
Fair Algorithms for Multi-Agent Multi-Armed Bandits

Safwan Hossain
Department of Computer Science

University of Toronto
safwan.hossain@mail.utoronto.ca

Evi Micha
Department of Computer Science

University of Toronto
emicha@cs.toronto.edu

Nisarg Shah
Department of Computer Science

University of Toronto
nisarg@cs.toronto.edu

Abstract

We propose a multi-agent variant of the classical multi-armed bandit problem, in
which there are N agents and K arms, and pulling an arm generates a (possibly
different) stochastic reward for each agent. Unlike the classical multi-armed bandit
problem, the goal is not to learn the “best arm”; indeed, each agent may perceive
a different arm to be the best for her personally. Instead, we seek to learn a fair
distribution over the arms. Drawing on a long line of research in economics and
computer science, we use the Nash social welfare as our notion of fairness. We
design multi-agent variants of three classic multi-armed bandit algorithms and
show that they achieve sublinear regret, which is now measured in terms of the lost
Nash social welfare.

1 Introduction

In the classical (stochastic) multi-armed bandit (MAB) problem, a principal has access to K arms and
pulling arm j generates a stochastic reward for the principal from an unknown distribution Dj with
an unknown mean µ∗j . If the mean rewards were known a priori, the principal could just repeatedly
pull the best arm given by arg maxj µ

∗
j . However, the principal has no apriori knowledge of the

quality of the arms. Hence, she uses a learning algorithm which operates in rounds, pulls arm jt in
round t, observes the stochastic reward generated, and uses that information to learn the best arm
over time. The performance of such an algorithm is measured in terms of its cumulative regret up
to a horizon T , defined as

∑T
t=1(maxj µ

∗
j − µ∗jt). Note that this is the difference between the total

mean reward that would have been achieved if the best arm was pulled repeatedly and the total mean
reward of the arms pulled by the learning algorithm up to round T .

This problem can model situations where the principal is deliberating a policy decision and the arms
correspond to the different alternatives she can implement. However, in many real-life scenarios,
making a policy decision affects not one, but several agents. For example, imagine a company making
a decision that affects all its employees, or a conference deciding the structure of its review process,
which affects various research communities. This can be modeled by a multi-agent variant of the
multi-armed bandit (MA-MAB) problem, in which there are N agents and pulling arm j generates a
(possibly different) stochastic reward for each agent i from an unknown distribution Di,j with an
unknown mean µ∗i,j .

Before pondering about learning the “best arm” over time, we must ask what the best arm even
means in this context. Indeed, the “best arm” for one agent may not be the best for another. A first
attempt may be to associate some “aggregate quality” to each arm; for example, the quality of arm

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

j may be defined as the total mean reward it gives to all agents, i.e.,
∑
i µ
∗
i,j . This would nicely

reduce our problem to the classic multi-armed bandit problem, for which we have an armory of
available solutions [1]. However, this approach suffers from the tyranny of the majority [2]. For
example, imagine a scenario with ten agents, two arms, and deterministic rewards. Suppose four
agents derive a reward of 1 from the first arm but 0 from the second, while the remaining six derive a
reward of 1 from the second arm but 0 from the first. The aforementioned approach will deem the
second arm as the best and a classical MAB algorithm will converge to repeatedly pulling the second
arm, thus unfairly treating the first four agents (a minority). A solution which treats each group in a
“proportionally fair” [2] manner should ideally converge to pulling the first arm 40% of the time and
the second 60% of the time. Alternatively, we can allow the learning algorithm to “pull” a probability
distribution over the arms and seek an algorithm that converges to placing probability 0.4 on the first
arm and 0.6 on the second.

This problem of making a fair collective decision when the available alternatives — in this case,
probability distributions over the arms — affect multiple agents is well-studied in computational
social choice [3]. The literature offers a compelling fairness notion called the Nash social welfare,
named after John Nash. According to this criterion, the fairest distribution maximizes the product
of the expected utilities (rewards) to the agents. A distribution p that places probability pj on each
arm j gives expected utility

∑
j pj · µ∗i,j to agent i. Hence, the goal is to maximize NSW(p, µ∗) =∏N

i=1(
∑K
j=1 pj · µ∗i,j) over p. One can verify that this approach on the aforementioned example

indeed yields probability 0.4 on the first arm and 0.6 on the second, as desired. It is also interesting
to point out that with a single agent (N = 1), the distribution maximizing the Nash social welfare
puts probability 1 on the best arm, thus effectively reducing the problem to the classical multi-armed
bandit problem (albeit with subtle differences which we highlight in Appendix A).

Maximizing the Nash social welfare is often seen as a middle ground between maximizing the
utilitarian social welfare (sum of utilities to the agents), which is unfair to minorities (as we observed),
and maximizing the egalitarian social welfare (minimum utility to any agent), which is considered
too extreme [2]. The solution maximizing the Nash social welfare is also known to satisfy other
qualitative fairness desiderata across a wide variety of settings [4–11]. For example, a folklore result
shows that in our setting such a solution will always lie in the core; we refer the reader to the work of
Fain et al. [4] for a formal definition of the core as well as a short derivation of this fact using the
first-order optimality condition. For further discussion on this, see Sections 1.2 and 6.

When exactly maximizing the Nash social welfare is not possible (either due to a lack of com-
plete information, as in our case, or due to computational difficulty), researchers have sought to
achieve approximate fairness by approximately maximizing this objective [12–17]. Following
this approach in our problem, we define the (cumulative) regret of an algorithm at horizon T as∑T
t=1(maxp NSW(p, µ∗) − NSW(pt, µ∗)), where pt is the distribution selected in round t. Our

goal in this paper is to design algorithms whose regret is sublinear in T .

1.1 Our Results

We consider three classic algorithms for the multi-armed bandit problem: Explore-First, Epsilon-
Greedy, and UCB [1]. All three algorithms attempt to balance exploration (pulling arms only to
learn their rewards) and exploitation (using the information learned so far to pull “good” arms).
Explore-First performs exploration for a number of rounds optimized as a function of T followed
by exploitation in the remaining rounds to achieve regret Õ

(
K1/3T 2/3

)
. Epsilon-Greedy flips a

coin in each round to decide whether to perform exploration or exploitation and achieves the same
regret bound. Its key advantage over Explore-First is that it does not need to know the horizon T
upfront. UCB merges exploration and exploitation to achieve a regret bound of Õ

(
K1/2T 1/2

)
. Here,

Õ hides log factors. Traditionally, the focus is on optimizing the exponent of T rather than that of K
as the horizon T is often much larger than the number of arms K. It is known that the dependence of
UCB’s regret on T is optimal: no algorithm can achieve instance-independent o(T 1/2) regret [18].1

1In instance-independent bounds, the constant inside the big-Oh notation is not allowed to depend on the
(unknown) distributions in the given instance. UCB also achieves an O(log T) instance-dependent regret bound,
which is also known to be asymptotically optimal [19]. For further discussion, see Section 6.

2

We propose natural multi-agent variants of these three algorithms. Our variants take the Nash social
welfare objective into account and select a distribution over the arms in each round instead of a
single arm. For Explore-First, we derive Õ

(
N2/3K1/3T 2/3

)
regret bound, which recovers the

aforementioned single-agent bound with an additional factor of N2/3. We also show that changing
a parameter of the algorithm yields a regret bound of Õ

(
N1/3K2/3T 2/3

)
, which offers a different

tradeoff between the dependence on N and K. For Epsilon-Greedy, we recover the same two regret
bounds, although the analysis becomes much more intricate. This is because, as mentioned above,
Epsilon-Greedy is a horizon-independent algorithm (i.e. it does not require apriori knowledge of T),
unlike Explore-First. For UCB, we derive Õ

(
NKT 1/2

)
and Õ

(
N1/2K

3
2T 1/2

)
regret bounds; our

dependence on K worsens compared to the classical single-agent case, but importantly, we recover
the same

√
T dependence, which is provably optimal (see Appendix A).

Deriving these regret bounds for the multi-agent case requires overcoming two key difficulties that
do not appear in the single-agent case. First, our goal is to optimize a complicated function, the Nash
social welfare, rather than simply selecting the best arm. This requires a Lipschitz-continuity analysis
of the Nash social welfare function and the use of new tools such as the McDiarmid’s inequality
which are not needed in the standard analysis. Second, the optimization is over an infinite space (the
set of distributions over arms) rather than over a finite space (the set of arms). Thus, certain tricks
such as a simple union bound no longer work; we use the concept of δ-covering, used heavily in the
Lipschitz bandit framework [20], in order to address this.

Our contributions are twofold. Conceptually, we promote a multi-agent viewpoint that requires
striking a tradeoff between multiple reward functions; this can be applied to other classical single-
agent problems. More technically, as explained below, the existing MAB literature does not provide a√
T bound for the Nash social welfare objective. Our regret bounds may be generalizable to a broader

family of objectives for which a
√
T bound was previously unknown.

1.2 Related Work

Since the multi-armed bandit problem was introduced by Thompson [21], many variants of it have
been proposed, such as sleeping bandit [22], contextual bandit [23], dueling bandit [24], Lipschitz
bandit [20], etc. However, all these variants involve optimizing the cumulative regret or identifying
the Pareto frontier of multiple objectives [25] from the perspective of a single agent. We note that
other multi-agent variants of the multi-armed bandit problem have been explored recently [26, 27],
including in distributed environments [28–30]. However, they still involve a common reward like
in the classical multi-armed bandit problem. Their focus is on getting the agents to cooperate to
maximize this common reward.

It is possible to view our work from a single-agent prespective by treating theK-simplex of probability
distributions over arms as a “continuum of arms” and the Nash welfare as a non-linear objective to be
optimized. Kleinberg et al. [31] explore continuum-armed bandits, but establish a Õ

(
T
γ+1
γ+2

)
regret

bound, where γ is the zooming dimension, which would be Θ(K) in our case. Bubeck et al. [32]
also study continuum-armed bandits and establish a similar regret bound, but with respect to the
near-optimality dimension, which is again Θ(K) in our case. Hence, the guarantees of Kleinberg et al.
[31] and Bubeck et al. [32], when applied to our setting, are worse than our Õ

(√
T
)

regret bound.

The literature on bandit convex optimization [33–35] offers Õ
(√

T
)

regret bound, but requires the

objective to be concave, which the Nash social welfare (NSW) is not.2

Another key aspect of our framework is the focus on fairness. Recently, several papers have focused
on fairness in the multi-armed bandit problem. For instance, Joseph et al. [37] design a UCB variant
which guarantees what they refer to as meritocratic fairness to the arms, i.e., that a worse arm is never
preferred to a better arm regardless of the algorithm’s confidence intervals for them. Liu et al. [38]
require that similar arms be treated similarly, i.e., two arms with similar mean rewards be selected
with similar probabilities. Gillen et al. [39] focus on satisfying fairness with respect to an unknown
fairness metric. Finally, Patil et al. [40] assume that there are external constraints requiring that

2Since NSW is log-concave, one might argue that we can apply these results to log-NSW. However, a regret
bound in log-NSW does not imply the desired regret bound in NSW.

3

each arm be pulled in at least a certain fraction of the rounds and design algorithms that achieve low
regret subject to this constraint. All these papers seek to achieve fairness with respect to the arms.
In contrast, in our work, the arms are “inanimate” (e.g. policy decisions) and we seek fairness with
respect to the agents, who are separate from the arms.

2 Preliminaries

For n ∈ N, define [n] = {1, . . . , n}. Let N,K ∈ N. In the multi-agent multi-armed bandit
(MA-MAB) problem, there is a set of agents [N] and a set of arms [K]. For each agent i ∈ [N]
and arm j ∈ [K], there is a reward distribution Di,j with mean µ∗i,j and support [0, 1];3 when
arm j is pulled, each agent i observes an independent reward sampled from Di,j . Let us refer to
µ∗ = (µ∗i,j)i∈[N],j∈[K] ∈ [0, 1]N×K as the (true) reward matrix.

Policies: As mentioned in the introduction, pulling an arm deterministically may be favorable to one
agent, but disastrous to another. Hence, we are interested in probability distributions over arms, which
we refer to as policies. The K-simplex, denoted ∆K , is the set of all policies. For a policy p ∈ ∆K ,
pj denotes the probability with which arm j is pulled. Note that due to linearity of expectation, the
expected reward to agent i under policy p is

∑K
j=1 pj · µ∗i,j .

Nash social welfare: The Nash social welfare is defined the product of (expected) rewards
to the agents. Given µ = (µi,j)i∈[N],j∈[K], and policy p ∈ ∆K , define NSW(p, µ) =∏N
i=1

(∑K
j=1 pj · µi,j

)
. Thus, the (true) Nash social welfare under policy p is NSW(p, µ∗). Hence,

if we knew µ∗, we would pick an optimal policy p∗ ∈ arg maxp∈∆K NSW(p, µ∗). However, because
we do not know µ∗ in advance, our algorithms will often produce an estimate µ̂, and use it to choose
a policy; the quantity NSW(p, µ̂) will play a key role in our algorithms and their analysis.

Algorithms: An algorithm for the MA-MAB problem chooses a policy pt in each round t ∈ N. Then,
an arm at is sampled according to policy pt, and for each agent i ∈ [N], a reward Xt

i,at is sampled
independently from distribution Di,at . At the end of round t, the algorithm learns the sampled arm
at and the reward vector (Xt

i,at)i∈[N], which it can use to choose policies in the later rounds.

Reward estimates: All our algorithms maintain an estimate of the mean reward matrix µ∗ at every
round. For round t and arm j ∈ [K], let ntj =

∑t−1
s=1 1[as = j] denote the number of times arm j is

pulled at the beginning of round t, and let µ̂ti,j = 1
ntj

∑
s∈[t−1]:as=j X

s
i,j denote the average reward

experienced by agent i from the ntj pulls of arm j thus far. Our algorithms treat these as an estimate
of µ∗i,j available at the beginning of round t. Let µ̂t = (µ̂ti,j)i∈[N],j∈[K].

Regret: Recall that p∗ is an optimal policy that has the highest Nash social welfare. The instantaneous
regret in round t due to an algorithm choosing pt is rt = NSW(p∗, µ∗) − NSW(pt, µ∗). The
(cumulative) regret in round T due to an algorithm choosing p1, . . . , pT is RT =

∑T
t=1 r

t. We note
that RT and rt are defined for a specific algorithm, which will be clear from the context. We are
interested in bounding the expected regret E[RT] of an algorithm at round T , where the expectation
is over the randomness involved in sampling the arms at and the agent rewards (Xt

i,at)i∈[N] for
t ∈ [T].4 We say that an algorithm is horizon-dependent if it needs to know T in advance, and
horizon-independent if it yields a regret bound at each possible T simultaneously.

3 Explore-First

Perhaps the simplest algorithm (with a sublinear regret bound) in the classic single-agent MAB
framework is Explore-First. It is composed of two distinct stages. The first stage is exploration, during
which the algorithm pulls each arm L times. At the end of this stage, the algorithm computes the arm
â with the best estimated mean reward, and in the subsequent exploitation stage, pulls arm â in every

3We need the support of the distribution to be non-negative and bounded, but the upper bound of 1 is without
loss of generality. All our bounds scale linearly with the upper bound on the support.

4The algorithms we study do not introduce any further randomness in choosing the policies.

4

round. The algorithm is horizon-dependent, i.e., it takes the horizon T as input and sets L as a function
of T . Setting L = Θ

(
K−

2
3T

2
3 log

1
3 (T)

)
yields regret bound E[RT] = O

(
K

1
3T

2
3 log

1
3 (T)

)
[1].

In our multi-agent variant, presented as Algorithm 2 in the supplementary material, the exploration
stage pulls each arm L times as before. However, at the end of this stage, the algorithm computes, not
an arm â, but a policy p̂ with the best estimated Nash social welfare. During exploitation, it then uses
policy p̂ in every round. With an almost identical analysis as in the single-agent setting, we recover
the aforementioned regret bound with an additional N2/3 factor for N agents.

Using a novel and more intricate argument, we show that a different tradeoff between the exponents
of N and K can be obtained, where N2/3 is reduced to N1/3 at the expense of increasing K1/3

to K2/3 (and adding a logarithmic term). We later use this approach again in our analysis of more
sophisticated algorithms.

We remark that Algorithm 2 can be implemented efficiently. The only non-trivial step is to compute
the optimal policy given an estimated reward matrix, i.e., p̂ ∈ arg maxp∈∆K NSW(p, µ̂). Since the
Nash social welfare is known to be log-concave, this can be solved in polynomial time [41].

Our analysis of Explore-First and later algorithms relies on a few elementary lemmas regarding the
behavior of the Nash social welfare function NSW(p, µ). We are mainly interested in how much the
function can change when its arguments change. To that end, the following folklore result translates
the difference in a product to a sum of point-wise differences that are easier to deal with. All missing
proofs are in the supplementary material.

Lemma 1. Let ai, bi ∈ [0, 1] for i ∈ [N]. Then,
∣∣∣∏N

i=1 ai −
∏N
i=1 bi

∣∣∣ ≤∑N
i=1 |ai − bi|.

Using Lemma 1, we can easily analyze Lipschitz-continuity of NSW(p, µ) when either p or µ
changes and the other is fixed. First, we consider change in p with µ fixed.
Lemma 2. Given a reward matrix µ ∈ [0, 1]N×K and policies p1, p2 ∈ ∆K , we have∣∣NSW(p1, µ)−NSW(p2, µ)

∣∣ ≤ N · ∥∥p1 − p2
∥∥

1
= N ·

∑
j∈[K]

∣∣p1
j − p2

j

∣∣ .
Next, we consider change in µ with p fixed.
Lemma 3. Given a policy p ∈ ∆K , and reward matrices µ1, µ2 ∈ [0, 1]N×K , we have∣∣NSW(p, µ1)−NSW(p, µ2)

∣∣ ≤∑i∈[N]

∑
j∈[K]pj ·

∣∣µ1
i,j − µ2

i,j

∣∣ .
We are now ready to establish the regret bounds for Explore-First.
Theorem 1. Explore-First is horizon-dependent and has the following expected regret at round T .

• When L = Θ
(
N

2
3K−

2
3T

2
3 log

1
3 (NKT)

)
, E[RT] = O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT)

)
.

• When L = Θ
(
N

1
3K−

1
3T

2
3 log

2
3 (NKT)

)
, E[RT] = O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT)

)
.

4 Epsilon-Greedy

A slightly more sophisticated algorithm than Explore-First is Epsilon-Greedy, which is presented
as Algorithm 3 in the supplementary material. It spreads out exploration instead of performing
it all at the beginning. Specifically, at each round t, it performs exploration with probability εt,
and exploitation otherwise. Exploration cycles through the arms in a round-robin fashion, while
exploitation uses the policy pt with the highest Nash social welfare under the current estimated
reward matrix (rather than choosing a single estimated best arm as in the classical algorithm).

Like Explore-First, Epsilon-Greedy can be implemented efficiently. The only non-trivial step is to
compute p̂ ∈ arg maxp∈∆K NSW(p, µ̂), which, as mentioned before, can be done efficiently.

The key advantage of Epsilon-Greedy over Explore-First is that it is horizon-independent. However,
in the µ̂ computed in Explore-First at the end of exploration, each µ̂i,j is the average of L iid samples,
where L is fixed. In contrast, in the µ̂t computed in Epsilon-Greedy in round t, each µ̂ti,j is the

5

average of ntj iid samples. The fact that ntj is itself a random variable and the µ̂ti,j-s are correlated
through the ntj-s prevents a direct application of certain statistical inequalities, thus complicating the
analysis of Epsilon-Greedy. To address this, we first present a sequence of useful lemmas that apply
to any algorithm, and then use them to prove the regret bounds of Epsilon-Greedy and later UCB.

4.1 Useful Lemmas

Recall that µ∗ and µ̂t denote the true reward matrix and the estimated reward matrix at the beginning of
round t, respectively. Our goal is to find an upper bound on the quantity |NSW(p, µ∗)−NSW(p, µ̂t)|
that, with high probability, holds at every p ∈ ∆K simultaneously. To that end, we first need to show
that µ̂t will be close to µ∗ with high probability.

Recall that random variable ntj denotes the number of times arm j is pulled by an algorithm before
round t, and µ̂ti,j is an average over ntj independent samples. Hence, we cannot directly apply
Hoeffding’s inequality, but we can nonetheless use standard tricks from the literature.

Lemma 4. Define rtj =
√

2 log(NKt)
ntj

, and event Et , ∀i ∈ [N], j ∈ [K] :
∣∣µ̂ti,j − µ∗i,j∣∣ ≤ rtj . Then,

for any algorithm and any t, we have Pr[Et] ≥ 1− 2
t3 .

Conditioned on Et, we wish to bound |NSW(p, µ∗)−NSW(p, µ̂t)| simultaneously at all p ∈ ∆K .
We provide two such (incomparable) bounds, which will form the crux of our regret bound analysis.
The first bound is a direct application of the Lipschitz-continuity analysis from Lemma 3.
Lemma 5. Conditioned on Et, we have that

∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤ N ·∑j∈[K]pj · r
t
j .

The factor of N in Lemma 5 stems from analyzing how much µ̂t may deviate from µ∗ conditioned
on Et, in the worst case. However, even after conditioning on Et, µ̂t remains a random variable.
Hence, one may expect that its deviation, and thus the difference |NSW(p, µ̂t)−NSW(p, µ∗)|, may
be smaller in expectation. Thus, to derive a different bound than in Lemma 5, we wish to apply
McDiarmid’s inequality. However, there are two issues in doing so directly.

• McDiarmid’s inequality bounds the deviation of NSW(p, µ̂t) from its expected value. If
µ̂t consisted of independent random variables, like in Explore-First, this would be equal to
NSW(p, µ∗). However, in general, these variables may be correlated through ntj . We use a
conditioning trick to address this issue.

• We cannot hope to apply McDiarmid’s inequality at each p ∈ ∆K separately and use
the union bound because ∆K is infinite. So we apply it at each p in a δ-cover of ∆K ,
apply the union bound, and then translate the guarantee to nearby p ∈ ∆K using the
Lipschitz-continuity analysis from Lemma 2.

The next result is one of the key technical contributions of our work with a rather long proof.
Lemma 6. Define the event

Ht , ∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√12NK log(NKt) ·
∑
j∈[K]pj · r

t
j +

4

t
.

Then, for any algorithm and any t, we have Pr[Ht|Et] ≥ 1− 2/t3.

Finally, we use the following simple observation in deriving our asymptotic bounds.

Proposition 1. For constant p ∈ R,
∑T
t=1 t

p is Θ (log T) if p = −1 and Θ
(
T p+1

)
when p > −1.

4.2 Analysis of Epsilon-Greedy

We can now use these lemmas to establish the regret bounds for Epsilon-Greedy.
Theorem 2. Epsilon-Greedy is horizon-independent, and has the following expected regret at any
round T .

• If εt = Θ
(
N

2
3K

1
3 t−

1
3 log

1
3 (NKt)

)
for all t, E[RT] = O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT)

)
.

• If εt = Θ
(
N

1
3K

2
3 t−

1
3 log

2
3 (NKt)

)
for all t, E[RT] = O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT)

)
.

6

5 UCB

Algorithm 1: UCB
Input: Number of agents N , number of arms K
Parameters :Confidence parameter αt for each t ∈ N
// Pull each arm once

for t = 1, . . . ,K do
pt ← policy that puts probability 1 on arm t // Pull arm t deterministically

end
for t = K + 1, . . . do

Compute the estimated reward matrix µ̂t

pt ← arg maxp∈∆K NSW(p, µ̂t) + αt
∑
j∈[K] pj · rtj , where rtj ,

√
log(NKt)

ntj
.

end

In the classical multi-armed bandit setting, UCB first pulls each arm once. Afterwards, it merges
exploration and exploitation cleverly by pulling, in each round, an arm maximizing the sum of its
estimated reward and a confidence interval term similar to rtj in Algorithm 1. Our multi-agent variant
similarly selects a policy that maximizes the estimated Nash social welfare plus a confidence term for
a policy, which simply takes a linear combination of the confidence intervals of the arms.

Unlike Explore-First and Epsilon-Greedy, it is not clear if our UCB variant admits an efficient
implementation due to the step of computing arg maxp∈∆K NSW(p, µ̂) + αt

∑
j∈[K] pjr

t
j . Due

to the added linear term, the objective is no longer log-concave. This remains a challenging open
problem. However, we notice that this can also be viewed as the problem of optimizing a polynomial
over a simplex, which, while NP-hard in general, admits a PTAS when the degree is a constant [42, 43].
Hence, when the number of agents N is a constant, this step can be computed approximately, but it
remains to be seen how this approximation translates to the regret bound.

We show that UCB achieves the desired
√
T dependence on the horizon (up to logarithmic factors).

In Appendix A, we show that this is optimal.

Theorem 3. UCB is horizon-independent, and has the following expected regret at any round T .

• If αt = N for all t, E[RT] = O
(
NKT

1
2 log(NKT)

)
.

• If αt =
√

12NK log(NKt) for all t, E[RT] = O
(
N

1
2K

3
2T

1
2 log

3
2 (NKT)

)
.

Proof. Fix one of two parameter choices:

1. αt = N for all t and c = N .

2. αt =
√

12NK log(NKt) for all t and c =
√

12NK log(NKT).

Note that in both cases, αt ≤ c for all t. Hence, c serves as an upper bound on αt that does not
depend on t. We show that in both cases, running UCB with the αt parameter value yields a regret
bound of E[RT] = O(cK

√
T log(NKT)). Substituting the two choices of c then yields the two

regret bounds. Let us again focus on the event

Ctα , ∀p ∈ ∆K :
∣∣NSW(p, µ∗)−NSW(p, µ̂t)

∣∣ ≤ αt ·∑j∈[K]pj · r
t
j +

4

t
.

Recall the clean events Et and Ht defined in Lemmas 4 and 6. Conditioned on Et ∧ Ht, note that
Ctα holds for αt = N due to Lemma 5, and for αt =

√
12NK logNKt due to Lemma 6. Using

Lemmas 4 and 6, and the union bound, we have Pr[¬Ctα] ≤ 1−Pr[Et∧Ht] = 1−Pr[Et]·Pr[Ht|Et] ≤
1− (1− 2/t3) · (1− 2/t3) ≤ 4/t3.

7

Define a clean event C∗α ,
∧
t≥
√
T Ctα. Here, we do not care about the first

√
T rounds because the

maximum regret from these rounds isO
(√

T
)

, which is permissible given our desired regret bounds.

By the union bound, we have Pr[¬C∗α] ≤ T ·4/(
√
T)3 = 4/

√
T . Thus, C∗α is a high-probability event.

In what follows, we derive an upper bound on the expected regret conditioned on C∗α, i.e., E[RT |C∗α].
Since conditioning on a high-probability event does not affect the expected value significantly, the
desired regret bound will then follow. For any t ∈ [T], conditioned on Ctα we have that

NSW(p∗, µ∗) ≤ NSW(p∗, µ̂t) + αt
∑
j∈[K]

p∗j · rtj +
4

t
≤ NSW(pt, µ̂t) + αt

∑
j∈[K]

ptj · rtj +
4

t

≤ NSW(pt, µ∗) + 2αt
∑
j∈[K]

ptj · rtj +
8

t
,

where the first and the last transition are from conditioning on Ctα, and the second transition is because
p = pt maximizes the quantity NSW(p, µ̂t) + αt

∑
j∈[K] pj · rtj in the UCB algorithm.

Let us write p[T] = (p1, . . . , pT) for the random variable denoting the policies used by the algorithm,
and p[T] = (p1, . . . , pT) to denote a specific value in (∆K)T taken by the random variable.

Instead of analyzing E[RT |C∗α] directly, we further condition on UCB choosing a specific sequence
of policies p[T]. That is, we are interested in deriving an upper bound on E[RT |C∗α ∧ p[T] = p[T]].5

Interestingly, we show that this quantity is O
(
cK
√
T log(NKT)

)
for every possible p[T].

Fix an arbitrary p[T]. For t ∈ [T] and j ∈ [K], define qtj =
∑t
s=1 p

s
j . Then, E[ntj |p[T] = p[T]] = qtj .

For each j ∈ [K], let Tj be the smallest t for which qtj ≥ 2
√
T log(NKT) (if no such t exists,

let Tj = T); note that given p[T], Tj is fixed and not a random variable. Also, we have that

q
Tj
j = Θ

(√
T log(NKT)

)
for each j ∈ [K].

Let us define a clean event B , ∀j ∈ [K], n
Tj
j ≥

√
T log(NKT). We first show that this is a high

probability event. Indeed, using Hoeffding’s inequality, we have that for each j ∈ [K],

Pr
[
n
Tj
j <

√
T log(NKT)

∣∣ C∗α ∧ p[T] = p[T]
]
≤ Pr

[
n
Tj
j < s

Tj
j −

√
T log(NKT)

∣∣ C∗α ∧ p[T] = p[T]
]

≤ 1

N2K2T 2
.

Taking union bound over j ∈ [K], we have that Pr
[
¬B

∣∣ C∗α ∧ p[T] = p[T]
]
≤ 1

N2KT 2 .

Next, we bound E[RT |C∗α ∧ p[T] = p[T]] by using event B.

E
[
RT

∣∣ C∗α ∧ p[T] = p[T]
]
=

T∑
t=1

E
[
NSW(p∗, µ∗)−NSW(pt, µ∗)

∣∣∣ C∗α ∧ p[T] = p[T]
]

≤ max(K,
√
T) +

T∑
t=max(K,

√
T)+1

(
1 · E

[
NSW(p∗, µ∗)−NSW(pt, µ∗)

∣∣ C∗α ∧ p[T] = p[T] ∧ B
]

+ Pr
[
¬B

∣∣ C∗α ∧ p[T] = p[T]
]
· 1

)

≤ max(K,
√
T) +

T∑
t=max(K,

√
T)+1

E

2αt ∑
j∈[K]

ptj · r
t
j +

8

t

∣∣∣ C∗α ∧ p[T] = p[T] ∧ B


+ T · Pr

[
¬B

∣∣ C∗α ∧ p[T] = p[T]
]

≤ max(K,
√
T) + 1 + 2c

√
2 log(NKT)

T∑
t=1

∑
j∈[K]

ptj√
cj
. (1)

5Note that even after conditioning on p[T] = p[T], there is still randomness left in sampling actions from the
policies and sampling the rewards of those actions.

8

The final transition holds because αt ≤ c for all t, rtj =
√

2 log(NKT)
ntj

, and conditioned on B, ntj ≥ cj
for each j ∈ [K] and t ∈ [T], where cj = 1 if t < Tj , and cj =

√
T log(NKT) if t ≥ Tj . Hence,

E

[
RT

∣∣∣∣∣ C∗α ∧ p[T] = p[T]

]
≤ max(K,

√
T) + 1 + 2c

√
2 log(NKT)

∑
j∈[K]

T∑
t=1

ptj√
cj

= max(K,
√
T) + 1 + 2c

√
2 log(NKT)

∑
j∈[K]

Tj−1∑
t=1

ptj
1

+

T∑
t=Tj

ptj√
T log(NKT)


≤ max(K,

√
T) + 1 + 2c

√
2 log(NKT)

∑
j∈[K]

(
q
Tj
j +

T√
T log(NKT)

)
= O

(
cK
√
T log(NKT)

)
.

Because this bound holds for every possible p[T], we also have that E[RT |C∗α] =

O
(
cK
√
T log(NKT)

)
. Finally, we can see that

E[RT] = Pr[C∗α] · E[RT |C∗α] + Pr[¬C∗α] · E[RT |¬C∗α]

≤ 1 · O
(
cK
√
T log(NKT)

)
+

4√
T
· 1 = O

(
cK
√
T log(NKT)

)
.

Recall that substituting c = N and c =
√

12NK log(NKT) yields the two regret bounds.

We emphasize that our analysis of the multi-agent UCB differs significantly from the analysis of
the classical (single-agent) UCB. For example, the use of clean event C∗α is unique to our analysis.
More importantly, the expression in Equation (1) is also unique to our setting in which the algorithm
can “pull” a probability distribution over the arms. The corresponding expression in case of the
classical UCB turns out to be much simpler and straightforward to bound. In contrast, we need to use
additional tricks to derive the bound of O

(
cK
√
T log(NKT)

)
.

Finally, in the proof presented above, we showed that, assuming the clean event C∗α, the expected
regret is small conditioned on any sequence of policies that the UCB algorithm might use. At the
first glance, this may seem surprising. However, a keen reader can observe that the clean event
C∗α can only occur when the UCB algorithm uses a “good” sequence of policies that leads to low
expected regret. A similar phenomenon is observed in the analysis of the classical (single-agent)
UCB algorithm as well (see, e.g., [1]): assuming a different clean event, the classical UCB algorithm
is guaranteed to not pull suboptimal arms too many times.

6 Discussion

Our work leaves open several directions for the future. There are immediate technical challenges such
as a polynomial-time implementation and a logarithmic instance-dependent regret bound for our UCB
variant (see Section 5), and deriving improved lower bounds which scale with the number of agentsN
(see Appendix A). It would also be interesting to consider other fairness notions such as the egalitarian
welfare or the core [4]. More broadly, our work promotes a multi-agent variant in which one must
strike a tradeoff between the reward functions of multiple agents. An exciting future direction would
be to consider such multi-agent variants of other classical single-agent decision-making problems.

Acknowledgments and Disclosure of Funding

Nisarg Shah acknowledges support from an NSERC Disocvery Grant.

References
[1] A. Slivkins. Introduction to multi-armed bandits. Foundations and Trends in Machine Learning,

12(1-2):1–286, 2019.

[2] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003.

9

[3] F. Brandt, V. Conitzer, U. Endress, J. Lang, and A. D. Procaccia, editors. Handbook of
Computational Social Choice. Cambridge University Press, 2016.

[4] B. Fain, K. Munagala, and N. Shah. Fair allocation of indivisible public goods. In Proceedings
of the 19th ACM Conference on Economics and Computation (EC), pages 575–592, 2018.

[5] V. Conitzer, R. Freeman, and N. Shah. Fair public decision making. In Proceedings of the 18th
ACM Conference on Economics and Computation (EC), pages 629–646, 2017.

[6] G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. Hollender, and A. A. Voudouris. Maximum
Nash welfare and other stories about EFX. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), pages 24–30, 2020.

[7] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. The unreason-
able fairness of maximum Nash welfare. ACM Transactions on Economics and Computation
(TEAC), 7(3):1–32, 2019.

[8] R. Freeman, S. M. Zahedi, and V. Conitzer. Fair and efficient social choice in dynamic settings.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI),
pages 4580–4587, 2017.

[9] H. Aziz, A. Bogomolnaia, and H. Moulin. Fair mixing: The case of dichotomous preferences. In
Proceedings of the 20th ACM Conference on Economics and Computation (EC), pages 753–781,
2019.

[10] B. Fain, A. Goel, and K. Munagala. The core of the participatory budgeting problem. In
Proceedings of the 12th Conference on Web and Internet Economics (WINE), pages 384–399,
2016.

[11] F. Brandl, F. Brandt, D. Peters, C. Stricker, and W. Suksompong. Funding public projects: A
case for the Nash product rule. Manuscript, 2020.

[12] R. Cole, N. Devanur, V. Gkatzelis, K. Jain, T. Mai, V. V. Vazirani, and S. Yazdanbod. Convex
program duality, Fisher markets, and Nash social welfare. In Proceedings of the 18th ACM
Conference on Economics and Computation (EC), pages 459–460, 2017.

[13] N. Anari, T. Mai, S. O. Gharan, and V. V. Vazirani. Nash social welfare for indivisible items
under separable, piecewise-linear concave utilities. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2274–2290, 2018.

[14] E. Lee. Apx-hardness of maximizing Nash social welfare with indivisible items. Information
Processing Letters, 122:17–20, 2017.

[15] J. Garg and P. McGlaughlin. Improving Nash social welfare approximations. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (IJCAI), pages 294–300, 2019.

[16] R. Cole and V. Gkatzelis. Approximating the Nash social welfare with indivisible items. SIAM
Journal on Computing, 47(3):1211–1236, 2018.

[17] J. Garg, M. Hoefer, and K. Mehlhorn. Approximating the Nash social welfare with budget-
additive valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2326–2340, 2018.

[18] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multi-armed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[19] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4–22, 1985.

[20] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 681–690, 2008.

[21] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

10

[22] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleeping experts and
bandits. Machine learning, 80(2-3):245–272, 2010.

[23] M. Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of the
American Statistical Association, 74(368):799–806, 1979.

[24] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The K-armed dueling bandits problem.
Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

[25] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for
multi-objective bayesian optimization using random scalarizations. In UAI, 2019.

[26] M. Chakraborty, K. Y. P. Chua, S. Das, and B. Juba. Coordinated versus decentralized ex-
ploration in multi-agent multi-armed bandits. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), pages 164–170, 2017.

[27] E. Bargiacchi, T. Verstraeten, D. Roijers, A. Nowé, and H. Hasselt. Learning to coordinate with
coordination graphs in repeated single-stage multi-agent decision problems. In Proceedings of
the 35th International Conference on Machine Learning (ICML), pages 482–490, 2018.

[28] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative
decision-making in multiarmed bandits: Frequentist and bayesian algorithms. 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 167–172, 2016.

[29] Shahin Shahrampour, Alexander Rakhlin, and Ali Jadbabaie. Multi-armed bandits in multi-agent
networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2786–2790, 2017. doi: 10.1109/ICASSP.2017.7952664.

[30] Abhimanyu Dubey and Alex ’Sandy’ Pentland. Kernel methods for cooperative multi-agent
contextual bandits. In ICML, 2020.

[31] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Bandits and experts in metric spaces.
arXiv preprint arXiv:1312.1277, 2013.

[32] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. The
Journal of Machine Learning Research, 12:1655—-1695, 2011.

[33] Elad Hazan and Kfir Y Levy. Bandit convex optimization: Towards tight bounds. In NIPS,
pages 784–792, 2014.

[34] Sébastien Bubeck and Ronen Eldan. Multi-scale exploration of convex functions and bandit
convex optimization. In Proceedings of the 29th Conference on Computational Learning Theory
(COLT), pages 583–589, 2016.

[35] Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex
optimization. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC), pages 72–85, 2017.

[36] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. ArXiv, abs/1012.2599, 2010.

[37] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth. Fairness in learning: Classic and
contextual bandits. In Proceedings of the 30th Annual Conference on Neural Information
Processing Systems (NIPS), pages 325–333, 2016.

[38] Y. Liu, G. Radanovic, C. Dimitrakakis, D. Mandal, and D. C. Parkes. Calibrated fairness in
bandits. arXiv preprint arXiv:1707.01875, 2017.

[39] S. Gillen, C. Jung, M. Kearns, and A. Roth. Online learning with an unknown fairness metric. In
Proceedings of the 32nd Annual Conference on Neural Information Processing Systems (NIPS),
pages 2600–2609, 2018.

11

[40] V. Patil, G. Ghalme, V. Nair, and Y. Narahari. Achieving fairness in stochastic multi-armed
bandits. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pages
5379–5386, 2020.

[41] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method. The
Annals of Mathematical Statistics, 30(1):165–168, 1959.

[42] E. de Klerk, M. Laurent, and P. A. Parrilo. A PTAS for the minimization of polynomials of
fixed degree over the simplex. Theoretical Computer Science, 361(2-3):210–225, 2006.

[43] E. de Klerk, M. Laurent, and Z. Sun. An alternative proof of a PTAS for fixed-degree polynomial
optimization over the simplex. Mathematical Programming, 151(2):433–457, 2015.

[44] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Limitations of our work and
possibilities for future work are described in Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is purely theoretical in nature, and we do not anticipate any immediate societal risks.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All the
assumptions can be found in Section 2.

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of all
theoretical results are included. Some of the proofs are relegated to the supplementary
material due to space constraints.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

12

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Our Results
	Related Work

	Preliminaries
	Explore-First
	Epsilon-Greedy
	Useful Lemmas
	Analysis of Epsilon-Greedy

	UCB
	Discussion
	Lower Bound
	Missing Algorithms & Proofs
	Proof of lem:ai-bi
	Proof of lem:lipschitz-p
	Proof of lem:lipschitz-mu
	Proof of thm:explore-first
	Proof of lem:muhat-close
	Proof of lem:first-bound
	Proof of lem:second-bound
	Proof of thm:epsgreedy

