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Abstract

Evaluating vision–language models (VLMs) in urban driving contexts remains
challenging, as existing benchmarks rely on open-ended responses that are am-
biguous, annotation-intensive, and inconsistent to score. This lack of standardized
evaluation slows progress toward safe and reliable AI for urban mobility. We
introduce AutoDrive-QA, the first benchmark that systematically converts open-
ended driving QA datasets (DriveLM, NuScenes-QA, LingoQA) into structured
multiple-choice questions (MCQs) with distractors grounded in five realistic error
categories: Driving Domain Misconceptions, Logical Inconsistencies, Misinter-
preted Sensor Inputs, Computational Oversights, and Question Ambiguity. This
framework enables reproducible and interpretable evaluation of VLMs across per-
ception, prediction, and planning tasks in complex urban scenes. Experiments show
that fine-tuning LLaVA-1.5-7B improves accuracy by about six percentage points
across tasks, GPT-4V achieves the strongest zero-shot performance with up to
69.8% accuracy, and Qwen2-VL models also perform competitively, particularly in
multi-view settings. Moreover, traditional metrics such as BLEU and CIDEr fail to
distinguish strong from weak models. By providing an objective, domain-grounded
evaluation protocol, AutoDrive-QA contributes to more transparent benchmarking
of urban AI systems, supporting the development of safer and more trustworthy
autonomous driving technologies for smart cities.

1 Introduction

Autonomous driving in urban environments demands robust perception, accurate prediction, and
reliable planning in order to navigate complex and dynamic scenes [1, 2, 3, 4]. Vision–language
models (VLMs) have emerged as a promising direction for integrating multimodal driving information,
yet their evaluation remains a persistent challenge [5, 7]. Existing QA datasets such as DriveLM
[6], CODA-LM [7], and LingoQA [8] rely on open-ended formats with heterogeneous annotations,
making scoring inconsistent and cross-model comparison unreliable [9, 10]. While open-ended
responses capture reasoning, they are hard to evaluate. In contrast, multiple-choice QA offers
objective scoring, reproducibility, and lower annotation cost [11]—yet no driving-specific MCQ
benchmark currently exists for perception, prediction, and planning tasks [12]. To address these gaps,
we propose AutoDrive-QA, the first benchmark that converts open-ended autonomous driving QA
datasets into structured multiple-choice questions (MCQs). In MCQs, distractors are the incorrect
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answer options, and their quality determines whether questions are trivial or genuinely test model
understanding [12]. Prior benchmarks rarely model typical driving errors, and naïve distractor
generation often produces options that are too obvious or irrelevant. AutoDrive-QA overcomes this
with an LLM-driven pipeline that generates five categories of realistic distractors—Driving Domain
Misconceptions, Logical Inconsistencies, Misinterpreted Sensor Inputs, Computational Oversights,
and Question Ambiguity—spanning perception, prediction, and planning to approximate common
failure modes in driving.

AutoDrive-QA complements open-ended QA by offering objective, reproducible evaluation and stan-
dardized baselines, while open-ended and human-in-the-loop testing remain essential for capturing
reasoning depth and safety-critical reliability. Its systematic distractor generation and filtering miti-
gate trivial or duplicated options, grounding evaluation in realistic errors. By framing AutoDrive-QA
as a baseline rather than a replacement, we aim to provide a reproducible, interpretable resource that
enables fairer comparison across vision–language models for autonomous driving. This paper makes
the following contributions:

• Benchmark creation. We introduce AutoDrive-QA, the first benchmark that converts open-
ended autonomous driving QA datasets into structured multiple-choice questions (MCQs),
enabling more standardized and reproducible evaluation of vision-language models (VLMs).

• Distractor generation pipeline. We design an LLM-based distractor generation pipeline that
systematically produces distractors across five categories of realistic driving errors Driving
Domain including Misconceptions, Logical Inconsistencies, Misinterpreted Sensor Inputs,
Computational Oversights, and Question Ambiguity across perception, prediction, and plan-
ning tasks, moving beyond generic or trivial options fosters genuine model understanding
over guesswork, advancing the state-of-the-art in autonomous driving evaluation.

• systematic error analysis. Using generated MCQs, we track which distractor a model selects
when it makes an error, in order to determine whether its mistakes are visual, conceptual,
or reasoning-based. This analysis reveals the strengths and weaknesses of VLM models
in urban scene understanding and offers one of the direct comparisons of the types of
errors—conceptual, reasoning, and visual—that VLM models exhibit across perception,
prediction, and planning tasks.

By addressing evaluation inconsistencies and domain-specific challenges, our research establishes a
benchmark for autonomous driving VLMs. The paper is structured as follows: Section 2 reviews
related work; Section 3 details the MCQ conversion methodology; Section 4 describes our experi-
mental setup and analyzes the results; and Section 5 discusses implications for current models and
future research directions.

2 Related Work

Evaluating vision–language models for autonomous driving remains difficult due to the lack of
standardized metrics and reliance on dataset-specific evaluation schemes [13]. Traditional measures
such as BLEU [14], METEOR [15], ROUGE [16], and CIDEr [17] often perform poorly in driving-
related QA, since responses may be correct even with low word overlap, or incorrect despite high
n-gram similarity [8]. GPT-based evaluations capture semantics more effectively but tend to overvalue
fluent yet factually wrong answers[8]. Further complicating matters, benchmarks like DriveLM [6],
LingoQA [8], MAPLM [28], NuScenes-QA [29], OmniDrive [30], and NuInstruct [32] each adopt
distinct rule-based, classifier-driven, or GPT-based procedures, making cross-dataset comparisons
inconsistent [13].

In this work, we propose AutoDrive-QA as a solution to these limitations. By converting open-
ended QA into multiple-choice format with structured distractors, AutoDrive-QA enables objective,
reproducible scoring while capturing domain-specific reasoning errors. A detailed discussion of
evaluation metrics and a comparative analysis of existing datasets can be found in Appendix B and
Appendix C, respectively. At the same time, improving evaluation is closely tied to how multiple-
choice questions (MCQs) and distractors are generated, since the quality of distractors directly
impacts whether benchmarks can measure genuine reasoning or merely test surface-level elimination
strategies. This motivates a closer look at prior approaches to MCQ generation and distractor
modeling [18].
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Figure 1: The AutoDrive-QA pipeline for automated MCQ generation in autonomous driving

3 Method

3.1 Overview of AutoDrive-QA Pipeline

AutoDrive-QA introduces a systematic pipeline that transforms open-ended autonomous driving QA
datasets into standardized multiple-choice questions (MCQs). Built on benchmarks such as DriveLM,
NuScenes-QA, and LingoQA, the pipeline ensures that each question has a single correct answer,
accompanied by distractors grounded in five error categories: driving domain misconceptions, logical
inconsistencies, misinterpreted sensor inputs, computational oversights, and question ambiguity.
These categories are designed to reflect common failure modes in autonomous driving. As illustrated
in Figure 1, a multi-stage quality control process—consisting of reviewer, evaluator, refiner, and
selector stages—removes distractors that are irrelevant, redundant, or ambiguous, while randomizing
answer order to avoid positional bias. To our knowledge, AutoDrive-QA is the first benchmark to
adopt this structured approach in driving, providing an evaluation framework that eliminates ambiguity
in open-ended scoring and enables consistent, reproducible comparison across vision–language
models.

3.2 Dataset Conversion

To build AutoDrive-QA, we use existing autonomous driving QA datasets—DriveLM, NuScenes-
QA, and LingoQA—which cover perception, prediction, and planning tasks. These datasets were
originally open-ended, meaning models produced free-form answers. While flexible, such answers are
difficult to evaluate because they can be interpreted in different ways and often depend on subjective
judgment. AutoDrive-QA addresses this by converting each question into a multiple-choice format
(MCQ) with one correct answer from the dataset and additional distractors generated by our LLM-
based pipeline. This ensures that each question has exactly one correct answer, making evaluation
objective, consistent, and scalable. Although this simplifies some reasoning, it removes scoring
ambiguity, enables fair model comparison, and supports systematic error analysis. Explanation and
representative examples of the converted dataset are provided in Appendix D .

3.3 Distractor Generation Pipeline

A core contribution of AutoDrive-QA is its structured distractor generation pipeline, which converts
open-ended QA items into robust multiple-choice format. Unlike benchmarks with trivial distractors,
our pipeline encodes autonomous driving knowledge so that each distractor reflects plausible yet
flawed reasoning, preventing answers from being guessed by elimination and making each MCQ
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a genuine test of understanding. Autonomous driving tasks can be broadly grouped into three
categories: Perception, which involves surrounding object identification, traffic element identification,
important object identification, visual descriptions, and motion states; Prediction, which includes
motion prediction, possible attention, object interaction, logical sequence, signal meaning, and visual
occlusion; and Planning, which encompasses safe/unsafe action, goal action, possible collision, free-
form QA/comment, importance ranking, planning and reasoning, and ego attention. To ensure domain
specificity, candidate distractors are generated by LLMs but guided by five predefined error categories.
These include: Driving Domain Misconceptions, which capture fundamental misunderstandings of
road rules or object categories; Logical Inconsistencies, which reflect flawed reasoning or incorrect
cause-and-effect assumptions; Misinterpreted Sensor Inputs, representing errors in processing visual
or sensor data; Computational Oversights, covering mistakes in quantitative reasoning such as
misjudging speed, distance, or collision time; and Question Ambiguity, which arises from unclear or
complex phrasing.

By grounding distractors in these real-world failure modes, AutoDrive-QA ensures that they are both
plausible and clearly flawed. This approach not only reduces guesswork but also enables a targeted
assessment of perception, prediction, and planning skills in autonomous driving systems. The full
specifications of the distractor categories and prompt designs are provided in Appendix I and J.

4 Experimental Setup

4.1 Dataset Construction and Statistics

The AutoDrive-QA benchmark is built by converting questions from three open-ended autonomous
driving QA datasets—DriveLM, NuScenes-QA, and LingoQA—into a standardized multiple-choice
format, spanning perception, prediction, and planning tasks. Specifically, 60% of questions are drawn
from DriveLM, 20% from NuScenes-QA, and 20% from LingoQA. Each open-ended QA instance
is reformulated into one question with a single correct answer and three distractors derived from
our structured error categories, ensuring that distractors reflect realistic mistakes rather than trivial
options.

The benchmark contains 15,400 curated questions, balanced across categories: perception (40%),
prediction (30%), and planning (30%), with each category including at least 4,000 questions to enable
robust evaluation. To maintain quality, we applied strict filtering so that no distractor duplicated
the correct answer. A three-stage review process (Reviewer → Evaluator → Refiner) removed
irrelevant, redundant, or inadvertently correct distractors, and the option order was randomized to
avoid positional bias. To validate clarity and answerability, human experts solved 400 randomly
sampled questions. They achieved nearly 100% accuracy on perception and over 97.5% accuracy on
prediction and planning, confirming that the questions are unambiguous for domain experts while still
challenging for VLMs. The most common human errors involved overlooking hazards, misjudging
following speed, and misclassifying parked cars. A more detailed description of dataset construction,
filtering stages, and representative examples is provided in Appendix D.

5 Evaluation of SOTA Vision–Language Models

Table 1 reports the performance of several vision–language models on the AutoDrive benchmark.
Fine-tuning LLaVA-1.5-7B yields consistent improvements, increasing perception accuracy from
57.84% to 63.16%, prediction from 52.70% to 58.84%, and planning from 53.66% to 58.15%. These
results correspond to gains of approximately 6 percentage points across all three tasks, underscoring
the benefit of task-specific adaptation.

Among zero-shot models, GPT-4V attains the highest accuracies, with 69.81% in perception, 66.25%
in prediction, and 68.5% in planning. Qwen2-VL-72B follows with strong results of 66.2%, 64%,
and 64.84%, while Qwen2-VL-7B also achieves competitive performance across tasks. The results
further highlight the benefits of multi-view reasoning: Qwen2-VL-7B achieves higher accuracies than
its single-view counterpart, improving perception from 60.1% to 63.54%, prediction from 58.05%
to 60.64%, and planning from 59% to 61.02%. Finally, BLEU and CIDEr scores remain relatively
low across all models (ranging from 5.9–8.5 for BLEU and 27.1–39.2 for CIDEr), reinforcing the
observation that traditional n-gram–based metrics are poorly aligned with task success, whereas
AutoDrive accuracy provides a more reliable measure of model performance.
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Table 1: Evaluation of vision–language models on the AutoDrive benchmark. Performance is reported
for Perception, Prediction, and Planning. Fine-tuning LLaVA-1.5-7B yields 5–6 percentage point
improvements across tasks, while GPT-4V achieves the highest zero-shot accuracy. Qwen2-VL
models also perform competitively, with multi-view reasoning providing additional gains. BLEU and
CIDEr remain consistently low across all models.
Category No. Views Perception Prediction Planning

AutoDrive (%, ↑) BLEU(↑) CIDEr(↑) AutoDrive (%, ↑) BLEU(↑) CIDEr(↑) AutoDrive (%, ↑) BLEU(↑) CIDEr(↑)
LLaVA-1.5-7B (fine-tuned) 1 63.16 6.5 29.6 58.84 6.92 31.4 58.15 6.88 28.5
LLaVA-1.5-7B (zero-shot) 1 57.84 5.9 28.1 52.7 5.25 30.2 53.66 5.3 27.1

GPT-4V (zero-shot) ≥ 1 69.81 7.7 35.11 66.25 5.5 32.5 68.5 5.25 31.65
Qwen2-VL-72B (zero-shot) ≥ 1 66.2 8.5 39.2 64 5.95 32.81 64.84 6.89 35.69
Qwen2-VL-7B (zero-shot) ≥ 1 63.54 6.25 30.5 60.64 6.22 28.9 61.02 5.9 29.66
Qwen2-VL-7B (zero-shot) 1 60.1 6.06 30.9 58.05 6.1 29.5 59 5.95 29.25

5.1 Additional Results and Analysis

Beyond the main cross-model results, we further examine how models behave under different
conditions. First, we provide qualitative examples (Appendix E) that illustrate how AutoDrive-QA
captures subtle reasoning mistakes in urban driving. At the per-example level, traditional metrics
such as BLEU and CIDEr often assign partial credit to incorrect answers, whereas AutoDrive
accuracy aligns strictly with correctness. This highlights the limitations of n-gram-based metrics and
underscores AutoDrive-QA’s value as a diagnostic, task-relevant evaluation framework.

Next, we analyze errors by distractor type (Appendix G) to determine whether models struggle
more with visual details, conceptual understanding, or reasoning. Table 7 shows that perception
and prediction errors are primarily driven by driving domain misconceptions (45.7% and 41.1%,
respectively), while planning errors are dominated by logical inconsistencies (48.9%). These results
suggest that models continue to face critical challenges in reasoning about complex interactions.
More detailed analyses of systematic error patterns are provided in Appendix G.

In addition, we conduct robustness checks to examine the impact of distractor design and filtering
(Appendix H). Ablation experiments (Table 8) reveal that accuracy drops by 7–9% when realistic
distractors are used in place of naïve alternatives. This confirms that AutoDrive-QA does not merely
test superficial elimination strategies but instead requires genuine scene understanding and reasoning.

6 Conclusion

While open-ended formats provide valuable insights into generative reasoning and diverse phrasing,
they remain difficult to grade consistently across models. Our structured MCQ framework addresses
this challenge by introducing a standardized and reproducible evaluation protocol for urban driving
scenarios. It is designed to complement open-ended QA while also laying the foundation for richer
and more robust benchmarks in Urban AI and smart mobility systems. Based on our experimental
results, fine-tuning LLaVA-1.5-7B improved accuracy by approximately six percentage points across
perception, prediction, and planning tasks. GPT-4V delivered the strongest zero-shot performance,
reaching up to 69.8% accuracy. Qwen2-VL models also performed competitively—particularly in
multi-view settings—while BLEU and CIDEr scores remained consistently low, underscoring the
misalignment of traditional text-overlap metrics with driving task success.

Looking ahead, AutoDrive-QA opens several promising directions. These include expanding to
more diverse datasets for broader city-scale coverage, adopting modular architectures that separate
visual feature extraction from large language models, and advancing video understanding through
domain-specific fine-tuning. Another important step is linking benchmark evaluation with urban
traffic simulation environments, thereby connecting question-answering performance directly to
downstream driving behavior. In addition, tailoring the framework to specialized models (e.g.,
DriveVLM) could further enhance its real-world applicability. In conclusion, AutoDrive-QA offers
a complementary and evolving framework for evaluating vision–language models in autonomous
urban driving, paving the way toward more reliable, safer, and human-centered AI-driven mobility
systems for smart cities.
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Appendix

A MCQ Generation and Distractor Modeling

Traditional Multiple-Choice Question (MCQ) generators often rely on knowledge graphs [33],
reinforcement learning [34], or retrieval techniques [35] to create distractors. Although these methods
can produce plausible alternatives, the distractors are often too simple, off-topic, or require substantial
human refinement [18]. More recently, AutoConverter [18], a multi-agent LLM framework, has
improved this process by proposing, reviewing, and refining distractors to ensure a single correct
answer and sufficiently challenging alternatives, thereby reducing human effort and improving
reproducibility. However, when applied to autonomous driving, AutoConverter falls short because
it does not explicitly capture the common failure modes that arise in perception, prediction, and
planning tasks.

To address this limitation, our approach tailors MCQ generation to the driving domain by introducing
domain-specific prompts that produce distractors grounded in realistic misjudgments. Specifically,
we classify common errors into five categories—Driving Domain Misconceptions, Logical Inconsis-
tencies, Misinterpreted Sensor Inputs, Computational Oversights, and Question Ambiguity—and use
this taxonomy to guide distractor construction. This ensures that distractors closely mirror real-world
mistakes rather than trivial or generic errors. As a result, our method not only strengthens the
assessment of model understanding in autonomous driving but also establishes a principled standard
for constructing standardized evaluation frameworks in this field.

Building on these insights, we present AutoDrive-QA, the first benchmark to systematically convert
driving QA datasets into multiple-choice format with structured, domain-grounded distractors. By
aligning with established practices in general VLM evaluation while addressing critical gaps in
driving benchmarks, AutoDrive-QA complements open-ended QA with a reproducible, standard-
ized framework—representing a step toward more consistent, fair, and meaningful evaluation of
vision–language models in autonomous driving.

B Evaluation Metrics

Evaluating open-ended responses for autonomous driving requires deep contextual understanding
and rigorous reasoning. Traditional rule-based metrics such as BLEU [14], ROUGE [16], METEOR
[15], CIDEr [17], and SPICE [19] provide quick assessments based on lexical overlap with reference
answers. However, these metrics capture only surface-level similarity, overlooking semantic depth
and multi-step logical reasoning that are critical in autonomous driving [20]. As a result, they
correlate weakly with human judgments and fail to measure nuanced contextual understanding [21].

To address these limitations, model-based approaches have been proposed. These methods employ
classifiers or large language models with built-in reasoning and factual checks to approximate human
evaluation [22]. For example, Lingo-Judge [8] leverages DeBERTa-V3 [23], while other approaches
rely on GPT-4 [24]. Although such models better capture semantic meaning and reasoning, they come
with drawbacks: Lingo-Judge risks overfitting to dataset-specific styles, and GPT-4’s results can vary
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Table 2: Comparison of Autonomous Driving Datasets

Dataset Tasks Covered Evaluation Methods

DriveLM [6] Object detection, trajectory prediction, planning Rule-based; completeness;
trajectory error; GPT-based checks

LingoQA [8] Scene description; action justifications (“why”/“how”) Lingo-Judge classifier; rule-based;
GPT-4 evaluations

MAPLM (MAPLM-QA)[28] Vision–language QA on map elements QA correctness (exact / semantic
match)

CODA-LM [1] Regional and general perception; driving suggestions GPT-4 judge (1–10 scale); baseline
n-gram metrics

NuScenes-QA [29] Counting, attribute comparison, spatial relations Exact / soft-match accuracy

OmniDrive [30] Scene description; 3D grounding; counterfactual reasoning; planning Specialized domain scoring
(GPT-based or custom judges)

NuInstruct [32] Perception, prediction, risk assessment, planning with reasoning Semantic / human or GPT-based
checks

with prompt design or model version updates, raising concerns about consistency and reproducibility
[25].

In this work, we introduce AutoDrive-QA, a novel MCQ-based evaluation framework for autonomous
driving. While benchmarks such as VQA-v2, GQA, ScienceQA, MMMU, and MMBench have
long adopted multiple-choice questions for objective scoring and fair cross-model comparison,
autonomous driving evaluation has remained dominated by open-ended QA. AutoDrive-QA fills this
gap by extending MCQ evaluation to driving-specific scenarios. Using carefully designed structured
distractors, it converts ambiguous free-text answers into measurable reasoning errors, providing a
standardized, reproducible, and domain-grounded evaluation method.

C Evaluation metrics in Question Answering Datasets for Autonomous
Driving

Different datasets use a variety of evaluation metrics, which creates challenges for data integration and
generalization. For example, DriveLM [6] combines real-world nuScenes [26] data with simulated
CARLA [27] data to test multi-step reasoning in perception, prediction, and planning. Its evaluation
framework employs rule-based metrics, completeness scores, trajectory errors, and GPT-based checks.
In contrast, LingoQA [8] captures driver rationales from short video clips by using rule-based metrics,
a specialized classifier (Lingo-Judge), and GPT-4V evaluations. MAPLM [28] assesses HD map
understanding by comparing exact or semantic matches to ground-truth answers, although it may
overlook partially correct responses. NuScenes-QA [29] emphasizes 3D reasoning with exact or
soft-match criteria, which can oversimplify complex answers. OmniDrive [30] builds on nuScenes by
incorporating 3D and counterfactual queries evaluated by GPT-based or custom judges; however, it
lacks a consistent universal metric. Finally, NuInstruct [32] presents 91K multi-view video-instruction
pairs across perception, prediction, and planning, using GPT-based semantic evaluations that provide
flexibility but complicate reproducibility. Each dataset targets a distinct aspect of autonomous
driving and employs evaluation techniques ranging from basic lexical checks to advanced GPT-based
assessments. However, balancing semantic detail, cost, and standardization remains challenging.
Table 2 compares these datasets by detailing their scale, domain focus, input modalities, tasks, Q/A
formats, and evaluation methods.

D AutoDrive-QA Dataset Examples

Each question–answer pair in our dataset is associated with a unique scene identifier and
keyframe, thereby ensuring precise temporal and spatial grounding. As an illustrative exam-
ple, consider the case presented in the last row of Table 3. The corresponding question is “Is
<c2,CAM_FRONT,708.7,571.4> an object that the ego vehicle should consider in the current scene?”
with the annotated correct answer “Yes.” The token <c2,CAM_FRONT,708.7,571.4> denotes a key
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object characterized by (i) a unique identifier (c2), (ii) the camera view from which it is observed
(CAM_FRONT), and (iii) its approximate two-dimensional position within the image plane. Each key
object is further enriched with semantic and geometric attributes, including category (e.g., vehicle,
traffic element), status (e.g., stationary, moving, null), visual description (e.g., “Blue bus,” “Traffic
signal”), and bounding-box coordinates. In this specific example, the referenced object corresponds to
a stationary blue bus captured by the front-facing camera. This structured representation establishes a
direct link between questions, answers, and scene content, thereby guaranteeing grounding at both
the scene and object levels. Moreover, it enables the integration of object-level annotations into
subsequent processes such as distractor generation and evaluation. Table 3 provides representative
success cases from AutoDrive-QA, covering tasks across perception, prediction, and planning. Each
entry illustrates the task type, the corresponding camera image, the natural-language question, and
the multiple-choice options, with the correct answer highlighted in orange. In addition to success
cases, Table 5 presents representative examples of failure cases across perception, prediction, and
planning. These examples demonstrate typical error modes, such as misclassifying static objects as
dynamic, overlooking developing hazards, or recommending unsafe maneuvers, thereby illustrating
how AutoDrive-QA captures subtle reasoning failures that are often missed by traditional evaluation
metrics.

Table 3: Success cases of AutoDrive-QA. These are examples where the
model makes a correct judgment about the correctness of the prediction.
Green indicates agreement with ground truth, while red indicates disagree-
ment. Each example lists the task, image, question, and four choices (with
the correct choice shown in orange).

Task Image Question Choices

Perception What are objects to the back
left of the ego car?

A. There is one traffic cone to the back
left of the ego car.
B. There are multiple pedestrians cross-
ing behind the ego car.
C. A vehicle is partially visible behind
the ego car on the left.
D. A pedestrian is standing near the
curb to the back left.

Perception What are objects to the front
of the ego car?

A. There are no vehicles in front of the
ego car because the traffic light is red.
B. A cyclist is directly in front of the
ego car.
C. There are many barriers, one traffic
cone, many pedestrians, one truck, and
three cars in front of the ego car.
D. There can’t be any objects ahead.

Prediction Except for the ego vehicle,
what object would consider
<c2,CAM_BACK,874.2,
519.2> to be most relevant
to its decision?

A. The following vehicle is always the
most relevant object.

B. A cyclist is at that location, moving
toward the ego car.
C. None.
D. The traffic sign on the bridge is a
“Stop” sign.

Continued on next page
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Table 3 – continued from previous page
Task Image Question Choices

Prediction What is the future state
of <c3,CAM_FRONT,61.7,
548.3>?

A. Moving forward.

B. Turning left into the intersection.
C. Accelerating.
D. Stationary.

Planning What actions could the
ego vehicle take based on
<c3,CAM_FRONT,1298.3,
478.3>? Why take this
action and what’s the
probability?

A. Proceed forward through the inter-
section despite the red light.

B. The action is to remain stationary.
The reason for this action is to follow
the traffic rules, with a high probability.
C. Change lanes into the left turn lane
to proceed through the intersection.
Turn right.

Planning Is <c2,CAM_FRONT,708.7,
571.4> an object that the
ego vehicle should consider
in the current scene?

A. Yes.

B. No, because stationary vehicles are
irrelevant to decision-making.
C. No, because the bus is outside the
ego vehicle’s path.
D. No, because only moving vehicles
are considered relevant objects.

Table 5: Failure cases of AutoDrive-QA. These are examples where
model makes an incorrect judgment about the correctness of the model
prediction. Green indicates agreement with ground truth, while red indi-
cate disagreement. Each example lists the task, image, question, and four
choices (with the correct choice shown in orange).

Task Image Question Choices

Perception What is the status of the cars
that are to the back of the ego
car?

A. Two cars are moving.

B. One car is moving, and the other is
parked.
C. Both cars are stationary.
D. Two cars are parked.

Continued on next page
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Table 5 – continued from previous page
Task Image Question Choices

Prediction Based on the observations
of <c1,CAM_BACK,917.5,
687.5>, what are possible
actions to be taken by
<c2,CAM_FRONT,772.5,
512.5>? What is the
reason?

A. The blue bus should accelerate, be-
cause the silver sedan is stationary

B. The blue bus should turn left.
C. The action is none, the reason is
there is no safety issue.
D. The blue bus should stop immedi-
ately.

Planning What is the priority of the
objects that the ego vehicle
should consider?(in descend-
ing order)

A. The blue sedan

B. <c1,CAM_BACK_RIGHT,509.2,
633.3>, <c3,CAM_BACK,861.7,
675.0>
C. The priority of the objects
that the ego vehicle should con-
sider (in descending order) is <c6,
CAM_FRONT,734.3,335.9>, <c2,
CAM_FRONT,422.5,519.2>, <c4,
CAM_FRONT,878.3,488.3>, <c5,
CAM_FRONT_LEFT,720.8,586.7>,
<c3,CAM_BACK,861.7,675.0>, <c1,
CAM_BACK_RIGHT,509.2,633.3>.
D. The blue sedan <c3> and the traffic
element <c6>

E Qualitative Evaluation Examples

To further illustrate the evaluation framework of AutoDrive-QA, we present representative success
and failure cases in Tables 3-6.

E.1 Success Cases

Table 3 presents representative cases where the model successfully identified the ground-truth answers
across perception, prediction, and planning tasks. These examples demonstrate that AutoDrive-QA
produces clear and unambiguous questions: when models exhibit adequate scene understanding, they
are able to consistently select the correct option. Table 4 reports the corresponding per-example
metrics. Notably, we observe a systematic mismatch between traditional text-based metrics (e.g.,
BLEU, CIDEr) and correctness; even accurate predictions frequently receive low similarity scores.
In contrast, the AutoDrive metric—multiple-choice accuracy—reliably aligns with task success,
highlighting the limitations of free-text evaluation schemes. Overall, these findings indicate that
AutoDrive accuracy offers a more consistent and task-relevant measure of model performance
compared to conventional similarity-based metrics.
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Table 4: Per-example metrics for success cases from Table 3. The Ex. column refers back to the
corresponding row. This table provides a qualitative comparison of metrics, showing questions and
labels from our evaluation dataset along with exemplary predictions and their sample-level scores.
Green indicates agreement with ground truth, while red indicates disagreement.

Ex. Prediction (model output) BLEU CIDEr ChatGPT (/5) AutoDrive(%, ↑)

1 There is one traffic cone. 10.19 21.30 4 A
2 There is a car directly in

front of the ego car.
11.17 13.92 2 C

3 The traffic barrier. 0 0 0 C
4 The future state of it is

stationary.
0.1 15.16 5 D

5 The ego vehicle should
remain stationary, as the
traffic light ahead is red.

0.28 7.68 4 B

6 Yes, <c2,CAM_FRONT,708.7,
571.4> is an object that
the ego vehicle should
consider in the current
scene.

0 0.096 5 A

Table 6: Per-example metrics for failure cases from Table 5. The Ex. column refers back to the
corresponding row. This table provides a qualitative comparison of metrics, showing questions and
labels from our evaluation dataset along with exemplary predictions and their sample-level scores.
Green indicates agreement with ground truth, while red indicates disagreement.

Ex. Prediction (model output) BLEU CIDEr ChatGPT(/5) AutoDrive(%, ↑)

1 The cars to the back of the
ego car are stationary.

0 8.95 0 B

2 The possible action for <c2,
CAM_FRONT, 772.5,512.5> is to
remain stationary.

0 8.33 3 D

3 first consider the traffic
light. Next, it should pay
attention to the vehicles

0 0 2 D

E.2 Failure Cases

Table 5 shows examples where the model selected an incorrect option. These highlight systematic
weaknesses: in perception tasks, models may confuse object motion (e.g., mistaking parked vehicles
as moving); in prediction tasks, they may fail to identify reasonable agent actions; and in planning,
they may struggle with prioritizing relevant objects specially in ling correct answer. The distrac-
tors—designed to reflect realistic failure modes—are often deceptively plausible, making these errors
especially diagnostic. Table 6 reports the per-example metrics for these failures. Once again, we
observe that traditional metrics assign partial credit to incorrect outputs, while AutoDrive’s MCQ
accuracy clearly records the mistake.

F Training Parameters

All experiments were conducted on a Linux system equipped with three NVIDIA RTX A6000 GPUs
(48 GB), using PyTorch 2.2.1 and CUDA 12.1. We fine-tuned LLaVA-1.5-7B on the entire dataset
with LoRA, using bf16 precision, a cosine learning-rate schedule with 3% warm-up, and a learning
rate of 2× 10−4 for LoRA. The weight decay was set to 0 for LoRA.
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G Distractor Analysis

To better understand model behavior, we analyze the distribution of errors across different distractor
types, allowing us to identify whether mistakes arise from visual misinterpretation, conceptual gaps,
or reasoning failures. An ablation study with naive distractors further confirms the rigor of our
pipeline: domain-specific distractors significantly reduce accuracy compared to naive alternatives,
demonstrating that our curated distractors are not random noise but systematically expose model
weaknesses. To capture these weaknesses more precisely, we categorize distractors into three groups:
misinterpreted sensor inputs, driving domain misconceptions, and logical inconsistencies. This
categorization enables us to move beyond treating all wrong answers equally by revealing which
type of distractor a model tends to select when it errs. Table 7 presents the error breakdown across
perception, prediction, and planning tasks. In perception, most errors arise from driving domain
misconceptions (45.74%), such as misidentifying traffic signs or pedestrians, followed by logical
inconsistencies (38.05%) and misinterpreted sensor inputs (16.21%). Prediction errors are also
dominated by domain misconceptions (41.10%), but misinterpreted sensor inputs play a larger
role (36.99%), reflecting challenges in interpreting dynamic cues required for forecasting. Logical
inconsistencies account for 21.92% of errors. In planning, however, logical inconsistencies dominate
(48.86%), highlighting critical reasoning flaws, while driving misconceptions remain substantial
(35.23%) and sensor misinterpretations are less common (15.91%). Taken together, these results
show that perception and prediction errors are primarily driven by difficulties in visual interpretation
and sensor data, whereas planning is most critically affected by flawed reasoning and decision-
making. This analysis highlights the need for vision–language models to integrate accurate visual
context understanding with a strong conceptual grounding in traffic rules and driving etiquette. By
systematically categorizing and tracking distractor selection, AutoDrive-QA provides one of the first
detailed comparisons of error types across perception, prediction, and planning, offering actionable
insights into the strengths and weaknesses of current models in urban driving scenarios.

Table 7: Distractor-Driven Error Analysis of VLM Models in Urban Scene Understanding: Comparing
Diffrent Errors Across Driving Stages

Error Type Perception (%) Prediction (%) Planning (%)
Driving Domain Misconceptions 45.74 41.10 35.23
Logical Inconsistencies 38.05 21.92 48.86
Misinterpreted Sensor Inputs 16.21 36.99 15.91

H Ablation Studies on AutoDrive-QA

To evaluate the robustness of AutoDrive-QA, we perform ablation experiments that analyze the impact
of different distractor design choices on model performance. Specifically, we compare realistic error-
modeled distractors against more generic alternatives. In the first setup, we use a prompt without
error modeling, which produces random and shallow distractors that are easy to eliminate. In the
second setup, we apply error modeling, generating distractors that remain incorrect but are more
plausible and contextually grounded.

As shown in Table 8, the use of error modeling leads to noticeable accuracy drops for the Qwen2-VL-
7B [31] model: about 7% in perception, 9% in prediction, and 7% in planning. This drop highlights
that the challenge comes not from the original questions themselves but from the stronger distractors.
With naive distractors, models can easily rule out irrelevant options, often making the correct answer
obvious. By contrast, error-modeled distractors require genuine reasoning about the scene, resulting
in a more difficult and robust evaluation.

Correctness, also reported in Table 8, serves as a key complementary metric. It improves with error-
modeled distractors, ensuring that when open-ended questions are converted into multiple-choice
format, exactly one option remains correct. Since the original question and ground-truth answer are
preserved, the main challenge is to design distractors that are clearly incorrect yet still plausible. To
validate this, we adopt a multi-agent system: each question is rated by GPT-4o on a 5-point scale,
where a score of 5 indicates an unambiguous correct answer and a score of 1 indicates ambiguity.
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Table 8: Impact of error-modeled distractors on accuracy and correctness across perception, prediction,
and planning tasks
Error Type Perception Prediction Planning

Accuracy (↓) (%) Correctness (↑) Accuracy (↓) (%) Correctness (↑) Accuracy (↓) (%) Correctness (↑)
Naive 58.36 4.41 48.97 4.56 50.97 4.43
Driving Domain Misconceptions 52.74 4.54 43.97 4.47 49.03 4.53
Logical Inconsistencies 50.26 4.47 48.11 4.46 51.16 4.57
Misinterpreted Sensor Inputs 56.60 4.45 41.02 4.42 59.74 4.44
Computational Oversights 52.46 4.51 46.32 4.55 50.18 4.47
Question Ambiguity 57.74 4.53 44.10 4.52 50.48 4.50
All 51.64 4.57 39.74 4.60 43.50 4.55

I Distractor Categories and Prompt Designs

To ensure diverse and challenging distractors, we designed five specialized prompt templates, each
targeting a distinct error type in self-driving perception.

• Driving Domain Misconceptions Prompt. Generates distractors based on conceptual
misunderstandings of driving scenes. The system creates plausible but incorrect options
that hinge on fundamental misperceptions, such as confusing vehicle categories, misjudging
whether an object is parked or moving, or mixing up left vs. right positions. These errors are
illustrative of the kinds of mistakes autonomous perception systems (and human learners)
often make when interpreting road environments.

• Logical Inconsistencies Prompt. Creates distractors that capture logical reasoning errors
in driving contexts. Rather than misperceiving visual details, these distractors follow faulty
inference chains—for example, drawing incorrect cause–effect relations, ignoring contextual
signals, or overgeneralizing from a single observation. The goal is to simulate reasoning
pitfalls (e.g., “a large truck must be stationary”) that test deeper understanding of driving
logic.

• Misinterpreted Sensor Inputs Prompt. Targets errors in reading visual data from vehicle
sensors (e.g., cameras). Distractors produced here reflect misinterpretations of spatial cues,
shapes, or occluded objects—such as mistaking a pedestrian for a cone, or confusing the
distance of a truck. These are designed to highlight the subtle challenges of interpreting
complex, visually cluttered road environments.

• Computational Oversights Prompt. Generates distractors based on errors in handling
sensor data and numerical inputs. Examples include swapped bounding box coordinates,
incorrect velocity estimates, or misapplied unit conversions. These errors represent how
simple mistakes in data processing pipelines (fusion, calibration, or scaling) can produce
misleading outputs, making them an important category for realistic distractors.

• Question Ambiguity Prompt. Produces subtle, high-level distractors that exploit biases in
how a question might be read or interpreted. For instance, a distractor may look correct if the
respondent assumes all large vehicles are trucks. These options are especially challenging
because they rely on misreadings of phrasing or context, forcing evaluators to distinguish
between plausible but biased interpretations and the correct answer.

The fusion prompt serves as a selection stage, curating the most effective distractors from across
all five error categories. It balances relevance, difficulty, diversity, and subtlety, ensuring the final
distractors form a coherent and challenging set. This step avoids redundancy and guarantees that
distractors collectively test a wide range of perception and reasoning skills without overlapping.

I.1 Example Prompt (Misinterpreted Sensor Inputs)

To illustrate the structure of our prompt design, we provide a detailed template for generating
distractors based on Misinterpreted Sensor Inputs. This template demonstrates how instructions are
organized into sections (Given, Task, Output Format, and Remember), ensuring consistency and
clarity across all prompt types. The complete version of the Misinterpreted Sensor Inputs prompt is
shown in Figure 2.

This category targets errors in interpreting visual data from vehicle sensors (e.g., cameras). The
generated distractors capture misreadings of spatial cues, shapes, or occluded objects—for instance,
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mistaking a pedestrian for a traffic cone or misjudging the distance of a truck. Such distractors
highlight the subtle but critical challenges of interpreting complex and visually cluttered driving
environments.

J Filtering and Validation Prompt Designs

After the initial distractor generation, we use a multi-stage quality control process to ensure the final
MCQs are both challenging and unambiguous. Our framework employs a multi-agent process to
ensure both difficulty and correctness of multiple-choice questions. Proposers first generate candidate
distractors based on common error types. A reviewer evaluates them and provides feedback, which
the refiner uses to improve their plausibility while keeping them incorrect. The selector then chooses
the three most challenging distractors, and the evaluator verifies that exactly one correct answer
remains, triggering refinement if ambiguity is detected. We employ a four–stage refinement pipeline
to ensure that generated distractors are challenging, diverse, and unambiguously incorrect and each
stage has a distinct role.

• Reviewer Prompt. Designed to iteratively refine distractors generated for a specific error
type (e.g., reasoning, visual, bias). For each distractor, the reviewer assesses its plausibility,
alignment with the intended error type, and whether it could be mistakenly interpreted
as correct. Effective distractors are retained, while others receive targeted suggestions to
increase difficulty and deceptiveness without making them correct. This process prioritizes
conceptual challenge over linguistic complexity. The full detailed prompt for Reviewer
Prompt is presented in Figure 3.

• Refiner Prompt. Focuses on improving problematic distractors identified during evaluation.
Using the correct answer and reviewer feedback as inputs, the refiner generates exactly three
improved distractors that are plausible but clearly incorrect, aligned with misconceptions,
and consistent in style. This ensures the final set includes one unambiguous correct answer
and pedagogically useful distractors. The full detailed prompt for Refiner Prompt is presented
in Figure 4.

• Evaluator Prompt. Verifies the validity of a multiple-choice question by checking whether
only one answer option can be considered correct. The marked correct answer is always
treated as fixed, while distractors are examined for partial validity. A correctness score (1–5)
is assigned, and feedback highlights problematic distractors. This guarantees conformity
to the single-correctness principle and prevents ambiguity in assessment. The full detailed
prompt for Evaluator Prompt is presented in Figure 5.

• Selector Prompt. Guides the model to curate a subset of the strongest distractors from
a larger pool across multiple error categories. The selection emphasizes image relevance,
diversity, difficulty, subtlety, and educational value. By considering both distractor text and
reasoning, the selector ensures the final set is challenging, non-repetitive, and complementary,
producing a balanced and high-quality question set. The full detailed prompt for Selector
Prompt is presented in Figure 6.

16



Given: 1. One or more images captured from the vehicle’s camera view.
2. An open-ended question referring to the image(s).
3. The correct answer to the question.

Your task: 1. Carefully analyze the provided image(s) (for your own understanding only;
do not output this).
2. Generate {num_choice} plausible but incorrect distractor options that reflect
visual interpretation errors. Each distractor should: – Be directly connected to a
misinterpretation of the image(s).
– Appear reasonable at first glance.
– Mislead due to subtle visual misunderstanding.
– Contain a small but clear flaw in interpreting the visual information.
– Differ in difficulty and type of misinterpretation.
3. Make sure you understand how the correct answer relates to specific visual features in
the image(s).
4. Focus on common visual interpretation errors, including: – Spatial Misinterpretation:
Errors in distances, relative positions, lane placement, or perspective.
– Color Confusion: Misinterpreting color-coded information, traffic signals, lane
markings, or subtle color differences.
– Detail Oversight: Overlooking small but important cues pedestrians, cyclists, traffic
signs, or lane markings.
– Scale Misjudgment: Misinterpreting size, depth, or proximity of objects, vehicles,
pedestrians, or cyclists.
– Cross-Image Miscomparison: Incorrectly comparing or contrasting elements across
multiple images or camera views.
5. Create a diverse set of distractors that test different aspects of visual interpretation and
analysis.
6. Each distractor should represent a plausible but ultimately incorrect reading of the
image(s).
7. Consider the type of image (e.g., photograph, diagram, street-view, aerial view, or
multi-camera perspective) and design errors typical for that format.
8. Match the complexity of distractors to the difficulty of the question and answer.
9. When multiple images are provided, ensure some distractors exploit inconsistencies
or relationships across them.
10. For each distractor, provide a short explanation (up to three sentences) describing
why it seems plausible, the flaw it contains, and how it misleads interpretation.

Output format: – For each distractor, use the following format: Option: option:
[Option text] reason: [Concise explanation (maximum 3 sentences) of why the
distractor was created]
Remember: – The goal is to design challenging but clearly incorrect options that
highlight visual interpretation errors.
– Distractors should be realistic enough for learners to consider, but recognizably wrong
with closer analysis.
– Focus exclusively on visual interpretation errors, not conceptual or reasoning mistakes.
– Distractors must directly reference the image(s), not just the general topic of the
question.
– Keep them concise, consistent, and no more complex than the correct answer.
– Maintain uniform capitalization across all options, including the correct answer.
– For multiple images, consider errors that arise from comparing or misaligning visual
information across them.
– Pay attention to relationships, cues, or differences that span multiple images, and
design distractors that plausibly misinterpret these.

Figure 2: Paraphrased prompt for generating distractors targeting visual interpretation errors, includ-
ing driving-specific cases (misinterpreted sensor inputs).
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Your role is to critically review and refine multiple-choice distractors that were generated
under a specified {type} error category. The objective is to enhance their challenge
and deceptiveness, while ensuring that each remains clearly incorrect in the context of
driving perception tasks.

Given:
1. One or more images or sensor views from the ego vehicle’s perspective.
2. A question about the driving scene (e.g., objects, positions, or traffic elements).
3. The correct answer.
4. A set of distractor options tied to a specific error type (e.g., reasoning, visual, question
bias).
5. The reasoning that explains why each distractor was initially created.

Your Task:
1. Assess each distractor’s effectiveness in testing comprehension while remaining
definitively wrong.
2. Verify that the distractor aligns with the intended {type} error and fits the context of
the driving scene.
3. Determine whether the distractor could be mistaken for the correct answer. If so,
explain why and propose adjustments.
4. Endorse distractors that are sufficiently strong and challenging, only refining their
clarity or style if needed.
5. For weaker distractors, provide concrete suggestions to raise their difficulty and
deceptiveness – without adding unnecessary length or modifiers, and without making
them correct.
6. Ensure all evaluations and suggested revisions are concise, limited to four sentences
or fewer.

Guidelines:
– Prioritize conceptual challenge and depth over superficial linguistic changes.
– If a distractor risks being valid, explicitly state this and recommend revisions to make it
unambiguously wrong.
– Enhance plausibility by grounding refinements in realistic driving contexts (vehicles,
pedestrians, signals, lane positions) while avoiding over-specificity.
– Provide improvements that make distractors more attractive or deceptive without
undermining their incorrectness.
– Maintain a sharp and transparent distinction between distractors and the correct answer.

Output Format:
Option:
option: [Option text]
comment: [Evaluation of its effectiveness and suggested refinements]

Figure 3: Reviewer prompt for analyzing and refining distractors in autonomous driving scenarios,
ensuring they remain plausible yet incorrect while improving difficulty.
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You are an expert in assessment design and autonomous driving perception.
Your task is to refine multiple-choice distractors by applying general principles of
question quality while addressing domain-specific misconceptions common in driving
environments.

Given:
1. One or more images or sensor data from the ego vehicle’s surroundings.
2. An open-ended question about the driving scene.
3. The correct answer.
4. A set of distractor options related to driving errors, along with reviewer feedback.

Your Task:
1. Review reviewer feedback to assess whether the distractor is strong, weak, or unclear.
2. Check whether it reflects a plausible misconception in driving perception.
3. If effective, retain it and improve clarity or wording without changing its core flaw.
4. If weak, revise it to introduce a deeper or subtler conceptual mistake (e.g., misjudging
occlusion, inferring motion from a static view, or confusing sensor cues).
5. Ensure the distractor is plausible but clearly incorrect.

Guidelines for refinement:
– The correct answer is fixed and cannot be changed.
– Modify only distractors identified as problematic.
– Keep strong distractors intact unless minor polishing is needed.
– Maintain conciseness and stylistic consistency with the correct answer.
– Focus on perception-based errors (category, direction, position, or status) but avoid
making them valid.
– Use reviewer feedback as a guide, but go beyond it when suggestions are incomplete.
– Preserve the intended difficulty while prioritizing conceptual challenge over wording
complexity.

Output format:
Option:
option: [Refined distractor text]
reason: [1–3 sentences explaining the conceptual error]

Remember:
– Distractors must be believable but unambiguously wrong.
– Avoid ambiguity that could make a distractor valid.
– Keep them grounded in realistic driving contexts (vehicles, pedestrians, lanes, signals)
without unnecessary detail.
– Provide no commentary beyond the specified format.

Figure 4: Unified refinement prompt for improving distractors in autonomous driving multiple-choice
questions.
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Your task is to evaluate a multiple-choice driving perception question (with accompa-
nying images) and determine whether any distractor options could also be considered
correct answers. The goal is to ensure that each question has exactly one valid answer,
avoiding ambiguity in road-scene interpretation.

Important:
– The marked correct answer must always be accepted as valid, regardless of your own
judgment.
– Never critique or re-evaluate the correct answer itself. Focus only on whether any
distractors could also be interpreted as correct in the driving context.

Scoring Scale:
5 – Perfect: All distractors are clearly incorrect.
4 – Good: Distractors are mostly wrong but may contain minor elements of correctness.
3 – Fair: At least one distractor could be partially correct.
2 – Poor: At least one distractor could be equally correct.
1 – Invalid: Multiple distractors are just as valid as the marked correct answer.

Provide:
1. A score (1–5).
2. A short explanation highlighting any problematic distractors.
3. Suggested refinements for those distractors, if needed, to make them unambiguously
incorrect.

Remember:
– Do not question the correctness of the labeled answer—it is always correct by
definition.
– Focus exclusively on whether distractors could mislead by appearing valid in the
driving scene (e.g., lane position, object status, or signals).

Figure 5: Evaluator prompt for checking correctness of driving-scene distractors, ensuring only one
valid answer is possible.
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You are an expert Selection Agent tasked with curating the most challenging and
high-quality distractor options for multiple-choice questions based on one or more
provided images. Your goal is to select the best {fusion_selected_choice_num} unique
distractors from a pool of multiple options, ensuring a diverse, non-repetitive, and
challenging set that is relevant to the given driving scene.

Given:
1. One or more images or sensor views from the ego vehicle’s perspective.
2. A dictionary of distractor options, grouped into five categories: – Driving Domain
Misconceptions ({num_choice} options)
– Logical Inconsistencies ({num_choice} options)
– Misinterpreted Sensor Inputs ({num_choice} options)
– Computational Oversights ({num_choice} options)
– Question Ambiguity ({num_choice} options)
3. Each distractor is accompanied by a reason explaining its generation.

Your Task:
1. Carefully review all distractor options in relation to the driving context.
2. Select the top {fusion_selected_choice_num} distractors using the following criteria:
– Image relevance: Prioritize distractors closely tied to the road environment (vehicles,
pedestrians, signals, lane positions).
– Difficulty: Choose options that require deeper understanding to recognize as incorrect.
– Quality: Favor distractors that are well-constructed and clearly tied to the correct
answer.
– Diversity: Ensure coverage across different error categories.
– Subtlety: Prefer distractors with small but realistic mistakes (e.g., spatial or directional
confusion).
– Educational value: Select options that, when revealed as wrong, provide insight into
common driving misperceptions.
– Uniqueness: Ensure no two distractors overlap in meaning or phrasing.
– Reason-based selection: Factor in the provided reasoning, prioritizing those that align
well with the driving scenario.

3. Guarantee balanced representation across categories, while allowing more selections
from types highly relevant to the question.
4. Ensure the final set contains exactly {fusion_selected_choice_num} distractors and
excludes the correct answer.

Output Format:
Option:
option: [Option text]
reason: [Concise explanation, less than 3 sentences, of why it was selected]

Remember:
– The goal is to create a balanced set of distractors that test understanding of autonomous
driving perception using the provided images.
– Ensure the chosen distractors work as a cohesive set, covering different aspects of
perception and reasoning.
– Distractors must always be incorrect, concise, and stylistically consistent with the
correct answer.
– Pay attention to visual and contextual cues in the driving scene when selecting
distractors.
– If multiple images are provided, ensure selections remain valid across views or
highlight inconsistencies between them.
– Avoid redundancy: do not include distractors that repeat the same idea in different
wording.

Figure 6: Selector prompt for curating the most challenging and diverse distractors in autonomous
driving scenarios.
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