
Offline-to-Online Reinforcement Learning via
Balanced Replay and Pessimistic Q-Ensemble

Seunghyun Lee∗,† Younggyo Seo∗,† Kimin Lee‡ Pieter Abbeel‡ Jinwoo Shin†
† Korea Advanced Institute of Science and Technology

‡University of California, Berkeley

Abstract: Recent advance in deep offline reinforcement learning (RL) has made
it possible to train strong robotic agents from offline datasets. However, depend-
ing on the quality of the trained agents and the application being considered, it
is often desirable to fine-tune such agents via further online interactions. In this
paper, we observe that state-action distribution shift may lead to severe bootstrap
error during fine-tuning, which destroys the good initial policy obtained via offline
RL. To address this issue, we first propose a balanced replay scheme that priori-
tizes samples encountered online while also encouraging the use of near-on-policy
samples from the offline dataset. Furthermore, we leverage multiple Q-functions
trained pessimistically offline, thereby preventing overoptimism concerning unfa-
miliar actions at novel states during the initial training phase. We show that the
proposed method improves sample-efficiency and final performance of the fine-
tuned robotic agents on various locomotion and manipulation tasks. Our code is
available at: https://github.com/shlee94/Off2OnRL.

Keywords: Deep Reinforcement Learning, Offline RL, Fine-tuning

1 Introduction

Deep offline reinforcement learning (RL) [1] has the potential to train strong robotic agents without
any further environment interaction by leveraging deep neural networks and huge offline datasets.
Accordingly, the research community has demonstrated that offline RL can train both simulated [2,
3, 4, 5, 6, 7, 8, 9] and real [5, 10] robots that are often more performant than the behavior policy that
generated the offline dataset. However, thusly trained offline RL agents may be suboptimal, for (a)
the dataset they were trained on may be suboptimal; and (b) environment in which they are deployed
may be different from the environment in which the dataset was generated. This necessitates an
online fine-tuning procedure, where the robot improves by gathering additional samples.

Off-policy RL algorithms are well-suited for offline-to-online RL, since they can leverage both of-
fline and online samples. Fine-tuning an offline RL agent using a conventional off-policy RL algo-
rithm, however, is difficult due to distribution shift, i.e., the robot may encounter unfamiliar state-
action regime that is not covered by the offline dataset. The Q-function cannot provide accurate
value estimates for such out-of-distribution (OOD) online samples, and updates with such samples
lead to severe bootstrap error. This leads to policy updates in an arbitrary direction, destroying the
good initial policy obtained by offline RL.

To address state-action distribution shift, we first introduce a balanced replay scheme that enables
us to provide the robotic agent with near-on-policy samples from the offline dataset, in addition to
samples gathered online. Specifically, we train a network that measures the online-ness of available
samples, then prioritize samples according to this measure. This adjusts the sampling distribution
for Q-learning to be closer to online samples, which enables timely value propagation and more
accurate policy evaluation in the novel state-action regime.

However, we find that the above sampling scheme is not enough, for the Q-function may be overop-
timistic about unseen actions at novel online states. This misleads the robot to prefer potentially

∗Equal Contribution. Correspondence to {seunghyun.lee, younggyo.seo}@kaist.ac.kr

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://github.com/shlee94/Off2OnRL

bad actions, and in turn, more severe distribution shift and bootstrap error. We therefore propose
a pessimistic Q-ensemble scheme. In particular, we first observe that a specific class of offline RL
algorithms that train pessimistic Q-functions [8, 9] make an excellent starting point for offline-to-
online RL. When trained as such, the Q-function implicitly constrains the policy to stay near the
behavior policy during the initial fine-tuning phase. Building on this observation, we leverage mul-
tiple pessimistic Q-functions, which guides the robotic agent with a more high-resolution pessimism
and stabilizes fine-tuning.

In our experiments, we demonstrate the strength of our method based on (1) MuJoCo [11] loco-
motion tasks from the D4RL [12] benchmark suite, and (2) vision-based robotic manipulation tasks
from Singh et al. [10]. We show that our method achieves stable training during fine-tuning, while
outperforming all baseline methods considered, both in terms of final performance and sample-
efficiency. We provide a thorough analysis of each component of our method.

2 Background

Reinforcement learning. We consider the standard RL framework, where an agent interacts with
the environment so as to maximize the expected total return. More formally, at each timestep t, the
agent observes a state st, and performs an action at according to its policy π. The environment re-
wards the agent with rt, then transitions to the next state st+1. The agent’s objective is to maximize
the expected return Eπ[

∑∞
t=0 γ

trt], where γ ∈ [0, 1) is the discount factor. The unnormalized sta-
tionary state-action distribution under π is defined as dπ(s, a) :=

∑∞
t=0 γ

tdπt (s, a), where dπt (s, a)
denotes the state-action distribution at timestep t of the Markov chain defined by the fixed policy π.

Soft actor-critic. We mainly consider off-policy RL algorithms, a class of algorithms that can, in
principle, train an agent with samples generated by any behavior policy. In particular, soft actor-critic
[SAC; 13] is an off-policy actor-critic algorithm that learns a soft Q-functionQθ(s, a) parameterized
by θ and a stochastic policy πφ modeled as a Gaussian, parameterized by φ. SAC alternates between
critic and actor updates by minimizing the following objectives, respectively:

LSACcritic(θ) = E
(s,a,s′)∼B

[(
Qθ(s, a)− r(s, a)− γ E

a′∼πφ

[
Qθ̄(s

′, a′)− α log πφ(a′|s′)
])2]

, (1)

LSACactor(φ) = E
s∼B,a∼πφ

[
α log πφ(a|s)−Qθ(s, a)

]
, (2)

where B is the replay buffer, θ̄ the delayed parameters, and α the temperature parameter.

Conservative Q-learning. Offline RL algorithms are off-policy RL algorithms that utilize static
datasets for training an agent. In particular, conservative Q-learning [CQL; 9] pessimistically evalu-
ates the current policy, and learns a lower bound (in expectation) of the ground-truth Q-function. To
be specific, policy evaluation step of CQL minimizes the following:

LCQLcritic(θ) =
1

2
E

(s,a,s′)∼B

[
(Qθ − BπφQθ̄)2

]
+ α0 E

s∼B

[
log
∑
a

expQ(s, a)− E
a∼π̂β

[Q(s, a)]
]
, (3)

where π̂β(a0|s0) :=
∑
s,a∈B 1[s=s0,a=a0]∑

s∈B 1[s=s0] is the empirical behavior policy, α0 the trade-off factor,
and Bπ the bellman operator. The first term is the usual Bellman backup, and the second term is the
regularization term that decreases the Q-values for unseen actions, while increasing the Q-values for
seen actions. We argue that thusly trained pessimistic Q-function is beneficial for fine-tuning as well
(see Figure 1c). Policy improvement step is the same as SAC defined in (2).

3 Fine-tuning Offline RL Agent

In this section, we investigate the distribution shift problem in offline-to-online RL. We first ex-
plain why an agent being fine-tuned can be susceptible to distribution shift, and why distribution
shift is problematic. Then, we demonstrate two important design choices that decide the effect of
distribution shift on fine-tuning: sample selection and choice of offline Q-function.

2

-80 -70 -60 -50
Log-likelihood

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 F
re

qu
en

cy

halfcheetah-random
Offline
Online

(a) State-action distribution shift

0 10 20 30 40 50

Environment Steps (×10
3
)

2000

3000

4000

5000

6000

7000

8000

9000

Av
er

ag
e

R
et

ur
n

halfcheetah-medium

Uniform
Uniform (asymp.)
Online only
Online only (asymp.)

(b) Sample selection

0 20 40 60 80 100

Environment Steps (×10
3
)

5000

10000

Av
er

ag
e

R
et

ur
n halfcheetah-random

0 20 40 60 80 100

Environment Steps (×10
3
)

0

5000

10000

Av
er

ag
e

R
et

ur
n halfcheetah-medium-expert

CQL-init
FQE-init

(c) Choice of offline Q-function

Figure 1: (a) Log-likelihood estimates of (i) offline samples and (ii) online samples gathered by
the offline RL agent, based on a VAE model trained on the offline dataset. (b) Fine-tuning per-
formance on halfcheetah-medium task when using online samples exclusively (Online only), or
when using both offline and online data drawn uniformly at random (Uniform). (c) Fine-tuning
performance on halfcheetah-random and halfcheetah-medium-expert tasks, when using a
pessimistic (denoted CQL-init) and a non-pessimistic (denoted FQE-init) Q-function, respectively.

3.1 Distribution Shift in Offline-to-Online RL

In offline-to-online RL, there exists a distribution shift between don(s, a) and doff(s, a), where
the former denotes the state-action distribution of online samples in the online buffer Bon, and
the latter that of offline samples in the offline buffer Boff. Figure 1a visualizes such distribution
shift. Specifically, we trained a variational autoencoder [14] to reconstruct state-action pairs in the
halfcheetah-random dataset that contains uniform random policy rollouts in the halfcheetah en-
vironment. Then, we compared the log-likelihood of (a) offline samples and (b) online samples
collected by a CQL agent trained on the same dataset. There is a clear difference between offline
and online state-action distributions.

Such distribution shift is problematic, for the agent will enter the unseen state-action regime, where
Q-values (hence value estimates used for bootstrapping) can be very inaccurate. Updates in such
unseen regime results in erroneous policy evaluation and arbitrary policy updates, which destroys
the good initial policy obtained via offline RL. Distribution shift can be especially severe in offline-
to-online RL, for the offline RL agent is often much more performant than the behavior policy (e.g.,
CQL can train a medium-level agent capable of running, using transitions generated by a random
policy only). Also, when the offline dataset is narrowly distributed, e.g., when it is generated by
a single policy, the agent is more prone to distribution shift, for the agent easily deviates from the
narrow, seen distribution.

3.2 Sample Selection

In light of the above discussion, we study how sample selection affects fine-tuning. We find that
online samples, which are essential for fine-tuning, are also potentially dangerous OOD samples
due to distribution shift. Meanwhile, offline samples are in-distribution and safe, but leads to
slow fine-tuning. As a concept experiment, we trained an agent offline via CQL (3, 2) on the
halfcheetah-medium dataset containing medium-level transitions, then fine-tuned the agent via
SAC (1, 2). We see that using online samples exclusively for updates (denoted Online only in
Figure 1b) leads to unstable fine-tuning, where the average return drops from about 4500 to be-
low 3000. This demonstrates the harmful effect of distribution shift, where novel, OOD samples
collected online cause severe bootstrap error.

On the other hand, when using a single replay buffer for both offline and online samples then sam-
pling uniformly at random (denoted Uniform in Figure 1b), the agent does not use enough online
samples for updates, especially when the offline dataset is large. As a result, value propagation is
slow, and as seen in Figure 1b, this scheme achieves initial stability at the cost of asymptotic perfor-
mance. This motivates a balanced replay scheme that modulates the trade-off between using online
samples (useful, but potentially dangerous), and offline samples (stable, but slow fine-tuning).

3

3.3 Choice of Offline Q-function

Another important design choice in offline-to-online RL is the offline training of Q-function. In par-
ticular, we show that a pessimistically trained Q-function mitigates the effect of distribution shift, by
staying conservative about OOD actions in the initial training phase. As a concept experiment, we
compared the fine-tuning performance when using a pessimistically trained Q-function and when
using a Q-function trained without any pessimistic regularization. Specifically, for a given offline
dataset, we first trained a policy πφ and its pessimistic Q-function QθCQL via CQL (3). Then we
trained a non-pessimistic Q-function QθFQE of the pre-trained offline policy πφ via Fitted Q Eval-
uation [FQE; 15], an off-policy policy evaluation method that trains a given policy’s Q-function.
Finally, we fine-tuned {πφ, QθCQL} and {πφ, QθFQE} via SAC (1, 2). See Section C for more details.

As shown in Figure 1c, both pessimistic and non-pessimistic Q-functions show similar fine-tuning
performance on the random dataset, which contains random policy rollouts with good action space
coverage. However, when fine-tuning an offline RL agent trained on the medium-expert dataset,
which contains transitions obtained by a mixture of more selective and performant policies, non-
pessimistic Q-function loses the good initial policy, reaching zero average return at one point.

The reason is that QFQE can be overly optimistic about OOD actions at novel states when bootstrap-
ping from them. In turn, the policy may prefer potentially bad actions, straying further away from
the safe, seen trajectory. On the other hand, QCQL remains pessimistic in the states encountered on-
line initially, for (1) these states are incrementally different from seen states, and (2) Q-function will
thus have similar pessimistic estimates due to generalization. This points to a strategy where we
first train a pessimistic Q-function offline, then let it gradually lose the pessimism as the agent gains
access to a balanced mix of offline and online samples via balanced replay during fine-tuning. Fur-
thermore, since a single agent’s Q-function may not be pessimistic enough, we may train multiple
agents offline in parallel, then deploy online the ensemble agent equipped with a higher-resolution
pessimism of the Q-ensemble (see Section 4.2 for a more detailed explanation).

4 Method

Offline RL Online RL

Offline
Buffer

Ensemble
Agent

Prioritized
Buffer Online

Buffer
Actor N
Critic N

Actor 2
Critic 2

Actor 1
Critic 1

Pessimistic
Offline
Training

Environment
Interaction

Balanced
Replay

Figure 2: Illustration of our framework. We first train an
ensemble of N CQL agents on the offline dataset. Then
we fine-tune the ensemble agent using both offline and
online transitions via balanced replay. In particular, we
train a density ratio estimator that measures the online-
ness of a given sample, then store all samples in the pri-
oritized replay buffer with their respective density ratios
as priority values. In turn, samples are drawn with proba-
bility proportional to their respective priority values.

We propose a simple yet effective
framework that addresses the state-
action distribution shift described in
Section 3. Our method comprises of
two parts: (a) a balanced experience re-
play scheme, and (b) a pessimistic Q-
ensemble scheme.

4.1 Balanced Experience Replay

We introduce a balanced replay scheme
that enables us to safely utilize online
samples by leveraging relevant, near-
on-policy offline samples. By doing so,
we can widen the sampling distribution
for updates around the on-policy sam-
ples and enable timely value propaga-
tion. The challenge here is how to design a scheme that locates and retrieves such relevant, near-on-
policy samples from the offline dataset, which can often be huge. To achieve this, we measure the
online-ness of all available samples, and prioritize the samples according to this measure.

In particular, when updating the agent, we propose to sample a transition (s, a, s′) ∈ Boff∪Bon with
a probability proportional to the density ratio w(s, a) := don(s, a)/doff(s, a) of the given sample.
This way, we can retrieve a relevant, near-on-policy sample (s, a, s′) ∈ Boff by locating a transition
with high density ratio w(s, a). However, estimating the likelihoods doff(s, a) and don(s, a) is
difficult, since they can in principle be stationary distributions of complex policy mixtures2. To avoid
this problem, we utilize a likelihood-free density ratio estimation method that estimates w(s, a) by
training a network wψ(s, a) parametrized by ψ, solely based on samples from Boff and Bon.

2We remark that doff(s, a) is the stationary distribution of the (arbitrary) behavior policy that generated
Boff, and don(s, a) the stationary distribution of the policy that generated Bon, which corresponds to the mixture
of online policies observed over the course of fine-tuning.

4

Training details. Here we describe the training procedure for the density ratio estimator wψ(s, a) in
detail. Following the idea of Sinha et al. [16], we use the variational representation of f-divergences
[17]. Let P and Q be probability measures defined on some measurable space X , with P absolutely
continuous w.r.t. Q, and f(y) := y log 2y

y+1 + log 2
y+1 . Then the Jensen-Shannon (JS) divergence is

defined as DJS(P ||Q) =
∫
X f(dP (x)/dQ(x))dQ(x). We then estimate the density ratio dP/dQ

with a parametric model wψ(x), by maximizing the lower bound of DJS(P ||Q) [17]:

LDR(ψ) = Ex∼P [f ′(wψ(x))]− Ex∼Q[f∗(f ′(wψ(x)))], (4)

where wψ(x) ≥ 0 is parametrized by a neural network whose outputs are forced to be non-negative
via activation functions, and f∗ denotes convex conjugate. In particular, we obtain an estimate
wψ(s, a) of don/doff by considering probability distributions P and Q with densities don and doff,
respectively. In practice, we sample from Bon for the first term in (4), and from Boff for the latter.
For more stable density ratio estimates, we apply self-normalization [18] to the estimated density
ratios over Boff, similar to Sinha et al. [16]. More details can be found in Section D.

4.2 Pessimistic Q-Ensemble
In order to mitigate distribution shift more effectively, we leverage multiple pessimistically trained
Q-functions. We consider an ensemble of N CQL agents pre-trained via update rules (2, 3), i.e.,
{Qθi , πφi}Ni=1, where θi and φi denote the parameters of the i-th agent’s Q-function and policy,
respectively. Then we use the ensemble of actor-critic agents whose Q-function and policy are
defined as follows:

Qθ :=
1

N

N∑
i=1

Qθi , πφ(·|s) = N
(

1

N

N∑
i=1

µφi(s),
1

N

N∑
i=1

(σ2
φi(s) + µ2

φi(s))− µ
2
φ(s)

)
, (5)

where θ := {θi}Ni=1 and φ := {φi}Ni=1. Note that the policy is simply modeled as Gaussian with
mean and variance of the Gaussian mixture policy 1

N

∑N
i=1 πφi . In turn, θ and φ are updated via

update rules (1) and (2), respectively, during fine-tuning.

By using a pessimistic Q-function, the agent remains pessimistic with regard to the unseen actions at
states encountered online during initial fine-tuning. This is because during early fine-tuning, states
resemble those present in the offline dataset, and Q-function generalizes to these states. As we show
in our experiments, this protects the good initial policy from severe bootstrap error. And by leverag-
ing multiple pessimistically trained Q-functions, we obtain a more high-resolution pessimism about
the unseen data regime. That is, when an individual Q-function may erroneously have high values
for unseen samples, Q-ensemble is more robust to these individual errors, and more reliably assigns
lower values to unseen samples. Computational overhead of ensemble is discussed in Section B.

5 Related work
Offline RL. Offline RL algorithms aim to train RL agents exclusively with pre-collected datasets.
To address the state-conditional action distribution shift, prior methods (a) explicitly constrain the
policy to be closed to the behavior policy [2, 3, 4, 5, 19], or (b) train pessimistic value functions
[7, 8, 9]. In particular, CQL [9] was used to learn various robotic manipulation tasks [10]. We also
build on CQL, so as to leverage pessimism regarding data encountered online during fine-tuning.
Online RL with offline datasets. Several works have explored employing offline datasets for online
RL to improve sample efficiency. Some assume access to demonstration data [20, 21, 22, 23, 24],
which is limited in that they assume optimality of the dataset. To overcome this, Nair et al. [25]
proposed Advantage Weighted Actor Critic (AWAC), which performs regularized policy updates so
that the policy stays close to the observed data during both offline and online phases. We instead
advocate adopting pessimistic initialization, such that we may prevent overoptimism and bootstrap
error in the initial online phase, and lift such pessimism once unnecessary, as more online samples
are gathered. Some recent works extract behavior primitives from offline data, then learn to compose
them online [26, 27, 28]. It would be interesting to apply our method in these setups.
Experience replay. The idea of retrieving important samples for RL was introduced in Schaul et al.
[29], where they prioritize samples with high temporal-difference error. The work closest to ours is
Sinha et al. [16], which utilizes the density ratios between off-policy and near-on-policy state-action
distributions as importance weights for policy evaluation. Our approach differs in that we utilize
density ratios for retrieving relevant samples from the offline dataset.

5

Ours AWAC BCQ-ft SAC-ft SAC

0 50 100 150 200 250
Environment Steps (×10

3
)

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

R
et

ur
n

halfcheetah-random

0 50 100 150 200 250
Environment Steps (×10

3
)

0

2000

4000

6000

8000

10000

Av
er

ag
e

R
et

ur
n

halfcheetah-medium

0 50 100 150 200 250
Environment Steps (×10

3
)

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

halfcheetah-medium-replay

0 50 100 150 200 250
Environment Steps (×10

3
)

0

2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e

R
et

ur
n

halfcheetah-medium-expert

0 50 100 150 200 250
Environment Steps (×10

3
)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

R
et

ur
n

hopper-random

0 50 100 150 200 250
Environment Steps (×10

3
)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

R
et

ur
n

hopper-medium

0 50 100 150 200 250
Environment Steps (×10

3
)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

R
et

ur
n

hopper-medium-replay

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

hopper-medium-expert

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

walker2d-random

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
et

ur
n

walker2d-medium

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
et

ur
n

walker2d-medium-replay

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

R
et

ur
n

walker2d-medium-expert

Figure 3: Performance on D4RL [12] MuJoCo locomotion tasks during online fine-tuning. The
solid lines and shaded regions represent mean and standard deviation, respectively, across four runs.

Ensemble methods. In the context of model-free RL, ensemble methods have been studied for
addressing Q-function’s overestimation bias [30, 31, 32, 33, 34], for better exploration [35, 36, 37],
or for reducing bootstrap error propagation [38]. The closest to our approach is Anschel et al.
[32] that stabilizes Q-learning by using the average of previously learned Q-values as the target Q-
value. While prior works mostly focus on online RL and estimate the ground-truth Q-functions, we
leverage an ensemble of pessimistically pre-trained Q-functions for safe offline-to-online RL.

6 Experiments
We designed our experiments to answer the following questions:
• How does our method compare to existing offline-to-online RL methods and an online RL

method that learns from scratch (see Figure 3)?
• Can our balanced replay scheme locate offline samples relevant to the current policy (see Fig-

ure 4a) and improve the fine-tuning performance by utilizing these samples (see Figure 4c)?
• Can our pessimistic Q-ensemble scheme discriminate unseen actions (see Figure 4b) and suc-

cessfully stabilize the fine-tuning procedure by mitigating distribution shift (see Figure 4d)?
• Does our method scale to vision-based robotic manipulation tasks (see Figure 5)?

6.1 Locomotion Tasks

Setup. We consider MuJoCo [11] locomotion tasks, i.e., halfcheetah, hopper, and walker2d,
from the D4RL benchmark suite [12]. To demonstrate the applicability of our method on var-
ious suboptimal datasets, we use four dataset types: random, medium, medium-replay, and
medium-expert. Specifically, random and medium datasets contain samples collected by a ran-
dom policy and a medium-level policy, respectively. medium-replay datasets contain all samples
encountered while training a medium-level agent from scratch, and medium-expert datasets con-
tain samples collected by both medium-level and expert-level policies. For our method, we use
ensemble size N = 5. More experimental details are provided in Section D.

Comparative Evaluation. We consider the methods outlined below as baselines for comparative
evaluation. For fair comparison, we applied ensemble to all baselines except SAC-ft, since the
results for SAC-ft with ensemble can be found in the ablation studies (see Figure 4c).
• Advantage Weighted Actor Critic [AWAC; 25]: an offline-to-online RL method that trains the

policy to imitate actions with high advantage estimates.

6

0 50 100 150 200 250
Environment Steps (×10

3
)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

walker2d
random
medium
medium-replay
medium-expert

(a) Buffer analysis

20 40 60 80 100
Environment Steps (×10

3
)

58

59

60

61

62

63

AU
R

O
C

 (%
)

walker2d-medium-expert
Ensemble
Individual

(b) Ensemble analysis

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

walker2d-random
Uniform
Online only
Balanced replay

(c) Buffer ablation

0 50 100 150 200 250
Environment Steps (×10

3
)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

walker2d-random
N = 1
N = 2
N = 5

(d) Ensemble ablation

Figure 4: (a) Proportion of offline samples used for updates as the agent is fine-tuned online, for
walker2d tasks. (b) AUROC (%) over the course of fine-tuning on walker2d-medium-expert,
where the Q-function is interpreted as a binary classifier that classifies a given state-action pair (s, a)
as either a seen pair (s, aseen) or an unseen pair (s, auniform), for a state s encountered online. Pes-
simistic Q-ensemble shows a stronger discriminative ability. (c) Performance on walker2d-random
with and without balanced experience replay. We consider two setups where balanced experience
replay is not used: (i) Uniform, where offline and online samples are sampled uniformly from the
same buffer for updates, and (ii) Online only, where the offline agent is fine-tuned using online sam-
ples only. (d) Performance on walker2d-random with varying ensemble size N ∈ {1, 2, 5}. The
solid lines and shaded regions represent mean and standard deviation, respectively, across four runs.

• BCQ-ft: Batch-Constrained deep Q-learning [BCQ; 2], is an offline RL method that updates
policy by modeling the behavior policy using a conditional VAE [39]. We extend BCQ to the
online fine-tuning setup by applying the same update rules as offline training.

• SAC-ft: Starting from a CQL agent trained via (3, 2), we fine-tune the agent via SAC updates
(1, 2). Justification for excluding the CQL regularization term from (3) during fine-tuning can
be found in Section E.1.

• SAC: a SAC agent trained from scratch via (1, 2), i.e., the agent has no access to the offline
dataset. This baseline highlights the benefit of offline-to-online RL, as opposed to fully online
RL, in terms of sample efficiency.

Figure 3 shows the performances of our method and baseline methods considered during the online
RL phase. In most tasks, our method outperforms the baseline methods in terms of both sample-
efficiency and final performance. In particular, our method significantly outperforms SAC-ft, which
shows that balanced replay and pessimistic Q-ensemble are indeed essential.

We also emphasize that our method performs consistently well across all tasks, while the perfor-
mances of AWAC and BCQ-ft are highly dependent on the quality of the offline dataset. For exam-
ple, we observe that AWAC and BCQ-ft show competitive performances in tasks where the datasets
are generated by high-quality policies, i.e., medium-expert tasks, but perform worse than SAC on
random tasks. This is because AWAC and BCQ-ft employ the same regularized, pessimistic update
rule for offline and online setups alike, either explicitly (BCQ-ft) or implicitly (AWAC), which leads
to slow fine-tuning. Our method instead relies on pessimistic initialization, and hence enjoys much
faster fine-tuning, while not sacrificing the initial training stability.

Balanced replay analysis. To investigate the effectiveness of our balanced experience replay
scheme for locating near-on-policy samples in the offline dataset, we report the ratios of offline
samples used for updates fine-tuning proceeds. Figure 4a shows that for the random task, offline
samples quickly become obsolete, as they quickly become irrelevant to the policy being fine-tuned.
However, for the medium-expert task, offline samples include useful expert-level transitions that
are relevant to the current policy, hence are replayed throughout the online training. This shows that
our balanced replay scheme is capable of utilizing offline samples only when appropriate.

Q-ensemble analysis. We quantitatively demonstrate that pessimistic Q-ensemble indeed provides
more discriminative value estimates, i.e., having distinguishably lower Q-values for unseen actions
than for seen actions. In particular, we consider a medium-expert dataset, where the offline data
distribution is narrow, and the near-optimal offline policy can be brittle. Let Dreal

T := {(si, ai)}Ti=1
be the samples collected online up until timestep T . We construct a “fake” dataset by replacing the
actions in Dreal

T with random actions, i.e., Dfake
T := {(si, aunif)}Ti=1. Interpreting Q(s, a) as the

confidence value for classifying real and fake transitions, we measure the area under ROC (AUROC)
curve values over the course of fine-tuning. As seen in Figure 4b, Q-ensemble demonstrates superior
discriminative ability, which leads to stable fine-tuning.

7

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
et

ur
n

pick-place

CQL-ft Online only
Ours

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
et

ur
n

grasp-closed-drawer

CQL-ft Online only
Ours

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
et

ur
n

grasp-blocked-drawer

CQL-ft Online only
Ours

(a) Performance

0 200 400 600 800 1000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

grasp-blocked-drawer

online samples
random samples

(b) Buffer analysis

Figure 5: (a) Fine-tuning performance for robotic manipulation tasks considered. (b) Proportion of
random data used for during fine-tuning decreases over time. The solid lines and shaded regions
represent mean and standard deviation, respectively, across eight runs.

Ablation studies. Figure 4c shows that balanced replay improves fine-tuning performance by sam-
pling near-on-policy transitions. On the other hand, two other naı̈ve sampling schemes – (a) Uni-
form, where offline and online samples are sampled uniformly from the same buffer, and (b) Online
only, where the offline agent is fined-tuned using online samples exclusively – suffer from slow
and unstable improvement, even with pessimistic Q-ensemble. This shows that balanced replay is
crucial for reducing the harmful effects of distribution shift.

Also, Figure 4d shows that fine-tuning performance improves as the ensemble size N increases,
which shows that larger ensemble size provides higher-resolution pessimism, leading to more stable
policy updates. Ablation studies for all tasks can be found in Section E.1.

6.2 Robotic Manipulation Tasks

Setup. We consider three sparse-reward pixel-based manipulation tasks from Singh et al. [10]: (1)
pick-place: pick an object and put it in the tray; (2) grasp-closed-drawer: grasp an object
in the initially closed bottom drawer; (3) grasp-blocked-drawer: grasp an object in the initially
closed bottom drawer, where the initially open top drawer blocks the handle for the bottom drawer.
Episode lengths for the tasks are 40, 50, 80, respectively.

The original dataset [10] for each task consists of scripted exploratory policy rollouts. For example,
for pick-place, the dataset contains scripted pick attempts and place attempts. However, it is
rarely the case that logged data ‘in the wild’ contains such structured, high-quality transitions only.
We consider a more realistic setup where the dataset also includes undirected, exploratory samples
– we replace a subset of the original dataset with uniform random policy rollouts. Note that random
policy rollouts are common in robotic tasks [40, 41]. We used ensemble size N = 4 for our method.
More details about the tasks and dataset construction are provided in Section D.2.

Comparative Evaluation. We compare our method with the method considered in Singh et al.
[10], namely, CQL fine-tuning with online samples only. CQL-ft fails to solve the task in some of
the seeds, resulting in high variance as seen in Figure 5a. This is because CQL shows inconsistent
offline performance across random seeds due to such factors as difficulty of training on mixture data
[12], instability of offline agents over stopping point of training [42], and sparsity of rewards. With
no access to (pseudo-)expert offline data and due to heavy regularization of CQL, such CQL agents
hardly improve. Meanwhile, our method consistently learns to perform the task within a reasonable
amount of additional environment interaction (40K to 80K steps).

Buffer analysis. We analyze whether balanced replay scales to image-based robotic tasks. As seen
in Figure 5b, without any privileged information, balanced replay automatically selects relevant
offline samples for updates, while filtering out task-irrelevant, random data as fine-tuning proceeds.

7 Conclusion

In this paper, we identify state-action distribution shift as the major obstacle in offline-to-online RL.
To address this, we present a simple framework that incorporates (1) a balanced experience replay
scheme, and (2) a pessimistic Q-ensemble scheme. Our experiments show that the proposed method
performs well across many continuous control robotic tasks, including locomotion and manipulation
tasks. We expect our method to enable more sample-efficient training of robotic agents by leveraging
offline samples both for offline and online learning. We also believe our method could prove to be
useful for other relevant topics such as scalable RL [43] and RL safety [44].

8

Acknowledgments

This work was supported by Microsoft and Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-00075,
Artificial Intelligence Graduate School Program(KAIST)). We would like to thank anonymous re-
viewers for providing helpful feedbacks and suggestions in improving our paper.

References
[1] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,

and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[2] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, 2019.

[3] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, 2019.

[4] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[5] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors for of-
fline reinforcement learning. In International Conference on Learning Representations, 2020.

[6] R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine Learning, 2020.

[7] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline rein-
forcement learning. In Advances in Neural Information Processing Systems, 2020.

[8] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. In Advances in Neural Information Processing Systems, 2020.

[9] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. In Advances in Neural Information Processing Systems, 2020.

[10] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. In Conference on Robot Learning, 2020.

[11] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems, 2012.

[12] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

[14] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[15] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov, Z. Wang, and
N. de Freitas. Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055, 2020.

[16] S. Sinha, J. Song, A. Garg, and S. Ermon. Experience replay with likelihood-free importance
weights, 2021. URL https://openreview.net/forum?id=ioXEbG_Sf-a.

[17] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the
likelihood ratio by penalized convex risk minimization. In Advances in Neural Information
Processing Systems, 2008.

9

https://openreview.net/forum?id=ioXEbG_Sf-a

[18] W. G. Cochran. Sampling techniques. John Wiley & Sons, 2007.

[19] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator
for simple yet effective offline and online rl. arXiv preprint arXiv:2007.11091, 2020.

[20] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. In Advances in Neural Information Processing Systems, 2003.

[21] B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations.
In Advances in Neural Information Processing Systems, 2013.

[22] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. In Robotics: Science and Systems, 2018.

[23] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with
deep reinforcement learning: Efficient, general, and low-cost. In International Conference on
Robotics and Automation, 2019.

[24] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[25] A. Nair, M. Dalal, A. Gupta, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2021.

[26] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors.
In Conference on Robot Learning, 2020.

[27] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. {OPAL}: Offline primitive discov-
ery for accelerating offline reinforcement learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=V69LGwJ0lIN.

[28] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine. Parrot: Data-driven behavioral
priors for reinforcement learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=Ysuv-WOFeKR.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In International
Conference on Learning Representations, 2016.

[30] H. V. Hasselt. Double q-learning. In Advances in Neural Information Processing Systems,
2010.

[31] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In
AAAI Conference on Artificial Intelligence, 2016.

[32] O. Anschel, N. Baram, and N. Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International Conference on Machine Learning, 2017.

[33] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, 2018.

[34] Q. Lan, Y. Pan, A. Fyshe, and M. White. Maxmin q-learning: Controlling the estimation bias
of q-learning. In International Conference on Learning Representations, 2020.

[35] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn. In
Advances in Neural Information Processing Systems, 2016.

[36] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman. Ucb exploration via q-ensembles. arXiv
preprint arXiv:1706.01502, 2017.

[37] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework for
ensemble learning in deep reinforcement learning. In International Conference on Machine
Learning, pages 6131–6141. PMLR, 2021.

10

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=Ysuv-WOFeKR

[38] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework for
ensemble learning in deep reinforcement learning. arXiv preprint arXiv:2007.04938, 2020.

[39] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Advances in Neural Information Processing Systems, 2015.

[40] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017.

[41] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[42] S. Fujimoto and S. Gu. A minimalist approach to offline reinforcement learning. arXiv preprint
arXiv:2106.06860, 2021.

[43] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. In Conference on Robot Learning, 2018.

[44] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480, 2015.

[45] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[46] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In Interna-
tional Conference on Learning Representations, 2016.

[47] T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum, and S. Gu. Deployment-efficient reinforce-
ment learning via model-based offline optimization. arXiv preprint arXiv:2006.03647, 2020.

11

