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ABSTRACT

Recent advancements in proprietary multimodal models such as GPT-Image-1
have set new standards for high fidelity, instruction guided image editing. How-
ever, their closed-source nature restricts open research and reproducibility. To
bridge this gap, we introduce GPT-IMAGE-EDIT-1.5M, a publicly available
dataset comprising over 1.5 million high-quality editing triplets systematically
unified from OmniEdit, HQEdit, and UltraEdit. Our data curation pipeline lever-
ages output regeneration and instruction rewriting to significantly enhance in-
struction following (IF) and perceptual quality (PQ), while intentionally preserv-
ing challenges in identity preservation (IP) typical of GPT-generated images. We
benchmark three MMDIT diffusion architectures—SD?3 InstructPix2Pix (channel-
wise conditioning), Flux with SigL.IP (token-wise conditioning), and FluxKon-
text (token-wise conditioning) to analyze their robustness against IP degradation.
Our results indicate that token-wise conditioning methods consistently outperform
channel-wise conditioning. To ensure evaluation transparency, we specify when
results involve thinking-rewritten prompts to avoid potential ambiguity. Moreover,
we examine text encoders within a common frozen-encoder scenario, demonstrat-
ing that TS5 embeddings consistently meet or exceed multimodal large language
model (MLLM) embeddings, particularly with lengthier prompts. Simple linear or
query-based integration methods, however, offer limited improvements, indicating
deeper cross-modal fusion methods may be necessary. Fine-tuning FluxKontext
on GPT-IMAGE-EDIT-1.5M achieves open-source performance competitive with
GPT-Image-1 (7.66 @ GEdit-EN and 3.90 @ImgEdit-Full, with thinking-rewritten
prompts; 8.97 @ Complex-Edit). Our findings highlight critical interactions among
instruction complexity, semantic alignment, and identity preservation, informing
future directions in open-source image editing.

1 INTRODUCTION

Instruction-guided image editing is a fundamental task for generative Al, spurring significant
progress in diffusion-based models such as InstructPix2Pix (Brooks et all [2023), Prompt-to-
Prompt (Hertz et al.,|2022), SDEdit (Meng et al.,|2021)), and Imagic (Kawar et al.,|2023)). Proprietary
models, notably GPT-Image-1 (Hurst et al., 2024)), currently set the highest standards in instruction-
following (IF) and perceptual quality (PQ). However, their closed-source nature severely restricts
open research and reproducibility, creating a persistent gap between proprietary and open-source
methods (Shi et al.| 2024; Wang et al.,|2025b).

A critical obstacle for open-source methods is the lack of large-scale, diverse, and well-aligned
datasets. Existing datasets such as OmniEdit (Wei et al.| 2025a), HQEdit (Hui et al.| [2025), and
UltraEdit (Zhao et al. [2024) frequently provide overly simplistic instructions or suffer from weak
alignment between instructions and images. Consequently, open-source models trained on these
datasets typically fail to achieve performance comparable to proprietary solutions.

To overcome these limitations, we introduce GPT-IMAGE-EDIT-1.5M, a unified dataset comprising
over 1.5 million high-quality editing triplets (Fig. [I). Our streamlined pipeline leverages GPT-
Image-1 to significantly enhance IF and PQ through output regeneration and instruction rewriting.
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Figure 1: An overview of the GPT-IMAGE-EDIT-1.5M dataset. The figure presents qualitative
examples showcasing diverse and complex instruction-guided edits. The bar chart demonstrates that
a model fine-tuned on GPT-IMAGE-EDIT-1.5M achieves 7.66 on the GEdit-EN-full benchmark,
surpassing existing open-source methods.

Unlike previous works that filter out challenging identity preservation (IP) cases, we deliberately
retain them to reflect realistic complexities found in GPT-generated data (Labs et al., 2025}, [Chen
2025b). This choice is motivated by recent findings that models trained solely on simplified
data fail to generalize to practical, real-world editing tasks effectively.

Considering the inherent IP challenges, we systematically evaluate three diffusion architectures built

upon MMDIT (Esser et al.,[2024): SD3 InstructPix2Pix (Zhao et al.}[2024) with channel-wise condi-
tioning, and Flux with SigL.IP 2025) and FluxKontext (Labs et al.,[2025), both employing

token-wise conditioning. Our analyses consistently indicate that token-wise conditioning notably
surpasses channel-wise methods across all evaluated metrics. This finding supports the idea that
finer-grained token-level conditioning can more effectively manage semantic nuances and spatial
alignment, essential for accurate instruction-guided edits.

Additionally, we examine text encoder strategies under a common practical constraint: frozen en-
coder parameters during fine-tuning. We observe that robust text-only encoders, such as T5, con-
sistently match or exceed multimodal large language model (MLLM) embeddings, particularly with
detailed, lengthy prompts. Furthermore, shallow integration methods like linear projections

et all} 2025}, [Liu et al., 2025) or query-based connectors (Pan et al., 2025, [Wei et al.l 2025b)) offer

limited improvements, underscoring the need for deeper and more sophisticated cross-modal fusion

methods (Tang et al.} 20235 [Deng et al., 2025}, Xie et al.| 2025).

Fine-tuning FluxKontext on GPT-IMAGE-EDIT-1.5M achieves open-source performance approach-
ing proprietary GPT-Image-1, particularly when employing 7.66 @GEdit-EN, 3.90 @ImgEdit-Full
with thinking-rewritten prompts, 8.97 @Complex-Edit. Rather than merely restating numerical re-
sults, our study provides nuanced insights into the relationships between instruction complexity,
semantic alignment, and identity preservation, guiding future open-source advancements.

Contribution

» Data: We leverage GPT-Image-1 to build GPT-IMAGE-EDIT-1.5M, a unified dataset of over 1.5
million high-quality editing triplets, significantly enriching instruction diversity and alignment.

* Conditioning Mechanism: A systematic evaluation demonstrating the superiority of token-wise
conditioning over channel-wise approaches for accurate and context-aware editing.

* Text Encoder: A detailed comparative analysis of text encoders under frozen encoder conditions,
confirming the effectiveness of T5 embeddings and highlighting limitations in shallow MLLM
integration methods.

 Evaluation: Comprehensive empirical evaluation across major benchmarks, clearly identifying
strengths, weaknesses, and critical trade-offs necessary to advance open-source image editing.



2 RELATED WORKS

Instruction-Guided Image Editing. The task of instruction-guided image editing was established
by pioneering works such as InstructPix2Pix (Brooks et al.| 2023)), Prompt-to-Prompt (Hertz et al.|
2022), SDEdit (Meng et al.l 2021), and Imagic (Kawar et al.l 2023). InstructPix2Pix introduced
a scalable, two-step approach: first leveraging GPT-3 (Brown et al., 2020) to generate synthetic
instruction-image triplets, then using a diffusion model guided by Prompt-to-Prompt control (Hertz
et al., 2022) to produce the corresponding image edits. Despite its foundational impact, the perfor-
mance of these early models was constrained by the underlying diffusion architectures (U-Net-based
latent diffusion models trained with CLIP (Radford et all [2021)), limiting their photorealism and
semantic precision (Rombach et al.,[2022). This motivated subsequent research to pursue improve-
ments in both dataset quality and architectural capability.

Data-Centric Advancements. Recognizing the critical role of data quality, recent approaches
have prioritized sophisticated dataset curation. For instance, HQEdit (Hui et al., 2025) utilizes
powerful proprietary models such as GPT-4V (Hurst et al., [2024) and DALL-E 3 (OpenAll [2023))
to generate more aligned and high-quality editing pairs. Concurrently, ShareGPT-40-Image (Chen
et al.,[2025a) demonstrates effective direct distillation from proprietary models, creating high-quality
datasets explicitly designed to transfer advanced editing capabilities to smaller, open-source models.
Aligning with this strategy, our work systematically leverages GPT-Image-1 to refine and unify
large-scale datasets, significantly enhancing data alignment and diversity without complex design.

Architectural Evolution: Diffusion and Flow Matching. Generative model architectures have
evolved considerably, transitioning from U-Net-based diffusion models (Rombach et al., [2022)) to
more scalable Transformer-based Diffusion Transformers (DiT) (Peebles & Xiel 2023). More re-
cently, flow matching (FM) models (Lipman et al) 2022) have emerged as efficient alternatives,
predicting continuous velocity fields to directly model complex distributions. Specifically, FLUX.1
Kontext (Labs et al.| [2025) exemplifies a state-of-the-art FM-based architecture, efficiently unifying
generation and editing through token-wise conditioning, demonstrating robust semantic and per-
ceptual capabilities. We leverage this architecture due to its proven effectiveness and efficiency,
particularly suited to instruction-guided editing tasks.

Semantic Enhancement via Token-Wise Conditioning. An essential improvement in multi-
modal generative models has been the advancement in conditioning strategies—particularly token-
wise versus channel-wise integration. State-of-the-art open-source models such as Step1X-Edit (Liu
et al.}|2025) and UniWorld-V1 (Lin et al.||2025)) leverage token-wise conditioning schemes: Step1X-
Edit utilizes Kontext-based token fusion, while UniWorld-V1 employs SigLIP-based token-wise
integration, each conditioned on powerful multimodal large language models (MLLMs) like Qwen-
VL (Bai et al.,|2025) or LLaVA (Liu et al.} 2023). These approaches significantly enhance semantic
alignment and editing precision compared to earlier channel-wise methods. Our systematic explo-
ration of these paradigms demonstrates clear advantages of token-wise conditioning in robustness
and semantic fidelity, especially under realistic identity preservation (IP) challenges.

Evaluation Benchmarks. We evaluate on comprehensive benchmarks capturing diverse editing
scenarios: GEdit-Bench-EN (Full) covers 11 distinct editing tasks with MLLM-based scoring (Liu
et al.| [2025)); ImgEdit (Full) assesses across 9 task families using a unified pipeline (Ye et al.,[2025));
Complex-Edit evaluates compositional reasoning through chained edits (Yang et al., [2025); These
benchmarks ensure rigorous evaluation across multiple dimensions (IF, IP, PQ), guiding the reliable
assessment and comparison of editing model architectures.

3 DATA & METHOD

Our primary goal is to construct a large-scale, high-quality dataset to facilitate robust open-source
instruction-guided image editing. To this end, we introduce a unified, minimalist pipeline for data
curation as shown in Fig. |2 designed to produce well-aligned instruction-image pairs while inten-
tionally preserving challenging identity preservation (IP) scenarios typical in GPT-generated con-
tent. Given the IP challenges inherent to our dataset, we further investigate how different condition-
ing mechanisms and text encoder choices within MMDIT architectures influence editing quality and
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Figure 2: An overview of GPT-IMAGE-EDIT-1.5M data curation pipeline. We applied multiple
methods to collect high-quality image-editing data. we re-write 10% of OmniEdit instructions to
better match regenerated images, and the input images originally generated by DALL-E in HQEdit
were re-synthesized by GPT-Image-1 for higher alignment.

robustness. Below, we first describe our dataset curation process in detail, followed by an explo-
ration of these key architectural decisions.

3.1 UNIFIED DATA CURATION AND EVALUATION PIPELINE

Our dataset curation process strategically integrates multiple methods to enhance the alignment,
complexity, and quality of instruction-guided image editing data. We employ GPT-Image-1 to re-
generate output images from existing instruction-image pairs, substantially improving visual fidelity
and instruction-following accuracy. To address potential semantic drift from regeneration, we fur-
ther utilize GPT-4o to selectively rewrite approximately 10% of OmniEdit instructions, ensuring that
textual prompts precisely reflect the visual modifications in regenerated images.

Additionally, we introduce composite editing instructions of moderate complexity (three-step atomic
edits, C3-level) (Yang et al., [2025) to approximately half of the OmniEdit dataset, enriching the
dataset’s realism and complexity. To upgrade the input quality of the HQ-Edit dataset, originally
synthesized by DALL-E 3, we regenerate all inputs using GPT-Image-1, thereby enhancing visual
quality and ensuring stronger alignment between instructions and images.

To maintain dataset consistency across varying aspect ratios, we implement a robust pad-and-crop
procedure that standardizes images to three fixed ratios (1:1, 3:2, 2:3) without distortion. Post-
generation, images are precisely cropped, with automated filtering mechanisms eliminating images
containing artifacts or residual padding. Further details are presented in the Appendix

During evaluation, recognizing ambiguity in conventional short-text instructions, we employ GPT-5
at inference time to systematically rewrite raw benchmark prompts into clearly structured instruc-
tions. This rewriting step clarifies the intended edits by explicitly defining input conditions, desired
edits, and expected outputs, while preserving the original images and evaluation scoring systems,
thereby maintaining transparency and evaluation integrity. Comprehensive procedural details and
examples are included in the Appendix [C|

3.2 CONDITIONING PARADIGMS: CHANNEL-WISE VS. TOKEN-WISE

An MMDiT-based image editing model typically conditions the generation process on both im-
age and text inputs. We explore three distinct conditioning paradigms within the broader MMDiT
architecture family (Fig. [3), each varying by conditioning granularity, token fusion strategy, and
computational complexity:

SD3 InstructPix2Pix (Channel-wise Conditioning). This method concatenates conditioning in-
formation directly along the channel dimension at input embedding layers, effectively increasing the
embedding dimensionality. Post-processing within MMDIT embedding layers subsequently com-
presses these concatenated channels back to the original token dimension. While straightforward,
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Figure 3: Conditioning paradigms comparison within the MMDIT architecture. (a) Channel-wise
conditioning as in SD3 InstructPix2Pix concatenates conditioning information along input channels,
subsequently compressing dimensionality within the model. (b) Flux with SigLIP employs token-
wise merging via SigLIP visual features into textual embedding space, maintaining simplicity and
strong semantic alignment. (c) FluxKontext leverages a robust dual-stream token-wise conditioning
method, embedding visual and noise prediction tokens separately for enhanced precision and identity
preservation, albeit at higher computational cost.

this approach may suffer from redundancy and higher complexity in handling channel-wise concate-
nation, potentially limiting its robustness to spatial misalignments and minor semantic discrepancies.

Flux with SigLIP (Token-wise Conditioning). In the Flux architecture, extracted SigL.IP visual
tokens are first projected into the textual embedding space, then merged token-wise with text em-
beddings via Flux’s distinctive hybrid dual-to-single stream strategy. Unlike traditional dual-stream
approaches, Flux merges visual and textual tokens within its single-stream stage. Consequently,
only noise prediction tokens are active in the final decoding layers, significantly simplifying the
conditioning mechanism and promoting more robust semantic alignment and identity preservation.

FluxKontext (Token-wise Conditioning). FluxKontext adopts a comprehensive dual-stream con-
ditioning framework, embedding noise prediction tokens alongside latent visual tokens (derived
from a VAE) as separate image branches. These branches remain distinct yet are processed in par-
allel by MMDIT layers, effectively doubling computational demands compared to single-stream
approaches. Despite increased complexity, FluxKontext consistently achieves strong performance
across multiple open-source benchmarks, reflecting its precise and robust conditioning capabilities.

3.3 TEXT ENCODERS AND FUSION STRATEGIES

Frozen-encoder setting. In all our experiments, we keep the text encoders (TS5 (Raffel et al.,
2020) and Qwen2.5-VL-7B Bai et al.|(2025))) frozen. Both encoder-decoder (T5) and decoder-only
(MLLM) models are used purely as encoders, performing a single forward pass without autore-
gressive decoding. We only fine-tune the lightweight projection and fusion layers, ensuring fair
comparison.

Let Ei5 € RE5 <4 denote embeddings from TS, and Epjjy, € REm %% from Qwen2.5-VL-7B. We
use linear layer W € R %4 to align MLLM features to the dimension of T5.

TS5-only (baseline). We directly feed Ey5 into the editor as the instruction representation and fine-
tune the editor exclusively using these embeddings. This approach serves as both our baseline and
primary fine-tuning model, especially effective for handling complex instructions.



Table 1: Comparison on the GEdit-EN-full benchmark; (*): inference with thinking-rewritten
prompts.

BG Color Mat.

Model Change Alt. Mod.

Motion Portrait Style Add Remove Replace Text Tone Avg

Open-Sourced Models

AnyEdit (Yu et al.|[2024) 431 4.25 2.64 0.67 1.90 195 372 3.75 3.23 0.77 421 285
MagicBrush (Zhang et al.|[2023) 6.17 5.41 4.75 1.55 2.90 410 553 4.13 5.10 133 507 4.19
Instruct-Pix2Pix (Brooks et al.[[2023) 3.94 540 352 1.27 2.62 439  3.07 1.50 3.48 1.13 510 322
OmniGen (Xiao et al.|[2024) 5.23 5.93 5.44 3.12 3.17 488 633 6.35 5.34 431 496 5.01
Step1X-Edit (Liu et al.|[2025) 7.03 6.26  6.46 3.66 523 724 717 6.42 739 740 6.62 644
Bagel (Deng et al.|[2025) 7.44 699  6.26 5.09 4.82 6.04 794 7.37 7.31 7.16  6.17 6.60
Bagel-thinking (Deng et al.|[2025) 7.22 7.24 6.69 7.12 6.03 6.17 793 7.44 7.45 361 636 6.66
Ovis-Ul (Wang et al.[|[2025a) 7.49 6.88 6.21 4.79 5.98 6.46 749 725 7.27 448 631 642
OmniGen2 (Wu et al.|2025b) - - - - - - - - - - - 6.42
Step1X-Edit(vI.T) (Liu et al./[2025}) 7.45 7.38 6.95 4.73 4.70 7.11 820 7.59 7.80 791 6.85 697
FluxKontext dev (Labs et al.![2025) 7.06 7.03 5.52 5.62 4.68 555 695 6.76 6.13 6.10 748 6.26
Qwen-Image (Wu et al.[[2025a) - - - - - - - - - - - 7.56
Proprietary Models

Gemini 7.11 714 647 5.67 3.99 495 8.12 6.89 7.41 685 7.01 651
Doubao 8.07 736 720 5.38 6.28 720 8.05 7.71 7.87 401 7.67 698
GPT-Image-1 6.96 6.85 7.10 5.41 6.74 7.44 1751 8.73 8.55 845 8.69 749
Ours 7.39 743 7.07 6.29 6.91 6.62 7.84 7.36 7.17 622 804 712
Ours' 7.87 8.02 7.02 773 7.53 7.05 8.56 7.78 8.42 621 8.02 7.66

MLLM projection. We encode the instruction once using Qwen2.5-VL-7B and project its em-

beddings to match TS5 dimensions: E’mnm = Epiim X W € REm*4_ These projected tokens replace
TS5 embeddings to test the standalone encoding capability of MLLM.

MLLM projection + TS concatenation. We concatenate T5 and projected MLLM tokens along

the token dimension: E = [F\s; Enlllm] € RUwstLlm)xd and add a small learned type embedding
to differentiate their sources. This evaluates if TS and MLLM embeddings complement each other.

MLLM MetaQuery projection. Following the MetaQuery approach (Pan et al., 2025; Wei et al.}
2025b), we append N = 256 special query tokens to the instruction and run a single forward
pass through Qwen2.5-VL-7B. We retain only the embeddings corresponding to these query tokens,
project them to dimension d via W, and use the resulting compact representation Ep,q € RN x4 for
conditioning. This approach summarizes instructions into fixed-length embeddings independent of
their original lengths.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. Our primary model (referred to as Ours) is built upon the state-of-the-art FluxKontext dev
(Labs et al.l |2025)), utilizing token-wise conditioning for enhanced semantic alignment and editing
robustness. For comparative ablation studies, we evaluate two additional architectures: the SD3
InstructPix2Pix model, based on SD3-Medium (Esser et al., [2024), which employs channel-wise
conditioning, and the Flux with SigLIP model, based on Flux 1.0 dev (Labs, 2024), leveraging
token-wise control using SigLIP features (Zhai et al.,[2023). Details shown in the Appendix [E]

Benchmarks. We conduct comprehensive evaluations using multiple benchmarks designed to
measure diverse editing capabilities. Specifically, we assess general editing performance using
GEdit-EN-full (Liu et al.l 2025) and ImgEdit-Full (Ye et al.l |2025), and examine compositional
understanding with the Complex-Edit benchmark (Yang et al., 2025). Full descriptions of these
benchmarks are provided in the Appendix [D]

4.2 MAIN RESULTS

As demonstrated in Tables[I] 2l and B} our model, trained on the GPT-IMAGE-EDIT-1.5M dataset,
achieves competitive performance among open-source methods and is highly competitive with lead-
ing proprietary models such as GPT-Image-1.



Table 2: Comparison on the ImgEdit-Full benchmark; (¥): inference with thinking-rewritten

prompts.
Model Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
MagicBrush (Zhang et al.[[2024) 2.84 1.58 1.51 1.97 1.58 1.75 2.38 1.62 1.22 1.90
Instruct-Pix2Pix (Brooks et al.[[2023)  2.45 1.83 1.44 2.01 1.50 1.44 3.55 1.20 1.46 1.88
AnyEdit (Yu et al.[[2024) 3.18 295 1.88 2.47 223 2.24 2.85 1.56 2.65 2.45
UltraEdit (Zhao et al.[[2024) 344 2381 2.13 2.96 1.45 2.83 3.76 1.91 2.98 2.70
OmniGen (Xiao et al.|[2024) 347 3.04 1.71 2.94 243 3.21 4.19 2.24 3.38 2.96
Step1X-Edit (Liu et al.[[2025) 388 3.4 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
ICEdit (Zhang et al.[[2025) 358 339 1.73 3.15 2.93 3.08 3.84 2.04 3.68 3.05
BAGEL (Deng et al.|[2025) 356 331 1.70 3.30 2.62 3.24 4.49 2.38 4.17 3.20
UniWorld-VT (Lin et al.[[2025) 382  3.64 227 3.47 3.24 2.99 421 2.96 2.74 3.26
OmniGen2 (Wu et al.[[2025b) 3.57  3.06 1.77 3.74 3.20 3.57 4.81 2.52 4.68 3.44
Ovis-Ul (Wang et al.|[2025a) 413 3.62 2.98 4.45 4.06 422 4.69 3.45 4.61 4.00
FluxKontext dev (Labs et al./[2025) 376 345 2.15 3.98 2.94 3.78 4.38 2.96 4.26 3.52
Qwen-Image (Wu et al.|[2025a) 438 416 3.43 4.66 4.14 438 4.81 3.82 4.69 427
GPT-Image-1 4.61 433 2.90 4.35 3.66 4.57 4.93 3.96 4.89 420
Ours 419 379 2.09 422 3.96 3.90 4.76 323 4.49 3.85
Ours’ 407 377 2.75 4.32 4.04 3.92 4.79 3.23 4.23 3.90

Table 3: Comparison on the Complex-Edit benchmark.

Method IF 1P PQ o

AnyEdit (Yu et al.|2024) 1.60 8.15 725 5.67
UltraEdit (Zhao et al.||2024) 6.56 593 729 6.59
OmniGen (Xiao et al.|[2024) 625 642 754 6.74

FluxKontext dev (Labs et al.{|2025) 8.56 8.39 8.51 8.49
Imagen3 (Baldridge et al.|[2024) 7.56 655 7.67 1726

SeedEdit (Shi et al.[[2024) 8.49 691 874 8.04
GPT-Image-1 929 7.51 947 8.76
Ours 920 8.57 9.14 8.97

GEdit-EN-full. Our model achieves an average score of 7.12, surpassing all open-source models
except Qwen-Image (Wu et al.l |2025a). Notably, our model comprises only 12 billion parameters,
representing less than half the parameter size of Qwen-Image (20+7B). When applying thinking-
rewritten prompts—a structured clarification of ambiguous instructions using GPT-5 at inference
without altering image content or evaluation metrics (examples detailed in Appendix [C)—the per-
formance further improves significantly to 7.66, matching proprietary methods like GPT-Image-1.
The improvements under rewritten prompts are particularly prominent in categories like Motion
(6.29 — 7.73, +1.44) and Remove (7.17 — 8.42, +1.25), highlighting the model’s capacity for nu-
anced semantic understanding and precision.

ImgEdit-Full. On this benchmark, our method obtains an overall score of 3.85, outperforming
existing open-source methods except Qwen-Image, again despite having significantly fewer param-
eters. Enabling thinking-rewritten prompts further boosts performance to 3.90, closely rivaling pro-
prietary systems such as GPT-Image-1 (4.20). Performance gains with rewritten prompts are ob-
served broadly across tasks including Add, Replace, Remove, and Style, underscoring the robustness
of our dataset and token-wise conditioning strategy.

Complex-Edit (C8). On the challenging Complex-Edit benchmark, characterized by lengthy and
detailed instructions without any additional rewriting, our model demonstrates strong overall per-
formance at 8.97, showing an impressive balance between Instruction Following (IF: 9.20), Identity
Preservation (IP: 8.57), and Perceptual Quality (PQ: 9.14). This balanced performance significantly
exceeds that of GPT-Image-1 in IP (+1.06), while closely matching it in IF and PQ metrics. The ef-
fectiveness of our conditioning strategy in preserving identity under complex, multi-step instructions
is particularly evident here.

4.3 ABLATION STUDIES

We conduct a series of ablation studies to dissect the sources of performance improvements, isolating
the effects of our data curation strategies and model architecture choices.



Table 4: Complex-Edit metrics results on GEdit-EN and ImgEdit; (*): indicates using pretrained
FluxKontext weights.

Conditioning Mechanism GEdit-EN ImgEdit
P IF PQ Overall 1P IF PQ Overall

SD3 InstructPix2Pix 825 592 17091 7.36 7.73 570 5.99 6.48
Ours(SD3 InstructPix2Pix) 5.58 7.12 7.42 6.71 633 8.01 7091 7.42
Flux with SigLIP 546 576 7.0 6.30 6.49 630 8.69 7.16
Ours(Flux SigLIP) 740 6.08 8.94 7.47 773 695 9.20 7.96
FluxKontext* 938 1777 8.19 8.45 9.14 779 8.00 8.31
Ours(FluxKontext) 897 8.28 84l 8.56 899 852 848 8.66

Table 5: Text encoder ablation (Complex-Edit metrics); Top block: original prompts; bottom block:
thinking-rewritten prompts ().

Text Encoder GEdit-EN ImgEdit
1P IF PQ Overall IP IF  PQ Overall

Baseline 938 7.77 8.19 8.45 9.14 17.79 8.00 8.31
Qwen2.5-7B-VL-Instruct Metaquery 834 8.11 8.17 8.21 8.64 7.99 8.39 8.34
Qwen2.5-7B-VL-Instruct 899 6.63 843 8.02 9.02 7.50 8.56 8.36
Qwen2.5-7B-VL-Instruct+T5 898 8.28 842 8.56 897 837 8.3 8.62
T5 8.99 8.28 842 8.56 899 8.52 848 8.66
Baseline! 937 7.68 8.20 8.42 929 858 7.87 8.58
Qwen2.5-7B-VL-Instruct Metaquery! 832 8.10 8.13 8.18 8.76 8.75 8.4l 8.64
Qwen2.5-7B-VL-Instruct! 8.85 7.54 8.40 8.26 9.08 8.88 8.58 8.85
MLLM+T5' 9.01 8.77 8.26 8.68 892 791 8.60 8.48
T5t 9.05 893 8.38 8.79 9.03 9.01 8.47 8.84

Conditioning Paradigm (Channel-wise vs. Token-wise) Our curated dataset intentionally pre-
serves realistic identity preservation (IP) challenges and mild spatial misalignments commonly
found in practical editing scenarios. These conditions can significantly penalize methods employing
coarse conditioning fusion mechanisms, such as channel-wise concatenation.

As detailed in Table ] the conditioning mechanism significantly impacts Identity Preservation
(IP). When finetuning SD3 InstructPix2Pix (Brooks et al., 2023} [Esser et al., 2024), which utilizes
channel-wise conditioning, on our curated dataset, we observe a marked decrease in IP and overall
editing quality (e.g., GEdit overall declines from 7.36 to 6.71). Conversely, methods employing
token-wise conditioning, such as Flux with SigL.IP (Lin et al.} [2025) and FluxKontext (Labs et al.,
2025)), consistently gain across Identity Preservation (IP), Instruction Following (IF), and Percep-
tual Quality (PQ). Specifically, Flux with SigLIP’s GEdit overall improves from 6.30 to 7.47, while
FluxKontext rises from 8.45 to 8.56. These results indicate that token-wise fusion is robust to spatial
misalignments and enhances semantic precision. Official benchmark scores shown in Appendix [F|

Impact of Text Encoder Table |5 shows the impact of different text encoders under frozen-
encoder settings. TS (Raffel et al.,2020) consistently achieves superior or competitive performance
across Identity Preservation (IP), Instruction Following (IF), and Perceptual Quality (PQ) compared
to Qwen2.5-7B-VL-Instruct embeddings, achieving top or near-top overall scores (GEdit: 8.56,
ImgEdit: 8.66). Direct replacement with Qwen2.5-7B-VL-Instruct notably reduces performance,
particularly impacting IF (GEdit IF drops from 8.28 to 6.63). Similarly, compact MetaQuery-
based embeddings yield lower overall performance. Concatenating Qwen and TS5 embeddings offers
minimal and inconsistent benefits, suggesting shallow fusion inadequately captures complementary
enough signals.

Thinking-rewritten prompts significantly enhance T5 performance (GEdit: 8.56 to 8.79, ImgEdit:
8.66 to 8.84), highlighting T5’s strength in handling detailed instructions. Detailed official metric
results are in the Appendix [[} Overall, T5 emerges as the most reliable text encoder under frozen
conditions, balancing IF, IP, and PQ. Limited gains from shallow MLLM integrations highlight the
need for deeper cross-modal fusion strategies to fully leverage multimodal embeddings.



Prompt SD3 InstructPix2Pix Flux with SigLIP FluxKontext

Blur the background to
create a bokeh effect,
making the bear-themed
chocolate candy sled
more prominent and
removing any potential
distractions.

Replace the girl in the
image with a'large crystal
chandelier hanging from
an invisible support,
blending naturally into
the forest environment.

Transfer the image into
an ornate steampunk
brass-engraving style.

Figure 4: Qualitative comparison of editing performance across models.

4.4 QUALITATIVE RESULTS

Fig.@]presents qualitative editing examples produced by our FluxKontext model fine-tuned on GPT-
IMAGE-EDIT-1.5M across various editing scenarios. These results clearly illustrate the model’s
strong capability to interpret and follow editing instructions, generating realistic outputs while ef-
fectively preserving non-target image content. Additional qualitative examples across diverse cate-
gories are provided in Appendix [G]

5 LIMITATION

Benchmarks partially rely on MLLM-based scoring, which can be sensitive to variations in style and
phrasing. Therefore, we present both original and thinking-rewritten prompt scores side-by-side
to maintain transparency. Although thinking-rewritten prompts improve semantic alignment, text
rendering and fine-grained facial identity preservation (IP) continue to pose significant challenges.
Additionally, our experiments under a frozen-encoder setup reveal that shallow fusion approaches
are insufficient, indicating a clear need for deeper cross-modal fusion techniques in future research.

6 CONCLUSION

In this work, we introduced GPT-IMAGE-EDIT-1.5M, a unified dataset of over 1.5 million
instruction-based editing samples systematically refined from existing sources using GPT-Image-1.
Our approach significantly enhances instruction-following and perceptual quality while intentionally
preserving realistic identity-preservation (IP) challenges. Experiments confirmed the effectiveness
of our dataset and conditioning strategies, highlighting the superiority of token-wise conditioning
and the robustness of T5 embeddings under frozen-encoder conditions. By releasing GPT-IMAGE-
EDIT-1.5M and corresponding models, we provide a valuable resource to accelerate future research.
Future work includes exploring datasets with improved IP quality (e.g., Nano-Banana) and deeper
multimodal fusion between MLLMs and MMDIT architectures.
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A THE USE OF LARGE LANGUAGE MODELS (LLM)

During manuscript preparation, we used OpenAl GPT-4.1 for minor language refinement and writing
polish. Additionally, GPT-4.1 was utilized for evaluating benchmark results. The primary dataset
was generated using GPT-Image-1, with a subset of instruction prompts rewritten by GPT-40 and
GPT-5. These uses of LLMs are clearly described and marked throughout the manuscript to ensure
transparency.

B DATASET-SPECIFIC PROCESSING DETAILS

Given the heterogeneity of aspect ratios across the original datasets and the restriction that our gen-
erative model supports only three predefined ratios (1:1, 3:2, and 2:3), we adopted a standardized
padding and cropping approach. Rather than directly resizing, which could distort the original con-
tent, we applied padding to each input image to match the nearest supported aspect ratio, conducted
the image generation, and subsequently cropped out the padding. This process preserved the original
geometry and pixel density, ensuring consistency and comparability across all datasets.

B.1 ULTRAEDIT DATASET PROCESSING

The UltraEdit dataset originally provides images at a 512 x 512 resolution. To enhance visual fidelity
and maintain benchmark compatibility, we regenerated these images at a higher resolution of 1024 x
1024. Afterward, bicubic interpolation was employed to downscale the regenerated images back to
the original size of 512 x 512. This method retains high-frequency details that might otherwise be
lost through direct generation at a lower resolution.

B.2 OMNIEDIT DATASET ENHANCEMENT

For OmniEdit, additional refinements were introduced to improve data quality. Following the stan-
dard padding and cropping procedure, we systematically regenerated the output images to enhance
both their visual quality and their alignment with the associated textual instructions. Recogniz-
ing semantic inconsistencies, approximately 10% of the original textual prompts underwent careful
manual rewriting to better reflect the corresponding images. Furthermore, we augmented a substan-
tial portion of this dataset by introducing compositional edits involving multiple sequential editing
instructions, thus significantly enriching the dataset’s instructional complexity.

B.3 COMPLEX-EDIT SUBSET CONSTRUCTION

The Complex-Edit subset specifically emphasizes the dataset’s compositional complexity and rigor-
ously tests instruction-following capabilities. After applying the standard geometric preprocessing,
we crafted multi-step editing instructions leveraging GPT-40’s generative capabilities. These de-
tailed instructions, often involving two to three distinct editing operations, were subsequently used
to guide GPT-Image-1 image generation. Post-generation, a rigorous filtering process eliminated
any samples with detectable padding artifacts to ensure the dataset’s integrity and quality.

B.4 HQEDIT DATASET: DUAL-SPLIT STRATEGY

The HQEdit dataset was strategically divided into two complementary subsets to maximize utility
and diversity:

Edit Split: Existing input-instruction pairs underwent standard padding and cropping before image
generation. This preserved the fidelity of original pairs while ensuring aspect ratio consistency.

Generate Split: For this subset, entirely new reference input images were synthesized directly
from textual prompts. These generated inputs subsequently underwent editing based on the original
textual instructions. To further diversify this split, aspect ratios were randomly selected from the
three available presets (1:1, 3:2, 2:3), promoting variety within the generated data.
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B.5 QUALITY CONTROL AND FILTERING MECHANISMS

To uphold dataset quality, strict filtering criteria were applied after the cropping step. Samples
exh1b1t1ng residual padding exceeding 0.5% of the image boundary, indicative of processing inaccu-
racies, were automatically excluded. Additionally, any mismatch between recorded padding masks
and actual cropped regions resulted in immediate rejection, thus effectively mitigating common pre-
processing errors and maintaining consistent image quality standards.

B.6 COMPREHENSIVE METADATA SCHEMA

Each dataset sample is accompanied by comprehensive JSON metadata, providing explicit docu-
mentation of data provenance and preprocessing details. This metadata encompasses source iden-
tification, original and adjusted dimensions, exact padding and cropping parameters, original and
rewritten prompts (when applicable), and generation resolution specifics. Such detailed metadata
supports reproducibility and offers extensive flexibility for downstream research and analysis.

C EVALUATION-TIME PROMPT REWRITING WITH GPT-5

As described in Section 3.1, we implement an inference-time rewriting procedure leveraging GPT-5
to address ambiguity in short, underspecified evaluation instructions. The primary motivation is to
convert vague prompts into explicit, actionable editing descriptions while preserving the original
images and evaluation metrics. Specifically, GPT-5 rewrites each original benchmark prompt into a
structured three-field specification: an input (briefly describing visible image content), an edit
(clearly specifying the editing task), and an output (summarizing the final expected appearance).
During evaluation, only the rewritten edit prompts are used as replacements for the original in-
structions, with results explicitly marked by a dagger () in tables.

This rewriting is guided by a detailed task prompt (Visual Edit Prompt Rewriter), instructing GPT-5
to generate concise, image-editing-oriented English outputs, strictly based on visible elements in
reference images. To minimize subjective inference, the system is designed to adopt conservative
assumptions wherever ambiguities remain unresolved.

Below, we illustrate two concrete examples demonstrating the clarity and specificity gained from
this rewriting step:

Example A (Background Change—Fire Hydrant). Original prompt: ”Change the background
to a city street.”

Rewritten prompt: “Replace the entire background beyond the fire hydrant with an urban city
street featuring multi-story commercial buildings, asphalt roadway, and sidewalks, viewed from
a sidewalk-level perspective; remove the trees, houses, and parked car; maintain the hydrant, soft
overcast lighting, and shallow depth of field.”

Example B (Background Change—Bear by River). Original prompt: Change the background
to a forest.”

Rewritten prompt: ”Replace the blurred riverside background beyond the water with a dense forest
scene featuring green trees, trunks, and foliage; keep the bear and river foreground unchanged;
match the soft daylight from the upper-left, preserve shallow depth-of-field, and blend the forest
edges naturally around the bear’s fur and water splashes.”

This structured rewriting enhances clarity and reproducibility without altering evaluation fairness,
as the original images and scoring remain unchanged. All rewritten prompts are made available for
full transparency and reproducibility.

D BENCHMARKS AND EVALUATION PROTOCOLS

We comprehensively evaluate our approach using three established instruction-guided image editing
benchmarks—GEdit-EN (Full), ImgEdit (Full), and Complex-Edit—selected for their complemen-
tary assessment of general editing quality, diverse editing operations, and compositional reasoning.
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GEdit-EN (Full). The GEdit-EN (Full) benchmark encompasses 11 distinct editing categories:
Background Change, Color Alteration, Material Modification, Motion, Portrait, Style, Add, Re-
move, Replace, Text, and Tone. This categorization provides broad coverage of common editing
tasks and enables detailed, category-level analysis. Following the benchmark’s standard evaluation
protocol, we report scores for Semantic Consistency (SC), Perceptual Quality (PQ), and an aggre-
gated Overall metric. Additionally, where explicitly noted with a dagger (), results include minimal
inference-time prompt rewriting to clarify ambiguous instructions, while strictly maintaining origi-
nal images and official scoring procedures.

ImgEdit (Full). ImgEdit (Full) comprises nine task families—Add, Adjust, Extract, Replace, Re-
move, Background, Style, Hybrid, and Action—designed to evaluate model performance on a range
of atomic, localized editing tasks. The official evaluation protocol is consistently followed, with
results reported per task family as well as an aggregate Overall score. Similar to GEdit-EN, dag-
gered (1) results indicate the use of inference-time prompt rewriting to resolve ambiguities without
altering images or the official evaluation criteria.

Complex-Edit. The Complex-Edit benchmark specifically targets compositional editing through
multi-step or constraint-rich instructions, emphasizing a model’s ability to follow complex, struc-
tured prompts. Performance evaluation includes metrics for Instruction Following (IF), Identity
Preservation (IP), Perceptual Quality (PQ), and an Overall aggregate score. Notably, evaluations on
Complex-Edit strictly utilize the original, detailed instructions without any inference-time rewriting.

Reproducibility. To ensure full reproducibility, we adhere rigorously to official benchmark eval-
uation pipelines and release all evaluation scripts and configuration details.

E IMPLEMENTATION AND TRAINING DETAILS

Model Variants. We evaluate three distinct multimodal diffusion transformer (MMDIiT)-based
editing paradigms: (i) SD3 InstructPix2Pix, employing channel-wise conditioning built upon SD3-
Medium; (ii) Flux w/ SigLIP, leveraging token-wise conditioning with Flux 1.0 dev guided by
SigLIP features; and (iii) our primary model FluxKontext dev, utilizing token-wise conditioning.
Unless explicitly stated, all text encoders remain frozen throughout training. Fine-tuning involves
updating only lightweight projection/fusion layers and the editor backbone during Stage 2. Bench-
mark protocols, data handling, and inference-time instruction rewriting are consistent with the main

paper.

SD3 InstructPix2Pix (channel-wise conditioning). This model is trained following the original Ul-
traEdit training recipe and hyperparameters (optimizer, learning rate schedule, regularization tech-
niques) with the sole exception of utilizing our curated dataset. The training runs for 10 epochs,
thereby maintaining fidelity to the original SD3 configuration for a controlled comparative evalua-
tion against token-wise architectures.

Flux w/ SigLIP (token-wise conditioning, two-stage training). We adopt a two-stage training
protocol aligned with the UniWorld configuration:

» Stage 1: MLLM Connector Pretraining. We first pretrain a connector mapping Qwen2.5-
VL embeddings into the SigLIP textual embedding space using the Prodigy optimizer for
100k steps. Only the connector parameters are updated in this phase.

 Stage 2: Joint Connector and Flux Fine-tuning. We subsequently fine-tune both the con-
nector and Flux using the AdamW optimizer at a learning rate of 1le-6 for 50k steps,
following the UniWorld fine-tuning strategy (data augmentation, batch packing, evaluation
intervals), with the text encoder parameters remaining frozen.

FluxKontext dev (token-wise conditioning, two-stage training). For FluxKontext dev, we reuse
the pretrained Stage 1 connector obtained from the Flux w/ SigLIP pipeline without further modifi-
cation, and subsequently:
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 Stage 2: Joint Connector and FluxKontext Fine-tuning. Both the reused connector and
FluxKontext are jointly fine-tuned for 50k steps, mirroring the Flux w/ SigLIP fine-tuning
setup (AdamW optimizer, learning rate 1e-6) to enable direct, controlled comparisons.

MetaQuery Connector (Qwen2.5-VL, two-stage training). For the MetaQuery variant, training
follows a similar two-stage strategy:

» Stage 1: Connector Pretraining. We pretrain the MetaQuery connector, which compresses
Qwen2.5-VL embeddings into N = 256 query tokens, summarizing and projecting them
into the editor’s embedding space.

 Stage 2: Joint Connector and FluxKontext Fine-tuning. The pretrained MetaQuery connec-
tor and FluxKontext are then jointly fine-tuned under identical conditions to FluxKontext
Stage 2, isolating connector design effects (refer to Sec. 3.3 for tokenization specifics).

Hardware and Precision Settings. All experiments utilize 8 xA100 (80GB) GPUs in a distributed
data parallel setup, employing mixed-precision training when feasible. Batch sizes and gradient
accumulation steps are adjusted per architecture to fully utilize GPU memory capacity, ensuring
comparable training throughput across all variants.

F EXPANDED ABLATION STUDIES

Conditioning and official metrics. Table [7] groups official scores and shows that training on GPT-
IMAGE-EDIT-1.5M consistently improves each backbone; gains are largest for token-wise models
(FluxKontext, Flux+SigLIP), supporting the benefit of token-level fusion for real-world edits. Text
encoders. With all encoders frozen, TS5 is the most reliable choice overall (Table E]; detailed per-
category trends in Tables [T2HI3). Qwen-VL alone underperforms on text-heavy instructions (e.g.,
the Text category), while concatenating Qwen-VL with T5 recovers most categories on GEdit-EN
and remains competitive on ImgEdit. Data curation. On 100k-subset studies, regenerating outputs
and then aligning instructions yields sizable, additive gains across both SD3 and Flux backbones
(Table[9). Complex-Edit inclusion. Adding the Complex-Edit subset provides modest but consis-
tent improvements on GEdit-EN (7.03 — 7.24) and ImgEdit (3.71 — 3.80) averages (Tables[IOHTT),
mainly via Motion/Hybrid/Action categories, while Text/Tone remain challenging. OmniContext.
Results on OmniContext SINGLE (Table[6)) show balanced PF/SC and narrow the gap to proprietary
systems, corroborating the qualitative trends in Fig.[7] Unless marked with T, all numbers use orig-
inal benchmark prompts; T denotes inference-time “thinking-rewrites” that clarify under-specified
prompts without altering images or scoring protocols.

G ADDITIONAL QUALITATIVE RESULTS

We provide extended visualizations spanning four representative settings: GEdit-EN (Fig. [5),
ImgEdit (Fig. [6), OmniContext (Fig.[T), and Complex-Edit (Fig.[8). Across categories, the model
performs localized edits while preserving non-edited content, with improved semantic alignment for
motion/background/style changes and multi-step compositions. Typical failure modes include minor
facial drift and imperfect text replacement, mirroring the IP and text-handling challenges discussed
in the main paper.
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Subject Addition

Subject Replacement

Add more hair to the front, making Replace the eagle with a parrot.

it long and soft for a gentle look.

Text Change

Replace the text 'TOFEL' with '[ELTS'".

Material Modification

Craft the outerwear from
full-grain calfskin leather.

Tone Transformation

Background Change

Subject Removal

Remove the sticky notes next to the monitor.

Motion Change

Change the action of cat to sleeping.

Adjust the background to a glass wall.

Restore and colorize this old photo in high definition.

Color Alteration

Portrait Beautification

Generate my adult
appearance.

Style Transfer

Modify this image in a Ghibli style.

Change the color of jacket to purple.

Figure 5: The qualitative results of our method on GEdit-Benchmark-EN.

Addition

Add a set of colorful beach towels
hanging over the railing on the right side
of the pier.

Attribute Alter

Change the color of the vehicle to red.

Removement

Remove the transport object in the
image.

Motion Change

Raise the person's left arm.

Hybrid

Replacement

Replace the yacht in the image with a
hot air balloon floating just above the
ocean surface.

Background Change

Change the background color from black

to a light blue sky with fluffy white clouds.

Remove the plant on the right side of the image, and adjust the man's suit

to a darker shade of blue.

Object Extraction

Extract the bird from the image, keeping
it isolated from the surrounding apples
and background.

Style Transfer

Transfer the image into a vibrant graffiti
street-mural style.

Figure 6: The qualitative results of our method on Img-Edit.
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In a cozy studio, the person sits in a chair
and speaks into a microphone.

Show the man in a suit
embracing his partner in a
lavender field, both smiling
and holding bouquets.

Dance on the stage beneath
the red curtain.

A woman is playing with
colorful beads and small cars
on the red carpet.

Display the intricate mandala artwork on
the wall above the marble fireplace in the
elegant living room, enhancing the
serene atmosphere as the fire crackles
softly.

In the cozy corner of a rustic tropical restaurant, a Steller's
sea eagle perches gracefully on a wicker chair, its sharp eyes
scanning the warm ambiance filled with greenery and soft
hanging lights.

Figure 7: The qualitative results of our method on OmniContext.

Modify the mirror reflections to display a window with a garden view
and increase the ambient lighting. Replace the black faucet with a
stainless-steel one, and change the countertop texture to a white
marble finish. Remove the soapdish near the right sink. Resize the
ornamental vase to make it slimmer, and add a small potted plant next
to the left sink. Apply a warm filter to the image.

Replace the wall with an artistic mural and change the wooden bunk
bed frame to white. Add a hammock hanging above the bunk beds
diagonally, and modify the bedding to have floral patterns. Remove the
chair near the flowers. llluminate the scene with warm golden light, add
a glowing aura to the bouquet, and finish with a vintage-style filter.

Transform the scene into a moody, rainy vintage depiction by replacing
the clear sky with a cloudy, stormy one, colorizing with muted vintage
tones, and adding falling raindrops. Introduce a vintage car near the
curb, apply a wet, reflective texture to the road, and dim the overall
lighting while adding subtle fog at ground level. Conclude with a sepia-
tone filter to enhance the vintage atmosphere.

Change the wall color to a vibrant sky blue and the floor to a polished
marble texture. Replace the TV with a wooden shelf with books and
move the coffee table slightly closer to the couch. Add a vase with
colorful flowers on the dining table, increase the brightness of the lamp,
and apply a warm sepia tone across the image. Introduce softly glowing
light trails along the ceiling corners.

Figure 8: The qualitative results of our method on Complex-Edit.
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Table 6: Results on the OmniContext SINGLE benchmark.

Method Character Object Average

PF SC Overall PF SC Overall PF SC  Overall
Infinite You 7.81 5.15 6.05 — — — — — —
UNO 7.56 6.48 6.60 778 6.65 6.83 7.67 6.56 6.72
BAGEL 7.72 4.86 5.48 8.56 6.06 7.03 8.14 546 6.25
OmniGen 7.12  7.58 7.21 7.66 5.04 5.71 7.39  6.31 6.46
OmniGen2 8.04 8.34 8.05 8.44 1726 7.58 824 17.80 7.81

Flux.1 Kontext (dev) 7.70 8.72 8.07 8.76 8.22 8.33 823 847 8.20
Flux.1 Kontext (max) 7.98 9.24 8.48 8.78 8.76 8.68 8.38  9.00 8.58

Gemini-2.0-Flash 554 598 5.06 6.17 5.89 5.17 5.86 5.93 5.11
GPT-Image-1 8.89 9.03 8.90 9.40 8.74 9.01 9.14 8.88 8.95
Ours 8.10 8.36 8.11 8.50 7.68 7.87 830 8.02 7.99

Table 7: Official benchmark metrics (GEdit-EN: SC/PQ/Overall; ImgEdit: Overall). Training on
GPT-IMAGE-EDIT-1.5M yields consistent gains across all backbones; improvements are largest for
token-wise models (FluxKontext, Flux+SigLIP), highlighting the advantage of token-level fusion for
real-world edits.

Model Arch. GEdit-EN ImgEdit
SC PQ Overall Overall
SD3 InstructPix2Pix 4.34 6.14 3.92 2.54
Ours 496 6.46 491 3.32
Flux with SigLIP 448 551 4.75 3.00
Ours 5.57 8.00 5.81 3.49
FluxKontext* 6.98 7.20 6.26 3.52
Ours 7.63  7.69 7.12 3.85

Table 8: Text-encoder ablation under official metrics with all encoders frozen. TS alone is strong on
both GEdit-EN and ImgEdit; concatenating Qwen2.5-VL with T5 is competitive on GEdit-EN and
close on ImgEdit. Compact MetaQuery features underperform. T indicates inference-time prompt
rewriting.

Text Encoder GEdit-EN ImgEdit
SC PQ Overall Overall
Baseline 6.98 7.20 6.26 3.52
Qwen2.5-7B-VL-Instruct Metaquery 7.28 7.69 7.05 3.64
Qwen2.5-7B-VL-Instruct 6.08 7.84 5.89 3.60
Qwen2.5-7B-VL-Instruct+T5 791 7.52 7.24 3.80
T5 7.63 7.69 7.12 3.85
Baseline 7.01 7.15 6.28 3.64
Qwen2.5-7B-VL-Instruct Metaquery 7.40 7.58 7.06 3.69
Qwen2.5-7B-VL-Instruct 725 7.81 6.87 3.61
Qwen2.5-7B-VL-Instruct+T5 8.08 7.57 7.45 3.89
T5 823 17.75 7.66 3.90
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Table O: Ablations on data curation (100k-subset runs). Regenerating out-
puts first (-gpt/-output-regen) provides large gains; aligning  instructions
(-gpt-rewrite/-pair-regen) adds further improvements. Trends hold for both channel-wise
(SD3 InstructPix2Pix) and token-wise (Flux with SigLIP) backbones, supporting the two-step
refinement pipeline.

Method Dataset Variant ImgEdit GEdit-EN
OmniEdit Ablations
SD3 InstructPix2Pix ~ omniedit100k-base 2.54 3.92
SD3 InstructPix2Pix  omniedit100k-gpt 3.13 491
SD3 InstructPix2Pix ~ omniedit100k-gpt-rewrite 3.32 4.89
Flux with SigLIP omniedit100k-base 2.94 4.93
Flux with SigL.IP omniedit100k-gpt 3.24 5.98
Flux with SigLIP omniedit100k-gpt-rewrite 3.40 5.88
HQEdit Ablations
SD3 InstructPix2Pix  hqedit100k-base 2.19 2.00
SD3 InstructPix2Pix  hqgedit100k-output-regen 3.02 4.45
SD3 InstructPix2Pix  hqedit100k-pair-regen 3.08 4.75
Flux with SigLIP hqedit100k-base 3.12 4.34
Flux with SigLIP hqedit100k-output-regen 3.44 5.67
Flux with SigL.IP hqedit100k-pair-regen 345 5.73
Complex-Edit Instruction Ablation
Flux with SigLIP Complex-Edit 2.89 5.39

Table 10: Effect of including the Complex-Edit subset on GEdit-EN (per-category). Inclusion yields
a consistent average gain (+0.21), with the largest improvements in Motion, Add, and Replace; small
trade-offs appear in Tone and Text, reflecting the challenge of long compositional instructions.

BG Color Mat.

Dataset Change Alt. Mod. Motion Portrait Style Add Remove Replace Text Tone Avg
Fluxkontext mllm+T5 w/o complex 7.62 7.55 6.77 7.08 6.74 6.74  7.68 7.74 6.82 536 723 17.03
Fluxkontext mllm+T5 (full) 7.80 754 712 7.75 7.09 6.74  8.04 7.95 7.17 545 695 7.24

Table 11: Effect of including the Complex-Edit subset on ImgEdit (per-family). Overall improves
from 3.71 to 3.80, driven by gains in Hybrid and Action, while other categories remain stable.

Dataset Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
Fluxkontext mllm+T5 w/o complex  4.07 3.69 1.94 4.17 3.93 3.73 4.74 291 4.19 3.71
Fluxkontext mllm+T5 (full) 4.07 3.79 2.04 4.13 3.89 3.90 4.84 3.04 4.52 3.80

Table 12: Text-encoder configurations on GEdit-EN (per-category; encoders frozen). TS is a reliable
default; Qwen-VL alone weakens Text (1.20) and Replace, while concatenating Qwen-VL with TS
restores most categories and attains the best average (7.24).

BG Color Mat.
Change Alt. Mod.

Text Encoder Motion Portrait Style Add Remove Replace Text Tone Avg

FluxKontext dev (T5) 7.06 7.03 5.52 5.62 4.68 555  6.95 6.76 6.13 6.10 748 6.26
Finetuned with T5 7.39 7.43 7.07 6.29 6.91 6.62 7.84 7.36 7.17 622 804 712
Finetuned with QwenVL 6.45 7.27 5.04 6.53 7.26 588 7.03 7.20 4.31 120 6.64 5289
QwenVL + T5 (Ours) 7.80 754 712 7.75 7.09 6.74  8.04 7.95 7.17 545 695 724

Table 13: Text-encoder configurations on ImgEdit (per-family; encoders frozen). T5 attains the best
overall (3.85); Qwen-VL+T5 is close (3.80) and strongest on Style and Action; Qwen-VL alone lags
on Extract and Replace.

Text Encoder Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
FluxKontext dev (T5) 376 345 2.15 3.98 2.94 3.78 4.38 2.96 4.26 3.52
Finetuned with T5 4.19 3.79 2.09 4.22 3.96 3.90 4.76 3.23 4.49 3.85
Finetuned with QwenVL  3.92  3.58 1.95 3.62 3.89 3.72 4.64 322 3.82 3.60
QwenVL + T5 (Ours) 4.07 379 2.04 4.13 3.89 3.90 4.84 3.04 4.52 3.80
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