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Abstract

In the era of code large language models (code001
LLMs), data engineering plays a pivotal role002
during the instruction fine-tuning phase. To003
train a versatile model, previous efforts de-004
vote tremendous efforts to crafting instruction005
data that covers all the downstream scenar-006
ios. Nonetheless, this will incur significant007
expenses in data construction and model train-008
ing. Therefore, this paper introduces CODEM,009
a novel data construction strategy, which can ef-010
ficiently train a versatile model using less data011
via our newly proposed ability matrix. CODEM012
uses ability matrix to decouple code LLMs’013
abilities into two dimensions, constructing a014
lightweight training corpus that only covers a015
subset of target scenarios. Extensive experi-016
ments on HumanEvalPack and MultiPL-E re-017
veal that code LLMs can combine the single-018
dimensional abilities to master composed abili-019
ties, validating the effectiveness of CODEM.020

1 Introduction021

Code large language models (code LLMs) have022

been booming recently (Zan et al., 2023; Zhang023

et al., 2023b). An abundance of code LLMs are024

released in succession, e.g., Codex (Chen et al.,025

2021), AlphaCode (Li et al., 2022), StarCoder (Li026

et al., 2023), and CodeLlama (Rozière et al., 2023).027

Recent trends have witnessed the versatility of code028

LLMs, aiming to train a multilingual multitasking029

model. To meet this need, some efforts (Di et al.,030

2023; Zheng et al., 2023a) typically created the031

corresponding instruction training data for every032

downstream language and task, to fine-tune the033

model. However, this will entail significant costs034

in constructing data and training models, consid-035

ering the countless downstream scenarios (Zheng036

et al., 2023b; Cassano et al., 2022). For instance,037

if we enable the model to support 3 tasks and 6038

languages, we need to laboriously craft training039

data for a total of 18 diverse scenarios. Moreover,040

our expectations for the versatile abilities of code041

CG CE CR

Languages

Rust

JavaScript

Java

Go

C++

Python

CG CE CRTasks
(b) SFT-Mixed(a) CODEM

Explicitly learnable Implicitly learnable

Figure 1: Ability matrix of CODEM and its baseline
SFT-Mixed. Code generation, code explanation, and
code repair are abbreviated as CG, CE, and CR.

LLMs are continually growing (Muennighoff et al., 042

2023; Cassano et al., 2022; Zheng et al., 2023a). 043

To more efficiently fine-tune code LLMs, we 044

propose a novel data construction strategy, namely 045

CODEM, which can empower CODE LLMs with 046

powerful Multilingual Multitasking abilities using 047

less training data via our newly proposed ability 048

Matrix. This matrix assists CODEM in decou- 049

pling the versatile abilities of code LLMs into 050

two ability dimensions (understanding languages 051

and completing tasks). Then, CODEM only re- 052

quires constructing the training datasets that cover 053

each single-dimensional ability (e.g., Python, CG, 054

or CE), rather than that of all composed abilities 055

(e.g., Python+CG, Java+CE, or Go+CR). We sup- 056

pose that those composed abilities not covered by 057

the constructed dataset can be implicitly learnable 058

based on two conjectures: (1) code LLMs can gen- 059

eralize based on explicitly learnable abilities; (2) 060

code LLMs can imitate based on the relationships 061

between multiple explicitly learnable abilities. 062

As shown in Figure 1, compared to its baseline 063

SFT-Mixed, CODEM only needs to cover a subset 064

of 18 composed abilities by picking out one row 065

and one column. CODEM aims to master all com- 066

posed abilities (e.g., Java+CE) by combining the 067

explicitly learned single-dimensional abilities (e.g., 068
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Java and CE), and showcases uncompromising per-069

formance in these implicitly learned abilities. To070

evaluate CODEM, we first craft the corresponding071

instruction training data for each of these 18 sce-072

narios. Then, we conduct experiments to validate073

CODEM’s effectiveness on HumanEvalPack. Ex-074

tensive results demonstrate that CODEM can rival075

SFT-Mixed, while utilizing less than half the data.076

To more comprehensively verify CODEM, we077

explore the proposed two conjectures for CODEM.078

We first verify the generalization of code LLMs079

across 15 languages, 7 tasks, and even 3 domains080

on MultiPL-E. Our findings reveal that the model081

trained on one scenario training data can produce082

a universal generalization. Secondly, to verify083

whether the code model can imitate, we deliber-084

ately remove key data from CODEM’s training cor-085

pus to disrupt the preconditions for imitation, and086

observe performance changes. The results prove087

the existence of imitation behavior in code LLMs.088

In a nutshell, our contributions can be listed089

as follows: (1) We introduce CODEM, a sim-090

ple yet effective data construction strategy, which091

can yield more versatility of code LLMs using092

less training data via our newly proposed abil-093

ity matrix. This matrix is capable of decoupling094

multiple scenarios into two ability dimensions,095

thereby aiding CODEM in achieving efficient train-096

ing. (2) We carry out extensive experiments on097

HumanEvalPack and MultiPL-E to validate CO-098

DEM’s effectiveness, as well as offer some valu-099

able analyses. (3) Our work has been open-sourced100

at https://anonymous.4open.science/101

r/CodeM-5190.102

2 CODEM103

2.1 Task Definition104

The goal of CODEM is to obtain a versatile code105

LLM via efficient instruction fine-tuning. By com-106

bining multiple programming languages and cod-107

ing tasks, we can derive a scenario set, formatted108

as S = L× T , where L denotes a set of target pro-109

gramming languages and T denotes a set of coding110

tasks. Each element s = (l, t) ∈ S corresponds111

to a concrete scenario, requiring code LLMs to112

complete a task t with the language l. Thus, we in113

total obtain |L|·|T | different scenarios. Given a sce-114

nario set S, a versatile model is expected to support115

all scenarios and achieve a balanced performance116

across different scenarios.117

Although the scenario set can have countless118
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Figure 2: Illustration of ability matrix.

variations in practice, we mainly focus on one spe- 119

cific version to validate CODEM. Following Hu- 120

manEvalPack, we regard 3 coding tasks across 6 121

languages as our target scenario set S in this paper. 122

The 6 languages include Python, JavaScript, Java, 123

Go, C++, and Rust and the 3 tasks include code 124

generation (CG), code explanation (CE) and code 125

repair (CR), leading to a total of 18 scenarios. 126

2.2 Approach 127

CODEM is essentially a data construction strategy 128

for efficient fine-tuning, aiming to empower code 129

LLMs with powerful multilingual and multitask- 130

ing abilities using less training data. To train a 131

versatile model, a naive idea is to collect training 132

data for each scenario. However, this approach will 133

suffer from overabundant downstream scenarios, 134

resulting in considerable computational resource 135

consumption. CODEM introduces a new concept 136

of ability matrix, aiming to select a subset of sce- 137

narios from the fullset S to train the model, while 138

still maintaining an uncompromising performance. 139

Ability Matrix As depicted in Figure 2, the abil- 140

ity matrix refers to an |L|×|T | matrix which covers 141

all the abilities requested by the target scenario set. 142

In the ability matrix, the two axes denote two ability 143

dimensions. In detail, the vertical axe corresponds 144

to the ability dimension of understanding the target 145

programming languages, while the horizontal one 146

corresponds to that of completing the target tasks. 147

Based on the two dimensions, we define the |L|·|T | 148

intersections between them as composed abilities. 149

Upon the above defined ability matrix, CODEM 150

picks out one row and one column to select a sce- 151

nario subset (|L| + |T | − 1 scenarios) from our 152

target scenario set (|L| · |T | scenarios). For each se- 153
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lected scenario, we collect the corresponding train-154

ing dataset and merge them to obtain a training155

corpus. This training corpus covers all the single-156

dimensional abilities without requiring coverage of157

all composed abilities. Given such a training cor-158

pus, the model is expected to combine the explicitly159

learned single-dimensional abilities, thereby gen-160

eralizing to all composed abilities. We argue that161

the ability combination can be realized based on162

two conjectures (also illustrated in Figure 2): (1)163

code LLMs can generalize: the model can gener-164

alize well in every ability dimension, e.g., Python165

to Java and CG to CE; (2) code LLMs can imitate:166

the model can imitate based on the relationships167

between multiple abilities that have been explic-168

itly learned. e.g., by imitating the relationship of169

CG and CE in the Python version, the model can170

generalize from CG in the Java version (explicitly171

learnable) to the CE in the Java version (implic-172

itly learnable). If the two conjectures hold, all173

the composed abilities in the ability matrix can be174

reachable even though only a subset of them are ex-175

plicitly learnable. The validity of the claimed two176

conjectures will be further discussed in Section 4.3.177

3 Training Corpus Construction178

Regarding the 3 tasks (CG, CE, and CR) across179

6 languages (Python, JavaScript, Java, Go, C++,180

and Rust) mentioned in Section 2.1, totaling 18 sce-181

narios, we craft corresponding instruction dataset182

for each of these by harnessing the capability of183

OpenAI’s GPT-3.5-turbo. In detail, we start from184

CodeAlpaca1, an instruction dataset of code genera-185

tion, from which we extract those Python-related in-186

stances as our seed data. Based on these seed data,187

we meticulously design prompts for each of the 18188

scenarios to request OpenAI’s GPT-3.5-turbo, de-189

riving the corresponding instruction datasets. More190

details about prompt engineering can be seen in Ap-191

pendix A. In our experiments, each training dataset192

contains 9.6K data pairs, where a concrete data pair193

is displayed in Appendix Figure 6.194

4 Experiments195

4.1 Experimental Setup196

4.1.1 Benchmarks197

We use HumanEvalPack (Zheng et al., 2023a) as198

our primary benchmark to evaluate the versatility of199

1https://huggingface.co/datasets/
sahil2801/CodeAlpaca-20k

code LLMs brought about by CODEM. It provides 200

a series of evaluations for 3 tasks (code genera- 201

tion, code explanation, and code repair) across 6 202

programming languages (Python, JavaScript, Java, 203

Go, C++, and Rust). Besides that, we also conduct 204

experiments based on MultiPL-E (Cassano et al., 205

2022), which focuses on the code generation eval- 206

uation across 11 programming languages, includ- 207

ing Python, C, C++, JavaScript, TypeScript, PHP, 208

Go, Rust, Bash, Java, and Racket. The two bench- 209

marks are created by adapting HumanEval (Chen 210

et al., 2021), which is a hand-written benchmark for 211

Python code generation comprising 164 program- 212

ming problems with comprehensive test cases. 213

4.1.2 Evaluation Metrics 214

Following HumanEvalPack (Muennighoff et al., 215

2023) and MultiPL-E (Cassano et al., 2022), we 216

adopt pass@1 (Chen et al., 2021) as our metric to 217

evaluate all models. Each model generates one an- 218

swer using the greedy decoding strategy for each 219

programming problem, and the answer would be 220

executed on the given test cases. Only when all the 221

test cases are passed, the programming problem 222

can be considered solved with the generated code. 223

In this setting, pass@1 can be formulated as |Pc|
|P | , 224

where |P | denotes the total number of program- 225

ming problems and |Pc| represents the number of 226

solved problems. In essence, the pass@1 metric we 227

use can be considered as the accuracy. 228

4.1.3 Baselines 229

To prove the effectiveness of CODEM, we design 230

some baselines. The downstream benchmark for 231

CODEM is HumanEvalPack, which covers 18 sce- 232

nario tasks; CODEM chose 8 of these scenarios to 233

train code LLMs. Hence, the primary baseline of 234

CODEM is using data from 18 scenarios, called 235

SFT-Mixed, as shown in Figure 1 (b). Of note, for 236

a fair comparison, SFT-Mixed contains a total of 237

9.6K data pairs by default, aligning with the size 238

of each training dataset mentioned in Section 3. 239

To thoroughly showcase CODEM’s superiority in 240

terms of data volume, we also craft multiple ver- 241

sions of SFT-Mixed, each with different amounts 242

of data pairs, spanning 4.3K, 19.2K, 28.8K, 48K, 243

76.8K, and 100K. Each of 18 scenarios in SFT- 244

Mixed has the same data volume (e.g., 533 in 9.6K 245

version of SFT-Mixed). In addition to the mixed- 246

scenario training data, we also compared the mod- 247

els trained on single-scenario data from each of the 248

18 scenarios. For example, SFT-CG (Py version) in 249
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Table 1 is trained on the 9.6K instruction data pairs250

of Python code generation mentioned in Section 3.251

Furthermore, we also compare a variety of off-the-252

shelf models, including CodeGeeX2 6B (Zheng253

et al., 2023a), CodeLlama 7B (Rozière et al., 2023),254

DeepSeekCoder 7B (Guo et al., 2024), Wizard-255

Coder 15B (Guo et al., 2024), CodeFuse 15B (Di256

et al., 2023), OctoCoder 15B (Muennighoff et al.,257

2023), StarCoder 1B, 3B, and 7B (Li et al., 2023).258

CODEM is based on StarCoder 7B for instruction259

tuning by default. For more implementation details,260

please refer to Appendix C.261

4.2 Main Results262

CODEM uses the data corresponding to any row263

and column in Figure 1, covering a total of 8 sce-264

narios, to train code LLMs. Figure 1 comprises265

a total of 6 rows and 3 columns. We thus can266

derive 18 different versions of CODEM, where267

each of the rows and columns can be combined268

with each other. For instance, the model, trained269

on the Python row and the CG column in Fig-270

ure 1, is named CODEM-CG#Py. Table 1 and271

Appendix Table 5 display the results of CODEM272

with varying amounts of training data and all base-273

lines on HumanEvalPack. Among them, CODEM274

(4.3K) and SFT-Mixed (9.6K) each contain 533275

data pairs per scenario, where the former spans 8276

scenarios and the latter 18. By examining these277

results, we find that all CODEM (4.3K) variants278

perform on par with or even sometimes outperform279

SFT-Mixed (9.6K) across every downstream task.280

For instance, CODEM-CE#Java (4.3K) achieves an281

absolute pass@1 improvement of 2.4% over SFT-282

Mixed (9.6K) in the code explanation task of the283

Python version. Meanwhile, CODEM of 9.6K ver-284

sion exceeds SFT-Mixed with equal training scale285

and even rivals the 29K SFT-Mixed in some down-286

stream tasks. As an illustration, CODEM-CR#C++287

(9.6K) eclipses SFT-Mixed (29K) in the C++ code288

generation, and the Python&C++ code repair task.289

All these findings highlight CODEM’s effective-290

ness and superiority in constructing training data,291

even with a lower volume of data. Moreover, we292

observe that models trained on mixed scenario data,293

such as CODEM and SFT-Mixed, consistently sur-294

pass those trained on single scenario data like SFT-295

CG/CE/CR in all downstream evaluation tasks. The296

results underscore the importance of data diversity,297

suggesting that mixed scenario data can comple-298

ment each other and further elevate the model’s299

capabilities. In addition, we also observe that CO- 300

DEM (9.6K) with a 7B parameter size, can hold its 301

ground against WizardCoder 15B and CodeFuse 302

15B in certain downstream tasks, even with fewer 303

parameters. This further concluded that CODEM 304

possesses remarkable advantages compared to its 305

baselines. Overall, CODEM leverages ability ma- 306

trix to reduce redundancy among multiple training 307

scenarios, and to develop a versatile model using 308

limited training data. This offers insightful guid- 309

ance for constructing concise instruction data. 310

4.3 Conjecture Verification 311

We implement CODEM based on two conjectures 312

as mentioned in Section 2.2: (1) code LLMs can 313

generalize; (2) code LLMs can imitate. We will 314

explore the validity of them via experiments. 315

4.3.1 Can Code LLMs Generalize? 316

We would like to verify whether code LLMs 317

possess generalization capabilities under different 318

training scenarios. For the sake of comprehensive- 319

ness of our experiments, in addition to the sce- 320

narios provided by HumanEvalPack, we also se- 321

lect a broader range of scenarios. Those new sce- 322

narios cover more programming languages of the 323

code generation task (C, TypeScript, PHP, Bash, 324

Racket, Haskell, SQL, HTML, and XML), more 325

coding tasks (code translation, test case generation, 326

code commenting, code-related questing answer- 327

ing), and even more domains (math and natural 328

language). For each scenario, we create the corre- 329

sponding dataset (see Appendix A and B for more 330

details). We fine-tune StarCoder 7B on each dataset 331

separately, and then evaluate each fine-tuned model 332

on MultiPL-E and HumanEvalPack. 333

Table 1 and Table 2 respectively display the eval- 334

uation results on MultiPL-E and HumanEvalPack 335

of the models trained on various scenarios. It can 336

be observed that code LLMs can generalize across 337

different languages, tasks, and even domains. As an 338

example, SFT-JS, trained on JavaScript, achieves 339

an absolute improvement of 13.1% on pass@1 for 340

the Python code generation task, compared to its 341

base model StarCoder 7B, and even exceeds SFT- 342

Python. We also observe that training on structured 343

query languages (SFT-SQL) and markup languages 344

(SFT-HTML and SFT-XML) can also yield perfor- 345

mance improvements in general-purpose program- 346

ming languages like Python and Java. For instance, 347

SFT-HTML leads to an absolute improvement of 348

6.8% on pass@1 for C++ code generation. Further- 349
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HumanEvalPack
Py JS Java Go C++ RustModel

CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR
Avg.

Existing Competitive Models
CodeGeeX2 6B 34.1 20.7 23.7 11.1 31.0 13.4 22.7 35.3 17.6 18.8 9.7 14.0 27.9 33.5 7.9 19.8 9.7 3.6 19.7
CodeLlama 7B 29.8 31.7 28.6 35.4 31.7 26.8 31.0 40.8 37.1 19.4 18.2 29.2 25.4 34.1 25.6 23.7 19.5 4.8 27.4
DeepSeekCoder 7B 31.0 33.5 27.4 38.5 33.5 26.2 29.7 45.7 40.2 20.1 21.3 30.4 25.4 34.1 26.8 22.4 20.1 8.5 28.6
WizardCoder 15B 59.6 60.9 51.2 39.7 55.4 42.0 36.0 51.2 40.8 27.2 42.6 51.2 40.3 42.0 43.2 35.2 14.6 9.7 41.3
CodeFuse 15B 52.7 59.7 51.8 44.7 56.7 43.2 35.4 48.7 35.9 29.8 41.4 48.7 36.0 45.7 43.2 28.2 14.0 9.7 40.3
OctoCoder 15B 15.5 35.1 30.4 10.5 24.5 28.4 15.1 27.3 30.6 9.7 21.1 30.2 11.8 24.1 26.1 10.2 14.8 16.5 21.2
StarCoder 1B 22.9 12.8 3.6 21.7 11.6 0.6 17.7 15.2 3.6 13.6 8.5 1.2 18.0 14.0 0.6 17.9 3.6 3.0 10.6
StarCoder 3B 29.1 17.0 13.4 24.8 8.5 17.6 25.9 18.9 12.8 20.1 10.9 10.3 19.2 23.1 7.3 21.1 12.8 0.6 16.3
StarCoder 7B 29.1 21.3 26.8 24.8 25.6 29.2 25.9 27.4 19.5 20.1 16.1 22.5 19.2 26.8 11.5 21.1 10.9 5.4 21.3

Py version (Supervised Fine-Tuning is abbreviated as SFT, ditto below)
SFT-CG 40.3 36.5 46.3 34.1 26.2 45.1 27.2 28.0 42.6 23.3 18.2 45.1 28.5 26.2 41.4 30.1 18.2 22.5 32.2
SFT-CE 32.2 38.4 39.7 27.3 29.2 40.8 25.9 31.7 42.0 20.1 20.1 42.0 23.6 29.8 33.5 23.7 17.0 19.5 29.8
SFT-CR 39.7 34.1 51.8 27.9 26.8 45.7 27.2 29.2 48.7 22.7 18.9 48.7 26.0 26.8 43.2 26.9 15.8 26.8 32.6

JS version
SFT-CG 38.5 34.7 43.2 36.6 27.4 46.3 27.8 28.6 43.9 24.0 17.6 45.1 29.8 27.4 40.8 28.2 18.9 23.7 32.4
SFT-CE 31.0 36.5 37.8 28.5 31.0 43.9 23.4 30.4 42.6 19.4 20.7 42.0 24.2 28.6 34.1 22.4 18.9 18.9 29.7
SFT-CR 36.0 34.1 48.1 29.1 28.0 49.3 26.5 27.4 48.7 22.0 19.5 48.7 25.4 26.8 42.6 27.5 17.6 25.0 32.4

Java version
SFT-CG 37.2 35.3 41.4 33.5 25.6 45.7 29.7 30.4 47.5 22.7 18.9 43.9 27.3 26.8 41.4 30.7 17.6 23.7 32.2
SFT-CE 30.4 36.5 35.9 26.7 28.6 40.8 26.5 33.5 46.3 20.7 19.5 42.6 22.9 29.8 32.9 23.0 20.1 19.5 29.8
SFT-CR 36.6 33.5 47.5 28.5 27.4 45.1 28.4 29.2 52.4 21.4 19.5 48.1 26.0 26.2 43.9 26.2 18.2 25.6 32.4

Go version
SFT-CG 37.8 34.7 40.8 34.7 25.6 45.1 26.5 28.0 43.2 27.9 20.7 49.3 27.9 27.4 40.8 28.8 18.9 21.9 32.2
SFT-CE 29.8 37.8 36.5 26.0 29.2 41.4 24.0 29.8 42.0 24.6 24.3 46.9 24.8 29.2 33.5 21.7 20.7 17.6 30.0
SFT-CR 34.1 32.3 48.7 26.7 26.8 43.2 25.3 28.0 47.5 28.5 20.1 54.2 26.7 25.6 42.0 25.6 18.9 26.2 32.2

C++ version
SFT-CG 36.6 32.9 42.0 35.4 25.0 43.9 27.8 27.4 41.4 24.6 17.6 44.5 32.9 29.8 43.2 30.7 19.5 21.9 32.1
SFT-CE 30.4 39.6 35.3 25.4 27.4 42.6 25.3 31.0 43.2 19.4 21.3 42.6 28.5 34.7 39.0 23.7 19.5 18.2 30.4
SFT-CR 33.5 35.3 46.9 27.9 24.3 42.0 26.5 29.2 47.5 22.0 18.2 49.3 26.7 30.4 45.1 26.2 17.6 25.6 31.9

Rust version
SFT-CG 36.6 29.8 43.2 33.5 26.2 44.5 27.2 28.0 42.6 22.0 17.0 42.6 29.1 25.6 39.6 33.3 19.5 25.0 31.4
SFT-CE 32.2 37.8 36.5 26.0 26.8 42.0 24.6 30.4 43.9 19.4 21.3 41.4 21.7 29.8 33.5 26.9 22.5 21.3 29.9
SFT-CR 29.1 31.7 48.1 27.3 25.6 43.2 25.9 28.6 46.9 21.4 18.9 47.5 26.0 26.2 41.4 31.4 20.1 30.4 31.6

Other Domains
SFT-Math 30.4 24.3 39.0 31.6 26.8 37.8 25.9 28.0 43.2 22.0 17.0 43.9 27.3 22.5 32.9 23.7 14.6 22.5 28.5
SFT-NLQA 34.7 25.0 37.8 32.9 25.6 38.4 26.5 29.2 40.8 25.3 17.6 39.6 26.7 23.1 32.3 25.0 14.0 23.7 28.8

Mixed Data (baseline)
SFT-Mixed (9.6K) 41.6 37.8 51.2 35.4 32.9 47.5 29.1 33.5 50.0 26.6 25.0 48.7 31.6 32.9 44.5 32.6 21.3 31.7 36.3
SFT-Mixed (29K) 47.8 45.7 53.0 42.8 49.3 51.2 34.8 43.2 54.2 29.8 39.0 52.4 40.3 45.1 47.5 33.9 20.7 32.9 42.4

CODEM (4.3K)
CODEM-CG#Py 44.0 38.4 51.2 37.2 31.0 46.3 29.1 31.7 48.7 26.6 23.7 49.3 32.2 30.4 44.5 32.0 19.5 29.8 35.9

w/o CG×Py 40.9 36.5 50.6 36.0 29.8 45.1 28.4 28.6 46.9 25.3 23.7 48.1 30.4 28.0 42.0 30.1 17.6 27.4 34.2
w/o CG×Java 43.4 39.0 51.2 37.8 31.7 45.7 27.8 28.0 46.9 27.2 24.3 48.7 32.2 31.0 45.7 30.1 18.9 30.4 35.6
w/o CE×Py 43.4 35.9 51.8 37.2 30.4 46.3 29.1 28.0 49.3 26.6 22.5 49.3 31.6 27.4 43.9 32.6 16.4 29.2 35.0

CODEM-CG#JS 43.4 36.5 50.0 37.8 34.1 48.1 30.3 32.9 47.5 27.9 25.0 48.1 31.6 31.7 43.9 32.6 20.7 28.0 36.1
CODEM-CE#Java 41.6 40.2 48.1 36.0 32.9 45.7 29.7 35.3 50.0 25.3 25.6 48.7 30.4 32.3 43.2 30.7 21.3 28.6 35.9
CODEM-CE#Go 40.9 37.8 50.6 34.7 33.5 46.3 28.4 34.1 48.1 27.2 26.2 50.6 30.4 33.5 44.5 31.4 21.3 29.8 36.1
CODEM-CR#C++ 43.4 35.9 51.8 34.1 31.0 48.7 27.8 32.9 50.6 26.6 25.0 49.3 31.0 32.9 45.7 32.0 20.1 31.0 36.1
CODEM-CR#Rust 41.6 37.1 52.4 36.0 32.9 47.5 29.1 32.3 50.0 25.9 24.3 50.0 29.8 31.7 45.1 33.3 22.5 32.3 36.3

CODEM (9.6K)
CODEM-CG#Py 46.5 43.2 53.6 42.2 42.0 48.1 35.4 40.8 51.8 29.8 32.9 49.3 40.3 40.2 45.7 36.5 23.1 33.5 40.8
CODEM-CG#JS 45.9 43.9 53.0 44.0 44.5 49.3 34.1 41.4 50.6 29.2 32.9 50.0 41.6 40.2 45.7 37.1 23.7 32.3 41.1
CODEM-CE#Java 42.8 45.1 51.8 40.9 46.9 48.7 34.8 43.2 52.4 27.9 34.1 50.0 39.7 42.6 46.3 35.2 24.3 33.5 41.1
CODEM-CE#Go 42.8 42.0 50.6 41.6 45.7 49.3 33.5 42.0 51.2 30.5 34.7 51.2 38.5 41.4 44.5 35.8 24.3 32.9 40.7
CODEM-CR#C++ 45.3 39.0 54.2 39.7 43.9 50.6 32.9 39.6 52.4 28.5 31.7 52.4 40.9 40.8 48.7 33.9 19.5 31.7 40.7
CODEM-CR#Rust 41.6 40.8 53.0 41.6 43.9 50.0 34.1 40.8 53.0 27.9 33.5 51.8 40.9 40.2 46.9 37.1 25.0 35.3 41.0

Table 1: Evaluation results on HumanEvalPack. More results can be seen in Appendix Table 5. Code generation,
code explanation, code repair, Average, Python, and JavaScript are abbreviated as CG, CE, CR, Avg., Py, and JS.

5



more, we discover that different tasks can general-350

ize to each other. For example, SFT-CR, trained on351

the Python code repair task, achieves an absolute352

improvement of 6.8% on pass@1 for C++ code353

generation. By analyzing the results in Table 1,354

our findings reveal that CG and CR can always355

improve each other substantially, compared to CE.356

One plausible reason is that the essence of CG and357

CR lies in generating code, whereas CE involves358

understanding code and producing natural language359

output. More surprisingly, instruction datasets of360

non-coding domains can also bolster code LLMs361

in coding. SFT-NLQA and SFT-Math improve the362

JavaScript code generation performance by 11.8%363

and 6.8% on pass@1, respectively. That might be364

due to the enhancement in the model’s fundamental365

abilities, e.g. natural language understanding (Roz-366

ière et al., 2023) and reasoning (Dong et al., 2023).367

Overall, our findings consistently affirm the gen-368

eralization of code LLMs, thereby solidifying the369

foundation of CODEM.370

4.3.2 Can Code LLMs Imitate?371

We design several ablation experiments to demon-372

strate whether code LLMs possess the imitation373

capability. The default setting of CODEM-CG#Py374

covers the Python row and the CG column, as stated375

in Figure 2. We intentionally exclude an intersec-376

tion point of the Python row and the CG column377

from the training corpus of CODEM-CG#Py (ab-378

breviated as w/o CG×Py in Table 1). Upon our379

conjectures, this will lead to a drop in CODEM-380

CG#Py’s performance on all evaluation tasks: with-381

out the training instances of CG×Py scenario, the382

model can not reach those composed abilities that383

are not explicitly learnable through imitation. By384

observing the results in Table 1, compared to CO-385

DEM-CG#Py, excluding the CG×Py corpus indeed386

leads to a decline in performance, further confirm-387

ing the correctness of our conjectures. Furthermore,388

we remove the CG×Java corpus from the training389

corpus of CODEM-CG#Py (w/o CG×Java), which390

results in the absence of any Java-related data. The391

results in Table 1 indicate that such the setting only392

has a negative impact on Java-related tasks, without393

affecting others. This observation also justifies our394

conjectures. Additionally, we exclude the Python395

CE corpus (w/o CE×Py) and observe the same396

pattern. In summary, the experimental findings397

confirm the imitation capability of code LLMs and398

further underscore CODEM’s effectiveness.399
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Figure 3: Performance analysis of CODEM and its base-
lines in terms of data scale and data noise.

4.4 Closer Analysis 400

Data Scale CODEM takes the advantage of using 401

less data to yield more versatility. To demonstrate 402

CODEM’s advantage, we plot the performance of 403

CODEM and its baseline SFT-Mixed across vari- 404

ous data scales on HumanEvalPack, as shown in 405

Figure 3 (a). We observe that, at any data scale, var- 406

ious versions of CODEM consistently outperform 407

SFT-Mixed. For example, with a dataset scale of 408

19.2K, CODEM-CE#Java outperforms SFT-Mixed 409

by 7.2% in pass@1, achieving performance on par 410

with the 48K version of SFT-Mixed. This obser- 411

vation demonstrates CODEM’s advantage in terms 412

of data scale. Additionally, with sufficient data, 413

CODEM can achieve peak performance compara- 414

ble to that of SFT-Mixed. This indicates that with 415

CODEM, the model can seamlessly combine single- 416

dimensional abilities within ability matrix, achiev- 417

ing uncompromising performance on composed 418

abilities without explicit learning. Compared to 419

SFT-Mixed, CODEM can converge to its peak per- 420

formance more rapidly, where the former reaches 421

its peak at 100K and the latter at 28.8K, further 422

underscoring CODEM’s advantage. 423

Data Quality We intend to explore the robust- 424

ness of CODEM and its baseline with respect to 425

data quality. In Figure 3 (b), we deliberately in- 426

troduce noise for CODEM (4.3K) and SFT-Mixed 427

(9.6K), by creating data pairs with inconsistent in- 428

structions and responses, at different noisy levels 429

from 0% to 100% at 10% intervals. We observe 430

that at most noisy levels, CODEM outperforms its 431

baseline. Also, as the noisy level increases, CO- 432

DEM tends to stabilize around a 20% pass@1 rate, 433

whereas SFT-Mixed continues to drop to 12.5% 434

and is still on a downward trend. This exhibits 435

CODEM’s greater robustness to noise data. 436

Data Redundancy In section 4.2, compared to 437

SFT-Mixed, we claim that CODEM reduces data 438

redundancy by selecting one row and one column 439
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MultiPL-E BenchmarkModel Py C C++ JS TS PHP Go Rust Bash Java Racket Avg.

Existing Competitive Models
CodeGeeX2 6B 34.1 24.6 27.9 11.1 22.6 23.6 18.8 19.8 6.9 22.7 11.1 20.3
CodeLlama 7B 29.8 24.6 25.4 35.4 33.3 23.6 19.4 23.7 10.7 31.0 11.1 24.4
DeepSeekCoder 7B 31.0 25.9 25.4 38.5 32.0 27.3 20.1 22.4 12.0 29.7 12.4 25.2
WizardCoder 15B 48.4 34.5 40.3 39.7 45.9 40.9 27.2 35.2 16.4 36.0 14.2 34.4
CodeFuse 15B 52.7 33.3 36.0 44.7 42.1 39.1 29.8 28.2 13.9 35.4 14.9 33.6
StarCoder 1B 15.5 9.2 11.8 10.5 15.7 9.3 9.7 10.2 2.5 15.1 5.5 10.5
StarCoder 3B 22.9 16.6 18.0 21.7 25.1 21.1 13.6 17.9 4.4 17.7 7.4 16.9
StarCoder 7B 29.1 22.8 19.2 24.8 28.3 24.2 20.1 21.1 6.3 25.9 11.8 21.2

Programming Languages (code generation version)
SFT-Py 40.311.2 27.14.3 28.59.3 34.19.3 37.79.4 34.19.9 23.33.2 30.19.0 8.21.9 27.21.3 16.74.9 27.9
SFT-C 37.88.7 29.66.8 34.114.9 35.410.6 36.48.1 34.19.9 29.29.1 26.95.8 10.13.8 32.26.3 15.53.7 29.2
SFT-C++ 36.67.5 31.48.6 34.715.5 36.011.2 37.79.4 31.06.8 24.64.5 27.56.4 9.43.1 32.97.0 14.93.1 28.8
SFT-JS 42.213.1 25.93.1 32.213.0 36.011.2 41.513.2 35.411.2 24.03.9 28.87.7 8.21.9 29.73.8 15.53.7 29.0
SFT-TS 36.06.9 27.14.3 26.06.8 34.79.9 37.18.8 31.06.8 22.72.6 26.25.1 10.13.8 29.13.2 12.40.6 26.6
SFT-PHP 36.06.9 26.53.7 28.59.3 35.410.6 36.48.1 37.813.6 22.01.9 28.27.1 7.51.2 28.42.5 13.01.2 27.2
SFT-Go 34.75.6 28.35.5 30.411.2 34.19.3 35.26.9 31.06.8 29.29.1 26.25.1 10.13.8 29.13.2 16.74.9 27.7
SFT-Rust 37.28.1 29.66.8 29.19.9 34.19.3 35.87.5 34.710.5 24.64.5 31.410.3 7.51.2 30.34.4 13.61.8 28.0
SFT-Bash 40.911.8 27.74.9 32.913.7 41.616.8 42.113.8 31.67.4 28.58.4 30.19.0 26.520.2 29.13.2 12.40.6 31.2
SFT-Java 40.311.2 27.74.9 30.411.2 32.98.1 34.56.2 31.67.4 21.41.3 29.48.3 8.82.5 32.26.3 14.22.4 27.6
SFT-Racket 40.911.8 29.06.2 33.514.3 36.011.2 35.26.9 29.85.6 27.97.8 27.56.4 8.21.9 27.81.9 21.79.9 28.9
SFT-Haskell 37.88.7 25.93.1 29.19.9 33.58.7 33.95.6 31.67.4 23.33.2 27.56.4 10.13.8 26.50.6 12.40.6 26.5
SFT-SQL 31.01.9 20.91.9 23.64.4 27.93.1 32.03.7 25.41.2 22.01.9 26.95.8 8.82.5 24.01.9 11.10.7 23.1
SFT-HTML 32.23.1 20.32.5 26.06.8 32.98.1 32.03.7 29.85.6 22.01.9 25.64.5 7.51.2 28.42.5 12.40.6 24.5
SFT-XML 36.06.9 19.73.1 24.85.6 31.66.8 31.43.1 24.80.6 22.72.6 25.03.9 8.21.9 26.50.6 11.80.0 23.9

Other Tasks (Python version)
SFT-CE 32.23.1 21.61.2 23.64.4 27.32.5 30.11.8 25.41.2 20.10.0 23.72.6 8.21.9 25.90.0 10.51.3 22.6
SFT-CR 39.710.6 24.61.8 26.06.8 27.93.1 32.03.7 28.54.3 22.72.6 26.95.8 9.43.1 27.21.3 14.93.1 25.4
SFT-CT 29.80.7 22.20.6 22.93.7 29.85.0 30.11.8 26.01.8 20.70.6 24.33.2 6.90.6 26.50.6 11.80.0 22.8
SFT-TestCase 34.15.0 22.80.0 26.77.5 30.45.6 30.82.5 24.80.6 21.41.3 22.41.3 8.21.9 29.73.8 13.01.2 24.0
SFT-Comment 29.80.7 22.80.0 25.46.2 29.14.3 29.51.2 26.01.8 20.10.0 24.33.2 8.21.9 24.01.9 13.01.2 22.9
SFT-CodeQA 34.75.6 27.74.9 27.98.7 34.19.3 31.43.1 24.80.6 26.66.5 25.64.5 12.66.3 28.42.5 12.40.6 26.0

Other Domains
SFT-Math 30.41.3 22.20.6 27.38.1 31.66.8 32.03.7 24.20.0 22.01.9 23.72.6 8.21.9 28.42.5 13.01.2 23.9
SFT-NLQA 34.75.6 25.93.1 26.77.5 36.611.8 33.45.1 27.33.1 25.35.2 25.03.9 8.82.5 27.81.9 13.61.8 25.9

Table 2: Evaluation results on MultiPL-E. The numbers in red and green represent the absolute increase and decrease
compared to the base model StarCoder 7B. We abbreviate Python, JavaScript, TypeScript, Average, code explanation,
code repair, and code-related/natural-language question answering as Py, JS, TS, Avg., CE, CR, CodeQA/NLQA.

from 6×3 matrix. To prove this, we select not440

only one row (language) and column (task) from441

Figure 1 but also m rows and n columns2, where442

m ∈ {1, 2, 3, 4, 5, 6} and n ∈ {1, 2, 3}. We sum-443

marize the experimental results in Figure 4. We444

observe that increasing the selected scenarios (m>1445

and n>1) does not yield performance gain, com-446

pared to CODEM (m=1 and n=1). For example,447

the pass@1 is 35.8% for m=6, n=2, compared to448

35.9% for m=1, n=1. This suggests there exists449

redundancy in the training data among the 18 sce-450

narios, further underscoring CODEM’s advantages.451

2We randomly select rows and columns in the experiments.

Base Models CODEM can be built upon different 452

base models, such as StarCoder (1B, 3B, 7B, 15B), 453

CodeLlama (7B, 13B, 34B), and DeepSeekCoder 454

(1B, 7B, 33B). We thus plot the results of CODEM- 455

CG#Py (4.3K) and its baseline SFT-Mixed (9.6K) 456

in Figure 5. We observe that CODEM consistently 457

improves the average pass@1 of various base mod- 458

els on HumanEvalPack, each achieving an improve- 459

ment of over 10%. For instance, CODEM-CG#Py 460

brings an absolute improvement of 19.5% for Star- 461

Coder 7B in the average pass@1. Notably, in all 462

settings, CODEM with merely 4.3K training data 463

can compete with SFT-Mixed with 9.6K, demon- 464

strating the efficiency of CODEM. In this paper, 465
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Figure 4: Pass@1 (%) performance of models trained
using scenario data from m rows and n columns in Fig-
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CODEM’s base model defaults to StarCoder, due466

to its fully open-source pre-training data, unlike467

CodeLlama and DeepSeekCoder.468

5 Related Work469

5.1 Code Large Language Models470

Codex (Chen et al., 2021) with 12-billion param-471

eters is able to solve Python programming prob-472

lems automatically. This remarkable success trig-473

gered a significant buzz in both the academic474

and industrial realms. Followed by Codex, a475

plenty of code LLMs are released, including Alpha-476

Code (Li et al., 2022), PaLM-Coder (Chowdhery477

et al., 2022), CodeGen (Nijkamp et al., 2023), In-478

Coder (Fried et al., 2023), CodeT5 (Wang et al.,479

2021), PanGu-Coder (Christopoulou et al., 2022),480

PyCodeGPT (Zan et al., 2022), SantaCoder (Al-481

lal et al., 2023), CodeGeeX (Zheng et al., 2023a),482

StarCoder (Li et al., 2023), CodeLlama (Roz-483

ière et al., 2023), phi-1/1.5/2 (Gunasekar et al.,484

2023), CodeFuse (Di et al., 2023), and DeepSeek-485

Coder (Guo et al., 2024). These above mod-486

els are trained on a large-scale code corpus and487

achieve impressive code generation performance.488

Recent works (Ouyang et al., 2022; Zhang et al.,489

2023a) have witnessed the instruction tuning tech-490

nique that can teach LLMs how to follow instruc-491

tions. In the realm of code generation, Wizard-492

Coder (Luo et al., 2023), PanGu-Coder2 (Shen493

et al., 2023), CodeLlama-instruct (Rozière et al.,494

2023), Phind (Name, 2023), and DeepSeekCoder-495

instruct (Guo et al., 2024) also harness this tech-496

nique to unlock their code related potential. In this497

paper, we fine-tune these off-the-shelf models on498

our crafted multi-lingual multitasking instruction499

data, to derive a versatile and powerful model.500
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Figure 5: Average improvement pass@1 on HumanEval-
Pack of CODEM trained on various base models.

5.2 Instruction Data 501

Instruction fine-tuning can unlock the potential of 502

LLMs. In this process, constructing what kind 503

of instruction data is a highly fascinating research 504

topic (Zhang et al., 2023a; Zhao et al., 2023). Some 505

studies (Zhou et al., 2023; Cao et al., 2023; Chen 506

et al., 2023) claim that high-quality instruction data 507

will yield significant performance improvements. 508

Beyond data quality, some efforts also highlight the 509

importance of data diversity (Bukharin and Zhao, 510

2024; Kapania et al., 2023). Recent works also 511

propose some tricks for training LLMs from the 512

perspective of data composition (Dong et al., 2024) 513

and training sequence (Wang et al., 2023; Guo et al., 514

2024). Unlike prior studies, this paper aims to 515

investigate how to enable code LLMs to achieve 516

more versatility performance with less data, on 517

multiple tasks across multiple languages. 518

6 Conclusion and Future Work 519

In this paper, we propose CODEM, which aims 520

to empower code LLMs with powerful multilin- 521

gual multitasking capabilities using less training 522

data by leveraging ability matrix. The matrix as- 523

sisting CODEM divides the model’s intrinsic abil- 524

ities into two dimensions: languages and tasks, 525

then guides the construction of instruction training 526

data. Extensive experiments on HumanEvalPack 527

and MultiPL-E demonstrate the effectiveness and 528

superiority of CODEM. Furthermore, we validate 529

two conjectures of CODEM: generalization and im- 530

itation, and obtain many insightful findings. In 531

our future work, we would like to delve into code 532

LLMs to uncover more effective and intriguing data 533

construction strategies. 534
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Limitations535

While this paper showcases numerous intriguing536

findings on the generalization of code LLMs, it537

also poses a few limitations as follows:538

• CODEM constructs instruction data from two539

dimensions: programming languages and540

tasks, with the expectation that the two di-541

mensions can be better blended together to542

empower a more versatile code LLM. Tech-543

nically speaking, CODEM is also capable of544

handling additional dimensions, such as data545

domains and data structures, which will be546

explored in our forthcoming research.547

• To ensure the consistency of data origin and548

quality, as well as the fairness of the exper-549

iments, the majority of our experiments are550

conducted using GPT-3.5-generated data. But551

employing CODEM in practice might also in-552

volve data from other sources, potentially pos-553

ing threats to our approach. Also, we do not554

verify the correctness of content generated555

by GPT-3.5, which is in line with previous556

works (Luo et al., 2023; Shen et al., 2023).557

• Our work, including training, inference, and558

API requests to OpenAI’s GPT-3.5-turbo, re-559

quires a high cost in computational resources.560

Therefore, we will open-source our efforts to561

foster the rapid advancement of this field.562
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A Prompts for Requesting OpenAI’s 848

GPT-3.5-turbo 849

To collect the training datasets for our selected 850

scenarios where each instance is an instruction- 851

response pair (an example is presented in Figure 6), 852

we craft two types of prompts to request GPT-3.5- 853

turbo: the instruction request prompt for instruction 854

generation, and the response request prompt for 855

requesting a corresponding response. The prompt 856

formats differ between different languages, tasks, 857

and domains. 858

For instruction request prompts, which are pre- 859

sented in Appendix Table 3, we typically ask Ope- 860

nAI’s GPT-3.5-turbo to craft a new task based on 861

given seed tasks and optional additional informa- 862

tion. The placeholder {seed task} in the prompt 863
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Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.

### Instruction:
Design a web page that displays a message
when loaded. The message should be "Hello,
World". Use HTML code to achieve this.

### Response:
<!DOCTYPE html>
<html>
<head>

<title>Hello World</title>
</head>
<body>

<h1>Hello, World</h1>
</body>
</html>

Figure 6: A HTML training example of our crafted
instruction-response pairs.

templates corresponds to a seed task3; {TabFact864

topic} corresponds to a brief topic randomly se-865

lected from the dataset TabFact4; {language}866

corresponds to a specified programming language.867

For response request prompts, which are pre-868

sented in Appendix Table 4, we typically utilize869

the obtained instructions to request a correspond-870

ing answer from GPT-3.5-turbo. The placeholder871

{programming task} in the prompt templates cor-872

responds to an instruction obtained via instruction873

requests or retrieving from the existing dataset (e.g.,874

SFT-Python); {code snippet} corresponds to a875

suitable code snippet, which can be retrieved from876

the already crafted dataset (e.g., SFT-Python).877

B Scenario Selection for Generalization878

Verification879

As mentioned in Section 3 and 4.3.1, in this paper,880

we have crafted instruction data for diversified train-881

ing scenarios, covering a total of 15 programming882

languages, 7 code-related tasks, and 3 domains.883

This section will explain the reasons behind the884

selection of these scenarios.885

3The seed task is CodeAlpaca mentioned in Section 3.
4https://huggingface.co/datasets/tab_

fact

15 Programming Languages We meticulously 886

select 15 languages, including Python, C, C++, 887

JavaScript, TypeScript, PHP, Go, Rust, Bash, Java, 888

Racket, Haskell, SQL HTML, and XML. To de- 889

rive a diversified set of training scenarios, these 890

selected languages cover a broad range of lan- 891

guage features, considering aspects of program- 892

ming paradigm, type system, memory management, 893

etc., as shown in Appendix Table 6. In addition, we 894

also take into account the share of these languages 895

in the pre-trained corpus5 of our base model, rang- 896

ing from 0% to 15% all over. For each of the 15 897

languages, we have created an instruction dataset of 898

code generation correspondingly (see Appendix A 899

for more details). 900

7 Tasks We select 7 code-related tasks: code 901

generation, code explanation, code repair, code 902

translation, test case generation, code commenting, 903

and code-related questing answering. We select 904

these tasks because they represent a comprehensive 905

range of skills required in software development 906

and maintenance (Zheng et al., 2023b; Zhang et al., 907

2023b). For each of the 7 tasks, we have created 908

multiple language versions of instruction data, in- 909

cluding Python, JavaScript, Java, Go, C++, and 910

Rust (see Appendix A for more details). 911

3 Domains We select 3 domains including code, 912

math, and natural language. We choose the latter 913

two domains based on the assumption that arith- 914

metic reasoning and natural language understand- 915

ing may also bolster the code-related capabilities 916

of code LLMs (Rozière et al., 2023; Name, 2023). 917

As for the instruction dataset of two non-code do- 918

mains, we directly extract 9.6K data pairs from the 919

GSM8K (Cobbe et al., 2021) and WizardLM (Xu 920

et al., 2023) datasets. 921

C Implementation Details 922

C.1 Training and Inference 923

We fine-tune StarCoder using PyTorch (Paszke 924

et al., 2019), transformers (Wolf et al., 2019), and 925

DeepSpeed (Rajbhandari et al., 2020) with FP16 926

enabled. During instruction tuning, we set the batch 927

size to 8, the epoch to 4, the max length to 1024, 928

the warmup ratio to 0.03, the gradient accumu- 929

lation steps to 16, the save steps to 10, and the 930

learning rate to 2e-5 with cosine scheduler. When 931

fine-tuning on one training dataset, we report the 932

5https://huggingface.co/datasets/
bigcode/the-stack
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Model-Task Prompt to obtain instruction

SFT-Python
SFT-C
SFT-C++
SFT-JS
SFT-TS
SFT-PHP
SFT-Go
SFT-Rust
SFT-Bash
SFT-Java
SFT-Racket
SFT-Haskell

I want you act as a Programming Contest Designer. Your objective is to rewrite a given
programming task into a more complex version to make it more educational.\nYou
can increase the difficulty using, but not limited to, the following method:\n- Add
new constraints and requirements to the original problem, adding approximately 10
additional words.\n- If the original problem can be solved with only a few logical
steps, please add more reasoning steps.\n\nYour response is the rewritten program-
ming task (#Rewritten Task#).\nThe #Rewritten Task# must be reasonable and must
be understood and responded by humans, and also solvable with {language} code.
It should not be dependent on the #Given Task#. Your rewriting cannot omit the
non-text parts such as the table and code in #Given Task#. Also, please do not
omit the input in #Given Task#.\n**The rewritten task and the given task should
have the similar length.**\n**The rewritten task should ask for a function-level
code solution.**\n‘#Given Task#’, ‘#Rewritten Task#’, ‘given task’, and ‘rewrit-
ten task’ are NOT allowed to appear in #Rewritten Task#.\n\n#Given Task#\n{seed
task}\n\n#Rewritten Task#\n

SFT-SQL
SFT-HTML
SFT-XML

I want you act as a prompt engineer. Your objective is to create an {language} code
generation task by drawing inspiration from the #Given Topic#. The task should be
educational to junior programmers, just like the #Reference Task#, but can also involve
some advanced skills of this specific programming language.\n\nYour response is the
#Code Generation Task#, asking an AI code assistant to generate an {language} code
snippet.\nThe #Code Generation Task# must be reasonable and must be understood and
responded by humans, and also solvable with {language} code. The #Code Generation
Task# is not necessarily related to the #Given Topic#, but should be in the same
domain of it.\n‘#Code Generation Task#, ‘#Given Topic#’, ‘code generation task’,
and ‘given topic’ are NOT allowed to appear in #Code Generation Task#.\n\n#Given
Topic#\n{TabFact topic}\n\n#Reference Task#\n{seed task}\n\n#Code Generation
Task#\n

SFT-CR

I want you act as a Programming Task Designer. Your objective is to create a code fix
task based on a given programming task.\nYou SHOULD increase the difficulty of the
given programming task and rewrite it into a code fix task, including a programming
task and a piece of buggy code. You can create the code fix task using the following
method:\n- Add new constraints and requirements to the original problem, adding
approximately 10 additional words.\n- If the original problem can be solved with only
a few logical steps, please add more reasoning steps.\n\nYour response is the rewritten
code fix programming task.\nThe #Code Fix Task# contains a description which must
be reasonable and must be understood and responded by humans, attached with a
piece of buggy code in {language}. #Code Fix Task# should not be dependent on the
#Given Task#. Your rewriting cannot omit the non-text parts such as the table and
code in #Given Task#. Also, please do not omit the input in #Given Task#.\n‘#Given
Task#’, ‘#Code Fix Task#’, ‘given task’, and ‘code fix task’ are NOT allowed to appear
in #Code Fix Task#.\n\n#Given Task#\n{seed task}\n\n#Code Fix Task#\n

Table 3: Prompts of crafting instructions of training datasets by requesting OpenAI’s GPT-3.5. The “Model-Task”
column corresponds to the “Model” column in Tables 1 and Table 2.

results of the last checkpoint. In our experiments,933

all results are truncated to one decimal place. The934

number of samples in MultiPL-E for Python, C,935

C++, JavaScript, TypeScript, PHP, Go, Rust, Bash,936

Java, and Racket are 161, 162, 161, 161, 159, 161,937

154, 156, 158, 158, and 161, while HumanEval- 938

Pack uniformly contains 164 programming prob- 939

lems for various evaluation scenarios. 940

We use the same prompt for training and infer- 941

ence for each task. To align the forms across di- 942
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Model-Task Prompt to obtain response for instruction

SFT-PLs
SFT-CG
SFT-CR

Below is an instruction that describes a programming task. Write a response that
appropriately completes the request. You should use {language} to do this. You are
NOT allowed to use any other programming languages.\n\n### Instruction:\nCreate a
code solution for this problem:\n{programming task}\n\n### Response:\n

SFT-CE
Below is a code snippet. Write a response that detailedly explains the code snip-
pet.\n\n### Code Snippet:\n{code snippet}\n\n### Response:\n

SFT-CT

You are a senior programmer. Your objective is to translate the given #Python Code#
to a {language} version accurately.\n\nYour response is the #{language} Code#, which
should contain a {language} code snippet.\n‘#Python Code#’ and ‘Python Code’ are
NOT allowed to appear in #{language} Code#.\n\n#Python Code#\npython\n{code
snippet}\n\n\n#{language} Code#\n

SFT-TestCase

You are a Software Test Engineer. Your goal is to craft comprehensive test cases for
the given #Programming Task#, validating a Python function which aims to solve
this given task.\n\nYour response should include two parts: #Function Signature# and
#Test Cases#. #Function Signature# contains an appropriate signature for this solution
function, while #Test Cases# is a code snippet containing multiple different test
cases. Each test case should format as a Python assert statement.\n\n#Programming
Task#\n{programming task}\n

SFT-Comment

You are a senior Python programmer. Your objective is to add appropriate comments
for the given Python code snippet. The comments should be concise and educational
to junior programmers.\n\nThe added comments can be a description of the code
snippet, a brief explanation of the code snippet, or details about specific statements.
You can also add comments to the code snippet to make it more readable and de-
clare some detials. You are NOT allowed to change the code snippet.\nThe given
#Code Snippet# is to solve the given #Programming Task#. Your response is the
#Commented Code#.\n\n#Programming Task#\n{programming task}\n\n#Code Snip-
pet#\npython\n{code snippet}\n\n\n#Commented Code#\n

SFT-CodeQA I want you act as a Programming Tutorial author. Your objective is to extract
programming-related topics (e.g. specific syntax, developing skills, and etc.) from a
#Given Programming Task#, and then give an educational question (which is inde-
pendent of the given task) for your tutorial exercises.\n\nYour #Question# should be
concise and have a definite answer. It should be about a specific topic related to pro-
gramming and can be answered with pure natural language (not more than 300 words).
The topic should be rare and educational.\nFollowed by #Question#, you SHOULD
also give a concise #Response# to answer this question. #Response# should NOT con-
tain any code.\n\n#Given Programming Task#\n{programming task}\n\n#Question#\n

Table 4: Prompts of crafting responses of training datasets by requesting OpenAI’s GPT-3.5. The “Model-Task”
column corresponds to the “Model” column in Table 1 and Table 2. “PLs” in “SFT-PLs” represents one of the 15
programming languages mentioned in Section 3 and 4.3.1: Python, C, C++, JavaScript, TypeScript, PHP, Go, Rust,
Bash, Java, Racket, Haskell, SQL, HTML, and XML.

verse tasks, we design similar prompts for each943

task, while we also employ distinct descriptions944

in the prompt as a prefix of the task instruction to945

differentiate them. As shown in Appendix Table 7,946

we utilize instructions generated by GPT-3.5-turbo947

as the content of ### Instruction section948

for most tasks. In the case of SFT-TestCase,949

we also provide the function signature in the950

prompt for the models’ reference. In the case of 951

SFT-Comment, we provide a code snippet with- 952

out any code annotation, as well as a constant 953

prompt: “Please add appropriate comments for the 954

given code snippet.” 955
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HumanEvalPack
Py JS Java Go C++ RustModel

CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR
Avg.

Mixed Data
SFT-Mixed (9.6K) 41.6 37.8 51.2 35.4 32.9 47.5 29.1 33.5 50.0 26.6 25.0 48.7 31.6 32.9 44.5 32.6 21.3 31.7 36.3
SFT-Mixed (29K) 47.8 45.7 53.0 42.8 49.3 51.2 34.8 43.2 54.2 29.8 39.0 52.4 40.3 45.1 47.5 33.9 20.7 32.9 42.4

CODEM (4.3K)
CODEM-CG#Java 42.2 37.1 51.2 36.0 31.7 44.5 31.0 32.9 47.5 26.6 25.0 48.1 29.1 31.7 42.6 29.4 18.2 31.7 35.4
CODEM-CG#Go 44.0 36.5 49.3 35.4 32.9 43.9 27.2 32.3 50.0 27.2 23.1 48.7 31.6 32.9 43.9 31.4 21.3 30.4 35.7
CODEM-CG#C++ 43.4 37.8 52.4 37.2 33.5 48.1 30.3 32.3 49.3 27.2 23.7 48.7 32.2 32.3 44.5 30.1 21.9 29.8 36.4
CODEM-CG#Rust 43.4 37.1 48.1 33.5 32.9 46.9 29.1 35.9 51.2 25.9 22.5 47.5 32.2 29.8 43.2 33.3 22.5 27.4 35.7
CODEM-CE#Py 43.4 39.6 49.3 36.0 33.5 46.3 29.1 36.5 48.1 25.9 25.6 50.0 30.4 31.0 43.2 32.0 18.2 31.0 36.1
CODEM-CE#JS 42.2 39.6 52.4 36.0 34.1 47.5 25.9 32.9 51.2 27.9 24.3 48.1 31.0 31.0 45.1 30.7 18.9 28.0 35.9
CODEM-CE#C++ 42.2 39.0 49.3 36.0 31.7 48.1 28.4 35.9 49.3 25.3 25.0 49.3 29.1 34.1 46.3 32.6 21.9 29.8 36.3
CODEM-CE#Rust 40.3 37.8 48.7 33.5 30.4 43.9 27.2 35.9 50.0 24.0 25.6 50.0 31.0 30.4 45.7 29.4 23.7 29.2 35.4
CODEM-CR#Py 42.2 35.9 52.4 35.4 32.3 46.9 30.3 36.5 48.1 25.3 23.1 51.2 32.9 33.5 43.9 30.7 22.5 30.4 36.3
CODEM-CR#JS 40.9 37.1 50.0 34.7 31.7 49.3 28.4 33.5 49.3 24.6 24.3 47.5 29.8 31.7 45.1 30.1 19.5 28.6 35.3
CODEM-CR#Java 40.3 37.1 52.4 37.2 32.3 46.9 29.7 32.3 51.8 24.0 25.0 48.1 29.8 30.4 44.5 32.0 21.9 32.3 36.0
CODEM-CR#Go 41.6 37.8 48.7 34.7 31.7 47.5 31.0 31.7 47.5 27.2 26.2 50.6 29.8 33.5 44.5 31.4 23.1 32.9 36.2

CODEM (9.6K)
CODEM-CG#Java 43.4 39.6 51.2 39.7 43.9 48.7 36.0 43.9 52.4 29.2 31.7 49.3 39.7 40.2 43.9 32.6 21.9 33.5 40.0
CODEM-CG#Go 44.7 41.4 53.6 41.6 45.7 49.3 31.6 39.0 51.8 31.8 35.9 49.3 38.5 42.0 45.1 33.3 21.3 35.3 40.6
CODEM-CG#C++ 45.3 42.0 50.0 42.2 43.9 50.6 32.9 41.4 51.2 30.5 31.0 50.0 42.8 40.8 48.7 33.9 22.5 32.3 40.7
CODEM-CG#Rust 42.8 41.4 50.0 42.8 43.2 51.2 33.5 40.2 53.0 27.9 32.9 50.0 37.2 39.0 45.7 35.2 22.5 35.9 40.2
CODEM-CE#Py 45.9 45.1 51.2 39.7 43.9 48.7 33.5 39.0 50.0 30.5 31.7 48.7 40.9 42.6 44.5 32.6 23.1 34.1 40.3
CODEM-CE#JS 45.3 39.6 54.2 38.5 47.5 49.3 34.8 42.6 53.0 29.8 33.5 49.3 39.1 41.4 45.1 34.6 23.1 33.5 40.8
CODEM-CE#C++ 45.3 43.9 53.6 41.6 46.3 51.2 32.9 41.4 50.0 31.1 32.3 49.3 40.3 43.2 44.5 33.9 25.6 35.3 41.2
CODEM-CE#Rust 45.9 42.6 54.2 42.8 43.2 49.3 35.4 40.2 52.4 28.5 32.9 48.7 37.2 43.9 46.9 35.2 25.0 34.7 41.1
CODEM-CR#Py 44.7 41.4 54.2 41.6 46.3 48.7 33.5 43.2 50.6 29.8 32.3 51.2 41.6 40.8 48.1 33.3 22.5 32.3 40.9
CODEM-CR#JS 44.0 42.0 53.0 39.1 45.1 51.8 34.1 39.0 51.2 31.1 32.3 50.0 39.7 40.8 46.3 34.6 23.7 34.7 40.7
CODEM-CR#Java 45.3 41.4 52.4 40.9 47.5 47.5 33.5 41.4 54.8 29.8 35.3 49.3 40.3 42.6 46.9 33.3 24.3 34.1 41.1
CODEM-CR#Go 44.7 43.9 51.8 42.2 44.5 51.2 34.8 42.6 53.6 30.5 34.1 51.8 40.9 39.6 46.3 32.0 21.3 35.9 41.2

Table 5: (Continuation of Table 1) More evaluation results on HumanEvalPack of CODEM and its baselines.

Language Programming Paradigm Purpose Type System Mem. Mgmt. Compilation GP Prop.
IMP DECL PROC OOP FUNC GEN MRK DATA STAT DYN GC OWN COM INTR

Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.9%
C ✓ ✓ ✓ ✓ ✓ ✓ 7.0%
C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.4%
JS ✓ ✓ ✓ ✓ ✓ ✓ 8.4%
TS ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.5%
PHP ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.9%
Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.1%
Rust ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.2%
Bash ✓ ✓ ✓ ✓ ✓ 0.4%
Java ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.3%
Racket ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.0%
Haskell ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.3%
SQL ✓ ✓ ✓ ✓ ✓ 1.4%
HTML ✓ ✓ ✓ 3.8%
XML ✓ ✓ ✓ 0.0%

Table 6: Taxonomy of 15 languages mentioned in Section 3 and 4.3.1 and data proportion of programming languages
in Stack (Li et al., 2023). Abbreviations: Mem. Mgmt. (Memory Management), GP (Generic Programming),
IMP (Imperative), DECL (Declarative), PROC (Procedural), OOP (Object-Oriented), FUNC (Functional), GEN
(General-purpose), MRK (Markup), DATA (Data Query), STAT (Static), DYN (Dynamic), GC (Garbage Collected),
OWN (Ownership), COMP (Compiled), INTR (Interpreted); Prop. (Data Proportion in Stack).
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Model-Task Prompt
SFT-PLs
SFT-Math
SFT-PyNoise

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\n{instruction}\n\n### Response:\n

SFT-CodeQA
SFT-NLQA
SFT-NLNoise

Below is an instruction that proposes a question. Write a response that appropriately
answers the question.\n\n### Instruction:\n{instruction}\n\n### Response:\n

SFT-CE

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\nPlease write a response that detailedly explains the Python code snip-
pet.\n{instruction}\n\n### Response:\n

SFT-CR
Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\n{instruction}\n\n### Response:\n

SFT-CT

Below is an instruction that describes a task, paired with an input that provides fur-
ther context. Write a response that appropriately completes the request.\n\n###
Instruction:\nPlease translate the Python code snippet to a PHP version accu-
rately.\n{instruction}\n\n### Response:\n

SFT-TestCase

Below is an instruction that describes a task, paired with an input that pro-
vides further context. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\nPlease write unit tests to test a function which is intended
for solving the below programming problem.\n{instruction}\nThe function signature
is:\n{signature}\n\n### Response:\n

SFT-Comment

Below is an instruction that describes a task, paired with an input that pro-
vides further context. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\nPlease add appropriate comments for the following code
snippets.\n{input}\n\n### Response:\n

Table 7: Prompts of training and inference. The “Model-Task” column matches the “Model” column in Table 1 and
Table 2. “PLs” in “SFT-PLs” refers to one of the 15 programming languages outlined in Section 3 and 4.3.1.

C.2 Other Details956

(1) To ensure that the data generated by GPT-957

3.5-turbo meets our requirements, we manually958

review them. It is noteworthy that we remove959

those HTML code responses where there are960

embedded JavaScript scripts. (2) HumanEval-961

Pack (Muennighoff et al., 2023) offers two ver-962

sions of evaluation sets for the code repair task,963

including HumanEvalFixDocs and HumanEvalFix-964

Tests. We opt for the former to conduct our exper-965

iments. (3) Among the competitive models evalu-966

ated in our study (Table 1 and Table 2), CodeL-967

lama (Rozière et al., 2023) and CodeFuse (Di968

et al., 2023) have multiple versions. The specific969

versions we used are CodeLlama-7b-hf6 and970

CodeFuse-StarCoder-15B7.971

6https://huggingface.co/codellama/
CodeLlama-7b-hf

7https://huggingface.co/codefuse-ai/
CodeFuse-StarCoder-15B
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