negative sample. Instead, based on (1), we can formulate a differentiable
loss function - the triplet loss - that we can use for optimization:

Ltrpl,c(Ua, Xp, Xn) =
N∑

i=1
max

[
LDML

(
fc(Ua

i ), fc(Xp
i )

)
− LDML

(
fc(Ua

i ), fc(Xn
i )

)
+ α, 0

]
, (2)

where c ∈ N.2 Selecting negative samples that are too close to the anchor (in relation to the positive sample) can cause
slow training convergence. Hence, triplet selection must be handled carefully and with consideration for each specific
application (Do et al., 2019). We choose negative samples based on the class distance (single labels) and on the ED
(sequence labels) (see Section 4.2).

4 Method

We now demonstrate the efficacy of our proposal. In Section 4.1, we generate sinusoidal time-series with introduced
noise (main task) and compute the corresponding Gramian angular summation field (GASF) with different noise
parameters (auxiliary task) (see Figure 1). In Section 4.2, we combine online (inertial sensor signals, main task) and
offline data (visual representations, auxiliary task) for HWR with sensor-enhanced pens. This task is particularly
challenging, due to different data representations based on images and MTS data. For both applications, our approach
allows to only use the main modality (i.e., MTS) for inference. We further analyze and evaluate different DML
functions to minimize the distance between the learned embeddings.

4.1 Cross-Modal Learning on Synthetic Data

We first investigate the influence of the triplet loss for cross-modal learning between synthetic time-series and image-
based data as a sanity check. For this, we generate signal data of 1,000 timesteps with different frequencies for 10
classes (see Figure 3a) and add noise from a continuous uniform distribution U(a, b) for a = 0 and b = 0.3. We use a
recurrent CNN with the CE loss to classify these signals. From each signal without noise, we generate a GASF (Wang
& Oates, 2015). For classes with high frequencies, this results in a fine-grained pattern, and for low frequencies in
a coarse-grained pattern. We generate GASFs with different added noise between b = 0 (Figure 3b) and b = 1.95
(Figure 3c). A small CNN classifies these images with the CE loss. To combine both networks, we train each signal-
image pair with the triplet loss. As the frequency of the sinusoidal signal is closer for more similar class labels, the
distance in the manifold embedding should also be closer. For each batch, we select negative sample pairs for samples

2To have a larger number of trainable parameters in the latent representation with a greater depth, we evaluate one and two stacked convolutional
layers, each trained with a shared loss Ltrpl,c.
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Figure 3: Synthetic signal data (a) for 10 classes, and image data (b-c) for classes 0 (left) and 6 (right).
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Figure 4: Detailed method overview: The middle pipeline consists of data recording with a sensor-enhanced pen,
feature extraction of inertial MTS data, and word classification with CTC. We generate image data with the pre-trained
ScrabbleGAN for corresponding word labels. The top pipeline (four GTR blocks) extracts features from images. The
distances of the embeddings are minimized with the triplet loss and DML functions. The classification network with
two BiLSTM layers are fine-tuned for the OnHW task for a cross-modal representation.

with the class label CL = 1+⌊ maxe −e−1
25 ⌋ as the lower bound for the current epoch e and the maximum epoch maxe.

We set the margin α in the triplet loss separately for each batch such that α = β · (CLp − CLn) depends on the
positive CLp and negative CLn class labels of the batch and is in the range [1, 5] with β = 0.1. The batch size is 100
and maxe = 100. Appendix A.2 provides further details. This combination of the CE loss with the triplet loss can
lead to a mutual improvement of the utilization of the classification task and embedding learning.

4.2 Cross-Modal Learning for HWR

Method Overview. Figure 4 gives a method overview. The main task is online HWR to classify words written
with a sensor-enhanced pen and represented by MTS of the different pen sensors. To improve the classification task
with a better generalizability, the auxiliary network performs offline HWR based on an image input. We pre-train
ScrabbleGAN (Fogel et al., 2020) on the IAM-OffDB (Liwicki & Bunke, 2005) dataset. For all MTS word labels, we
then generate the corresponding image as the positive MTS-image pair. Each MTS and each image is associated with
y – a sequence of L class labels from a pre-defined label set Ω with K classes. For our classification task, y ∈ ΩL

describes words. The MTS training set is a subset of the array U with labels YU = {y1, . . . , ynU
} ∈ ΩnU ×L. The

image training set is a subset of the array X , and the corresponding labels are YX = {y1, . . . , ynX
} ∈ ΩnX ×L. Offline

HWR techniques are based on Inception, ResNet34, or GTR (Yousef et al., 2018) modules. The architecture of the
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(a) Metropolis. (b) Citizen. (c) Concerts. (d) Starnberg.

Figure 5: Overview of four generated words with ScrabbleGAN (Fogel et al., 2020) with various text styles.

online HWR method consists of an IMU encoder with three 1D convolutional layers of size 400, a convolutional layer
of size 200, a max pooling and batch normalization, and a dropout of 20%. The online method is improved by sharing
layers with a common representation by minimizing the distance of the feature embedding of the convolutional layers
c ∈ {1, 2} (integrated in both networks) with a shared loss Lshared,c. We set the embedding size Rq×t to 400 × 200.
Both networks are trained with the connectionist temporal classification (CTC) (Graves et al., 2009) loss LCTC to
avoid pre-segmentation of the training samples by transforming the network outputs into a conditional probability
distribution over label sequences.

Datasets for Online HWR. We make use of two word datasets proposed in (Ott et al., 2022c). These datasets
are recorded with a sensor-enhanced pen that uses two accelerometers (3 axes each), one gyroscope (3 axes), one
magnetometer (3 axes), and one force sensor at 100 Hz (Ott et al., 2020; 2022b). One sample of size m × l represents
an MTS of a written word of m timesteps from l = 13 sensor channels. One word is a sequence of small or capital
characters (52 classes) or with mutated vowels (59 classes). The OnHW-words500 dataset contains 25,218 samples
where each of the 53 writers contributed the same 500 words. The OnHW-wordsRandom dataset contains 14,641
randomly selected words from 54 writers. For both datasets, 80/20 train/validation splits are available for writer-
(in)dependent (WD/WI) tasks. We transform (zero padding, interpolation) all samples to 800 timesteps. For more
information on the datasets, see Ott et al. (2022c).
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Figure 6: ScrabbleGAN concept by Fogel et al.
(2020) of generating the word “Concerts”.

Image Generation for Offline HWR. In order to couple the on-
line MTS data with offline image data, we use a generative adver-
sarial network (GAN) to arbitrarily generate many images. Scrab-
bleGAN (Fogel et al., 2020) is a state-of-the-art semi-supervised
approach that consists of a generator G that generates images of
words with arbitrary length from an input word label, a discrimi-
nator D, and a recognizer R that promotes style and data fidelity.
While D promotes realistic-looking handwriting styles, R encour-
ages the result to be readable. ScrabbleGAN minimizes a joint
loss term L = LD + λLR where LD and LR are the loss terms of
D and R, respectively, and the balance factor is λ. The generator
G is designed such that each character is generated individually,
using the property of the convolutions of overlapping receptive
fields to account for the influence of nearby letters. Four character
filters (km, ke, ke and kt) are concatenated, multiplied by a noise
vector z, and fed into a class-conditioned generator (see Figure 6). This allows for adjacent characters to interact and
creates a smooth transition, e.g., enabling cursive text. The style of the image is controlled by a noise vector z given
as the input to the network (being consistent for all characters of a word). The recognizer R discriminates between
real and gibberish text by comparing the output of R to the one that was given as input to G. R is trained only on
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Figure 7: Number image-MTS pairs dependent on substitutions.

real and labeled samples. R is inspired by CRNN (Shi et al., 2015) and uses the CTC (Graves et al., 2009) loss. The
architecture of the discriminator D is inspired by BigGAN (Brock et al., 2019) consisting of four residual blocks and
a linear layer with one output. D is fully convolutional, predicts the average of the patches, and is trained with a hinge
loss (Lim & Ye, 2017). We train ScrabbleGAN with the IAM-OffDB (Liwicki & Bunke, 2005) dataset and generate
three different datasets. Exemplary images are shown in Figure 5. First, we generate 2 million images randomly
selected from a large lexicon (OffHW-German), and pre-train the offline HWR architectures. Second, we generate
100,000 images based on the same word labels for each of the OnHW-words500 and OnHW-wordsRandom datasets
(OffHW-words500, OffHW-wordsRandom]) and fine-tune the offline HWR architectures.

Methods for Offline HWR. OrigamiNet (Yousef & Bishop, 2020) is a state-of-the-art multi-line recognition method
using only unsegmented image and text pairs. Similar to OrigamiNet, our offline method is based on different encoder
architectures with one or two additional 1D convolutional layers (each with filter size 200, softmax activation (Zeng
et al., 2017)) with 20% dropout for the latent representation, and a cross-modal representation decoder with BiLSTMs.
For the encoder, we make use of Inception modules from GoogLeNet (Szegedy et al., 2015) and the ResNet34 (He
et al., 2016) architectures, and we re-implement the newly proposed gated, fully-convolutional method termed the
gated text recognizer (GTR) (Yousef et al., 2018). See Appendix A.3 for detailed information on the architectures.
We train the networks on the generated OffHW-German dataset for 10 epochs and fine-tune on the OffHW-[500,
wordsRandom] datasets for 15 epochs. For comparison with state-of-the-art techniques, we train OrigamiNet and
compare with IAM-OffDB. For OrigamiNet, we apply interline spacing reduction via seam carving (Avidan & Shamir,
2007), resizing the images to 50% height, and random projective (rotating and resizing lines) and random elastic
transform (Wigington et al., 2017). We augment the OffHW-German dataset with random width resizing and apply no
augmentation for the OffHW-[words500, wordsRandom] datasets for fine-tuning.

Offline/Online Cross-Modal Representation Learning. Our architecture for online HWR is based on (Ott et al.,
2022c). The encoder extracts features of the inertial data and consists of three convolutional layers (each with filter size
400, ReLU activation) and one convolutional layer (filter size 200, ReLU activation), a max pooling, batch normalization
and a 20% dropout layer. As for the offline architecture, the network then learns a latent representation with one or
two convolutional layers (each with filter size 200, softmax activation) with 20% dropout and the same cross-modal
representation decoder. The output of the convolutional layers of the latent representation are minimized with the
Lshared,c loss. The layers of the common representation are fine-tuned based on the pre-trained weights of the offline
technique. Here, two BiLSTM layers with 60 units each and ReLU activation extract the temporal context of the
feature embedding. As for the baseline classifier, we train for 1,000 epochs. For evaluation, the main MTS network is
independent of the image auxiliary network by using only the weights of the main network.

Triplet Selection. To ensure (fast) convergence, it is crucial to select triplets that violate the constraint from Equa-
tion 1. Typically, it is infeasible to compute the loss for all triplet pairs, or this leads to poor training performance (as
poorly chosen pairs dominate hard ones). This requires an elaborate triplet selection (Do et al., 2019). We use the ED
to define the identity and select triplets. The ED is the minimum number of substitutions S, insertions I , and deletions
D required to change the sequences d = (d1, . . . , dr) into g = (g1, . . . , gz) with length r and z, respectively. We

12



Under review as submission to TMLR

define two sequences with an ED of 0 as the positive pair, and with an ED larger than 0 as the negative pair. Based
on preliminary experiments, we use only substitutions for triplet selection that lead to a higher accuracy compared to
additional insertions and deletions (whereas these would also change the length difference of image and MTS pairs).
We constrain p − m/2 (the difference in pixels p of the images and half the number of timesteps of the MTS) to be
maximally ±20. The goal is to achieve a small distance for positive pairs and a large distance for negative pairs that
increases with a larger ED (between 1 and 10). Furthermore, despite a limited number of word labels, there still exist
a large number of image-MTS pairs per word label for every possible ED (see Figure 7). For each batch, we search
in a dictionary of negative sample pairs for samples with ED = 1 + ⌊ maxe −e−1

100 ⌋ as the lower bound for the current
epoch e and maximal epochs maxe. For every label, we randomly pick one image. We let the margin α in the triplet
loss vary for each batch such that α = β · ED depends on the mean ED of the batch and is in the range [1, 11] with
β = 10−3 for MSE, β = 0.1 for CS and PC, and β = 1 for KL. The batch size is 100 and maxe = 1, 000.

5 Experimental Results

Hardware and Training Setup. For all experiments, we use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We use the vanilla Adam optimizer with a learning rate of 10−4.

5.1 Evaluation of Synthetic Data

We train the time-series (TS) model 18 times with noise b = 0.3 and the combined model with the triplet loss for all
40 noise combinations

(
b ∈ {0, . . . , 1.95}

)
with different DML functions. Figure 8 shows the validation accuracy

averaged over all trainings as well as the combined cases separately for noise b < 0.2 and noise 0.2 ≤ b < 2.0 (for
the LCS loss). The accuracy of the models that use only images and in combination with MTS during inference reach
an accuracy of 99.7% (which can be seen as an unreachable upper bound for the TS-only models). The triplet loss
improves the final TS baseline accuracy from 92.5% to 95.36% (averaged over all combinations), while combining
TS and image data leads to a faster convergence. Conceptually similar to (Long et al., 2015), we use the LkMMD
loss, which yields 95.83% accuracy. The LPC (96.03%), LKL (96.22%), LMSE (96.25%), LBC (96.62%), and LPO
(96.76%) loss functions can further improve the accuracy. We conclude that the triplet loss can be successfully used
for cross-modal learning by utilizing negative identities.

Method Accuracy (%)
TS model 92.50
Combined (TS, LCS) 95.36
Combined (image, LCS) 99.70
Combined (TS, LMSE) 96.25
Combined (TS, LKL) 96.22
Combined (TS, LkMMD) 95.83
Combined (TS, LPC) 96.03
Combined (TS, LBC) 96.62
Combined (TS, LPO) 96.76

Table 3: Comparison of single- and cross-modal represen-
tation learning.
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Figure 8: Accuracy of single- and cross-modal represen-
tation learning over all epochs.

5.2 Evaluation of Handwriting Recognition

Evaluation Metrics. A metric for sequence evaluation is the character error rate (CER), defined as CER =
Sc+Ic+Dc

Nc
, i.e., the ED (the sum of character substitutions Sc, insertions Ic and deletions Dc) divided by the total

number of characters in the set Nc. Similarly, the word error rate (WER) is defined as WER = Sw+Iw+Dw

Nw
, which is

computed with the sum of word operations Sw, Iw and Dw, divided by the number of words in the set Nw.

Evaluation of Offline HWR Methods. Table 4 shows offline HWR results on our generated OffHW-German dataset
and on the IAM-OffDB (Liwicki & Bunke, 2005) dataset. ScrabbleGAN (Fogel et al., 2020) yields a WER of 23.61%
on the IAM-OffDB dataset, while OrigamiNet (Yousef & Bishop, 2020) achieves a CER of 4.70% with 12 GTR
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Table 4: Evaluation results (WER and CER in %) for the generated dataset with ScrabbleGAN (Fogel et al., 2020)
OffHW-German and the IAM-OffDB (Liwicki & Bunke, 2005) dataset. We propose writer-dependent (WD) and
writer-independent (WI) results.

OffHW-
German IAM-OffDB

Method WER CER WER CER
Related ScrabbleGAN (Fogel et al., 2020) - - 23.61 -
Work OrigamiNet (12×GTR) (Yousef & Bishop, 2020) - - - 4.70

OrigamiNet (ours, 4×GTR) 1.50 0.11 90.40 15.67
Inception 12.54 1.17 - -
ResNet 13.05 1.24 - -

Our GTR (2 blocks), 1 conv. layer 4.34 0.39 - -
Implementation GTR (2 blocks), 2 conv. layer 5.02 0.44 - -

GTR (4 blocks), 1 conv. layer 3.35 0.34 89.37 15.60
GTR (4 blocks), 2 conv. layer 2.52 0.24 - -
GTR (6 blocks) 2.85 0.26 - -
GTR (8 blocks) 4.22 0.38 - -

Table 5: Evaluation results (WER and CER in %) for the generated OffHW-words500 and OffHW-wordsRandom
datasets for one and two convolutional layers (c).

OffHW-words500 OffHW-wordsRandom
Method WD WI WD WI

(4×GTR) WER CER WER CER WER CER WER CER
c = 1 2.94 0.76 0.95 0.23 1.98 0.35 2.05 0.37
c = 2 2.51 0.69 0.85 0.22 1.82 0.34 1.95 0.38

modules. As the training takes more than one day for one epoch on the large OffHW-German dataset, we train
OrigamiNet with four GTR modules, and achieve 0.11% CER on the generated dataset and 15.67% on the IAM-
OffDB dataset, which is higher than the model with 12 GTR modules. While Yousef & Bishop (2020) did not propose
WER results, OrigamiNet yields only a WER of 90.40%. With our own implementation of four GTR modules and one
convolutional layer for the common representation, our model achieves similar results. All our models yield low error
rates on the generated OffHW-German dataset. Our approach with GTR blocks outperforms (0.24% to 0.44% CER)
the models with Inception (Szegedy et al., 2015) (1.17% CER) and ResNet (He et al., 2016) (1.24% CER). OrigamiNet
achieves the lowest error rates of 1.50% WER and 0.11% CER. Four GTR blocks yield the best results at a significantly
lower training time compared to six or eight blocks. We fine-tune the model with four GTR blocks for one and two
convolutional layers and achieve notably low error rates between 0.22% to 0.76% CER, and between 0.85% to 2.95%
WER on the OffHW-[words500, wordsRandom] datasets (see Table 5). While results for OffHW-wordsRandom are
similar for writer-dependent (WD) and writer-independent (WI) tasks, WI results of the OffHW-words500 dataset are
lower than WD results, as words with the same label appear in the training and test dataset. We use the weights of the
fine-tuning as initial weights of the image model for the cross-modal representation learning.

Evaluation of Representation Learning Feature Embeddings. Table 6 shows the feature embeddings for image
f2(Xi) and MTS data f2(Ui) of the positive sample Export and the two negative samples Expert (ED = 1) and
Import (ED = 2) based on four DML loss functions. The pattern of characters are similar, as the words differ only
in the fourth letter. In contrast, Import has a different feature embedding, as the replacement of E with I and x with
m leads to a higher feature distance in the embedding hypersphere. Note that image and MTS data can vary in length
for ED > 0. Figure 9 shows the feature embeddings of the output of the convolutional layers (c = 1) processed
with t-SNE (van der Maaten & Hinton, 2008). Figure 9a visualizes the MTS embeddings f1(Ui) of the single modal
network, and Figure 9b visualizes the MTS and image embeddings (f1(Ui) and f1(Xi), respectively) in a cross-modal
setup. While the embedding of the single modal network is unstructured, the embeddings of the cross-modal network
are structured (distance of samples visualizes the ED between words).
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Table 6: Feature embeddings fc(Xi) and fc(Ui) of exemplary image Xi and MTS Ui data of the convolutional layer
c = conv2 for different deep metric learning functions for positive pairs (ED = 0) and negative pairs (ED > 0)
trained with the triplet loss. The feature embeddings are similar in the red box (character x) or blue box (character p)
for f2(Xi), or the last pixels (character t) of f2(Ui) for LPC marked green.

ED Label Image Ui f2(Xi) f2(Ui): LMSE f2(Ui): LCS f2(Ui): LPC f2(Ui): LKL

0 Export

1 Expert

2 Import

3 Vorort

Embedding
Time-series
(single modality)

(a) Feature embedding of IMU samples for the single modalitiy
network.

Embedding
cross-modal

Time-series
Image

(b) Feature embeddings of IMU and image samples for the
cross-modal network.

Figure 9: Plot of 400 × 200 feature embeddings of image and IMU modalities with t-SNE.

Evaluation of Cross-Modal Representation Learning. Table 7 gives an overview of cross-modal representation
learning (for c = 1). The first row shows baseline results by Ott et al. (2022c): 13.04% CER on OnHW-words500
(WD) and 6.75% CER on OnHW-wordsRandom (WD) with mutated vowels. Compared to various time-series classi-
fication techniques, their benchmark results showed superior performance of CNN+BiLSTMs on these OnHW recog-
nition tasks. Only InceptionTime Fawaz et al. (2019) (a large time-series encoder network) yields partly better results
or is on par with the CNN+BiLSTM model for sequence-based classification, while the CNN+BiLSTM model out-
performs state-of-the-art techniques on single character-base classification tasks. Due to the faster training of the
CNN+BiLSTM, we chose this network for the cross-modal task. In general, the word error rate (WER) can vary
for a similar character error rate (CER). The reason is that a change of one character of a correctly classified word
leads to a large change in the WER, while the change of the CER is marginal. We define the results trained without
mutated vowels as baseline results, as ScrabbleGAN is pretrained on IAM-OffDB, which does not contain mutated
vowels, and hence, such words cannot be generated. Nevertheless, the main model can be trained and is applicable
to samples with mutated vowels. For a fair comparison, we compare our results to the results of the models trained
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Table 7: Evaluation results (WER and CER in %) averaged over five splits of the baseline MTS-only technique and
our cross-modal learning technique for the inertial-based OnHW datasets (Ott et al., 2022c) with and without mutated
vowels (MV) for one convolutional layer c = 1. Best results are bold, and second best results are underlined. Arrows
indicate improvements (↑) and degradation (↓) of baseline results (w/o MV).

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER

Main Task LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
LCTC, w/o MV 42.77 13.44 59.82 28.54 38.02 7.81 83.54 36.51

Baseline

LMSE 40.76 ↑ 12.71 ↑ 55.54 ↑ 25.97 ↑ 37.31 ↑ 7.01 ↑ 82.25 ↑ 33.85 ↑
LCS 38.62 ↑ 11.55 ↑ 56.37 ↑ 25.90 ↑ 38.85 ↓ 7.35 ↑ 82.48 ↑ 35.67 ↑
LPC 39.09 ↑ 11.69 ↑ 57.90 ↑ 27.23 ↑ 38.46 ↓ 7.15 ↑ 82.71 ↑ 35.13 ↑
LKL 38.36 ↑ 11.28 ↑ 60.23 ↓ 27.99 ↑ 38.76 ↓ 7.49 ↑ 81.07 ↑ 33.96 ↑

Contrastive Lcontr,1(LMSE) 38.34 ↑ 11.57 ↑ 56.81 ↑ 25.98 ↑ 38.25 ↓ 7.31 ↑ 82.09 ↑ 34.03 ↑

Loss Lcontr,1(LCS) 39.68 ↑ 11.73 ↑ 58.03 ↑ 27.13 ↑ 35.96 ↑ 6.67 ↑ 81.22 ↑ 33.11 ↑
Lcontr,1(LPC) 37.82 ↑ 11.34 ↑ 57.45 ↑ 26.18 ↑ 39.22 ↓ 7.39 ↑ 82.45 ↑ 34.21 ↑
Lcontr,1(LKL) 36.70 ↑ 10.84 ↑ 61.72 ↓ 29.16 ↓ 38.92 ↓ 7.51 ↑ 83.54 35.52 ↑

Triplet Ltrpl,1(LMSE) 42.95 ↓ 14.13 ↓ 56.48 ↑ 26.66 ↑ 37.66 ↑ 7.04 ↑ 81.64 ↑ 34.39 ↑

Loss Ltrpl,1(LCS) 38.01 ↑ 11.29 ↑ 58.50 ↑ 27.10 ↑ 37.12 ↑ 6.98 ↑ 82.71 ↑ 33.09 ↑
Ltrpl,1(LPC) 40.43 ↑ 12.41 ↑ 58.20 ↑ 27.48 ↑ 37.40 ↑ 7.01 ↑ 81.90 ↑ 33.89 ↑
Ltrpl,1(LKL) 37.55 ↑ 11.21 ↑ 63.52 ↓ 30.52 ↓ 38.39 ↓ 7.36 ↑ 83.18 ↑ 35.21 ↑

without mutated vowels. Here, the error rates are slightly higher for both datasets. As expected, cross-modal learning
improves the baseline results up to 11.28% CER on the OnHW-words500 WD dataset and up to 7.01% CER on the
OnHW-wordsRandom WD dataset. The contrastive loss shows the best results on the OnHW-words500 (WD) dataset
with the Kullback-Leibler metric and on the OnHW-wordsRandom dataset (WD) with the cosine similarity metric.
With the triplet loss, LCS outperforms other metrics on the OnHW-wordsRandom dataset but is inconsistent on the
OnHW-words500 dataset. The importance of the triplet loss is more significant for one convolutional layer (c = 1)
than for two convolutional layers (c = 2) (see Appendix A.4). Furthermore, training with kMMD (implemented as
in (Long et al., 2015)) does not yield reasonable results. We assume that this metric cannot make use of the impor-
tant time component in the HWR application. We proposed our approach as learning with privileged information
by exploiting a visual modality as an auxiliary task and improve the main task based on an inertial modality. The
cross-modal learning would also work for the visual modality as the main task and a generated dataset for the inertial
modality as an auxiliary task. However, the error rates are already low for the image-based classification task, as
methods for offline HWR are very advanced and the image dataset is very large. Hence, we assume that fine-tuning
the image encoder with inertial data would result in a minor improvement.

Transfer Learning on Left-Handed Writers. To adapt the model to left-handed writers (who are typically under-
represented and hence marginalized in the real-world), we make use of the left-handed datasets OnHW-words500-L
and OnHW-wordsRandom-L proposed by Ott et al. (2022c). These datasets contain recordings of two writers who
provided 1,000 and 996 samples. As a baseline, we pre-train the MTS-only model on the right-handed datasets and
post-train the left-handed datasets for 500 epochs (see the second and third rows of Table 8). As these datsets are rather
small, the models can overfit on these specific writers and achieve a very low CER of 3.33% on the OnHW-words500-
L datasets and 5.26% CER on the OnHW-wordsRandom-L dataset without mutated vowels for the writer-dependent
tasks. However, the models cannot generalize on the writer-independent tasks, as evidenced by 62.07% CER on
the OnHW-words500-L dataset and 81.15% CER on the OnHW-wordsRandom-L dataset. Hence, we focus on the
WD tasks. For comparison, we use the state-of-the-art time-series classification technique InceptionTime (Fawaz
et al., 2019) with depth = 11 and nf = 96 (without pre-training). As shown, our CNN+BiLSTM outperforms
InceptionTime by a considerable margin. We use the weights of the pre-training with the offline handwriting datasets
and again post-train on the left-handed datasets with c = 1 and c = 2. Using the weights of the cross-modal learning
without the triplet loss can decrease the error rates up to 2.57% CER with LKL and 4.47% CER with LPC. Using the
triplet loss Ltrpl,2(LMSE) can further significantly decrease the WI OnHW-words500-L error rates. In conclusion, due
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Table 8: Evaluation results (WER and CER in %) averaged over five splits of the baseline MTS-only technique and our
cross-modal techniques for the inertial-based left-handed writers OnHW datasets (Ott et al., 2022c) with and without
mutated vowels (MV) for one (c = 1) and two (c = 2) convolutional layers c = 1. Best results are bold, and second
best results are underlined. Arrows indicate improvements (↑) and degradation (↓) of baseline results (w/o MV).

OnHW-words500-L OnHW-wordsRandom-L
WD WI WD WI

Method WER CER WER CER WER CER WER CER

Main Task
InceptionTime, LCTC, w/ MV 49.70 14.02 100.0 96.06 48.10 8.63 100.0 95.93
CNN+BiLSTM, LCTC, w/ MV 14.20 3.30 94.40 71.41 30.20 4.86 100.0 83.51
CNN+BiLSTM, LCTC, w/o MV 12.94 3.33 89.07 62.07 30.89 5.26 100.0 81.15

Baseline

LMSE 11.62 ↑ 2.77 ↑ 90.65 ↓ 67.90 ↓ 30.53 ↑ 4.93 ↑ 100.0 81.99 ↓
LCS 14.92 ↓ 3.53 ↓ 94.14 ↓ 65.10 ↓ 29.06 ↑ 4.87 ↑ 100.0 83.94 ↓
LPC 12.29 ↑ 3.04 ↑ 91.33 ↓ 60.89 ↑ 27.32 ↑ 4.47 ↑ 100.0 85.09 ↓
LKL 11.37 ↑ 2.57 ↑ 93.02 ↓ 66.64 ↓ 29.61 ↑ 4.91 ↑ 100.0 81.28 ↓
Ltrpl,1(LMSE) 12.48 ↑ 3.11 ↑ 90.09 ↓ 62.87 ↓ 32.62 ↓ 5.43 ↓ 100.0 80.41 ↑
Ltrpl,1(LCS) 13.65 ↓ 3.28 ↑ 90.76 ↓ 62.40 ↓ 34.21 ↓ 5.53 ↓ 100.0 82.14 ↓
Ltrpl,1(LPC) 13.71 ↓ 3.23 ↑ 91.55 ↓ 65.95 ↓ 31.59 ↓ 5.32 ↓ 100.0 81.77 ↓

Triplet Ltrpl,1(LKL) 13.65 ↓ 3.45 ↓ 94.93 ↓ 72.01 ↓ 31.87 ↓ 5.42 ↓ 100.0 82.02 ↓

Loss Ltrpl,2(LMSE) 11.97 ↑ 2.83 ↑ 84.34 ↑ 57.84 ↑ 27.19 ↑ 4.79 ↑ 99.87 ↑ 82.60 ↓
Ltrpl,2(LCS) 11.65 ↑ 2.63 ↑ 94.70 ↓ 67.69 ↓ 28.39 ↑ 4.62 ↑ 100.0 83.44 ↓
Ltrpl,2(LPC) 13.02 ↓ 2.94 ↑ 89.86 ↓ 60.26 ↑ 30.22 ↑ 4.81 ↑ 100.0 84.29 ↓
Ltrpl,2(LKL) 13.55 ↓ 3.22 ↑ 97.86 ↓ 76.54 ↓ 28.14 ↑ 4.71 ↑ 100.0 80.81 ↑

to the use of the weights of the cross-modal setup, the model can adapt faster to new writers and generalize better to
unseen words due to the triplet loss.

6 Conclusion

We evaluated DML-based triplet loss functions for cross-modal representation learning between image and time-
series modalities with class label-specific triplet selection. On synthetic data as well as on different HWR datasets,
our method yields notable accuracy improvements for the main time-series classification task and can be decoupled
from the auxiliary image classification task at inference time. Our cross-modal triplet selection further yields a faster
training convergence with better generalization on the main task.

Broader Impact Statement

While research for offline handwriting recognition (HWR) is well-established, research for online HWR from sensor-
enhanced pens only emerged in 2019. Hence, the methodological research for online HWR currently does not meet
the requirements for real-world applications. Handwriting is still important in different fields, in particular graphomo-
toricity as a fine motor skill. The visual feedback provided by the pen helps young students to learn a new language. A
well-known bottleneck for many machine learning algorithms is their requirement for large amounts of datasets, while
data recording of handwriting data is time-consuming. This paper extends the online HWR dataset with generated
images from offline handwriting and closes the gap between offline and online HWR by using offline HWR as an
auxiliary task by learning with privileged information. One downside of training the offline architecture (consisting
of GTR blocks) is its long training time. However, as this model is not required at inference time, processing the
time-series is still fast. The cross-modal representation between both modalities (image and time-series) is achieved
by using the triplet loss and a sample selection depending on the Edit distance. This approach is important in many ap-
plications of sequence-based classification, i.e., the triplet loss evolved recently for language processing applications
such as visual semantic clustering, while pairwise learning is typically applied in fields such as image recognition.
Ethical statement about collection consent and personal information: For data recording, the consent of all partici-
pants was collected. The datasets only contain the raw data from the sensor-enhanced pen and – for statistics – the
age, gender, and handedness of the participants. The datasets are fully pseudonymized by assigning an ID to every
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participant. The datasets do not contain any personal identifying information. The approach proposed in this paper –
in particular, when used for the application of online handwriting recognition from sensor-enhanced pens – does not
(1) facilitate injury to living beings, (2) raise safety or security concerns (due to the anonymity of the data), (3) raise
human rights concerns, (4) have a detrimental effect on people’s livelihood, (5) develop harmful forms of surveillance
(as the data is pseudonymized), (6) damage the environment, and (7) deceive people in ways that cause harm.

Limitations

The limitation of the method is the requirement of multiple image-based datasets in the same language. As the OnHW-
words and OnHW-wordsRandom datasets are written in German and contain word labels with mutated vowels, a
similar image-based German dataset is required, which does not currently exist. The available dataset most similar to
the OnHW dataset is the IAM-OffDB dataset, which does not contain mutated vowels. Hence, the OCR method cannot
be pre-trained on words with mutated vowels. In conclusion, the method is not limited by ScrabbleGAN, but by the
image-based dataset required for pre-training. The GTR method could also be directly pre-trained on the IAM-OffDB
dataset, but we assume less generalized results than for our generated dataset.
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A Appendices

We present the multi-task learning technique in Section A.1, and show more details on learning with the triplet loss
on synthetically generated signal and image data in Section A.2. We propose more details of our architectures in
Section A.3. Section A.4 presents results of representation learning for online HWR.

A.1 Multi-Task Learning

We simultaneously train the LCTC loss for sequence classification combined with one or two shared losses Lshared,1 and
Lshared,2 for cross-modal representation learning. As both losses are in different ranges, the naive weighting

Ltotal =
|T |∑
i=1

ωiLi, (3)

with pre-specified constant weights ωi = 1, ∀i ∈ {1, . . . , |T |} can harm the training process. Hence, we apply
dynamic weight average (DWA) (Liu et al., 2019) as a multi-task learning approach that performs dynamic task
weighting over time (i.e., after each batch).

A.2 Training Synthetic Data with the Triplet Loss

Signal and Image Generation. We combine the networks for both signal and image classification to improve the
classification accuracy over each single-modal network. The aim is to show that the triplet loss can be used for such
a cross-modal setting in the field of cross-modal representation learning. Hence, we generate synthetic data in which
the image data contains information of the signal data. We generate signal data x with xi,k = sin

(
0.05 · ti

k

)
for all

ti ∈ {1, . . . , 1, 000} where ti is the timestep of the signal. The frequency of the signal is dependent on the class
label k. We generate signal data for 10 classes (see Figure 10a). We add noise from a continuous uniform distribution
U(a, b) for a = 0 and b = 0.3 (see Figure 10b) and add time and magnitude warping (see Figure 10c). We generate
a signal-image pair such that the image is based on the signal data. We make use of the Gramian angular field that
transforms time-series into images. The time-series is defined as x = (x1, . . . , xn) for n = 1, 000. The Gramian
angular field creates a matrix of temporal correlations for each (xi, xj) by rescaling the time-series in the range [p, q]
with −1 ≤ p < q ≤ 1 by

x̂i = p + (q − p) · xi − min(x)
max(x) − min(x) , ∀i ∈ {1, . . . , n}, (4)

and computes the cosine of the sum of the angles for the GASF (Wang & Oates, 2015) by

GASFi,j = cos (ϕi + ϕj), ∀i, j ∈ 1, . . . , n, (5)

with ϕi = arccos (x̂i), ∀i ∈ {1, . . . , n} being the polar coordinates. We generate image datasets based on signal data
with different noise parameters (b ∈ {0.0, . . . , 1.95}) to show the influence of the image data on the classification
accuracy. As an example, Figure 11 shows the GASF plots for the noise parameters b = [0, 0.5, 1.0, 1.5, 1.95]. We
present the GASF for the classes 0, 5, and 9 to show the dependency of the frequency of the signal data on the GASF.
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(a) Signal data of 10 classes.
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(b) Signal data with noise b = 0.3.
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(c) Applying augmentation techniques.

Figure 10: Plot of the 1D signal data for 10 classes.
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Figure 11: Plot of the GASF based on 1D signal data with added noise for the classes 0 (top row), 5 (middle row) and
9 (botton row).

Models. We use the following models for classification. Our encoder for time-series classification consists of a 1D
convolutional layer (filter size 50, kernel 4), a max pooling layer (pool size 4), batch normalization, and a dropout layer
(20%). The image encoder consists of a layer normalization and 2D convolutional layer (filter size 200), and batch
normalization with ELU activation. After that, we add a 1D convolutional layer (filter size 200, kernel 4), max pooling
(pool size 2), batch normalization, and 20% dropout. For both models, after the dropout layer follows a cross-modal
representation – i.e., an LSTM with 10 units, a Dense layer with 20 units, a batch normalization layer, and a Dense
layer of 10 units (for 10 sinusoidal classes). These layers are shared between both models.

A.3 Details on Architectures for Offline HWR

In this section, we provide details about the integration of Inception (Szegedy et al., 2015), ResNet (He et al., 2016)
and GTR (Yousef et al., 2018) modules into the offline HWR system. All three architectures are based on publicly
available implementations, but we changed or adapted the first layer for the image input and the last layer for a proper
input for our latent representation module.

Inception. Figure 12 gives an overview of the integration of the Inception module. The Inception module is part
of the well-known GoogLeNet architecture. The main idea is to consider how an optimal local sparse structure can
be approximated by readily available dense components. As the merging of pooling layer outputs with convolutional
layer outputs would lead to an inevitable increase in the number of output and would lead to a high computational
increase, we apply the Inception module with dimensionality reduction to our offline HWR approach (Szegedy et al.,
2015). The input image is of size H × W . What follows is the Inception (3a), Inception (3b), a max pooling layer
(3 × 3) and Inception (4a). We add three 1D convolutional layers to obtain an output dimensionality of 400 × 200 as
the input for the latent representation.

ResNet34. Figure 13 provides an overview of the integration of the ResNet34 architecture. Instead of learning
unreferenced functions, He et al. (2016) reformulated the layers as learning residual functions with reference to the
layer inputs. This residual network is easier to optimize and can gain accuracy from considerably increased depth.
The ResNet block allows the layers to fit a residual mapping denoted as H(x) with identity x and fits the mapping
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Figure 12: Offline HWR method based on Inception modules (Szegedy et al., 2015).
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Figure 13: Offline HWR method based on the ResNet34 architecture (He et al., 2016).

F(x) := H(x) − x. The original mapping is recast into F(x) + x. We reshape the output of ResNet34, add a 1D
convolutional layer, and reshape the output for the latent representation.

GTR. Figure 14 gives an overview of the integration of the GTR (Yousef et al., 2018) module – a fully convolu-
tional network that uses batch normalization (BN) and layer normalization (LN) to regularize the training process and
increase convergence speed. The module uses batch renormalization (Ioffe, 2017) on all BN layers. Depthwise sep-
arable convolutions reduce the number of parameters at the same/better classification performance. GTR uses spatial
dropout instead of regular unstructured dropout for better regularization. After the input image of size H × W that
is normalized follows a convolutional layer with Softmax normlization, a 13 × 13 filter, and dropout (40%). After
the dropout layer, a stack of 2, 4, 6 or 8 gate blocks follows that models the input sequence. Similar to (Yousef et al.,
2018), we add a dropout of 20% after the last GTR block. Lastly, we add a 2D convolutional layer of 200, a BN layer
and a LN layer that is the input for our latent representation.
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Figure 14: Offline HWR method based on the GTR architecture (Yousef et al., 2018).

Table 9: Evaluation results (WER and CER in %) averaged over five splits of the baseline MTS-only technique and
our cross-modal learning technique for the inertial-based OnHW datasets (Ott et al., 2022c) with and without mutated
vowels (MV) for two convolutional layers c = 2. We propose writer-(in)dependent (WD/WI) results. Best results are
bold, and second best results are underlined. Arrows indicate improvements (↑) and degradation (↓) of baseline results
(CNN+BiLSTM, w/o MV).

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER
Small CNN+BiLSTM, LCTC, w/ MV 51.95 17.16 60.91 27.80 41.27 7.87 84.52 35.22
CNN+BiLSTM (ours), LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
CNN+BiLSTM (ours), LCTC, w/o MV 42.77 13.44 59.82 28.54 41.52 7.81 83.54 36.51
LMSE 39.79 ↑ 12.14 ↑ 60.35 ↓ 28.48 ↑ 39.98 ↑ 7.79 ↑ 83.50 ↑ 36.92 ↓
LCS 43.40 ↓ 13.70 ↓ 59.31 ↑ 27.99 ↑ 40.31 ↑ 7.68 ↑ 83.68 ↓ 36.30 ↑
LPC 38.90 ↑ 11.60 ↑ 60.77 ↓ 28.45 ↑ 39.93 ↑ 7.60 ↑ 83.19 ↑ 35.83 ↑
LKL 37.25 ↑ 11.29 ↑ 65.10 ↓ 31.26 ↓ 41.81 ↓ 8.22 ↓ 84.40 ↓ 38.93 ↓
Ltrpl,2(LMSE) 41.16 ↑ 12.71 ↑ 58.65 ↑ 28.19 ↑ 41.16 ↑ 8.03 ↓ 85.38 ↓ 39.49 ↓
Ltrpl,2(LCS) 42.74 ↑ 13.43 ↑ 58.13 ↑ 27.62 ↑ 41.49 ↑ 8.18 ↓ 85.24 ↓ 38.75 ↓
Ltrpl,2(LPC) 39.94 ↑ 12.19 ↑ 62.76 ↓ 30.68 ↓ 41.58 ↓ 8.18 ↓ 85.18 ↓ 38.53 ↓
Ltrpl,2(LKL) 38.34 ↑ 11.77 ↑ 67.08 ↓ 33.84 ↓ 41.87 ↓ 8.33 ↓ 86.34 ↓ 40.37 ↓

A.4 Detailed Online HWR Evaluation

Table 7 gives an overview of cross-modal representation learning results based on two convolutional layers (c = 2) for
the cross-modal representation. Our CNN+BiLSTM contains three additional convolutional layers and outperforms
the smaller CNN+BiLSTM by (Ott et al., 2022c) on the WD classification tasks. Without triplet loss, LPC yields the
best results on the OnHW-wordsRandom dataset. The triplet loss partly decreases results and partly improves results
on the OnHW-words500 dataset. In conclusion, two convolutional layers for the cross-modal representation has a
negative impact, while here the triplet loss has no impact.
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