Under review as a conference paper at ICLR 2022

ALIGN-RUDDER: LEARNING FROM FEW DEMON-
STRATIONS BY REWARD REDISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning algorithms require a large number of samples to solve
complex tasks with sparse and delayed rewards. Complex tasks are often hierarchi-
cally composed of sub-tasks. Solving a sub-task increases the return expectation
and leads to a step in the Q)-function. RUDDER identifies these steps and then
redistributes reward to them, thus immediately giving reward if sub-tasks are solved.
Since the delay of rewards is reduced, learning is considerably sped up. However,
for complex tasks, current exploration strategies struggle with discovering episodes
with high rewards. Therefore, we assume that episodes with high rewards are given
as demonstrations and do not have to be discovered by exploration. Unfortunately,
the number of demonstrations is typically small and RUDDER’s LSTM as a deep
learning model does not learn well on these few training samples. Hence, we in-
troduce Align-RUDDER, which is RUDDER with two major modifications. First,
Align-RUDDER assumes that episodes with high rewards are given as demonstra-
tions, replacing RUDDER’s safe exploration and lessons replay buffer. Second,
we substitute RUDDER’s LSTM model by a profile model that is obtained from
multiple sequence alignment of demonstrations. Profile models can be constructed
from as few as two demonstrations. Align-RUDDER uses reward redistribution to
speed up learning by reducing the delay of rewards. Align-RUDDER outperforms
competitors on complex artificial tasks with delayed rewards and few demonstra-
tions. On the MineCraft ObtainDiamond task, Align-RUDDER is able to mine
a diamond, though not frequently.

1 INTRODUCTION

Reinforcement learning algonthms struggle with 1earn1ng complex tasks that have sparse and delayed
rewards (,). For delayed rewards,
temporal difference (TD) suffers from Vamshmg 1nformat10n (,). On the
other hand Monte Carlo (MC) has high variance since it must average over all possible futures (

s). Monte-Carlo Tree Search (MCTS), used for Go and chess, can handle delayed
and rare rewards since it has a perfect environment model (, ;). RUDDER
(;) has been shown to excel in model-free learning of policies when
only sparse and delayed rewards are given. RUDDER requires episodes with high rewards to store
them in its lessons replay buffer for learning a reward redistribution model like an LSTM network.
However, for complex tasks, current exploration strategies find episodes with high rewards only after
an incommensurate long time. Humans and animals obtain high reward episodes by teachers, role
models, or prototypes. Along this line, we assume that episodes with high rewards are given as
demonstrations. Since generating demonstrations is often tedious for humans and time-consuming
for exploration strategies, typlcally, only a few demonstrations are available. However, RUDDER’s
LSTM () as a deep learning method requires
many examples for learmng Therefore, we introduce Ahgn -RUDDER, which replaces RUDDER’s
LSTM with a profile model obtained from multiple sequence alignment (MSA) of the demonstrations.
Profile models are well known in bioinformatics. They are used to score new sequences according to
their sequence similarity to the aligned sequences. Like RUDDER also Align-RUDDER performs
reward redistribution —using an alignment model—, which considerably speeds up learning even if
only a few demonstrations are available.

Under review as a conference paper at ICLR 2022

3233 2333m233

I . I I

A A A A A A A
: 41 2 8 3 F A E x

I
|

= [[[|
CUYTYYTeE e

Figure 1: Basic insight into reward redistribution. Left panel, Row 1: An agent has to take a key
to unlock a door. Both events increase the probability of receiving the treasure, which the agent
always gets as delayed reward, when the door is unlocked at sequence end. Row 2: The Q-function
approximation typically predicts the expected return at every state-action pair (red arrows). Row 3:
However, the (Q-function approximation requires only to predict the steps (red arrows). Right panel,
Row 1: The @Q-function is the future expected return (blue curve). Green arrows indicate @Q-function
steps and the big red arrow the delayed reward at sequence end. Row 2 and 3: The redistributed
rewards correspond to steps in the Q)-function (small red arrows). Row 4: After redistributing the
reward, only the redistributed immediate reward remains (red arrows). Reward is no longer delayed.

Our main contributions are:

* We suggest a reinforcement algorithm that works well for sparse and delayed rewards, where
standard exploration fails but few demonstrations with high rewards are available.

* We adopt multiple sequence alignment from bioinformatics to construct a reward redistribu-
tion technique that works with few demonstrations.

* We propose a method that uses alignment techniques and reward redistribution for identifying
sub-goals and sub-tasks which in turn allow for hierarchical reinforcement learning.

2 REVIEW OF RUDDER

Basic insight: ()-functions for complex tasks are step functions. Complex tasks are typically
composed of sub-tasks. Therefore the ()-function of an optimal policy resembles a step function.
The @Q-function is the expected future return and it increases (i.e, makes a step) when a sub-task is
completed. Identifying large steps in the (Q-function speeds up learning since it allows (i) to increase
the return by performing actions that cause the step and (ii) to sample episodes with a larger return
for learning.

An approximation to the @)-function must predict the expected future return for every state-action
pair. However, a Q)-function that resembles a step-function is mostly constant. Therefore predictions
are only necessary at the steps. We have to identify the relevant state-actions that cause the steps and
then predlct the size of the steps. An LSTM network (, ,

; ;b) can identify relevant state-actions that open the input gate to store the size of the steps
in the memory cells. Consequently, LSTM only updates its states and changes its return prediction
when a new relevant state-action pair is observed. Therefore, both the change of the prediction and
opening input gates indicate ()-function steps through an LSTM network that predicts the return of
an episode.

Reward Redistribution. We consider episodic Markov decision processes (MDPs), i.e., the reward
is only given once at the end of the sequence. The)-function is assumed to be a step function, that
is, the task can be decomposed into sub-tasks (see previous paragraph). Reward redistribution aims
at giving the differences in the Q-function of an optimal policy as a new immediate reward. Since
the @-function of an optimal policy is not known, we approximate it by predicting the expected
return by an LSTM network or by an alignment model in this work. The differences in predictions
determine the reward redistribution. The prediction model will first identify the largest steps in the
Q@-function as they decrease the prediction error most. Fortunately, just identifying the largest steps
even with poor predictions speeds up learning considerably. See Figure 1 for a description of the
reward redistribution.

Under review as a conference paper at ICLR 2022

Human demo 1 BES . MMiggPP . [.. NJRAAAA . . .[LENQQ.[§. . . . EN
Chicken demo 2 BElssM.|gg. ... 0.0, .18, MLEQQ . §KKK . [N
Yeast demo 3 BEIS...J30%. .. .[0.\J. AIRAAAAAAANMLI . . . J3KKK . [N
E. coli demo 4 SEMMMMMMM . 1910 VAMAAAAAA . MAQQ . IJAAA [N
Amoeba . demo 5 EEEILER. . . .|gAPPPPILY . NI}, M-0. .. .§KKK.EN
Archaeon VEMP\FINNHIDPEKP demo 6 EEBL...... IAPPPP .|l . NIEMMMM. . .[A[N]. . . [JAAAAINY
CONSENSUS VVIAPP.IYIDFARQ.LD....... .VGAQN.Y.V..G consensusPPo U LLVLOLLL L. 0 Y.Q...F. .. D

- L -

conservation score reward redistribution
=i N _E_N (. T | |

Figure 2: The function of a protein is largely determined by its structure. The relevant regions of
this structure are even conserved across organisms, as shown in the left panel. Similarly, solving a
task can often be decomposed into sub-tasks which are conserved across multiple demonstrations.
As shown in the right panel where events are mapped to the letter code for amino acids. Sequence
alignment makes those conserved regions visible and enables redistribution of reward to important
events.

Learning methods based on reward redistribution. The redistributed reward serves as reward for
a subsequent learning method: (A) The (-values can be directly estimated (

), which is used in the experiments for the artificial tasks and BC pre-training for MineCraft. (B)
Redistributed rewards can serve for learning with policy gradients like Proximal Policy Optimization
(PPO) (,), which is used in the MineCraft experiments. (C) Redistributed rewards
can serve for temporal difference learning like (-learning (,).

LSTM models for reward redistribution. RUDDER uses an LSTM model for predicting the future
return. The reward redistribution is the difference between two subsequent predictions. If a state-
action pair increases the prediction of the return, then it is immediately rewarded. Using state-action
sub-sequences (s,a)o.: = (S0, a0, .- -, St,at), the redistributed reward is R;11 = g((s,a)0.t) —
g((s,a)p:t—1), where g is an LSTM model that predicts the return of the episode. The LSTM model
learns at first to approximate the largest steps of the Q-function since they reduce the prediction error
the most.

3 ALIGN-RUDDER: RUDDER WITH FEW DEMONSTRATIONS

In bioinformatics, sequence alignment identifies similarities between biological sequences to deter-

mine their evolutionary relationship (,). The
result of the alignment of multiple sequences is a profile model The profile model is a consensus
sequence, a frequency matrix, or a Position-Specific Scormg Matrix (PSSM) (,).

New sequences can be aligned to a profile model and receive an alignment score that indicates how
well the new sequences agree to the profile model.

Align-RUDDER uses such alignment techniques to align two or more high return demonstrations. For
the alignment, we assume that the demonstrations follow the same underlying strategy, therefore they
are similar to each other analog to being evolutionary related. If the agent generates a state-action
sequence (s, a)o.t—1, then this sequence is aligned to the profile model ¢ giving a score g((s,a)o.t—1)-
The next action of the agent extends the state-action sequence by one state-action pair (s;, a;). The
extended sequence (s, a)o.; is also aligned to the profile model g giving another score g((s, a)o.¢)-
The redistributed reward Ry is the difference of these scores: Ri11 = g((s,a)0:t) — g((s,a)0:t—1)
(see Eq. (1)). This difference indicates how much of the return is gained or lost by a adding another
sequence element.

Align-RUDDER scores how close an agent follows an underlying strategy, which has been extracted
by the profile model. Similar to the LSTM model, we identify the largest steps in the Q)-function via
relevant events determined by the profile model. Therefore, redistributing the reward by sequence
alignment fits into the RUDDER framework with all its theoretical guarantees. RUDDER’s theory for
reward redistribution is valid for LSTM, other recurrent networks, attention mechanisms, or sequence
and profile models.

Advantages of alignment compared to LSTM. Learning an LSTM model is severely limited when
very few demonstrations are available. First, LSTM is known to require a large number of samples
to generalize to new sequences. In contrast, sequence alignment requires only two examples to
generalize well as known from bioinformatics. Second, expert demonstrations have high rewards.

Under review as a conference paper at ICLR 2022

I) Defining Events II) Scoring Matrix IIT) Multiple Sequence Alignment
d [T e il @ [ME N N O
d2 N | i EEN[] H H NN O
d; T EET d3 T BT N
d [I dll W [BTN B (]
IV) PSSM and Profile V) Reward Redistribution
o el | ol
7 T W N S(m) W
7e—1 [T [S(r-1) 0
Rt+1 - (S(Tt) - S(Tt_l)) CD

Figure 3: The five steps of Align-RUDDER’s reward redistribution. (I) Define events and turn
demonstrations into sequences of events. Each block represent an event to which the original
state is mapped. (II) Construct a scoring matrix using event probabilities from demonstrations
for diagonal elements and setting off-diagonal to a constant value. (III) Perform an MSA of the
demonstrations. (IV) Compute a PSSM. Events with highest column scores are indicated at the top
row. (V) Redistribute reward as the difference of scores of sub-sequences aligned to the profile.

Therefore random demonstrations with very low rewards have to be generated. LSTM does not
generalize well when only these extreme reward cases can be observed in the training set. In contrast,
sequence alignment only uses examples that are closely related; that is, they belong to the same
category (expert demonstrations).

Reward Redistribution by Sequence Alignment. The new reward redistribution approach consists
of five steps, see Fig. 3: (I) Define events to turn episodes of state-action sequences into sequences of
events. (II) Determine an alignment scoring scheme, so that relevant events are aligned to each other.
(IIT) Perform a multiple sequence alignment (MSA) of the demonstrations. (IV) Compute the profile
model like a PSSM. (V) Redistribute the reward: Each sub-sequence 7, of a new episode 7 is aligned
to the profile. The redistributed reward R, is proportional to the difference of scores S based on
the PSSM given in step (IV), i.e. Ri41 o< S(7¢) — S(7¢-1).

In the following, the five steps of Align-RUDDER’s reward redistribution are outlined. For the
interested reader, each step is detailed in Sec. A.3 in the appendix. Finally, in Sec. A.7.3 in the
appendix, we illustrate these five steps on the example of Minecraft.

(I) Defining Events. Instead of states, we consider differences of consecutive states to detect a
change caused by an important event like achieving a sub-goal. An event is defined as a cluster of
state differences. We use similarity-based clustering like affinity propagation (AP) (,

). If states are only enumerated, we suggest to use the “successor representation” (,)
or “successor features” (R). We use the demonstrations combined with state-action
sequences generated by a random policy to construct the successor representation.

A sequence of events is obtained from a state-action sequence by mapping states s to its cluster
identifier e (the event) and ignoring the actions. Alignment techniques from bioinformatics assume
sequences composed of a few events, e.g. 20 events. If there are too many events, good fitting
alignments cannot be distinguished from random alignments. This effect is known in bioinformatics
as “Inconsistency of Maximum Parsimony” (,).

(II) Determining the Alignment Scoring System. A scoring matrix $ with entries s; ; determines
the score for aligning event ¢ with j. A priori, we only know that a relevant event should be aligned to
itself but not to other events. Therefore, we set s; ; = 1/p; fori = jand s, ; = o for i # j. Here, p;
is the relative frequency of event ¢ in the demonstrations. « is a hyper-parameter, which is typically a
small negative number. This scoring scheme encourages alignment of rare events, for which p; is
small. For more details see Appendix Sec. A.3.

(IIT) Multiple sequence alignment (MSA). An MSA algorithm maximizes the sum of all pairwise
scores SMSA = D ;i< ZtL:O ; jt;,¢;,¢ in an alignment, where $; ; ¢, +, ¢ is the score at alignment

4

Under review as a conference paper at ICLR 2022

column ¢ for aligning the event at position ¢; in sequence 4 to the event at position ¢; in sequence
7. L > T is the alignment length, since gaps make the alignment longer than the length of each
sequence. We use ClustalW (,) for MSA. MSA constructs a guiding tree
by agglomerative hierarchical clustering of pairwise alignments between all demonstrations. This
guiding tree allows to identify multiple strategies. For more details see Appendix Sec. A.3.

(IV) Position-Specific Scoring Matrix (PSSM) and MSA profile model. From the alignment, we
construct a profile model as a) column-wise event probabilities and b) a PSSM (,).
The PSSM is a column-wise scoring matrix to align new sequences to the profile model. More details
are given in Appendix Sec. A.3.

(V) Reward Redistribution. The reward redistribution is based on the profile model. A sequence
T = eq.1 (et is event at position t) is aligned to the profile, which gives the score S(7) = ElL:O 81,1,
Here, s, 4, is the alignment score for event ey, at position [in the alignment. Alignment gaps are
columns to which no event was aligned, which have t; = T" + 1 with gap penalty s; 71. If 7 = eq.
is the prefix sequence of 7 of length ¢ + 1, then the reward redistribution R;y; for 0 < ¢t < T'is

T

Ripr = (S(m) = S(1-1)) C = g((s,0)0) = 9((5,a)04-1), Rryz = Go— Y Repr, (1)
t=0

where C' = Egemo {GO} / Edemo [Zt _oS(m) = S(1y—1)| with S(7_1) = 0. The original return of

the sequence 7 is Go ZtT 0 Rt+1 and the expectatlon of the return over demonstrations is Egemo.

The constant C' scales Ry to the range of Go. R4 is the correction of the redistributed reward
(s), with zero expectation for demonstrations: Egemo [Rr+2] = 0. Since
Tt = eg¢ and e, = f(sy, a;), we can set g((s,a)o.t) = S(7¢)C. We ensure strict return equivalence

,)by Gy = ZZ:E} Ry = éo. The redistributed reward depends only on
the past: R;11 = h((s,a)o:t).

Sub-tasks. The reward redistribution identifies sub-tasks as alignment positions with high redis-
tributed rewards. These sub-tasks are indicated by high scores s in the PSSM. Reward redistribution
also determines the terminal states of sub-tasks since it assigns rewards for solving the sub-tasks.
However, reward redistribution and Align-RUDDER cannot guarantee that the redistributed reward is
Markov. For redistributed Markov reward, options (,), MAXQ (,),
or recursive option composition (,) can be used.

Higher Order Markov Reward Redistributions. Align-RUDDER may lead to higher-order
Markov redistribution. Corollary 1 in the appendix states that the optimality criterion from Theorem 2
in () also holds for higher-order Markov reward redistributions. If the
expected redistributed higher-order Markov reward is the difference of (J-values. In that case the
redistribution is optimal, and there is no delayed reward. Furthermore, the optimal policies are the
same as for the original problem. This corollary is the motivation for redistributing the reward to
the steps in the @Q-function. In the Appendix, Corollary 2 states that under a condition, an optimal
higher-order reward redistribution can be expressed as the difference of ()-values.

4 EXPERIMENTS

Align-RUDDER is compared on three artificial tasks with sparse & delayed rewards and few demon-
strations to Behavioral Cloning with Q-learning (BC+(Q)), Soft () Imitation Learning (SQIL) (
,), RUDDER (LSTM), and Deep Q-learning from Demonstrations (DQfD) (,

). GAIL (,) failed to solve the two artificial tasks, as reported previously
for similar tasks (s). Then, we test Align-RUDDER on the complex MineCraft
ObtainDiamond task with episodic rewards (s). All experiments use finite time

MDPs with v = 1 and episodic reward. More details are in Appendix Sec. A.6.

Alignment vs LSTM in 1D key-chest environment. We use a 1D key-chest environment to show
the effectiveness of sequence alignment in a low data regime compared to an LSTM model. The
agent has to collect the key and then open the chest to get a positive reward at the last timestep. See
Appendix Fig. A.9 for a schematic representation of the environment. As the key-events (important
state-action pairs) in this environment are known, we can compute the key-event detection rate of

Under review as a conference paper at ICLR 2022

events

g i o ® / A o A g = ¥ 2 kg

log dirt planks crafting table stick wooden pickaxe cobblestone stone pickaxe iron ore iron ingot furnace iron pickaxe diamond ore

human demonstrations

H 90000909 $0 8898 8 / "9 9998 /) B 998 ® coe /' @
H— 990000909 096888 8 // "9 968 » § 9999 oo 7 @
- 99 88/ /9 99008989 » B 9998 ® co /N @
B 0000099 9998888 ./ » D 9908098 /) 8 999 ® v /' @
H -~ 9900909 $990688 88 / » 6 999988 » 9 999 @ == /' @
2 99009099 9999989 /" 9998 "D 9999 ® coee A @
alignment
T T 8888 B / /9 9989 79 89898 8 coe @
b gt 89988 B /. /S 988 2799980 8 oo S8
gty 88988 B / 9 9989 7B 9898 8 coe @
T T 88988 8 /. 9 9989 789898 8 oo @
bl g o 88988 9 / S 9989 299980 8 oo S8
Uttty 88988 B / 9 99889 79 998 8 oo @
gttty 89988 B9 /. S 99889 279999 @ oo A @
reward redistribution
A —~ ~ =

sub-goals

gt igy 88888 ® / S 9969 279998 8 o 4@

Figure 4: Example of alignment and reward redistribution for demonstrations of ObtainDiamond.
Thresholding the redistributed reward identifies sub-goals.

a reward redistribution model. A key event is detected if the redistributed reward of an important
state-action pair is larger than the average redistributed reward in the sequence. We train the reward
redistribution models with 2, 5, and 10 training episodes and test on 1000 test episodes, averaged
over ten trials. Align-RUDDER significantly outperforms LSTM (RUDDER) for detecting these key
events in all cases, with an average key-event detection rate of 0.96 for sequence alignment vs. 0.46
for the LSTM models overall dataset sizes. See Appendix Fig. A.10 for the detailed results.

Artificial tasks (I) and (II). They are variations of the gridworld rooms example (Sutton et al., 1999),
where cells are the MDP states. In our setting, the states do not have to be time-aware for ensuring
stationary optimal policies, but the unobserved used-up time introduces a random effect. The grid is
divided into rooms. The agent’s goal is to reach a target from an initial state with the fewest steps.
It has to cross different rooms, which are connected by doors, except for the first room, which is
only connected to the second room by a teleportation portal. The portal is introduced to avoid BC
initialization alone, solving the task. It enforces that going to the portal entry cells is learned when
they are at positions not observed in demonstrations. At every location, the agent can move up, down,
left, right. The state transitions are stochastic. An episode ends after 7" = 200 time steps. Suppose
the agent arrives at the target. In that case, it goes into an absorbing state where it stays until 7' = 200
without receiving further rewards. The reward is only given at the end of the episode. Demonstrations
are generated by an optimal policy with a 0.2 exploration rate.

The five steps of Align-RUDDER’s reward redistribution are: (1) Events are clusters of states obtained
by Affinity Propagation using as similarity the successor representation based on demonstrations. (2)
The scoring matrix is obtained according to (II), using € = 0 and setting all off-diagonal values of
the scoring matrix to —1. (3) ClustalW is used for the MSA of the demonstrations with zero gap
penalties and no biological options. (4) The MSA supplies a profile model and a PSSM as in (IV). (5)
Sequences generated by the agent are mapped to sequences of events according to (I). The reward is
redistributed via differences of profile alignment scores of consecutive sub-sequences according to
Eq. (1) using the PSSM. The reward redistribution determines sub-tasks like doors or portal arrival.
The sub-tasks partition the ()-table into sub-tables that represent a sub-agent. However, we optimize
a single Q-table in these experiments. Defining sub-tasks has no effect on learning in the tabular case.

All compared methods learn a @-table and use an e-greedy policy with € = 0.2. The @Q-table is
initialized by behavioral cloning (BC). The state-action pairs which are not initialized since they are
not visited in the demonstrations get an initialization by drawing a sample from a normal distribution.
Align-RUDDER learns the ()-table via RUDDER’s (-value estimation (learning method (A) from

Under review as a conference paper at ICLR 2022

100000 e = o Align RUDDER l“QUUU ottt S e Align-RUDDER
Sa BC + Q-Learnin g = 75000 S BC + Q-Learnin g
Sy e DQD 50000 Sso e DQD

e RUDDER (LSTM)
* SQIL

e RUDDER (LSTM)
30000 e SQIL

20000
10000

7500
5000
2500

L e~
0
2

10000

0

Episodes to 80% optimal returr

Episodes to 80% of

10 50 100

5 2 5
Demonstrations of the FourRooms-v0 Environment Demonstrations of the EightRooms-v0 Environment

10 50 100

Figure 5: Comparison of Align-RUDDER and other methods on Task (I) (left) and Task (II) (right)
with respect to the number of episodes required for learning on different numbers of demonstrations.
Results are the average over 100 trials. Align-RUDDER significantly outperforms all other methods.

Sec.2). For BC+Q, RUDDER (LSTM), SQIL, and DQfD a -table is learned by ()-learning.
Hyperparameters are selected via grid search using the same amount of time for each method.
For different numbers of demonstrations, performance is measured by the number of episodes to
achieve 80% of the average return of the demonstrations. A Wilcoxon rank-sum test determines the
significance of performance differences between Align-RUDDER and the other methods.

Task (I) environment is a 12 x 12 gridworld with four rooms. The target is in room #4, and the start is
in room #1 with 20 portal entry locations. The state contains the portal entry for each episode. Fig. 5
shows the number of episodes required for achieving 80% of the average reward of the demonstrations
for different numbers of demonstrations. Results are averaged over 100 trials. Align-RUDDER
significantly outperforms all other methods, for < 10 demonstrations (p-values < 10719).

Task (IT) is a 12x24 gridworld with eight rooms: target in room #8, and start in room #1 with
20 portal entry locations. Fig. 5 shows the results with settings as in Task (I). Align-RUDDER
significantly outperforms all other methods, for < 10 demonstrations (p-values < 10~1%). We
also conduct an ablation study to study performance of Align-RUDDER, while changing various
parameters, like environment stochasticity (See Sec. A.6.4) and number of clusters (See Sec. A.6.5).

MineCraft. We further test Align-RUDDER on MineCraft ObtainDiamond task from the
MineRL dataset (,). We do not use intermediate rewards given by achieving sub-
goals from the challenge, since Align-RUDDER is supposed to discover such sub-goals automatically
via reward redistribution. We only give a reward for mining the diamond. This requires resource
gathering and tool building in a hierarchical way. To the best of our knowledge, no pure learning
method (sub-goals are also learned) has mined a diamond yet (s). The dataset
contains demonstrations which are insufficient to directly learn a single policy (117 demonstrations,
67 mined a diamond).

Implementation: (1) A state consists of visual input and an inventory (incl. equip state). Both
inputs are normalized to the same information, that is, the same number of components and the
same variance. We cluster the differences of consecutive states (,). Very
large clusters are removed, and small merged, giving 19 clusters corresponding to events, which are
characterized by inventory changes. Finally, demonstrations are mapped to sequences of events. (2)
The scoring matrix is computed according to (II). (3) The ten shortest demonstrations that obtained a
diamond are aligned by ClustalW with zero gap penalties and no biological options. (4) The multiple
alignments gives a profile model and a PSSM. (5) The reward is redistributed via differences of
profile alignment scores of consecutive sub-sequences according to Eq. (1) using the PSSM. Based on
the reward redistribution, we define sub-goals. Sub-goals are identified as profile model positions that
obtain an average redistributed reward above a threshold for the demonstrations. Demonstration sub-
sequences between sub-goals are considered as demonstrations for the sub-tasks. New sub-sequences
generated by the agent are aligned to the profile model to determine whether a sub-goal is achieved.
The redistributed reward between two sub-goals is given at the end of the sub-sequence, therefore,
the sub-tasks also have an episodic reward. Fig. 4 shows how sub-goals are identified. Sub-agents are
pre-trained on the demonstrations for the sub-tasks using BC, and further trained in the environment
using Proximal Policy Optimization (PPO) (,). BC pre-training corresponds
to RUDDER’s Q-value estimation (learning method (A) from above), while PPO corresponds to
RUDDER’s PPO training (learning method (B) from above).

Under review as a conference paper at ICLR 2022

Table 1: Maximum item score of methods on the MineCraft task. “Auto”: Sub-goals/sub-tasks
are found automatically. Demonstrations are used for hierarchical reinforcement learning (“HRL”).

Methods: Soft-Actor Critic (SAC, ()), DQfD, Meta Learning Shared Hierarchies
(MLSH, (2018)), Rainbow (,), PPO, and BC.

Method Team Name | HRL/Auto g ‘ A8 289 = 5@

Align-RUDDER | Ours IV ®

DQfD CDS v IX ®

BC MC_RL v I— ®

CLEAR 14DS X1V ®

Options&PPO | CraftRL VIX ®

BC UEFDRL XIv ®

SAC TD240 XIv -_—

MLSH LAIR VIV ®

Rainbow Elytra X1V EE—

PPO karolisram XV e

Our main agent can perform all actions but additionally can execute sub-agents and learns via the
redistributed reward. The main agent corresponds to and is treated like a Manager module (

,). The main agent is initialized by executing sub-agents according to the alignment but
can deviate from this strategy. When a sub-agent successfully completes its task, the main agent
executes the next sub-agent according to the alignment. More details can be found in Appendix
Sec. A.7.1. Using only ten demonstrations, Align-RUDDER is able to learn to mine a diamond. A
diamond is obtained in 0.1% of the cases. With 0.5 success probability for each of the 31 extracted
sub-tasks (skilled agents not random agents), the resulting success rate for mining the diamond
would be 4.66 x 10710, Tab. 1 shows a comparison of methods on the MineCraft MineRL dataset
by the maximum item score (,). Results are taken from (,), in
particular from Figure 2, and completed by (

,). Align-RUDDER was not evaluated during the M1neCraft MineRL challenge but it
follows the timesteps limit (8 million) imposed by the challenge. Align-RUDDER did not receive
the intermediate rewards provided by the challenge that hint at sub-tasks, thus tries to solve a more
difficult task. Recently, ForgER++ (,) was able to mine a diamond in 0.0667 % of
the cases. We do not include it in Table 1 as it did not have any limitations on the number of timesteps.
Also, ForgER++ generates sub-goals for MineCraft using a heuristic, while Align-RUDDER uses
redistributed reward to automatically obtain sub-goals.

Analysis of MineCraft Agent Behaviour. For each agent and its sub-task, we estimate the success
rate and its improvement during fine-tuning by averaging over return of multiple runs (see Fig. 6). For
earlier sub-tasks, the agent has a relatively higher sub-task success rate. This also corresponds to the
agent having access to much more data for earlier sub-tasks. During learning from demonstrations,
much less data is available for training for later sub-tasks, as not all expert demonstrations achieve
the later tasks. During online training using reinforcement learning, an agent has to successfully
complete all earlier sub-tasks to generate trajectories for later sub-tasks. This is exponentially difficult.
Lack of demonstrations and difficulty of the learned agent to generate data for later sub-tasks leads to
degradation of the success rate in MineCraft.

5 RELATED WORK

Learning from demonstrations has been widely studied over the last 50 years (,). An
example is imitation learning, Wthh uses supervised techmques when the number of demonstratlons
is large enough (,

,). However policies tralned with imitation learnlng tend to drlft away
from demonstration trajectones due to a distribution shift (s). This effect can be
mitigated (R ; s ; , ; , ; R ;

Under review as a conference paper at ICLR 2022

1.00

- 0.10
2 == exact consensus path —@— RL fine tuning
§ —o— human demonstrations BC
[
< 0.01
0.00 — e e e e e e O e e e B e e

consensus S S S S S SSsS PPPPPLVNLAAAAYLQQQTFKTKTKTETD
Figure 6: Comparing the consensus frequencies between behavioral cloning (BC, orange), where

fine-tuning starts, the fine-tuned model (blue), and human demonstrations (green). The plot is in
symmetric log scale (symlog in matplotlib). See Appendix Fig. A.19 for mapping of letters to items.

). Many approaches use demonstrations for initialization, e.g. of policy networks (,

; s), value function networks (, ;), both networks (
; ,), or an experience replay buffer (,). Beyond
1n1t1a11zat10n demonstrations are used to define constraints (,), generate sub-goals
(s), enforce regularization (,), guide exploration (

s), or shape rewards (s ; s
) Demonstratlons may serve for inverse reinforcement learnlng (;
; ,), which aims at learning a (non-sparse) reward functron that best
explalns the demonstratlons Learning reward functions requires a large number of demonstrations
; , ; s). Some approaches rely on few-shot
or/and meta learmng(s ; ; ,). However, few-shot and
meta learning demand a large set of auxrlrary tasks or prerecorded data. Concluding, most methods
that learn from demonstrations rely on the availability of many demonstrations (, ;
,), in particular, if using deep learning methods (;
,). Some methods can learn on few demonstrations like Soft @ Imltatron Learning (SQIL)
(s), Generative Adversarial Imitation Learning (GAIL) (s), and
Deep Q-learning from Demonstrations (DQfD) (,).

6 DISCUSSION AND CONCLUSION

Discussion. Firstly, reward redistributions do not change the optimal policies (see Theorem 1 in
Appendix). Thus, suboptimal reward redistributions due to alignment errors or choosing events that
are non-essential for reaching the goal might not speed up learning, but also do not change the optimal
policies. Secondly, while Align-RUDDER can speed up learning even in complex environments,
the resulting performance depends on the quality of the alignment model. A low quality alignment
model can arise from multiple factors, one of which is having large number (> 20) of distinct
events. Clustering can be used to reduce the number of events, which could also lead to a low quality
alignment model if too many relevant events are clustered together. While the optimal policy is not
changed by poor demonstration alignment, the benefit of employing reward redistribution based
on it diminishes. Thirdly, the alignment could fail if the demonstrations have different underlying
strategies i.e no events are common in the demonstrations. We assume that the demonstrations follow
the same underlying strategy, therefore they are similar to each other and can be aligned. However,
if no underlying strategy exists, then identifying those relevant events via alignment, which should
receive high redistributed rewards, may fail. In this case, reward is given at sequence end, when the
redistributed reward is corrected, which leads to an episodic reward without reducing the delay of the
rewards and speeding up learning.

Conclusions. We have introduced Align-RUDDER to solve highly complex tasks with delayed
and sparse reward from few demonstrations. We have shown experimentally that Align-RUDDER
outperforms state of the art methods designed for learning from demonstrations in the regime of few
demonstrations. On the MineCraft ObtainDiamond task, Align-RUDDER is, to the best of our
knowledge, the first pure learning method to mine a diamond.

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

Impact on ML and related scientific fields. Our research has the potential to positively impact a
wide variety of fields of life due to its general applicability. Most importantly, it has the potential
to reduce the cost for training and deploying agents in real world applications and therefore enable
systems that have not been possible until now.

However, any new development in machine learning can be applied for good or for bad. Our system
can be used for medical applications where it can save life but it could be used for malevolent systems.
It is the society that decides how new technology is employed. However, we as scientist have to
inform the society and the decision makers about our technologies. We have to show the limits of our
technology, to give ideas of possible applications, to point out possible misuse or erroneous operation
of our new technology.

Impact on society. A big danger is that users rely too much on our new approach and use it without
reflecting on the outcomes. For example, in medical treatment decisions doctors may rely on the
technical system and push are the responsibility toward the machine: “The machine suggested this
treatment, therefore it is not my fault”. Another example is self-driving cars where we see that drivers
become more careless even if they are supposed to pay attention and keep the hands on the steering
wheel. They trust too much in the technology, even if the technology does not justify this trust or is
not mature.

Finally, our method can be deployed in companies for job automation. Therefore there is the danger
that some people lose their jobs, particularly those whose work is to perform predictable and repetitive
tasks. An often used example is the taxi driver who would lose their job because of self-driving cars.
The same holds for many jobs in production industry where automation can replace jobs. However
all industrialization led to loss of jobs but new jobs have been created.

Consequences of failures of the method. Depending on the application area, a failure of this
method might be of lesser concern, such as a failed execution of a computer program. If our method
is employed within a larger automation system, a failure can result in damages such as a car accident.
However, this holds for almost all reinforcement learning methods, and usage and testing falls within
the responsibility of the application area. We note that in this work, the method was only used in
computer game environments.

Leveraging of biases in the data and potential discrimination. Our proposed method relies on
human demonstrations and thereby human decisions, which are usually strongly biased. As almost
all machine learning methods trained on human-influenced data, our method could learn to use and
exploit those biases and make similar decisions (s). Therefore, the responsible
use of our method depends on a careful selection of the training data and awareness of the potential
biases within those.

REPRODUCIBILITY STATEMENT

Code for experiments on the FourRooms and EightRooms environment is included as supplementary
material. The README contains step-by-step instructions to set up an environment and run the
experiments. We have specified all the training details ex. hyperparameters and how they were chosen
in the Appendix (See Section A.6). We trained 100 replicates for each datapoint of the first set of
experiments and are shown in Fig. 5. Using the code in the supplementary material, it is quite easy to
reproduce our results for these experiments.

We also include code for the experiments done for MineCraft in the supplementary materials. All the
preprocessing steps, hyperparameters and other implementation details are given in the Appendix
(See Section A.7).

We also provide a deeper overview of the RUDDER (,) theory in the
Appendix (See Section A.2) as it is important for many design choices in Align-RUDDER.

Finally, a video showcasing the MineCraft agent is also provided as supplementary material.

10

Under review as a conference paper at ICLR 2022

REFERENCES

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of
the Twenty-First International Conference on Machine Learning, pp. 1, 2004. ISBN 1581138385.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool.
J. Molec. Biol., 214:403-410, 1990.

S. F. Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
Acids Research, 25(17):3389-3402, 1997. doi: 10.1093/nar/25.17.3389.

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, and S. Hochreiter. RUDDER: return
decomposition for delayed rewards. ArXiv, 2018.

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochre-
iter. RUDDER: return decomposition for delayed rewards. In Advances in Neural Information
Processing Systems 32, pp. 13566-13577, 2019.

P. L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pp. 1726—-1734. AAAI Press, 2017. doi: 10.5555/
3298483.3298491.

A. Bairoch and P. Bucher. PROSITE: recent developments. Nucleic acids research, 22(17):3583-9,
1994,

A. Barreto, W. Dabney, R. Munos, J. Hunt, T. Schaul, H. P. vanHasselt, and D. Silver. Successor
features for transfer in reinforcement learning. In Advances in Neural Information Processing
Systems 30, pp. 4055-4065, 2017. ArXiv 1606.05312.

Y. Bengio and Y. Lecun. Large-scale kernel machines, chapter Scaling learning algorithms towards
Al pp. 321-359. MIT Press, 2007.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In
B. Siciliano and O. Khatib (eds.), Springer Handbook of Robotics, pp. 1371-1394. Springer, 2008.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. ArXiv, 2016.

T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement
learning from demonstration through shaping. In Proc. of the 24th Int. Joint Conf. on Artificial
Intelligence, (IJCAI’15), pp. 3352-3358, 2015.

K. Chao and L. Zhang. Sequence comparison: theory and methods. Springer, 2009. ISBN
9781848003200.

P.J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck,
F. Kauff, B. Wilczynski, and M. J. L. de Hoon. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics, 25(11):1422—1423, 03 2009.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btp163.

G. Comanici and D. Precup. Optimal policy switching algorithms for reinforcement learning. In
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), volume 2, pp. 709-714, 2010. doi: 10.1145/1838206.1838300.

F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22):
10881-10890, 1988.

C. Daniel, H. vanHoof, J. Peters, and G. Neumann. Probabilistic inference for determining options in
reinforcement learning. Machine Learning, 104, 2016. doi: 10.1007/s10994-016-5580-x.

P. Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 5(4):613-624, 1993.

M. O. Dayhoff. Atlas of Protein Sequence and Structure, volume 3. Silver Spring, 1978.

11

Under review as a conference paper at ICLR 2022

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13(1):227-303, 2000. doi: 10.5555/1622262.1622268.
arXiv 9905014.

Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, 1. Sutskever, P. Abbeel, and W. Zaremba.
One-shot imitation learning. In Advances in Neural Information Processing Systems 30, pp. 1087—
1098, 2017.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-Explore: A new approach for
hard-exploration problems. arXiv, abs/1901.10995, 2019.

R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5):1792—-1797, 2004.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, S. Legg, and K. Kavukcuoglu. IMPALA: Scalable distributed Deep-RL with importance
weighted actor-learner architectures. In J. Dy and A. Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, 2018. ArXiv: 1802.01561.

B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In Advances in Neural Information Processing Systems 32, pp.
15220-15231, 2019.

J. Felsenstein. Cases in which parsimony or compatibility methods will be positively misleading.
Systematic Zoology, 27(4):401-410, 1978. doi: 10.2307/2412923.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-
learning. In Ist Annual Conference on Robot Learning (CoRL), volume 78 of Proceedings of
Machine Learning Research, pp. 357-368. PMLR, 2017.

K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. In
International Conference on Learning Representations, 2018. arXiv 1710.09767.

B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):
972-976, 2007. doi: 10.1126/science.1136800.

0. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular Biology,
162(3):705-708, 1982.

W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. P. Mohanty, D. P. Liebana,
R. Salakhutdinov, N. Topin, M. Veloso, and P. Wang. The MineRL competition on sample efficient
reinforcement learning using human priors. arXiv, 2019a.

W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdinov. MineRL:
A large-scale dataset of Minecraft demonstrations. In Proc. of the 28th Int. Joint Conf. on Artificial
Intelligence (IJCAI'19), 2019b.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause (eds.), Proceedings of
Machine Learning Research, volume 80, pp. 1861-1870. PMLR, 2018. arXiv 1801.01290.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature,
585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proceedings
of the National Academy of Sciences of the United States of America, 89(22):10915-10919, 1992.

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. G.
Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. ArXiv,
2017.

12

Under review as a conference paper at ICLR 2022

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris, G. Dulac-Arnold,
I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys. Learning from demonstrations for real world
reinforcement learning. ArXiv, 2017.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris,
I. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A. Gruslys. Deep g-learning from
demonstrations. In The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18).
Association for the Advancement of Artificial Intelligence, 2018.

D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Commu-
nications of the ACM, 18(6):341-343, 1975. doi: 10.1145/360825.360861.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems 29, pp. 4565-4573, 2016.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Master’s thesis, Technische
Universitit Miinchen, 1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Technical Report FKI-207-95, Fakultit
fiir Informatik, Technische Universitit Miinchen, 1995.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780,
1997a.

S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. In M. C. Mozer,
M. L. Jordan, and T. Petsche (eds.), Advances in Neural Information Processing Systems 9, pp.
473-479, Cambridge, MA, 1997b. MIT Press.

M. Holzleitner, L. Gruber, J. A. Arjona-Medina, J. Brandstetter, and S. Hochreiter. Convergence
proof for actor-critic methods applied to PPO and RUDDER. arXiv, 2020.

I. A. Hosu and T. Rebedea. Playing Atari games with deep reinforcement learning and human
checkpoint replay. ArXiv, 2016.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007. doi: 10.1109/MCSE.2007.55.

H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction, 2009.

M. Jing, X. Ma, W. Huang, F. Sun, C. Yang, B. Fang, and H. Liu. Reinforcement learning from
imperfect demonstrations under soft expert guidance. ArXiv, abs/1911.07109, 2019.

K. Judah, A. P. Fern, T. G. Dietterich, and P. Adepalli. Active imitation learning: Formal and practical
reductions to i.i.d. learning. J. Mach. Learn. Res., 15(1):3925-3963, 2014. ISSN 1532-4435.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In /9¢h
International Conference on Machine Learning (ICML), pp. 267-274, 2002.

A. Kanervisto, J. Karttunen, and V. Hautaméki. Playing Minecraft with behavioural cloning. In H. J.
Escalante and R. Hadsell (eds.), Proceedings of Machine Learning Research (PMLR), volume 123,
pp- 56-66. PMLR, 2020.

S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of molecular sequence
features by using general scoring schemes. Proceedings of the National Academy of Sciences of
the United States of America, 87(6):2264-2268, 1990. doi: 10.1073/pnas.87.6.2264.

S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of high-scoring segments from
molecular sequences. Ann. Statist., 18(2):571-581, 1990. doi: 10.1214/a0s/1176347616.

R. Khardon. Learning to take actions. Machine Learning, 35(1):57-90, 1999.
B. Kim, A. Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations. In Advances

in Neural Information Processing Systems 26, 2013.

13

Under review as a conference paper at ICLR 2022

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and Josh J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 29, pp. 3675-3683. Curran Associates, Inc., 2016.

A. S. Lakshminarayanan, S. Ozair, and Y. Bengio. Reinforcement learning with few expert demon-
strations. In NIPS Workshop on Deep Learning for Action and Interaction, 2016.

K. Y. Levy and N. Shimkin. Unified inter and intra options learning using policy gradient methods.
In S. Sanner and M. Hutter (eds.), Recent Advances in Reinforcement Learning, pp. 153—-164.
Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-29946-9_17.

M. Lopes, F. S. Melo, and L. Montesano. Active learning for reward estimation in inverse rein-
forcement learning. In European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML,PKDD), volume 5782 of Lecture Notes in Computer Science, pp. 31-46.
Springer, 2009.

J. Luoma, S. Ruutu, A. W. King, and H. Tikkanen. Time delays, competitive interdependence, and
firm performance. Strategic Management Journal, 38(3):506-525, 2017. doi: 10.1002/smj.2512.

M. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and M. Campbell. Eigenoption discovery
through the deep successor representation. arXiv, abs/1710.11089, 2017.

D. J. Mankowitz, T. A. Mann, and S. Mannor. Adaptive skills adaptive partitions (ASAP). In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29, pp. 1588—-1596. Curran Associates, Inc., 2016.

J. A. Mccammon and P. G. Wolynes. Highly specific protein sequence motifs for genome analysis.
Computational Biomolecular Science, 95(May):5865-5871, 1998.

D. Michie and R. Camacho. Building Symbolic Representations of Intuitive Real-Time Skills from
Performance Data, pp. 385-418. Oxford University Press, Inc., USA, 1994. ISBN 0198538502.

D. Michie, M. Bain, and J. Hayes-Michie. Cognitive models from subcognitive skills, pp. 71—
99. Control, Robotics and Sensors. Institution of Engineering and Technology, 1990. doi:
10.1049/PBCEO44E_ch5.

S. Milani, N. Topin, B. Houghton, W. H. Guss, S. P. Mohanty, K Nakata, O. Vinyals, and N. S. Kuno.
Retrospective analysis of the 2019 MineRL competition on sample efficient reinforcement learning.
arXiv, abs/2003.05012, 2020.

B. Morgenstern. DIALIGN: Multiple DNA and protein sequence alignment at BiBiServ. Nucleic
Acids Research, 32:W33-6, 2004.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. In 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pp. 6292—6299. IEEE, 2018.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443—453, 1970.

A.Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pp. 663—-670, 2000. ISBN
1558607072.

C. Notredame, D. G. Higgins, and J. Heringa. T-coffee: a novel method for fast and accurate multiple
sequence alignment. Journal of Molecular Biology, 302(1):205-217, 2000.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024—-8035. Curran
Associates, Inc., 2019.

14

Under review as a conference paper at ICLR 2022

D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Comput., 3(1):88-97, 1991. ISSN 0899-7667.

M. L. Puterman. Markov Decision Processes. John Wiley & Sons, Inc., 2nd edition, 2005. ISBN
978-0-471-72782-8.

H. Rahmandad, N. Repenning, and J. Sterman. Effects of feedback delay on learning. System
Dynamics Review, 25(4):309-338, 2009. doi: 10.1002/sdr.427.

R. Ramesh, M. Tomar, and B. Ravindran. Successor options: An option discovery framework for
reinforcement learning. In Proc. of the 28th Int. Joint Conf. on Artificial Intelligence (IJCAI'19),
2019.

S. Reddy, A. D. Dragan, and S. Levine. SQIL: imitation learning via regularized behavioral cloning.
In Eighth International Conference on Learning Representations (ICLR), 2020. arXiv 1905.11108.

D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne. Experience replay for continual
learning. In Advances in Neural Information Processing Systems 32, pp. 348-358, 2019.

S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 661-668, 2010.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627-635,
2011.

S. Schaal. Learning from demonstration. In Proceedings of the 9th International Conference on
Neural Information Processing Systems (NIPS’96), pp. 1040-1046, Cambridge, MA, USA, 1996.
MIT Press.

C. Scheller, Y. Schraner, and M. Vogel. Sample efficient reinforcement learning through learning from
demonstrations in Minecraft. In H. J. Escalante and R. Hadsell (eds.), Proceedings of Machine
Learning Research (PMLR), volume 123, pp. 67-76. PMLR, 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. ArXiv, 2018.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Rem-
mert, J. Soding, J. D. Thompson, and D. G. Higgins. Fast, scalable generation of high-quality
protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1):
539-539, 2014.

Jr. A.R. Silva, V. Grassi, and D. F. Wolf. Continuous deep maximum entropy inverse reinforcement
learning using online POMDP. In 19th International Conference on Advanced Robotics (ICAR),
pp. 382-387. IEEE, 2019.

D. Silver and K. Ciosek. Compositional planning using optimal option models. In Proceedings of the
29th International Conference on Machine Learning (ICML), volume 2, 2012. arXiv 1206.6473.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
L. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016. doi:
10.1038/nature16961.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and Shogi by
self-play with a general reinforcement learning algorithm. ArXiv, 2017.

A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, and A. I. Panov. Hierarchical deep
g-network with forgetting from imperfect demonstrations in Minecraft. arXiv, abs/1912.08664,
2019.

15

Under review as a conference paper at ICLR 2022

A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, and A. I. Panov. Forgetful
experience replay in hierarchical reinforcement learning from demonstrations, 2020.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147(1):195-197, 1981.

I. Solaiman, M.Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu, A. Radford, and J. Wang.
Release strategies and the social impacts of language models. arXiv, abs/1908.09203, 2019.

M. Stolle and D. Precup. Learning options in reinforcement learning. In Lecture Notes in Computer
Science, volume 2371, pp. 212-223, 2002. doi: 10.1007/3-540-45622-8_16.

G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht. Use of the 'Perceptron’ algorithm to
distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10(9):2997-3011, 1982.

H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova. Learning from demonstration for shaping
through inverse reinforcement learning. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pp. 429-437. ACM, 2016.

K. Subramanian, C. L. Isbell, and A. L. Thomaz. Exploration from demonstration for interactive
reinforcement learning. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pp. 447-456, 2016.

W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply AggreVaTeD: Dif-
ferentiable imitation learning for sequential prediction. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
3309-3318. PMLR, 2017.

W. Sun, J.A. Bagnell, and B. Boots. Truncated horizon policy search: Combining reinforcement
learning & imitation learning. In 6¢h International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 2 edition, 2018.

R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211, 1999.

U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. In Advances in
Neural Information Processing Systems 20, 2007.

M. E. Taylor, H. B. Suay, and S. Chernova. Integrating reinforcement learning with human demonstra-
tions of varying ability. In 10th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pp. 617-624, 2011.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22(22):4673—-4680, 1994.

A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
FeUdal networks for hierarchical reinforcement learning. arXiv, abs/1703.01161, 2017.

L. Wang and T. Jiang. On the Complexity of Multiple Sequence Alignment. Journal of Computational
Biology, 1(4):337-348, 1994.

C.J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

X. Zhang and H. Ma. Pretraining deep actor-critic reinforcement learning algorithms with expert
demonstrations. ArXiv, abs/1801.10459, 2018.

A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan,
S. Levine, and C. Finn. Watch, try, learn: Meta-learning from demonstrations and rewards. In
International Conference on Learning Representations, 2020.

16

Under review as a conference paper at ICLR 2022

B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3,
AAAT08, pp. 1433-1438. AAAI Press, 2008. ISBN 9781577353683.

X. Zuo. mazelab: A customizable framework to create maze and gridworld environments. https:
//github.com/zuoxingdong/mazelab, 2018.

17

https://github.com/zuoxingdong/mazelab
https://github.com/zuoxingdong/mazelab

Under review as a conference paper at ICLR 2022

A APPENDIX

CONTENTS OF THE APPENDIX

A.l Introduction tothe Appendix 20
A.2 Review Reward Redistribution 20
A.3 The Five Steps of Align-RUDDER’s Reward Redistribution 25
A4 Sequence Alignment e 27
A5 ExtendedRelated Work oo oo oo 28
A.6 Artificial Task Experiments L 29
A.6.1 Hyperparameter Selection 29
A6.2 Figures 29
A.6.3 Artificial Task p-values 30
A.6.4 Stochastic Environmentso oL 31
A.6.5 Changing number of Clusters 32
A.6.6 Key-EventDetection 33
A7 Minecraft Experiments oL 34
A7.1 MineCraft. 34
A.7.2 Related Work and Steps Towards a General Agent 34
A.7.3 The Five Steps of Align-RUDDER Demonstrated on Minecraft 36
A.7.4 Implementation of our Algorithm for Minecraft 38
A.7.5 Policy and Value Network Architecture 39
A.7.6 Imitation Learning of Sub-Task Agents 40
A.7.7 Reinforcement Learning on Sub-Task Agents 41
A.8 Reproducing the Artificial Task Results 41
A.9 Software Libraries 42
A0 Compute o e e e e e e 42

LIST OF FIGURES

A2
A3
A4
A5
A6

Clusters formed in the FourRooms and EightRooms environment 29
Clusters formed in the FourRooms and EightRooms environment 30
Clusters formed in the FourRooms and EightRooms environment 30
FourRooms and EightRooms environments 31
Reward redistribution for the FourRooms and EightRooms environments 31

18

Under review as a conference paper at ICLR 2022

A.11 Step (I): Define events and map demonstrations into sequences of events. First, we
extract the sequence of states from human demonstrations, transform images into
feature vectors using a pre-trained network and transform them into a sequence of
consecutive state deltas (concatenating image feature vectors and inventory states).
We cluster the resulting state deltas and remove clusters with a large number of
members and merge smaller clusters. In the case of demonstrations for the Obtain-
Diamond task in Minecraft the resulting clusters correspond to obtaining specific
resources and items required to solve the task. Then we map the demonstrations to
sequences Of eVeNts.l

A.12 Step (II): Construct a scoring matrix using event probabilities from demonstrations
for diagonal elements and setting off-diagonal to a constant value. The scores in
the diagonal position are proportional to the inverse of the event frequencies. Thus,
aligning rare events has higher score. Darker colors signify higher score values. . .

A.13 Step (IIT) Perform multipe sequence alignment (MSA) of the demonstrations. The
MSA algorithm maximizes the pairwise sum of scores of all alignments. The score
of an alignment at each position is given by the scoring matrix. As the off-diagonal
entries are negative, the algorithm will always try to align an event to itself, while
giving preference to events which give higher scores.

A.14 Step (IV) Compute a position-specific scoring matrix (PSSM). This matrix can be
computed using the MSA (Step (III)) and the scoring matrix (Step (II)). Every column
entry is for a position from the MSA. The score at a position (column) and for an
event (row) depends on the frequency of that event at that position in the MSA. For
example, the event in the last position is present in all the sequences, and thus gets
a high score at the last position. But it is absent in the remaining position, and thus
gets ascore of zero elsewhere.

A.15 Step (V) A new sequence is aligned step by step to the profile model using the PSSM,
resulting in an alignment score for each sub-sequence. The redistributed reward is
then proportional to the difference of scores of subsequent alignments.

A.16 Conceptual overview of our MineRL agent.
A.17 Conceptual architecture of Align-RUDDER MineRL policy and value networks . .
A.18 Discretization and interpolation of camera angles
A.19 Mapping of clusters to letters

A.20 Trajectory replay given by an exemplary consensus

19

36

36

37

37

39

Under review as a conference paper at ICLR 2022

A.1 INTRODUCTION TO THE APPENDIX

This is the appendix to the paper “Align-RUDDER: Learning from few Demonstrations by Reward
Redistribution”. The appendix aims at supporting the main document and provides more detailed
information about the implementation of our method for different tasks. The content of this document
is summarized as follows:

e Section A.3 describes the five steps of Align-RUDDER’s reward redistribution in more detail. In
particular, the scoring systems are described in more detail. ® Section A.4 provides a brief overview
of sequence alignment methods and the hyperparameters used in our experiments. e Section A.6
provides figures and tables to support the results of the experiments in Artificial Tasks (I) and (I). e
Section A.7 explains in detail the experiments conducted in the Minecraft ObtainDiamond task.

A.2 REVIEW REWARD REDISTRIBUTION

Reward redistribution and return decomposition are concepts introduced in RUDDER but also apply to
Align-RUDDER as it is a variant of RUDDER. Reward redistribution based on return decomposition
eliminates — or at least mitigates — delays of rewards while preserving the same optimal policies.
Align-RUDDER is justified by the theory of return decomposition and reward redistribution when
using multiple sequence alignment for constructing a reward redistribution model. In this section, we
review the concepts of return decomposition and reward redistribution.

Preliminaries. We consider a finite MDP defined by the 5-tuple P = (8, A, R, p,y) where the state
space 8 and the action space A are sets of finite states s and actions a and R the set of bounded rewards
r. For a given time step ¢, the corresponding random variables are Sy, A; and R, 1. Furthermore, P
has transition-reward distributions p(S;+1 = ', Ryx1 =7 | S¢ = s, A; = a), and a discount factor
v € (0, 1], which we keep at v = 1. A Markov policy 7(a | s) is a probability of an action a given
a state s. We consider MDPs with finite time horizon or with an absorbing state. The discounted
return of a sequence of length 7" at time ¢ is G; = Zfz_g YRy x11. As usual, the Q-function
for a given policy 7 is ¢"(s,a) = E. [G¢ | St = s,A; = a]. Ez[z | s,q] is the expectation of
x, where the random variable is a sequence of states, actions, and rewards that is generated with
transition-reward distribution p, policy 7, and starting at (s, a). The goal is to find an optimal policy
m* = argmax . E.[Go] maximizing the expected return at t = 0. We assume that the states s are
time-aware (time ¢ can be extracted from each state) in order to assure stationary optimal policies.
According to Proposition 4.4.3 in (,), a deterministic optimal policy 7* exists.

Definitions. A sequence-Markov decision process (SDP) is defined as a decision process that has
Markov transition probabilities but a reward probability that is not required to be Markov. Two SDPs

P and P with different reward probabilities are return-equivalent if they have the same expected
return at ¢ = 0 for each policy 7, and strictly return-equivalent if they additionally have the same
expected return for every episode. Since for every 7 the expected return at ¢ = 0 is the same,
return-equivalent SDPs have the same optimal policies. A reward redistribution is a procedure that
—for a given sequence of a delayed reward SDP P— redistributes the realization or expectation
of its return Gy along the sequence. This yields a new SDP P with R as random variable for the
redistributed reward and the same optimal policies as P:

Theorem 1 (()). Both the SDP P with delayed reward I:ZtH and the SDP
‘P with redistributed reward R, have the same optimal policies.

Proof. The proof can be found in (,). O

The delay of rewards is captured by the expected future rewards r(m,t — 1) at time (t — 1). K is
defined as k(m,t — 1) :=E; D" Rit14- | S1—1,a—1), that is, at time (¢ — 1) the expected sum
of future rewards from Ry to R;4 1+, but not the immediate reward R;. A reward redistribution
is defined to be optimal, if k(T —t — 1,t) = 0 for 0 < ¢ < T — 1, which is equivalent to
Er [Rey1 | se-1,00-1,5¢,a¢) = 7 (5¢,0¢) — G (St—1,a8-1):

Theorem 2 ((). We assume a delayed reward MDP P, with episodic
reward. A new SDP P is obtained by a second order Markov reward redistribution, which ensures
that ‘P is return-equivalent to P. For a specific m, the following two statements are equivalent:

20

Under review as a conference paper at ICLR 2022

(I) k(T —t—1,t) =0, i.e. the reward redistribution is optimal,
(1) Ex [Riga | st—1,a8-1,8t,ae] = §"(s¢,a¢) — G (S¢-1,01-1) (2

An optimal reward redistribution fulfills for 1 <t < Tand0 < m < T —t: k(m,t —1) = 0.
Proof. The proof can be found in (,). O

This theorem shows that an optimal reward redistribution relies on steps ¢™ (s¢, at) — §" (St—1, at—1)
of the Q-function. Identifying the largest steps in the ()-function detects the largest rewards that
have to be redistributed, which makes the largest progress towards obtaining an optimal reward
redistribution.

Corollary 1 (Higher order Markov reward redistribution optimality conditions). We assume a delayed
reward MDP P, with episodic reward. A new SDP P is obtained by a higher order Markov reward
redistribution. The reward redistribution ensures that P is return-equivalent to P. If for a specific ™

Er [Rt+1 | St—1,0At—1, St, at] = qﬂ(st»at) - @W(Stfl,atq) 3)
holds, then the higher order reward redistribution Ry 1 is optimal, that is, k(T —t — 1,t) = 0.

Proof. The proof is just PART (II) of the proof of Theorem 2 in (,). We
repeat it here for completeness.

We assume that
Ex [Rig1 | Se—1,0i-1,50,a¢] = hy = §"(s¢,0a¢) — G (54—1,0¢-1) , 4
where we abbreviate the expected R;y1 by hy:

Er [Rt+1 | 5t717at71>5t7at] = hg. (5)

The expectations E [. | st—1, ar—1] like E [RTH | s¢—1, at_l} are expectations over all episodes
that contain the state-action pair (s;—1, a;—1) at time t — 1. The expectations E; [. | s¢—1, at—1, ¢, a4

like E. [RTH | st—1,a1-1, St,a¢| are expectations over all episodes that contain the state-action
pairs (s;—1,a;—1) attime ¢ — 1 and (s¢, a;) at time ¢. The @-values are defined as
rr—t
q"(st,ar) = Eg Z Ritit | styat] = E, [RT+1 | ¢, 0| (6)
Lk=0
rT—t
q"(st,a1) = Ex Riykt1 | st at] ; (7N
Lk=0

which are expectations over all trajectories that contain (s, a;) at time ¢. Since P is Markov, for §™
only the suffix trajectories beginning at (s;, a;) enter the expectation.

The definition of k(m,t — 1) for 1 < ¢t < Tand 0 < m < T —t was s(m,t — 1) =
Er D" o Rit14r | St—1,a:—1]. We have to proof (T — ¢ — 1,¢) = 0.

First, we consider m = 0 and 1 < ¢ < T, therefore k(0,t — 1) = E; [Ri41 | S¢—1,a+—1]. Since
the original MDP P has episodic reward, we have 7(st—1,a¢-1) = E {f{t | st,l,at,l} = 0 for
1 <t < T. Therefore, we obtain:

G (s¢—1,ai-1) = T(s¢—1,ae-1) + ZP(St,at | st—1,ai—1) " (8¢, ar) ®)
St,0¢
= Z p(seyar | st—1,a1-1) §" (st, ar) -
St,at

21

Under review as a conference paper at ICLR 2022

Using this equation we obtain for 1 <t < T"
k(0,6 —1) = Ex [Re1 | Se—1, ar—1] 9)
= Eq, 0, [0"(5¢5a¢) — G (8¢—1,a¢—1) | S¢—1,a4-1]

= > plsear | se-1,a1) (G (s1,00) — G (5021, 00-1))

St,at

= ¢ (S¢—1,a¢-1) — ZP(St,at | se—1,ai-1) " (S¢—1,0¢—1)

St,at

= §"(st—1,a¢-1) — G (84-1,0¢-1) = 0.

Next, we consider the expectation of ZT:O Ry forl<t<Tand1l <m <T —t(form > 0)

m
k(m,t—1) = Bx | Y Riyigr | st_l,at_ll (10)
L7=0
= E; Z(QW(ST-‘y—t’a’T-‘Ft) = G (Sr4t-1,r41-1)) | St—laat—1‘|
L7=0

= Ex [§" (St4ms Gtym) — G (St—1,ae-1) | S¢—1, Q1]

T
= E; |Ex E R‘r+1 | St+m7at+m] |St1aat1]
L T=t+m
T
- Er |Ex E Rryi | se—1,a0-1| | 8e-1,061
T=t—1

= Ex [RTH | 8t71,at71} - Ex {RT+1 | St71,at71}
=0.

We used that Rt.}rl =0fort<T.

For the particualrcasest =7+ landm =T —t =T — 7 — 1 we have
K(T—-7-1,7) = 0. (11)
That is exactly what we wanted to proof.

O

Corollary 1 explicitly states that the optimality criterion ensures an optimal reward redistribution
even if the reward redistribution is higher order Markov. For Align-RUDDER we may obtain a higher
order Markov reward redistribution due to the profile alignment of the sub-sequences.

Corollary 2 (Higher order Markov reward redistribution optimality representation). We assume a
delayed reward MDP P, with episodic reward and that a new SDP P is obtained by a higher order
Markov reward redistribution. The reward redistribution ensures that P is strictly return-equivalent
1o P. We assume that the reward redistribuition is optimal, that is, k(T —t—1,t) = 0. If the
condition

T—t—1 T—t—1
Ex [Z Riyoir | St,at] = E; [Z Riyoir | 50,00, .,5t, a1 (12)
T=0 =0
holds, then
Ex [Riva | se-1,a-1, 80,0 = G (st,a8) — G (Se-1,a¢-1) - (13)
Proof. By and large, the proof is PART (I) of the proof of Theorem 2 in (,).

We repeat it here for completeness.

22

Under review as a conference paper at ICLR 2022

We assume that the reward redistribution is optimal, that is,
k(T —t—1,t) = 0. (14)
We abbreviate the expected R;y1 by hy:

Er [Rt+1 | stflyatflastvat] = hg . (15)

In (,) Lemma A4 is as follows.

Lemma 1. Two strictly return-equivalent SDPs P and P have the same expected return for each
start state-action sub-sequence (So, ag, ..., 8t,a¢), 0 <t < T+

E. [éo | s0,a0,-..,8t,a:| = Ex[Go| so0,a0,.--,8t, a4 - (16)

The assumptions of Lemma 1 hold for for the delayed reward MDP P and the redistributed reward
SDP P, since a reward redistribution ensures strictly return-equivalent SDPs. Therefore for a given
state-action sub-sequence (sg, ag, - - ., S¢,at), 0 <t < T

E7T GO | SU7aU7~"7St7atj| = E7r [GO | S(),a()7...,8t7at} (17)

with Gy = Zf:o R,+1 and Gy = Rpy1. The Markov property of the MDP P ensures that the

future reward from ¢ 4 1 on is independent of the past sub-sequence sg, ag, ..., St—1,0¢—1:
T—t T—t
Ex ZRt+1+r | st,ar| = Ex § Riy1yr | 50,00, -+, St, At | - (18)
7=0 7=0

According to Eq. (12), the future reward from ¢ + 2 on is independent of the past sub-sequence
50,05 -+ -y St—1, At—1:

Ex

T—t—1
E Riyoyr | st,ar| = Ex
7=0

T—t—1
Z Riyoyr ‘ 50,40, --,5t,a¢ | - (19)
7=0

23

Under review as a conference paper at ICLR 2022

Using these properties we obtain

[T—t
q"(st;ar) = Eq E Riyiqr | Smat] (20)

L7=0
[T—t

- E7T Rt+1+‘r ‘ S50,0A0y -+ -y St, At
L7=0

= E7T RTJrl | 50, @, - - '7St7atj|
rr

= Bg E RT-‘rl ‘505a07"'a3t7at
7=0

= E, |Go | so,ag,...,st,at}

= E7T [GU | S50, 0Q0, - - .7St,at]

r T
= E, E R.i1] so,a0,---,5t, a1
L7=0

[T—t—1
= Eﬂ- E Rt+2+7- | 80,0, ..., St, A¢

t

+ > by

L 7=0 7=0
rT—t—1 t
= FBg Z Rijorr | se,a0| + Zhr
L =0 7=0
t
= k(T —t—1,t) + > h,
7=0
t
-
7=0
We used the optimality condition
T—t—1
R(T—t—1,t) = E, l > Rijayr| st,atl =0. 1)
7=0
It follows that
Er [Rig1 | se—1,a0-1,88,a¢] = he = G (St,0¢) — G (8¢—1,01-1) - (22)

This is exactly what we wanted to proof.
O

This corollary shows that optimal reward redistributions can be expressed as difference of @)-values if
Eq. (12) holds. Eq. (12) states that the past can be averaged out. However, there may exist optimal
reward redistributions for which Eq. (12) does not hold.

If the reward redistribution is optimal, the ()-values of P are given by ¢™ (s, ar) = ¢™(s¢,a1) —
1™ (s;) and therefore P and P have the same advantage function:

Theorem 3 ((). If the reward redistribution is optimal, then the Q-values
of the SDP P are q™ (s¢, ar) = 7(s¢, ar) and

q”(st,at) = dﬂ(st,at) - Est,l,at,l [dw(St—lyat—l) | St] = (f(st,at) - Wr(St)- (23)

The SDP P and the original MDP P have the same advantage function.

Proof. The proof can be found in (,). O

24

Under review as a conference paper at ICLR 2022

I) Defining Events II) Scoring Matrix IIT) Multiple Sequence Alignment
d [T e il @ [ME N N O
d2 N | i EEN[] H H NN O
d; T EET d3 T BT N
d [I dll W [BTN B (]
IV) PSSM and Profile V) Reward Redistribution
o el | ol
7 T W N S(m) W
7e—1 [T [S(r-1) 0
Rt+1 - (S(Tt) - S(Tt_l)) CD

Figure A.1: The five steps of Align-RUDDER’s reward redistribution. (I) shows several demon-
strations, where each demonstration is composed of a sequence of events. Events are defined as
difference of state-actions or clusters thereof. Step (II) depicts a scoring matrix, which we construct
using event probabilities from demonstrations. With demonstrations and the scoring matrix we then
perform MSA in step (III). In step (IV) to construct the profile model and PSSM from the alignment.
These are then used to align a new sequence to the model in step (V), one timestep at a time. The
differences in alignment score are then used to redistribute reward for this new sequence.

For an optimal reward redistribution only the expectation of the immediate reward r(s;,a;) =
E, [Rt+1 | 8¢, a:] must be estimated. This considerably simplifies learning.

Learning methods according to (). The redistributed reward serves as
reward for a subsequent learning method, which can be Type A, B, and C as described in

(). Type A methods estimate the (Q-values. They can be estimated directly
according to Eq. (23) assuming an optimal redistribution (Type A variant i). (-values can be
corrected for a non-optimal reward redistribution by additionally estimating x (Type A variant ii).
-value estimation can use eligibility traces (Type A variant iii). Type B methods use the redistributed
rewards for policy gradients like Proximal Policy Optimization (PPO) (). Type
C methods use TD learning like)-learning (), where immediate and future reward
must be drawn together as typically done. For all these learning methods, demonstrations can be used
for initialization (e.g. experience replay buffer) or pre-training (e.g. policy network with behavioral
cloning). Recently, the convergence of RUDDER learning methods has been proven under commonly
used assumptions (s).

Non-optimal reward redistribution and Align-RUDDER. According to Theorem 1, non-optimal
reward redistributions do not change the optimal policies. The value (T — ¢t — 1,t) measures the
remaining delayed reward. The smaller « is, the faster is the learning process. For Monte Carlo (MC)
estimates, smaller s reduces the variance of the future rewards, and, therefore the variance of the
estimation. For temporal difference (TD) estimates, smaller x reduces the amount of information that
has to flow back. Align-RUDDER dramatically reduces the amount of delayed rewards by identifying
key events via multiple sequence alignment, to which reward is redistributed. For an episodic MDP, a
reward that is redistributed to time ¢ reduces all x(m, 7) with ¢ < 7 < T by the expectation of the
reward. Therefore, in most cases Align-RUDDER makes x-values much smaller.

A.3 THE FIVE STEPS OF ALIGN-RUDDER’S REWARD REDISTRIBUTION

The new reward redistribution approach consists of five steps, see Fig. A.1: (I) Define events to turn
episodes of state-action sequences into sequences of events. (II) Determine an alignment scoring
scheme, so that relevant events are aligned to each other. (III) Perform a multiple sequence alignment
(MSA) of the demonstrations. (IV) Compute the profile model and the PSSM. (V) Redistribute
the reward: Each sub-sequence 7; of a new episode 7 is aligned to the profile. The redistributed
reward R, is proportional to the difference of scores S based on the PSSM given in step (IV), i.e.
Rt+1 X S(Tt) — S(Tt_l).

25

Under review as a conference paper at ICLR 2022

(I) Defining Events. Alignment techniques assume that sequences consist of few symbols, e.g.
about 20 symbols, the events. It is crucial to keep the number of events small in order to increase
the difference between a random alignment and an alignment of demonstrations. If there are many
events, then two demonstrations might have few events that can be matched, which cannot be well
distinguished from random alignments. This effect is known in bioinformatics as “Inconsistency of
Maximum Parsimony” (,). The events can be the original state-action pairs, clusters
thereof, or other representations of state-action pairs, e.g. indicating changes of inventory, health,
energy, skills etc. In general, we define events as a cluster of states or state-actions. A sequence
of events is obtained from a state-action sequence by substituting states or state-actions by their
cluster identifier. In order to cluster states, a similarity measure between them is required. We

suggest to use the “successor representation” (,) of the states, which gives a similarity
matrix based on how connected two states are given a policy. Successor representation have been
used before (s s) to obtain important events, for option

learning. For computing the successor representation, we use the demonstrations combmed with
state-action sequences generated by a random policy. For high dimensional state spaces “successor
features” (,) can be used. We use similarity-based clustering methods like affinity
propagation (AP) (,). For AP the similarity matrix does not have to be symmetric
and the number of clusters need not be known. State action pairs (s, a) are mapped to events e.

(II) Determining the Alignment Scoring System. Alignment algorithms distinguish similar
sequences from dissimilar sequences using a scoring system. A scoring matrix $ has entries s, ; that
give the score for aligning event ¢ with j. The MSA score Sysa of a multiple sequence alignment is
the sum of all pairwise scores: Syga = Zi’mg ZtL:O $2,.,.2;.,» Where 2; ; means that event x; ; is
at position ¢ for sequence 7; = ¢; o.7 in the alignment, analog for x; ; and the sequence 7; = ¢; 0.7,
and L is the alignment length. Note that L > T and z; ; # e; 1, since gaps are present in the alignment.
In the alignment, events should have the same probability of being aligned as they would have if
we know the strategy and align demonstrations accordingly. The theory of high scorlng segments
glves a scoring scheme with these ahgnment probabilities (

,). Event ¢ is observed with probability p; in the demonstratlons therefore a

random alignment aligns event ¢ with j with probability p;p;. An alignment algorithm maximizes the
MSA score Smsa and, thereby, aligns events ¢ and j with probability ¢;; for demonstrations. High
values of ¢;; means that the MSA often aligns events ¢ and j in the demonstrations using the scoring
matrix $ with entries s; ;. According to Theorem 2 and Equation [3] in (),
asymptotically with the sequence length, we have s; ; = In(q;;/(pip;))/A*, where A* is the unique
positive root of Y} j=1PiDj exp(As; ;) = 1 (Equation [4] in ()).
We can now choose a desired probability ¢;; and then compute the scoring matrix $ with entries s; ;.
High values of ¢;; should indicate relevant events for the strategy. A priori, we only know that a
relevant event should be aligned to itself, while we do not know which events are relevant. Therefore
we set g;; to large values for every ¢ = j and to low values for ¢ # j. Concretely, we set ¢;; = p; — €
fori = j and g;; = ¢/(n — 1) for i # j, where n is the number of different possible events. Events
with smaller p; receive a higher score s; ; when aligned to themselves since this self-match is less
often observed when randomly matching events (p;p; is the probability of a random self-match). Any
prior knowledge about events should be incorporated into g;;;.

(IIT) Multiple sequence alignment (MSA). MSA first produces pairwise alignments between
all demonstrations. Then, a guiding tree (agglomerative hierarchical clustering) is produced via
hierarchical clustering sequences, according to their pairwise alignment scores. Demonstrations
which follow the same strategy appear in the same cluster in the guiding tree. Each cluster is aligned
separately via MSA to address different strategies. However, if there is not a cluster of demonstrations,

then the alignment will fail. MSA methods like ClustalW (,) or MUSCLE
(,) can be used.

(IV) Position-Specific Scoring Matrix (PSSM) and Profile. From the final alignment, we construct
a) an MSA profile (column-wise event frequencies ¢; ;) and b) a PSSM (R) which
is used for aligning new sequences to the profile of the MSA. To compute the PSSM (column-wise
scores %; +), we apply Theorem 2 and Equation [3] in (). Event 7 is observed

with probability p; in the data. For each position ¢ in the alignment, we compute g, ;, which indicates
the frequency of event ¢ at position ¢. The PSSM is s, ; = In(g; +/pi)/A;, where A is the single
unique positive root of Y., p; exp(As; ;) = 1 (Equation [1] in (). If we

26

Under review as a conference paper at ICLR 2022

align a new sequence that follows the underlying strategy (a new demonstration) to the profile model,
we would see that event ¢ is aligned to position ¢ in the profile with probability g; ;.

(V) Reward Redistribution. The reward redistribution is based on the profile model. A sequence
T = ep. (e is event at position ¢) is aligned to the profile, which gives the score S(7) = ZtL:o Sz, .t
Here, ;¢ is the alignment score for event ¢ and z; is the event of 7 at position ¢ in the alignment. L
is the profile length, where L > T and z; # e, because of gaps in the alignment. If 7, = eq.; is the
prefix sequence of 7 of length ¢ 4 1, then the reward redistribution R;y; for0 < ¢ < T'is

T
Ry = (S(n) = S(1-1)) C = g((s,)0) — 9((5,@)0e-1), Rrya = Go— > _ Ry,

t=0

(24)

where C = Egemo [éo} / Edemo [ZtT:o S(m) — S(Tt,l)} and G‘O = Zf,T:o Rt+1 is the original
return of the sequence 7 and S(7¢—1) = 0. Eqemo is the expectation over demonstrations, and C
scales Ry to the range of Gy. Ry, is the correction of the redistributed reward (

R), with zero expectation for demonstrations: Eqemo [R742] = 0. Since 73 = eg.+ and
er = f(st,ar), we can set g((s,a)o.t) = S(7:)C. We ensure strict return equivalence, since Go =
2251 R: 11 = Gy. The redistributed reward depends only on the past, that is, Ry1 = h((s,a)o:t)-
For computational efficiency, the alignment of 7;_; can be extended to one for 7, like exact matches
are extended to high-scoring sequence pairs with the BLAST algorithm (, ;).

Sub-tasks. The reward redistribution identifies sub-tasks, which are alignment positions with high
redistributed reward. It also determines the terminal states and automatically assigns reward for
solving the sub-tasks. However, reward redistribution and Align-RUDDER cannot guarantee that
the reward is Markov. For redistributed reward that is Markov, the option framework (s
), the MAXQ framework (,), or recursive composition of option models (
,) can be used as subsequent approaches to hierarchical reinforcement learning.

A.4 SEQUENCE ALIGNMENT

In bioinformatics, sequence alignment identifies regions of significant similarity among different
biological sequences to establish evolutionary relationships between those sequences. In 1970,
Needleman and Wunsch proposed a global alignment method based on dynamic programming
(,). This approach ensures the best possible alignment given a substitution
matrix, such as PAM (R) or BLOSUM(,), and other parameters
to penalize gaps in the alignment. The method of Needlemann and Wunsch is of O(mn) complexity
both in memory and time, which could be prohibitive in long sequences like genomes. An optimization
of this method by (), reduces memory to O(m + n), but still requires O(mn) time.

Later, Smith and Waterman developed a local alignment method for sequences (,

). It is a variation of Needleman and Wunsch’s method, keeping the substitution matrix and
the gap-scoring scheme but setting cells in the similarity matrix with negative scores to zero. The
complexity for this algorithm is of O(n?M). Osamu Gotoh published an optimization of this method,
running in O(mn) runtime (,).

The main difference between both methods is the following:

* The global alignment method by Needleman and Wunsch aligns the sequences fixing the first
and the last position of both sequences. It attempts to align every symbol in the sequence,
allowing some gaps, but the main purpose is to get a global alignment. This is especially
useful when the two sequences are highly similar. For instance:

ATCGGATCGACTGGCTAGATCATCGCTGG
CGAGCATC-ACTGTCT-GATCGACCTTAG

* kk Kk KAk kk kK kkkx*k * * %

* As an alternative to global methods, the local method of Smith and Waterman aligns the
sequences with a higher degree of freedom, allowing the alignment to start or end with gaps.

27

Under review as a conference paper at ICLR 2022

This is extremely useful when the two sequences are substantially dissimilar in general but
suspected of having a highly related sub region.

ATCAAGGAGATCATCGCTGGACTGAGTGGCT-———ACGTGGTATGT
ATC————-CGATCATCGCTGG-CTGATCGACCTTCTACGT———————
* ok k Kk kkkhkkkkkkk kkkk Kk K * ok kK

A.4.0.1 Multiple Sequence Alignment algorithms. The sequence alignment algorithms by
Needleman and Wunsch and Smith and Waterman are limited to aligning two sequences. The
approaches for generalizing these algorithms to multiple sequences can be classified into four cate-
gories:

¢ Exact methods (,).
* Progressive methods: ClustalW (s), Clustal Omega (s
), T-Coffee (,).
* Iterative and search algorithms: DIALIGN (,), MultiAlign (,).
* Local methods: eMOTIF (s), PROSITE (.
).
For more details, visit Sequence Comparison: Theory and methods (s).
In our experiments, we use ClustalW from Biopython (,) with the following parame-

ters:

clustalw?2 -ALIGN -CLUSTERING=UPGMA -NEGATIVE " \
—INFILE={infile} —-OUTFILE={outfile} " \
"-PWMATRIX={scores} -PWGAPOPEN=0 -PWGAPEXT=0 " \
"_MATRIX={scores} —-GAPOPEN=0 -GAPEXT=0 -CASE=UPPER " \
"-NOPGAP —-NOHGAP -MAXDIV=0 -ENDGAPS -NOVGAP " \
"-NEWTREE={outputtree} —-TYPE=PROTEIN -QUTPUT=GDE

where the PWMATRIX and MATRIX are computed according to step (II) in Sec. 3 of the main paper.

A.5 EXTENDED RELATED WORK

Align-RUDDER allows to identify sub-goals and sub-tasks, therefore it is related to hierarchical
reinforcement learning (HRL) approaches like the option framework (,), the MAXQ
framework (,), or the recursive composition of option models (,).
However, these methods do not address the problem of finding good options, good sub-goals, or
good sub-tasks. Methods to learn good options have been proposed. Frequently observed states in
solutions are chosen as targets (,). Gradlent based approaches improving the
termination function for options (, ,). Policy gradient
optimized a unified policy consisting of intra-option pollcles option termination conditions, and an
option selection policy (,). Parametrized options are learned by treating the
termination functions as hidden variables and using expectation maximization (,).
Intrinsic rewards are used to learn the policies within options, and extrinsic rewards to learn the
policy over options (,). Options have been jointly learned with an associated
policy using the policy gradient theorem for options (,). A slow time-scale manager
module learns sub-goals that are achieved by fast time-scale worker (,).

Next, we relate Align-RUDDER to imitation learning and trajectory matching. Imitation learning
aims at learning a behavior close to the data generating policy by matching the trajectories of single
demonstrations. In contrast, Align-RUDDER does not try to match single trajectories but identifies
relevant events that are shared among successful demonstrations. In complex tasks like MineCraft
trajectory matching fails, since large state spaces do not allow to match one of the few demonstrations.
However, relevant events can still be matched as they appear in most demonstrations, therefore
Align-RUDDER excels in such complex tasks.

28

Under review as a conference paper at ICLR 2022

A.6 ARTIFICIAL TASK EXPERIMENTS

This section provides additional information that supports the results reported in the main paper for
Artificial Tasks (I) and (II).

A.6.1 HYPERPARAMETER SELECTION

For (BC)+@Q-Learning and Align-RUDDER, we performed a grid search to select the learning rate
from the following values [0.1,0.05,0.01]. We used 20 different seeds for each value and each
number of demonstrations and then selected the setting with the highest success for all number
of demonstrations. The final learning rate for (BC)+@Q-Learning and DQfD is 0.01 and for Align-
RUDDER it is 0.1.

For DQfD, we set the experience buffer size to 30,000 and the number of experiences sampled at
every timestep to 10. The DQfD loss weights are set to 0.01, 0.01 and 1.0 for the)-learning loss
term, n-step loss term and the expert loss respectively during pre-training. During online learning,
we change the loss terms to 1.0, 1.0 and 0.01 for the)-learning loss term, n-step loss term and the
expert loss term. This was necessary to enable faster learning for DQfD. The expert action margin is
0.8.

For successor representation, we use a learning rate of 0.1 and a gamma of 0.99. We update
the successor table multiple times using the same transition (state, action, next state) from the
demonstration.

For affinity propagation, we use a damping factor of 0.5 and set the maximum number of iterations
to 1000. Furthermore, if we obtain more than 15 clusters, then we combine clusters based on the
similarity of the cluster centers.

A.6.2 FIGURES

Figure A.5 shows sample trajectories in the FourRooms and EightRooms environment, with the
initial and target positions marked in red and green respectively. Figure A.2 shows the clusters
after performing clustering with Affinity Propagation using the successor representation with 25
demonstrations and an environment with 1% stochasticity on the transitions. Different colors indicate
different clusters. Figures A.3 and A.4 show clusters for different environment settings. Figure A.3
shows clusters when using 10 demonstrations and for Figure A.4 environments with 5% stochastictiy
on transitions was used. Figure A.6 shows the reward redistribution for the given example trajectories
in the FourRooms and EightRooms environments.

Figure A.2: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment
with 1% stochasticity on the transitions after performing clustering with Affinity Propagation using
the successor representation with 25 demonstrations. Different colors represent different clusters.

29

Under review as a conference paper at ICLR 2022

Figure A.3: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment
with 1% stochasticity on the transitions after performing clustering with Affinity Propagation using
the successor representation with 10 demonstrations. Different colors represent different clusters.

Figure A.4: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment
with 5% stochasticity on the transitions after performing clustering with Affinity Propagation using
the successor representation with 25 demonstrations. Different colors represent different clusters.

A.6.3 ARTIFICIAL TASK P-VALUES

Tables A.1 and A.2 show the p-values obtained by performing a Mann-Whitney-U test between
Align-RUDDER and BC+@Q-Learning and DQfD respectively.

2 5 10 50 100
Align-RUDDER vs. BC+Q)-Learn. 8.8e-31 2.8e-30 1.1e-09 3.5e-01 1.6e-01
Align-RUDDER vs. SQIL 3.6e-39 5.2e-39 3.1e-37 8.6e-36 1.9e-36
Align-RUDDER vs. DQfD 2.7e-29 43e-30 1.3e-32 1.0e+00 1.0e+00
Align-RUDDER vs. RUDDER (LSTM) 1.9e-31 1.9e-27 3.7¢-20 1.7e-15 7.3e-01

Table A.1: p-values for Artificial Task (I), FourRooms, obtained by performing a Mann-Whitney-U

test.

30

Under review as a conference paper at ICLR 2022

Figure A.5: Exemplary trajectories in the FourRooms (left) and EightRooms (right) environments.
Initial position is indicated in red, the portal between the first and second room in yellow and the goal
in green.

Figure A.6: Reward redistribution for the above trajectories in the FourRooms (left) and EightRooms
(right) environments.

A.6.4 STOCHASTIC ENVIRONMENTS

Figure A.7 shows results for the FourRooms environment with different levels of stochasticity
(5%, 10%, 15%, 25% and 40%) on the transitions. Figure A.8 shows results for the EightRooms
environment with different levels of stochasticity (5% and 10%) on the transitions.

2 5 10 50 100
Align-RUDDER vs. BC+Q)-Learn. 4.5e-20 1.3e-34 4.9e-25 3.7e-01 6.1e-01
Align-RUDDER vs. SQIL 1.8e-37 2.8e-39 1.9e-36 1.7e-35 1.9e-37
Align-RUDDER vs. DQfD 1.2e-08 8.9e-20 5.6e-31 1.0e+00 1.0e+00

Align-RUDDER vs. RUDDER (LSTM) 1.2e-29 1.3e-34 3.9e-31 8.7e-22 1.0e-18

Table A.2: p-values for Artificial Task (II), EightRooms, obtained by performing a Mann-Whitney-U
test.

31

Under review as a conference paper at ICLR 2022

100000 - O E'S - 100000 e = | EE TR N
75000 - e Align-RUDDER 75000 L e Align-RUDDER

£ 50000 ~ ® BC + QLearning 2 50000 S ® BC + QLearning

£ 25000 SN S £ 25000 e OO

g e RUDDER (LSTM) g e RUDDER (LSTM)

= 17500 e SQIL = 17500 e SQIL

£ 15000 £ 15000

L= L=

5 12500 5 12500

X 10000 X 10000

% 7500 % 7500

2 5000 2 5000

& 2500 & 2500

=} =}

z 0 z 0

) 2 5 10 50 100) 2 5 10 50 100

Demonstrations of the FourRooms-v1 Environment Demonstrations of the FourRooms-v2 Environment

100000 T — - - 100000 P =
000 TR el e Align-RUDDER 75000 ~eel e Align-RUDDER

£ 50000 ‘}\\ ® BC + Q-Learning 2 50000 \\{‘ ® BC + Q-Learning

2 25000 —- - pn 2 25000 == - pn

153 ® RUDDER (LSTM) 153 ® RUDDER (LSTM)

= 17500 e SQIL = 17500 e SQIL

é 15000 é 15000

212500 212500

=] =]

% 10000 % 10000

% 7500 @ 7500

£ 5000 £ 5000

£ 2500 £ 2500

R j R

5 2 5 10 50 100 5 2 5 10 50 100

Demonstrations of the FourRooms-v3 Environment Demonstrations of the FourRooms-v4 Environment

100000 [9%

o = o Align-RUDDER
g 1)(1338 Tl “$: g;rs Q-Learning
== e RUDDER (LSTM)
17500 * SQIL
15000
12500

10000
7500

es to 80% optimal

2 5 10 50 100
Demonstrations of the FourRooms-v5 Environment

Figure A.7: Comparison of Align-RUDDER and other methods on Task (I) (FourRooms) with
increasing levels of stochasticity (from top left to bottom: 5%, 10%, 15%, 25% and 40%). Results
are the average over 50 trials.

100000 (ot Omm——mee E'S 100000 LT e .

s N e Align-RUDDER e TTm=all X e Align-RUDDER
75000 NG ® BC + Q-Learning 75000 NN ® BC + Q-Learning
50000 S e DQMD 50000 _ _ o~ e DQMD

e RUDDER (LSTM) e RUDDER (LSTM)
30000 o SQIL 30000 o SQIL

20000 20000

o0 >Rl\\ ;
0

2 5 10 50 100 2 5 10 50 100
Demonstrations of the EightRooms-v1 Environment Demonstrations of the EightRooms-v2 Environment

10000

Episodes to 80% optimal return
Episodes to 80% optimal return

Figure A.8: Comparison of Align-RUDDER and other methods on Task (II) (EightRooms) with
increasing levels of stochasticity (from top left to bottom: 5%, 10%). Results are the average over 50
trials.

A.6.5 CHANGING NUMBER OF CLUSTERS

We use Affinity Propagation for clustering, and do not set the number of clusters. Although, we
set the max number of clusters allowed. If Affinity propagation results in more clusters, they are
combined and reduced to the maximum clusters allowed. This is necessary due to the limitations of
the underlying alignment library we are using. For the experiments on FourRooms and EightRooms
in the main paper, we fix the max number of clusters to 15.

We conduct an experimental study on how changing the max number of clusters changes the perfor-
mance of Align-RUDDER on the FourRooms environment. The results are in table A.3.

32

Under review as a conference paper at ICLR 2022

Max. # of Clusters 2 5 10 50 100
2 5782.1 2378 7624 18 14
5 4462.1 1277 7892 19 14
8 985 1417 1372 19 14
10 985 1417 1372 19 14
12 985 1417 1372 19 14
15 985 1417 1372 19 14

Table A.3: Results for different numbers of clusters for the FourRooms artificial task are shown in
the table. It shows the number episodes required to reach 80% optimal return, using a demonstrations
given in column headers. These results are averaged over 10 seeds. For the results we report in the
paper we set the maximum number of clusters to 15, the results show that even when reducing the
number of clusters to 8, results stay similar. We only see worse performance for when only allowing
2 or 5 clusters.

k § C

Figure A.9: The agent has to collect the key and then open the chest, to get a positive reward at the
last timestep. The environment episode runs for a fixed 32 timesteps.

A.6.6 KEY-EVENT DETECTION

1D key-chest environment. We use a 1D key-chest environment to show the effectiveness of sequence
alignment in a low data regime compared to an LSTM model. The agent has to collect the key and
then open the chest, to get a positive reward at the last timestep. See Appendix Fig. A.9 for a
schematic representation of the environment. As the key-events (important state-action pairs) in this
environment are known we can compute the key-event detection rate of a reward redistribution model.
A key event is detected if the redistributed reward of an important state-action pair is larger than the
average redistributed reward in the sequence. We train the reward redistribution models with 2, 5
and 10 training episodes and test on 1000 test episodes, averaged over 10 trials. Align-RUDDER
significantly outperforms LSTM (RUDDER) for detecting these key events in all cases, with an
average key-event detection rate of 0.96 for sequence alignment vs. 0.46 for the LSTM models over
all dataset sizes. See Appendix Fig. A.10 for the detailed results.

33

Under review as a conference paper at ICLR 2022

1.0
o 0.9
S

& 08
5 0.7
2
gos
K05
204
(%
503
$02 o Align-RUDDER
0.1 RUDDER (LSTM)
0.0

2 5 10
Number of Demonstrations

Figure A.10: We use Align-RUDDER and RUDDER to detect key events for Key-Chest environment,
where we already know which state-action pairs are important for return. A key event is detected if
the redistributed reward at an important state-action is larger than the average redistributed reward in
the sequence. We test on 1000 test episodes and average over 10 trials. Align-RUDDER outperforms
LSTM (RUDDER) for detecting these key events.

A.7 MINECRAFT EXPERIMENTS

In this section we explain in detail the implementation of Align-RUDDER for solving the task
ObtainDiamond.

A.7.1 MINECRAFT

We show that our approach can be applied to complex tasks by evaluating it on the MineRL Minecraft
dataset (,). This dataset provides a large collection of demonstrations from human
players solving six different tasks in the sandbox game MineCraft. In addition to the human
demonstrations the MineRL dataset also provides an OpenAI-Gym wrapper for MineCraft. The
dataset includes demonstrations for the following tasks:

* navigating to target location following a compass,
¢ collecting wood by chopping trees,
* obtaining an item by collecting resources and crafting, and

* free play "survival" where the player is free to choose his own goal.

The demonstrations include the video showing the players’ view (without user interface), the players’
inventory at every time step and the actions performed by the player. We focus on the third task of
obtaining a target item, namely a diamond. This task is very challenging as it is necessary to obtain
several different resources and tools and has been the focus of a challenge (s) at
NeurIPS’19. By the end of this challenge no entry was able to obtain the diamond.

We show that our method is well suited for solving the task of obtaining the diamond, which can be
decomposed into sub-tasks by reward redistribution after aligning successful demonstrations.

A.7.2 RELATED WORK AND STEPS TOWARDS A GENERAL AGENT

In the following, we review two approaches (); () where more
details are available and compare them with our approach.

() address the problem with a TD based hierarchical Deep (Q-Network (DQN) and
by utilizing the hierarchical structure of expert trajectories by extracting sequences of meta-actions
and sub-goals. This approach allowed them to achieve the /st place in the official NeurIPS’19
MineRL challenge (,). In terms of pre-processing, our approaches have in
common that both rely on frame skipping and action space discretization. However, they reduce the
action space to ten distinct joint environment actions (e.g. move camera & attack) and treat inventory
actions separately by executing a sequence of semantic actions. We aim at taking a next step towards
a more general agent by introducing an action space preserving the agent’s full freedom of action in

34

Under review as a conference paper at ICLR 2022

the environment (more details are provided below). This allows us to avoid the distinction between
item (environment) and semantic (inventory) agents and to train identically structured agents in the
same fashion regardless of facing a mining, crafting, placing or smelting sub-task.

() extract a sub-task chain by separately examining each expert trajectory and by considering
the time of appearance of items in the inventory in chronological order. For agent training their
approach follows a heuristic where they distinguish between collecting the item /og and all remaining
items. The log-agent is trained by starting with the TreeChop expert trajectories and then gradually
injecting trajectories collected from interactions with the environment into the DQN’s replay buffer.
For the remaining items they rely on the expert data of ObtainlronPickaxeDense and imitation
learning. Given our proposed sequence alignment and reward redistribution methodology we are able
to avoid this shift in training paradigm and to leverage all available training data (ObtainDiamond,
ObtainlronPickaxe and TreeChop) at the same time. In short, we collect all expert trajectories
in one pool, perform sequence alignment yielding a common diamond consensus along with the
corresponding reward redistribution and the respective sub-task sequences. Given this restructuring
of the problem into local sub-problems with redistributed reward all sub-task agents are then trained
in the same fashion (e.g. imitation learning followed by RL-based fine-tuning). Reward redistribution
guarantees that the optimal policies are preserved (,).

() achieved the 3rd place on the official leader board following a different line of
research and addressed the problem with a single end-to-end off-policy IMPALA (,

) actor-critic agent, again utilizing experience replay to incorporate the expert data (

,). To prevent catastrophic forgetting of the behavior for later, less frequent sub-tasks they
introduce value clipping and apply CLEAR (,) to both, policy and value networks.
Treating the entire problem as a whole is already the main distinguishable feature compared to
our method. To deal with long trajectories they rely on a trainable special form of frame skipping
where the agent also has to predict how many frames to skip in each situation. This helps to reduce
the effective length (step count) of the respective expert trajectories. In contrast to the approach
of (,) we rely on a constant frame skip irrespective of the states and actions we are
facing. Finally, there are also several common features including:

. asupervised BC pre-training stage prior to RL fine-tuning,

. separate networks for policy and value function,

. independent action heads on top of a sub-sequence LSTM,

. presenting the inventory state in a certain form to the agent and

N AW N =

. applying a value-function-burn-in prior to RL fine-tuning.

35

Under review as a conference paper at ICLR 2022

A.7.3 THE FIVE STEPS OF ALIGN-RUDDER DEMONSTRATED ON MINECRAFT

In this subsection, we give an example of the five steps of Align-RUDDER using demonstrations
from the MineRL ObtainDiamond task. Figures A.11 to A.15 illustrate these steps.

events

‘m‘o ‘4‘0 ‘12‘4
@: Ao [X @ Ly & @
=n‘ 0 =n‘ 0 =z‘ 0 log dirt planks
0= 0 0 = 0 1058 0
ar [0® ¢ [e® I PO A
Ao Ao Ao Ao A A o i
BE ;e e e~ o) 8 . 2
. [o Ao ‘24 A
s @ o o @ o s @ s e ® A
165 0 0 i 0 10 4 iron ingot furnace iron pickaxe
/10‘0 ./o‘u /13‘1
AL Ao WA Ao 9 g ¢ diamond ore
mapped demonstrations
- UUOUsE 088888 8 / /B 6666 » 8 998 8 2o » §
H— SUUSUINE 899888 8 ./, A B 666 /8 898 8 oo / §
il GUSUSUE $8608 S / » § $969088 / 8 9988 © coo » @
B UUUSEES S 088888 /. /8 660668 / 8 898 ® oo / @
B SU0USS 088066 88 / » 6 960868 » 8 998 8 Coe / 8
N . SUUSUUE $90888 8 ./ /) 86666 /) 8 9988 8 oo S 8

Figure A.11: Step (I): Define events and map demonstrations into sequences of events. First, we
extract the sequence of states from human demonstrations, transform images into feature vectors using
a pre-trained network and transform them into a sequence of consecutive state deltas (concatenating
image feature vectors and inventory states). We cluster the resulting state deltas and remove clusters
with a large number of members and merge smaller clusters. In the case of demonstrations for the
ObtainDiamond task in Minecraft the resulting clusters correspond to obtaining specific resources

and items required to solve the task. Then we map the demonstrations to sequences of events.

o/e[e]8/][Ae] 8]0

event
frequencies 3
vy 9 9 3
10,000 15,000 8,000 @DDDDDDDDDDDDD
3
® - 2 AO0000E00000000
| V) ZEEOOOEOOOOO00
@ ¢ /~/ EODIDDDOODOOCOOO
so0 70 AO000000RO0000
e ® P 3 I
- 250 o 5 |
3
2 A00000000000O0ED
” 3 |

Figure A.12: Step (IT): Construct a scoring matrix using event probabilities from demonstrations for
diagonal elements and setting off-diagonal to a constant value. The scores in the diagonal position
are proportional to the inverse of the event frequencies. Thus, aligning rare events has higher score.
Darker colors signify higher score values.

36

Under review as a conference paper at ICLR 2022

human demonstrations

H— 990090909 008888 9 / "9 9998 » 9 999 ® - /H @
e 9900909099 098998 ® // /"D 998 /) B 9999 oo /' @
- 9999999 88888 B / /" § 9999998 / ® 9998 ® o /' @
B J9000999 099998 B /' /D $99998 / ® 999 9 o S @
H -~ 999999 99998 99 / " § 999998 /» § 999 ® - /' @
o PPPP9PP SO0SS8 B /1 99999 /P 9999 ® oo S @

alignment
B i g g e ©® / O 9999 7279998 @ coe S @
ES o ng gty 99998 ® /. O 9889 798998 S oo S8
B W 99998 ® ./ O 9969 798999 S oo S8
BN igngggtggtg 99998 ® /. O 9989 7279998 8 coe S @
B ot ugngrgngugng 99988 B/ 9 9999 72789998 @9 coce @
L agng g ngng g 99998 B ./ O 9989 798999 S oo S8

Figure A.13: Step (III) Perform multipe sequence alignment (MSA) of the demonstrations. The
MSA algorithm maximizes the pairwise sum of scores of all alignments. The score of an alignment
at each position is given by the scoring matrix. As the off-diagonal entries are negative, the algorithm
will always try to align an event to itself, while giving preference to events which give higher scores.

[vlo/o/0/e/ 0@ ee]e [ee)e]s]ee]s) 8)) 0666 e el e) e e)e) e8]l @]
O3] | 1 1 1 {0
2
C2 | | | [|
2 0
72 e
2] A
2 1 ||
73| A
2 A |
(2 A (. | | [B{
2 A
2 A |
2 T]|

Figure A.14: Step (IV) Compute a position-specific scoring matrix (PSSM). This matrix can be
computed using the MSA (Step (III)) and the scoring matrix (Step (II)). Every column entry is for
a position from the MSA. The score at a position (column) and for an event (row) depends on the
frequency of that event at that position in the MSA. For example, the event in the last position is
present in all the sequences, and thus gets a high score at the last position. But it is absent in the
remaining position, and thus gets a score of zero elsewhere.

consensus

g g g g 99888 9 /. 9 9999 79999 ® oo S @

align new sequence
1 009888 B / "9 68
g g o 99998888 B / 9 989
ttg g 9909888 B ./ O 9989
utg g 0999888 B O 9999 A

reward redistribution

.—T—T—’_._._’_R e
f—'_’—’—T_.I

Pl

Figure A.15: Step (V) A new sequence is aligned step by step to the profile model using the PSSM,
resulting in an alignment score for each sub-sequence. The redistributed reward is then proportional
to the difference of scores of subsequent alignments.

37

Under review as a conference paper at ICLR 2022

I Agent

1. Sequence Alignment and Reward Redistribution 3. Trajectory Replay & State Resetting

Consensus ; Sub-task seeds &
T Repl
Sequence (Strategy) rajectory Replay Replay Actions 1

(IV) Profile (PSSM)
Computation

(Environment &
Reward Specification)
(11 &111) Multiple
Sequence Alignment
2. Pre-training 4. Fine-tuning|
(V) Reward Redistribution and .

Sequences of Events ~ . Pre-trained " ;

’ T Sub-Sequence Extraction Sub-task Weights RL Fine Tuning
(1) Event Sequence Sub-task Trajectories :)

vapertl Extraction Supervised Fine-tuned

Trajectories S S S Pre-training (BC) Sub-task Weights

Figure A.16: Conceptual overview of our MineRL agent.

A.7.4 IMPLEMENTATION OF OUR ALGORITHM FOR MINECRAFT

The architecture of the training pipeline incorporates three learning stages:

* sequence alignment and reward redistribution
* learning from demonstrations via behavioral cloning (pre-training) and

* model fine-tuning with reinforcement learning.

Figure A.16 shows a conceptual overview of all components.

Sequence alignment and reward redistribution. First, we extract the sequence of states from
human demonstrations, transform images into feature vectors using a standard pre-trained network
and transform them into a sequence of consecutive state deltas (concatenating image feature vectors
and inventory states). A pre-trained network can be model trained for image classification or an
auto-encoder model trained on images. In our case, we used an auto-encoder model trained on the
MineRL obtainDiamond dataset. We cluster the resulting state deltas and remove clusters with a
large number of members and merged smaller clusters. This results in 19 events and we map the
demonstrations to sequences of events. These events correspond to inventory changes. For each
human demonstration we get a sequence of events which we map to letters from the amino acid code,
resulting in a sequence of letters. In Fig. A.19 we show all events with their assigned letter encoding
that we defined for the Minecraft environment.

We then calculate a scoring matrix according to step (II) in Sec. 3 in the main document. Then,
we perform multiple sequence alignment to align sequences of events of the top /N demonstrations,
where shorter demonstrations are ranked higher. This results in a sequence of common events which
we denote as the consensus. In order to redistribute the reward, we use the PSSM model and assign
the respective reward. Reward redistribution allows the sub-goal definition i.e. positions where the
reward redistribution is larger than a threshold or positions where the reward redistribution has a
certain value. In our implementation sub-goals are obtained by applying a threshold to the reward
redistribution. The main agent is initialized by executing sub-agents according to the alignment.
Figure 4 shows how sub-goals are identified using reward redistribution.

Learning from demonstrations via behavioral cloning. We extract demonstrations for each
individual sub-task in the form of sub-sequences taken from all demonstrations. For each sub-task
we train an individual sub-agent via behavioral cloning.

Model fine-tuning with reinforcement learning. We fine-tune the agent in the environment using
PPO (,). During fine-tuning with PPO, an agent receives reward if it manages to
reach its sub-goal.

38

Under review as a conference paper at ICLR 2022

Convolutional Block

eR?
Network Input (Conv - BN - ReLU) LST™M Value Head R

Inventory item
status bar

Independent Action Heads

equipped item

o]
x
§ €R?2 (~ Multi-Categorical)
Equip €R8 (~ Categorical)
Convolutional Block
48 pixel LSTM € R’ ~ Categorical
Color-encoded (Conv - BN - ReLU) (9)

Craft € RS (~ Categorical)

Nearby Craft €R® (~ Categorical)
Nearby Smelt € R® (~ Categorical)

Figure A.17: Conceptual architecture of our MineRL policy and value networks.

To evaluate the performance of an agent for its current sub-goal, we average the return over multiple
roll-outs. This gives us a good estimate of the success rate and if trained models have improved during
fine tuning or not. In Fig. 6, we plot the overall success rate of all models evaluated sequentially from
start to end.

In order to shorten the training time of our agent, we use trajectory replay and state resetting, similar
to the idea proposed in (,), allowing us to train sub-task agents in parallel. This is
not necessary for the behavioral cloning stage, since here we can independently train agents according
to the extracted sub-goals. However, fine-tuning a sub-task agent with reinforcement learning
requires agents for all previous sub-tasks. To fine-tune agents for all sub-tasks, we record successful
experiences (states, actions, rewards) for earlier goals and use them to reset the environment where
a subsequent agent can start its training. In Fig. A.20, we illustrate a trajectory replay given by an
exemplary consensus.

A.7.5 POLICY AND VALUE NETWORK ARCHITECTURE

Figure A.17 shows a conceptual overview of the policy and value networks used in our MineRL
experiments. The networks are structured as two separate convolutional encoders with an LSTM
layer before the respective output layer, without sharing any model parameters.

The input to the model is the sequence of the 32 most recent frames, which are pre-processed in the
following way: first, we add the currently equipped item as a color-coded border around each RGB
frame. Next, the frames are augmented with an inventory status bar representing all 18 available
inventory items (each inventory item is drawn as an item-square consisting of 3 x 3 pixels to the
frame). Depending on the item count the respective square is drawn with a linearly interpolated
gray-scale ranging from white (no item at all) to black (item count > 95). The count of 95 is the
75-quantile of the total amount of collected cobblestones and dirt derived from the inventory of all
expert trajectories. Intuitively, this count should be related to the current depth (level) where an agent
currently is or at least has been throughout the episode. In the last pre-processing step the frames are
resized from 64 x 64 to 48 x 48 pixels and divided by 255 resulting in an input value range between
zero and one.

The first network stage consists of four batch-normalized convolution layers with ReLU activation
functions. The layers are structured as follows: Conv-Layer-1 (16 feature maps, kernel size 4,
stride 2, zero padding 1), Conv-Layer-2 (32 feature maps, kernel size 4, stride 2, zero padding 1),
Conv-Layer-3 (64 feature maps, kernel size 3, stride 2), and Conv-Layer-4 (32 feature maps, kernel
size 3, stride 2). The flattened latent representation (€ R32%288) of the convolution stage is further
processed with an LSTM layer with 256 units. Given this recurrent representation we only keep the
last time step (e.g. the prediction for the most recent frame).

The value head is a single linear layer without non-linearity predicting the state-value for the most
recent state. For action prediction, two types of output heads are used depending on the underlying
action distribution. The binary action head represents the actions attack, back, forward, jump, left,
right, sneak and sprint which can be executed concurrently and are therefore modeled based on a

39

Under review as a conference paper at ICLR 2022

1.00 [I Iy I (R [N B B

[N T T T (R B R T B A |

[N T T T T B R T B A |

> 0.75 1 I N e

. A
Q

Bosof 41 bt oo

o [| [

% 0.254 ==- Discretization Bins ! —

True Camera Angle : : : :

0.00 o L 1 L } 1 L

-30 -20 -10 0 10 20 30

Camera Angle

Figure A.18: Discretization and interpolation of camera angles.

M [dirt] Q [iron ore] L [crafting table] Y [stone pickaxe]

S [log] K [iron ingot] F [furnace] W [iron axe]

I [stone] P [planks] R [wooden axe] E [iron pickaxe]

A [cobblestone] V [stick] N [wooden pickaxe] D [diamond ore]

@ ey

G [coal] H [torch] C [stone axe]

PEaddd
=\@v @
v uw @@

Figure A.19: Mapping of clusters to letters.

Bernoulli distribution. Since only one item can be equipped, placed, or crafted at a time these actions
are modeled with a categorical distribution. The equip head selects from none, air, wooden-axe,
wooden-pickaxe, stone-axe, stone-pickaxe, iron-axe and iron-pickaxe. The place head selects from
none, dirt, stone, cobblestone, crafting-table, furnace and torch. The craft head selects from none,
torch, stick, planks and crafting-table. Items which have to be crafted nearby are none, wooden-axe,
wooden-pickaxe, stone-axe, stone-pickaxe, iron-axe, iron-pickaxe and furnace. Finally, items which
are smelted nearby are none, iron-ingot and coal. For predicting the camera angles (up/down as well
as left/right) we introduce a custom action space outlined in Figure A.18. This space discretizes the
possible camera angles into 11 distinct bins for both orientations leading to the 22 output neurons
of the camera action head. Each bin holds the probability for sampling the corresponding angle
as a camera action, since in most of the cases the true camera angle lies in between two such bins.
We share the bin selection probability by linear interpolation with respect to the distance of the
neighboring bin centers to the true camera angle. This way we are able to train the model with
standard categorical cross-entropy during behavioral cloning and sample actions from this categorical
distribution during exploration and agent deployment.

A.7.6 IMITATION LEARNING OF SUB-TASK AGENTS

Given the sub-sequences of expert data separated by task and the network architectures described
above we perform imitation learning via behavioral cloning (BC) on the expert demonstrations. All
sub-task policy networks are trained with a cross-entropy loss on the respective action distributions
using stochastic gradient decent with a learning rate of 0.01 and a momentum of 0.9. Mini-batches
of size 256 are sampled uniformly from the set of sub-task sequences. As we have the MineRL
simulator available during training we are able to include all sub-sequences in the training set and
evaluate the performance of the model by deploying it in the environment every 10 training epochs.
Once training over 300 epochs is complete we select the model checkpoint based on the total count
of collected target items over 12 evaluation trials per checkpoint. Due to presence of only successful
sequences, the separate value network is not pre-trained with BC.

40

Under review as a conference paper at ICLR 2022

s s s s s s s P P P P L v N

000000 | 9999 & /
s s s s s s s P P P P L v N
replay until P

SARARR s
YYYUPUY

replay until L

Agent

Figure A.20: Trajectory replay given by an exemplary consensus. The agent can execute training or
evaluation processes of various sub-tasks by randomly sampling and replaying previously recorded
trajectories on environment reset. Each letter defines a task. L (log), P (planks), V (stick), L (crafting
table) and N (wooden pickaxe).

= miner|_Log_va Log

g
o
®

o
Y
<

MEAN_LOG
o o
B (o))
Mean_Log
IS o o

o
)
w
)

o
o
N

0 50 100 150 200 250 300
Epoch 0 10 20 30 40 50 60 70
Epoch (PPO Learning)

Figure A.21: Average number of logs collected during training: left: Behavioral Cloning, Right: PPO
Training

A.7.7 REINFORCEMENT LEARNING ON SUB-TASK AGENTS

After the pretraining of the Sub-Task agents, we further fine tune the agents using PPO in the MineRL
environment. The reward is the redistributed reward given by Align-RUDDER. The value function
is initialized in a burn-in stage prior to policy improvement where the agent interacts with the
environment for S0k timesteps and only updates the value function. Finally, both policy and the
value function are trained jointly for all sub-tasks. All agents are trained between 50k timesteps and
500k timesteps. We evaluate each agent periodically during training and in the end select the best
performing agent per sub-task. A.21 - A.25 present evaluation curves of some sub-task agents during
learning from demonstrations using behavioral cloning and learning online using PPO.

A.8 REPRODUCING THE ARTIFICIAL TASK RESULTS

The code to reproduce the results and figures of both artificial tasks is provided as supplementary
material. The README contains step-by-step instructions to set up an environment and run the exper-
iments. By default, instead of using 100 seeds per experiment only 10 are used in the demonstration
code.

Finally, a video showcasing the MineCraft agent is also provided as supplementary material.

41

Under review as a conference paper at ICLR 2022

MEAN_PLANKS

0.04

0.02

0.00

|
o
o
N

—0.04

— minerl_Plank_va

0 50 100

Epoch

150 200

g
=)
!

o
©
s

Mean_Planks

e
N}

0.0 1

Planks

o
o
s

o
IS
L

o4

100 150
Epoch (PPO Learning)

200

Figure A.22: Average number of planks crafted during training: left: Behavioral Cloning, Right:
PPO Training

MEAN_CRAFTING_TABLE

Figure A.23:

o
o
b

o
o
N

o
o
S

—— minerl_CraftingTable_va

Training

w B

N

MEAN_COBBLESTONE

=

L

150 200 250
Epoch

—— minerl_Cobblestone_va

000

0 5 10

Epoch

15 20

Mean_Crafting_Table
o o o =
N S [o
N s !

o
=3
L

254

N
o
L

Mean_Cobblestone

Crafting-Table

o
o
s

o

25

50

75 100
Epoch (PPO Learning)

Cobblestone

125

150

175

Average number of table crafted during training: left: Behavioral Cloning, Right: PPO

o
o
L

[
o
L

o

20 30
Epoch (PPO Learning)

Figure A.24: Average number of stone collected during training: left: Behavioral Cloning, Right:
PPO Training

A.9 SOFTWARE LIBRARIES

We are thankful towards the developers of Mazelab Zuo (2018), PyTorch Paszke et al. (2019), OpenAl
Gym Brockman et al. (2016), Numpy Harris et al. (2020), Matplotlib Hunter (2007) and Minecraft
Guss et al. (2019Db).

A.10 COMPUTE

Artificial task (I) and (II) experiments were performed using CPU only as GPU speed-up was
negligible. The final results for all methods were created on an internal CPU cluster with 128 CPU

Under review as a conference paper at ICLR 2022

0.08 —— minerl_IronOre_va Iron-Ore
3.5
w
0.06
=4
5 3.0
z' 5
O,
2.5
€ 0.04 5
I 7
Z c
© 2.0
= 2
= 0.02
1.5
0.00 107
0 50 100 150 200 250 300 0 10 20 30 40 50
Epoch Epoch (PPO Learning)

Figure A.25: Average number of iron-ore collected during training: left: Behavioral Cloning, Right:
PPO Training

cores with a measured wall-clock time of 10,360 hours. The majority of compute is spent on baseline
methods.

For minecraft, during development 6 to 8 nodes each with 4 GPUs of an internal GPU cluster were
used for roughly six months of GPU compute time (Nvidia Titan V and 2080 TI).

The compute required for training the final agent was well within the challenge parameters (4 days
on a single node with one GPU).

43

	Introduction
	Review of RUDDER
	Align-RUDDER: RUDDER with Few Demonstrations
	Experiments
	Related work
	Discussion and Conclusion
	Appendix
	Introduction to the Appendix
	Review Reward Redistribution
	The Five Steps of Align-RUDDER's Reward Redistribution
	Sequence Alignment
	Extended Related Work
	Artificial Task Experiments
	Hyperparameter Selection
	Figures
	Artificial Task p-values
	Stochastic Environments
	Changing number of Clusters
	Key-Event Detection

	Minecraft Experiments
	MineCraft
	Related Work and Steps Towards a General Agent
	The Five Steps of Align-RUDDER Demonstrated on Minecraft
	Implementation of our Algorithm for Minecraft
	Policy and Value Network Architecture
	Imitation Learning of Sub-Task Agents
	Reinforcement Learning on Sub-Task Agents

	Reproducing the Artificial Task Results
	Software Libraries
	Compute

