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Abstract

Deep learning models for regulatory genomics achieve high predictive perfor-
mance across diverse molecular phenotypes, yet their internal representations
remain opaque. Here, we apply sparse autoencoders (SAEs) to decompose
learned representations of Borzoi, a state-of-the-art CNN-transformer that pre-
dicts genome-wide transcriptional and epigenetic profiles from DNA sequence.
Training TopK-SAEs on activations from Borzoi’s early convolutional layers, we
discover monosemantic regulatory features that correspond to transcription fac-
tor (TF) and RNA binding protein (RBP) motifs and transposable element se-
quences. We identify hundreds of significant position weight matrices that map
SAE-discovered features to established TF binding sites through motif discovery
using MEME suite against known TF databases. This work demonstrates that
SAEs can systematically decompose regulatory genomics models into biologi-
cally interpretable components.

1 Introduction

Deep learning models predict genomic sequence activity with high accuracy for molecular pheno-
types ranging from transcription to chromatin features [1, 2, 3, 4]. However, these models’ internal
representations remain largely uninterpretable. Traditional interpretability approaches—gradient-
based attribution and in silico mutagenesis—provide local insights but scale poorly to genome-wide
pattern discovery [5]. While some frameworks incorporate interpretable design features [6], they
typically target specific biological processes rather than discovering emergent regulatory patterns.

Recent advances in mechanistic interpretability of natural language models using sparse autoen-
coders (SAEs) offer a promising solution by decomposing polysemantic neural activations into
monosemantic features [7, 8, 9, 10]. Recent applications to protein language models demon-
strate this potential: SAEs applied to ESM2 identified structural motifs and functional domains
[11, 12, 13], while analysis of the Evo2 DNA model revealed features corresponding to tRNAs, sec-
ondary structures, and CRISPR elements [14]. In regulatory genomics, supervised training on tissue
and cell-type-specific data excel over self-supervised training [2, 15, 1]; however, systematic feature
discovery in these models remains unexplored.

We apply SAEs to interpret Borzoi [2], a CNN-transformer that predicts RNA transcription, splicing,
and polyadenylation, as well as chromatin accessibility, histone modifications, and transcription
factor binding from DNA sequence. Borzoi’s hierarchical convolutional architecture and strong
performance across diverse regulatory phenotypes make it an ideal interpretability target.

2 Methods

2.1 Dataset and model architecture

We extracted activations from the pretrained Borzoi model [2] using N = 4096 genomic sequences
for SAE training. Each 524, 288bp input sequence was divided into four non-overlapping chunks
of 131, 072bp segments. Every embedded position formed an example representing a sequence
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Figure 1: SAE framework for discovering monosemantic regulatory features. We extract activations
from Borzoi’s first four convolutional layers, train TopK-SAEs with expansion factor F = 4 and
5% sparsity to decompose them into sparse features, then identify biological concepts by extracting
top-activating sequence regions (seqlets), discovering position weight matrices (PWMs) via MEME,
and matching to known TF/RBP databases and general genomic annotations.

window whose width varied by layer (16-31 bp receptive field), processed in batches. We focused
on layers conv1d 1 through conv1d 4, where hierarchical motif-like regulatory features emerge,
instead of post-attention activations where multi-faceted functional or structural concepts arise. For
evaluation, we analyzed N = 640 sequences from a held-out fold unseen during both Borzoi training
and SAE training.

2.2 Sparse autoencoder

We employed TopK sparse autoencoders [10] on activation vectors representing sequence patterns
at each genomic position in 16-31bp windows, depending on the layer (Fig. 1). We normalized each
input channel by its maximum value to balance feature importance. The SAE architecture expands
the channel dimension by factor F > 1, retains only the top k percent of autoencoder latents, and
reconstructs the original activations as follows:

z = ReLU(TopK(Wenc(x− bdec) + benc))
x̂ = Wdecz + bdec,

(1)

where z represents sparse features, Wenc, benc,Wdec, bdec are learned encoder and decoder weights
and biases. The loss minimizes reconstruction error: L = ||x− x̂||22. Top-K is applied to retain only
the top k percent of autoencoder latents.

We trained SAEs for layers 1-4 (denoted L1-L4) with: expansion factor F = 4, learning rate 1 ×
10−5 (Adam optimizer), and k = 5% sparsity constraint.

2.3 Feature extraction and annotation

For each SAE node with >1,000 non-zero activations, we extracted the top 1,000 activating ge-
nomic regions (seqlets), padded to match layer-specific receptive fields (16-31 bp). We pursued two
complementary annotation strategies:

Motif discovery: MEME identified one PWM per node (p < 0.05). TomTom compared these
against J. Vierstra’s non-redundant TF motif database [16] merged with the CIS-BP RNA-binding
protein motif database [17], retaining matches with E-value< 0.05.

Genomic elements: BEDTools quantified overlaps between seqlets and SCREEN cCREs [18],
GENCODE gene features [19], and RepeatMasker repetitive elements [20]. We assigned features
hierarchically: TFs/RBPs > exons/introns > cCREs > repeats. Statistical significance for genomic
overlaps was assessed using Fisher’s exact test against shuffled controls (odds ratio > 2, p < 0.05).
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3 Results

3.1 SAEs successfully decompose Borzoi’s learned representations

Our hyperparameters (F = 4, LR= 1 × 10−5, k = 5%) balanced sensitivity for discovering tran-
scription factors against redundancy across nodes. Higher expansion factors increased feature split-
ting without discovering additional unique features (Table A2). TopK-SAEs achieved strong re-
construction quality (Pearson R = 0.84 for L2 activations). Importantly, model outputs remained
similar when using SAE-reconstructed activations (r = 0.703 for L2, Table A1), confirming preser-
vation of biologically relevant information.

3.2 Discovery of diverse regulatory features

Analysis of 2,173 active SAE nodes revealed distinct regulatory categories (Fig. 2). Transposable
elements covered the most nodes (1,042 nodes), followed by TF binding motifs (585 nodes), cCREs
(352 nodes), and RBP motifs (42 nodes). Fundamental regulatory motifs—TATA boxes, poly-A
signals, SINE/Alu elements, and GATA motifs—exhibited high mean activation values (Fig. 2),
suggesting preferential signal propagation through the network. In silico shuffling mutagenesis of
the top 50 activating seqlets for each node showed biological relevance; nodes discovering TFs with
available ChIP tracks often had the highest L2 score for the matching TF-ChIP track. For example,
perturbation of node 464 seqlets discovering NFIA motif leads to a high ChIP:NFIA L2 score,
and perturbation of node 290 discovering HNF1A motif induces high ChIP:HNF1A and RNA:liver,
RNA:kidney scores.

While we assigned a primary concept per node via priority ranking (Methods), nodes often recog-
nize multiple concepts at finer motif and coarser regulatory/transposable element resolution. For
instance, node 212 matched both ZNF524 (q = 0.028) and SINE/Alu elements (odds ratio=93.0),
while node 73 recognized ASCL1 (q = 2.0 × 10−4) and distal enhancers (OR=3.33). This dual
specificity reflects hierarchical co-occurrence patterns in the genome.

Figure 2: Landscape of SAE-discovered regulatory features. (A) Feature importance plot showing
activation frequency versus mean activation strength for L2 nodes. High-activation nodes capture
fundamental regulatory elements: node 1 (TATA/RBMS3, E = 0.0065), node 3 (SINE/Alu), node 6
(poly-A), and node 31 (GATA1+TAL1 composite element). (B) Sankey diagram showing distribu-
tion of 2,173 discovered features across biological categories, revealing comprehensive regulatory
encoding from single motifs to repetitive elements. “None” category indicates nodes that were not
mapped to any concept. cCRE legend: PLS – promoter-like signature; dELS – distal enhancer-like
signature; pELS – proximal enhancer-like signature; CA – chromatin accessibility; CA-H3K4me3
– chromatin accessibility + H3K4me3; TF – transcription factor; CA-TF – chromatin accessibility
+ transcription factor.
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3.3 Feature redundancy reflects biological specificity

Multiple nodes often recognize similar patterns, a phenomenon known as feature splitting, where
increasing SAE width leads to replacing a general concept with more specialized concepts [8]. We
frequently discovered similar TF/RBP motifs from distinct nodes. The most frequently discovered
motif in L2 was ZNF384 (51 nodes), whose PWM resembles a poly-A homopolymer. Examining
redundancy revealed biological specificity. Trivially, separate nodes discovered forward and reverse
strand motif versions, demonstrating strand equivariance. For same strand motif nodes, we observed
minimal seqlet overlap between nodes (mean Jaccard index across stranded motif-node pairs =
0.005 with p = 0.05 significance cutoff), indicating that underlying sequences activating the nodes
are largely non-overlapping. For example, despite 49 L2 nodes recognizing GATA1+TAL1, pairwise
seqlet Jaccard indices were low (mean: 0.0012; max: 0.1828, Fig. 3A).

Figure 3: Biological basis of apparent GATA1+TAL1 redundancy. (A) Low pairwise Jaccard indices
among 49 nodes recognizing reverse-strand GATA1+TAL1 motif, filtered for high information con-
tent PWMs (ICany > 1). (B) Distinct flanking sequence preferences between nodes 434 and 470,
distinguishable by 6-mer composition via logistic regression (82% accuracy). Red box highlights
flanking thymines with varying information content that affects activation recognition by the node.
(C) Single-nucleotide mutation (A → T) in AIG1 intron selectively activates node 470, demonstrat-
ing context-specific recognition via motif-flanking sequence. Red box highlights introduction of the
node 470 activation peak upon mutation.

To investigate this specificity, we analyzed two similar reverse-strand GATA1+TAL1 nodes (434,
470). A logistic regression classifier distinguished their activating sequences with 82% accuracy
using 6-mer composition revealing consistent differences in flanking nucleotide preferences (Fig.
3B). Mutating a single nucleotide (A → T) flanking a GATA motif in the AIG1 gene’s fourth intron
specifically activated node 470 without affecting node 434 (Fig. 3C), confirming context-dependent
recognition beyond core motifs.

3.4 Progressive refinement across network depth

Regulatory concepts propagate through network layers with progressive refinement: 25.5% of TF
motifs appear in L1, increasing to 67.5% in L3 and 75.9% in L4. 66.05% of motifs discovered in
L2 moved to L3. Tracking the kidney-specific transcription factor HNF1A revealed this refinement
process. L2 contained three HNF1A nodes with varying orientations and information content (Fig.
A1). By L4, only two reverse-oriented nodes remained; loss of the forward-strand version illustrates
the challenge of maintaining complete motif recall in deeper layers with this framework. Near
the kidney-expressed UMOD gene, L4 preserved L2’s strongest activation peaks while suppressing
spurious signals. We visualized sliding activations for HNF1A nodes in L2 and L4, alongside in
silico mutagenesis nucleotide attributions for the two top activation peaks, revealing portions of the
HNF1A motif. The noise reduction likely results from L4’s expanded 31bp receptive field enabling
better context integration to prioritize biologically relevant motifs.
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3.5 Interactive visualization platform

We developed an interactive Streamlit application (motifscout.com) enabling real-time explo-
ration of SAE features across layers L1-L4. The platform provides node-level views with PWMs,
TomTom matches, and similarity heatmaps, plus motif-level analysis with strand-specific node
matches and seqlet overlap quantification (Fig. A2).

4 Conclusion

This work demonstrates that sparse autoencoders successfully decompose deep learning representa-
tions in regulatory genomics models into interpretable biological features. Our analysis of Borzoi
revealed over 2,000 monosemantic features corresponding to TF/RBP motifs, transposable elements,
and other coarser regulatory elements. Apparent redundancy often encoded biologically meaningful
specificity for motif-flanking sequences and context-dependent recognition. Progressive refinement
across network depth suggests hierarchical learning of increasingly specific and relevant regulatory
features.

Although we focused our analysis on TF/RBP motifs, the observation that transposable elements are
comprehensively recognized by Borzoi warrants further investigation. Most sequencing experiments
struggle to align reads and determine true activity signal on these repetitive regions. Borzoi may
be learning these elements in order to predict low coverage caused by the loss of ambiguous lost
alignments. Alternatively, TEs have extensively rewired regulatory networks and may influence
nearby transcription and chromatin [21].

Future work could extend this approach to deeper layers and attention mechanisms, but increased
feature complexity (e.g. motifs combinations) will challenge interpretability. Discovered fea-
tures may enable targeted model perturbation to analyze motif influence on predictions. Improved
methods to enhance sensitivity while distinguishing technical from biological redundancy would
strengthen this framework. Our interactive visualization platform and open-source code provide
foundations for mechanistic understanding of how deep learning models encode regulatory biology
(github.com/calico/sae-borzoi and motifscout.com).

5 Acknowledgments

This work was funded by Calico Life Sciences LLC. The funder had no role in study design, data
collection or analysis. Publication of the manuscript was approved after an internal scientific review
process. We thank Benjamin Auerbach, Johannes Linder, Divyanshi Srivastava, Fanny Huang, Han
Yuan, and David Wang for helpful discussions and valuable feedback.

5

http://motifscout.com
https://github.com/calico/sae-borzoi
http://motifscout.com


References
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A Appendix

A.1 Supplementary tables

Table A1: SAE reconstruction quality across Borzoi layers.

Layer Pearson r (activations) Pearson r (output tracks)
L1 0.851 0.592
L2 0.840 0.703
L3 0.838 0.722
L4 0.871 0.704

Table A2: L2-SAE motif discovery metrics under different hyperparameters.

Learning rate Top K % F (exp. factor) % motifs discovered % non-redundant motifs
1e-05 0.1 8 90.56 10.82
1e-05 0.05 8 82.87 15.47
1e-05 0.1 4 82.52 16.01
1e-05 0.05 4 75.17 17.80
1e-05 0.1 2 67.13 24.39
1e-05 0.05 2 61.89 27.23
0.0001 0.1 8 91.96 8.07
0.0001 0.05 8 90.21 7.88
0.0001 0.1 4 80.77 13.60
0.0001 0.05 4 80.77 13.01
0.0001 0.1 2 67.48 21.01
0.0001 0.05 2 70.28 20.61

A.2 Supplementary figures
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Figure A1: Progressive refinement of HNF1A motif recognition across layers. (A) Summed ac-
tivations of HNF1A-discovering nodes near the kidney-specific UMOD gene. L4 preserves L2’s
strongest signals while reducing noise. Sliding window activations and in silico mutagenesis (ISM)
attributions shown below. (B) Layer-specific HNF1A PWMs showing information content evolu-
tion. (C) Low Jaccard indices confirm distinct sequence contexts for each HNF1A node.
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Figure A2: Motif Scout visualization server layout. A) Node view, where user can select Borzoi
layer and visualize a particular node number with respective PWM, TomTom match, perturbation
vector, cCRE and RMSK overlaps, where available. B) Motif view allows to compare node PWMs
of a given motif if it was discovered by multiple nodes.
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