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Abstract

Dataset condensation is a crucial tool for enhancing training efficiency by reducing
the size of the training dataset, particularly in on-device scenarios. However, these
scenarios have two significant challenges: 1) the varying computational resources
available on the devices require a dataset size different from the pre-defined con-
densed dataset, and 2) the limited computational resources often preclude the pos-
sibility of conducting additional condensation processes. We introduce You Only
Condense Once (YOCO) to overcome these limitations. On top of one condensed
dataset, YOCO produces smaller condensed datasets with two embarrassingly sim-
ple dataset pruning rules: Low LBPE Score and Balanced Construction. YOCO
offers two key advantages: 1) it can flexibly resize the dataset to fit varying compu-
tational constraints, and 2) it eliminates the need for extra condensation processes,
which can be computationally prohibitive. Experiments validate our findings on
networks including ConvNet, ResNet and DenseNet, and datasets including CIFAR-
10, CIFAR-100 and ImageNet. For example, our YOCO surpassed various dataset
condensation and dataset pruning methods on CIFAR-10 with ten Images Per Class
(IPC), achieving 6.98-8.89% and 6.31-23.92% accuracy gains, respectively. The
code is available at: https://github.com/he-y/you-only-condense-once.

1 Introduction

Deep learning models often require vast amounts of data to achieve optimal performance. This
data-hungry nature of deep learning algorithms, coupled with the growing size and complexity of
datasets, has led to the need for more efficient dataset handling techniques. Dataset condensation is a
promising approach that enables models to learn from a smaller and more representative subset of
the entire dataset. Condensed datasets are especially utilized in on-device scenarios, where limited
computational resources and storage constraints necessitate the use of a compact training set.

However, these on-device scenarios have two significant constraints. First, the diverse and fluctuating
computational resources inherent in these scenarios necessitate a level of flexibility in the size of
the dataset. But the requirement of flexibility is not accommodated by the fixed sizes of previous
condensed datasets. Second, the limited computational capacity in these devices also makes extra
condensation processes impractical, if not impossible. Therefore, the need for adaptability in the size
of the condensed dataset becomes increasingly crucial. Furthermore, this adaptability needs to be
realized without introducing another computationally intensive condensation process.

We introduce You Only Condense Once (YOCO) to enable the flexible resizing (pruning) of
condensed datasets to fit varying on-device scenarios without extra condensation process (See Fig. 1).
The first rule of our proposed method involves a metric to evaluate the importance of training samples
in the context of dataset condensation.
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Figure 1: Previous methods (left) require extra
condensation processes, but ours (right) do not.

From the gradient of the loss function, we develop
the Logit-Based Prediction Error (LBPE) score
to rank training samples. This metric quantifies the
neural network’s difficulty in recognizing each sam-
ple. Specifically, training samples with low LBPE
scores are considered easy as they indicate that the
model’s prediction is close to the true label. These
samples exhibit simpler patterns, easily captured by
the model. Given the condensed datasets’ small size,
prioritizing easier samples with low LBPE scores
is crucial to avoid overfitting.

A further concern is that relying solely on a metric-
based ranking could result in an imbalanced distri-
bution of classes within the dataset. Imbalanced
datasets can lead to biased predictions, as models tend to focus on the majority class, ignoring the
underrepresented minority classes. This issue has not been given adequate attention in prior research
about dataset pruning [3, 41, 34], but it is particularly important when dealing with condensed datasets.
In order to delve deeper into the effects of class imbalance, we explore Rademacher Complexity [31],
a widely recognized metric for model complexity that is intimately connected to generalization error
and expected loss. Based on the analysis, we propose Balanced Construction to ensure that the
condensed dataset is both informative and balanced.

The key contributions of our work are: 1) To the best of our knowledge, it’s the first work to provide
a solution to adaptively adjust the size of a condensed dataset to fit varying computational constraints.
2) After analyzing the gradient of the loss function, we propose the LBPE score to evaluate the
sample importance and find out easy samples with low LBPE scores are suitable for condensed
datasets. 3) Our analysis of the Rademacher Complexity highlights the challenges of class imbalance
in condensed datasets, leading us to construct balanced datasets.

2 Related Works

2.1 Dataset Condensation/Distillation

Dataset condensation, or distillation, synthesizes a compact image set to maintain the original
dataset’s information. Wang et al. [45] pioneer an approach that leverages gradient-based hyper-
parameter optimization to model network parameters as a function of this synthetic data. Building
on this, Zhao et al. [53] introduce gradient matching between real and synthetic image-trained
models. Kim et al. [19] further extend this, splitting synthetic data into n factor segments, each
decoding into n2 training images. Zhao & Bilen [50] apply consistent differentiable augmentation
to real and synthetic data, thus enhancing information distillation. Cazenavette et al. [1] propose
to emulate the long-range training dynamics of real data by aligning learning trajectories. Liu
et al. [24] advocate matching only representative real dataset images, selected based on latent
space cluster centroid distances. Additional research avenues include integrating a contrastive
signal [21], matching distribution or features [52, 44], matching multi-level gradients [16], minimizing
accumulated trajectory error [7], aligning loss curvature [39], parameterizing datasets [6, 23, 51, 43],
and optimizing dataset condensation [27, 32, 33, 42, 55, 25, 49, 4, 26]. Nevertheless, the fixed size
of condensed datasets remains an unaddressed constraint in prior work.

2.2 Dataset Pruning

Unlike dataset condensation that alters image pixels, dataset pruning preserves the original data
by selecting a representative subset. Entropy [3] keeps hard samples with maximum entropy (un-
certainty [22, 38]), using a smaller proxy network. Forgetting [41] defines forgetting events as an
accuracy drop at consecutive epochs, and hard samples with the most forgetting events are important.
AUM [35] identifies data by computing the Area Under the Margin, the difference between the true
label logits and the largest other logits. Memorization [11] prioritizes a sample if it significantly
improves the probability of correctly predicting the true label. GraNd [34] and EL2N [34] classify
samples as hard based on the presence of large gradient norm and large norm of error vectors, respec-
tively. CCS [54] extends previous methods by pruning hard samples and using stratified sampling to
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achieve good coverage of data distributions at a large pruning ratio. Moderate [47] selects moderate
samples (neither hard nor easy) that are close to the score median in the feature space. Optimization-
based [48] chooses samples yielding a strictly constrained generalization gap. In addition, other
dataset pruning (or coreset selection) methods [8, 28, 36, 17, 30, 18, 2, 29, 9, 10, 46, 15] are widely
used for Active Learning [38, 37]. However, the previous methods consider full datasets and often
neglect condensed datasets.

3 Method

3.1 Preliminaries

We denote a dataset by S = (xi, yi)
N
i=1, where xi represents the ith input and yi represents the

corresponding true label. Let L(p(w, x), y) be a loss function that measures the discrepancy between
the predicted output p(w, x) and the true label y. The loss function is parameterized by a weight
vector w, which we optimize during the training process.

We consider a time-indexed sequence of weight vectors, wt, where t = 1, . . . , T . This sequence
represents the evolution of the weights during the training process. The gradient of the loss function
with respect to the weights at time t is given by gt(x, y) = ∇wt

L(p(wt, x), y).

3.2 Identifying Important Training Samples

Our goal is to propose a measure that quantifies the importance of a training sample. We begin by
analyzing the gradient of the loss function with respect to the weights wt:

∇wtL(p(wt, x), y) =
∂L(p(wt, x), y)

∂p(wt, x)
· ∂p(wt, x)

∂wt
. (1)

We aim to determine the impact of training samples on the gradient of the loss function, as the
gradient plays a critical role in the training process of gradient-based optimization methods. Note
that our ranking method is inspired by EL2N [34], but we interpret it in a different way by explicitly
considering the dataset size |S|.
Definition 1 (Logit-Based Prediction Error - LBPE): The Logit-Based Prediction Error (LBPE) of
a training sample (x, y) at time t is given by:

LBPEt(x, y) = E |p (wt, x)− y|2 , (2)

where wt is the weights at time t, and p(wt, x) represents the prediction logits.

Lemma 1 (Gradient and Importance of Training Samples): The gradient of the loss function
∇wtL(p(wt, x), y) for a dataset S is influenced by the samples with prediction errors.

Proof of Lemma 1: Consider two datasets S and S¬j , where S¬j is obtained by removing the sample
(xj , yj) from S. Let the gradients of the loss function for these two datasets be∇S

wt
L and∇S¬j

wt
L,

respectively. The difference between the gradients is given by (see Appendix A.1 for proof):

∆∇wt
L =

−1
|S|(|S| − 1)

∑
(x,y)∈S¬j

∂L(p(wt, x), y)

∂p(wt, x)
·∂p(wt, x)

∂wt
+

1

|S|
∂L (p (wt, xj) , yj)

∂p (wt, xj)
·∂p (wt, xj)

∂wt

(3)

Let us denote the error term as: ej = p(wt, xj)− yj , the LBPE score for sample (xj , yj) is given
by LBPEt(xj , yj) = E |ej |2, and the difference in gradients related to the sample (xj , yj) can be
rewritten as:

1

|S|
∂L(ej)
∂ej

· ∂p(wt, xj)

∂wt
. (4)

If the sample (xj , yj) has a lower LBPE score, it implies that the error term ej is smaller. Let’s
consider the mean squared error (MSE) loss function, which is convex. The MSE loss function is

3



Algorithm 1 Compute LBPE score for samples over epochs

Require: Training dataset S and its size |S|, weights wt, true labels y, model’s predicted probabilities
p(wt, x), number of epochs E, Epochs with Top-K accuracy

1: Initialize matrix: LBPE= torch.zeros((E, |S|)) ▷ LBPE scores over samples and epochs
2: Initialize accuracy: ACC= torch.zeros(E) ▷ Track the accuracy over epochs
3: for each epoch t in range E do ▷ Loop through each epoch
4: for each sample index i in S do ▷ Loop through each sample in the dataset
5: Compute error term for sample i at epoch t: ei,t = p(wt, xi)− yi
6: Compute LBPE score for sample i at epoch t with MSE loss: LBPEi,t = EMSE |ei,t|2
7: end for
8: Compute accuracy at epoch t: ACCt

9: end for
10: Top_K← argsort(ACC)[-k:] ▷ Find the epochs with the Top-K accuracy
11: AVG_LBPE← mean(LBPE[Top_k, :]) ▷ Average LBPE score over Top-K epochs
12: return AVG_LBPE

defined as L(ej) = 1
2 (ej)

2. Consequently, the derivative of the loss function ∂L(ej)
∂ej

= ej would be
smaller for samples with smaller LBPE scores, leading to a smaller change in the gradient ∆∇wt

L.

Rule 1: For a small dataset, a sample with a lower LBPE score will be more important. Let S
be a dataset of size |S|, partitioned into subsets Seasy (lower LBPE scores) and Shard (higher LBPE
scores).

Case 1: Small Dataset - When the dataset size |S| is small, the model’s capacity to learn complex
representations is limited. Samples in Seasy represent prevalent patterns in the data, and focusing on
learning from them leads to a lower average expected loss. This enables the model to effectively cap-
ture the dominant patterns within the limited dataset size. Moreover, the gradients of the loss function
for samples in Seasy are smaller, leading to faster convergence and improved model performance
within a limited number of training iterations.

Case 2: Large Dataset - When the dataset size |S| is large, the model has the capacity to learn
complex representations, allowing it to generalize well to both easy and hard samples. As the model
learns from samples in both Seasy and Shard, its overall performance improves, and it achieves higher
accuracy on hard samples. Training on samples in Shard helps the model learn more discriminative
features, as they often lie close to the decision boundary.

Therefore, in the case of a small dataset, samples with lower LBPE scores are more important.

The use of the LBPE importance metric is outlined in Algorithm 1. LBPE scores over the epochs with
the Top-K training accuracy are averaged. The output of this algorithm is the average LBPE score.

3.3 Balanced Construction

In this section, we prove that a more balanced class distribution yields a lower expected loss.

Definition 2.1 (Dataset Selection SA and SB): SA is to select images from each class based on their
LBPE scores such that the selection is balanced across classes, and SB is to select images purely
based on their LBPE scores without considering the class balance. Formally, we have:
SA = (xi, yi) : xi ∈ Xk, and LBPEt(xi, yi) ≤ τk, SB = (xi, yi) : LBPEt(xi, yi) ≤ τ (5)

where Xk denotes the set of images from class k, and τk is a threshold for class k, τ is a global
threshold. Then SA is a more balanced dataset compared to SB .

Definition 2.2 (Generalization Error): The generalization error of a model is the difference between
the expected loss on the training dataset and the expected loss on an unseen test dataset:

GenErr(w) = E[Ltest(w)]− E[Ltrain(w)]. (6)

Definition 2.3 (Rademacher Complexity): The Rademacher complexity [31] of a hypothesis class
H for a dataset S of size N is defined as:

RN (H) = E
σ

[
sup
h∈H

1

N

N∑
i=1

σih(xi)

]
, (7)
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Algorithm 2 Balanced Dataset Construction

Require: Condensed dataset S = (xi, yi)
m
i=1 with classes K, LBPE scores LBPE, class-specific

thresholds τ = τk
K
k=1 to ensure an equal number of samples for each class

1: Initialize SA = ∅ ▷ Initialize the balanced subset as an empty set
2: for each class k ∈ K do
3: Isel ← {i : yi = k and LBPEt(xi, yi) ≤ τk} ▷ Find indices of samples for class k
4: SA ← SA ∪ (xi, yi) : i ∈ Isel ▷ Add the selected samples to the balanced subset
5: end for
6: return SA ▷ Return the balanced subset

where σi are independent Rademacher random variables taking values in−1, 1 with equal probability.

Lemma 2.1 (Generalization Error Bound): With a high probability, the generalization error is
upper-bounded by the Rademacher complexity of the hypothesis class:

GenErr(w) ≤ 2RN (H) +O
(

1√
N

)
, (8)

where O represents the order of the term.

Lemma 2.2 (Rademacher Complexity Comparison): The Rademacher complexity of dataset SA is
less than that of dataset SB :

RNA
(H) ≤ RNB

(H). (9)

Theorem 2.1: The expected loss for the dataset SA is less than or equal to SB when both models
achieve similar performance on their respective training sets.

Proof of Theorem 2.1: Using Lemma 2.1 and Lemma 2.2, we have:

GenErr(wA) ≤ GenErr(wB). (10)

Assuming that both models achieve similar performance on their respective training sets, the training
losses are approximately equal:

E[Ltrain(wA)] ≈ E[Ltrain(wB)]. (11)

Given this assumption, we can rewrite the generalization error inequality as:

E[Ltest(wA)]− E[Ltrain(wA)] ≤ E[Ltest(wB)]− E[Ltrain(wB)]. (12)

Adding E[Ltrain(wA)] to both sides, we get:

E[Ltest(wA)] ≤ E[Ltest(wB)]. (13)

This result indicates that the balanced dataset SA is better than SB .

Theorem 2.2: Let SF and SC be the full and condensed datasets, respectively, and let both SF and
SC have an imbalanced class distribution with the same degree of imbalance. Then, the influence of
the imbalanced class distribution on the expected loss is larger for the condensed dataset SC than for
the full dataset SF .

Proof of Theorem 2.2: We compare the expected loss for the full and condensed datasets, taking
into account their class imbalances. Let L(h) denote the loss function for the hypothesis h. Let
E[L(h)|S] denote the expected loss for the hypothesis h on the dataset S. Let nkF and nkC denote
the number of samples in class k for datasets SF and SC , respectively. Let mF and mC denote the
total number of samples in datasets SF and SC , respectively. Let rk = nkF

mF
= nkC

mC
be the class ratio

for each class k in both datasets. The expected loss for SF and SC can be written as:

E[L(h)|SF ] =

K∑
k=1

rkE[l(h(x), y)|Xk], E[L(h)|SC ] =

K∑
k=1

rkE[l(h(x), y)|Xk], (14)

To show this, let’s compare the expected loss per sample in each dataset:

E[L(h)|SC ]

mC
>

E[L(h)|SF ]

mF
. (15)
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This implies that the influence of the imbalanced class distribution is larger for SC than for SF .

Rule 2: Balanced class distribution should be utilized for the condensed dataset. The construction
of a balanced class distribution based on LBPE scores is outlined in Algorithm 2. Its objective is to
create an equal number of samples for each class to ensure a balanced dataset.

4 Experiments

4.1 Experiment Settings

IPC stands for “Images Per Class”. IPCF→T means flexibly resize the condensed dataset from size F
to size T. More detailed settings can be found in Appendix B.1.

Dataset Condensation Settings. The CIFAR-10 and CIFAR-100 datasets [20] are condensed via
ConvNet-D3 [12], and ImageNet-10 [5] via ResNet10-AP [13], both following IDC [19]. IPC
includes 10, 20, or 50, depending on the experiment. For both networks, the learning rate is 0.01
with 0.9 momentum and 0.0005 weight decay. The SGD optimizer and a multi-step learning rate
scheduler are used. The training batch size is 64, and the network is trained for 2000× 100 epochs
for CIFAR-10/CIFAR-100 and 500× 100 epochs for ImageNet-10.

YOCO Settings. 1) LBPE score selection. To reduce computational costs, we derive the LBPE
score from training dynamics of early E epochs. To reduce variance, we use the LBPE score from
the top-K training epochs with the highest accuracy. For CIFAR-10, we set E = 100 and K = 10
for all the IPCF and IPCT. For CIFAR-100 and ImageNet-10, we set E = 200 and K = 10 for
all the IPCF and IPCT. 2) Balanced construction. We use SA in Eq. 5 to achieve a balanced
construction. Following IDC [19], we leverage a multi-formation framework to increase the synthetic
data quantity while preserving the storage budget. Specifically, an IDC-condensed image is composed
of n2 patches. Each patch is derived from one original image with the resolution scaled down by a
factor of 1/n2. Here, n is referred to as the “factor" in the multi-formation process. For CIFAR-10 and
CIFAR-100 datasets, n = 2; for ImageNet-10 dataset, n = 3. We create balanced classes according
to these patches. As a result, all the classes have the same number of samples. 3) Flexible resizing.
For datasets with IPCF = 10 and IPCF = 20, we select IPCT of 1, 2, and 5. For IPCF = 50, we
select IPCT of 1, 2, 5, and 10. For a condensed dataset with IPCF, the performance of its flexible
resizing is indicated by the average accuracy across different IPCT values.

Comparison Baselines. We have two sets of baselines for comparison: 1) dataset condensation
methods including IDC[19], DREAM[24], MTT [1], DSA [50] and KIP [32] and 2) dataset pruning
methods including SSP [40], Entropy [3], AUM [35], Forgetting [41], EL2N [34], and CCS [54]. For
dataset condensation methods, we use a random subset as the baseline. For dataset pruning methods,
their specific metrics are used to rank and prune datasets to the required size.

4.2 Primary Results

Tab. 1 provides a comprehensive comparison of different methods for flexibly resizing datasets
from an initial IPCF to a target IPCT. In this table, we have not included ImageNet results on
DREAM [24] since it only reports on Tiny ImageNet with a resolution of 64×64, in contrast to
ImageNet’s 224×224. The third column of the table shows the accuracy of the condensed dataset at
the parameter IPCF. We then flexibly resize the dataset from IPCF to IPCT. The blue area represents
the average accuracy across different IPCT values. For instance, consider the CIFAR-10 dataset
with IPCF = 10. Resizing it to IPCF = 1, 2, and 5 using our method yields accuracies of 42.28%,
46.67%, and 55.96%, respectively. The average accuracy of these three values is 48.30%. This value
surpasses the 37.08% accuracy of SSP [40] by a considerable margin of 11.22%.

Table 2: Ablation study on two rules. (CIFAR-
10: IPC10→1)

LBPE Balanced IDC [19] DREAM [24] MTT [1] KIP [32]

- - 28.23 30.87 19.75 14.06
- ✓ 30.19 32.83 19.09 16.27
✓ - 39.38 37.30 20.37 15.78
✓ ✓ 42.28 42.29 22.02 22.24

Ablation Study. Tab. 2 shows the ablation study
of the LBPE score and the balanced construction
across dataset condensation methods. In the first
row, the baseline results are shown where neither the
LBPE score nor the balanced construction is applied.
“Balanced only” (second row) indicates the selection
method is random selection and the class distribution
is balanced. “LBPE only” (third row) means the
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Table 1: IPC means “images per class”. Flexibly resize dataset from IPCF to IPCT (IPCF→T). The
blue areas represent the average accuracy of listed IPCT datasets for different values of T. The
gray areas indicate the accuracy difference between the corresponding methods and ours.

Dataset IPCF Acc. IPCT
Condensation Pruning Method

IDC[19] DREAM[24] SSP[40] Entropy[3] AUM[35] Forg.[41] EL2N[34] CCS[54] Ours

CIFAR-10

10 67.50

1 28.23 30.87 27.83 30.30 13.30 16.68 16.95 33.54 42.28
2 37.10 38.88 34.95 38.88 18.44 22.13 23.26 39.20 46.67
5 52.92 54.23 48.47 52.85 41.40 45.49 46.58 53.23 55.96

Avg. 39.42 41.33 37.08 40.68 24.38 28.10 28.93 41.99 48.30
Diff. -8.89 -6.98 -11.22 -7.63 -23.92 -20.20 -19.37 -6.31 -

50 74.50

1 29.45 27.61 28.99 17.95 7.21 12.23 7.95 31.28 38.77
2 34.27 36.11 34.51 24.46 8.67 12.17 9.47 38.71 44.54
5 45.85 48.28 46.38 34.12 12.85 15.55 16.03 48.19 53.04
10 57.71 59.11 56.81 47.61 22.92 27.01 31.33 56.80 61.10

Avg. 41.82 42.78 41.67 31.04 12.91 16.74 16.20 43.75 49.36
Diff. -7.54 -6.58 -7.69 -18.33 -36.45 -32.62 -33.17 -5.62 -

CIFAR-100

10 45.40

1 14.78 15.05 14.94 11.28 3.64 6.45 5.12 18.97 22.57
2 22.49 21.78 20.65 16.78 5.93 10.03 8.15 25.27 29.09
5 34.90 35.54 30.48 29.96 17.32 21.45 22.40 36.01 38.51

Avg. 24.06 24.12 22.02 19.34 8.96 12.64 11.89 26.75 30.06
Diff. -6.00 -5.93 -8.03 -10.72 -21.09 -17.41 -18.17 -3.31 -

20 49.50

1 13.92 13.26 14.65 5.75 2.96 7.59 4.59 18.72 23.74
2 20.62 20.41 20.27 8.63 3.96 10.64 6.18 24.08 29.93
5 31.21 31.81 30.34 17.51 8.25 17.63 11.76 32.81 38.02

Avg. 21.92 21.83 21.75 10.63 5.06 11.95 7.51 25.20 30.56
Diff. -8.65 -8.74 -8.81 -19.93 -25.51 -18.61 -23.05 -5.36 -

50 52.60

1 13.41 13.36 15.90 1.86 2.79 9.03 4.21 19.05 23.47
2 20.38 19.97 21.26 2.86 3.04 12.66 5.01 24.32 29.59
5 29.92 29.88 29.63 6.04 4.56 20.23 7.24 31.93 37.52
10 37.79 37.85 36.97 13.31 8.56 29.11 11.72 38.05 42.79

Avg. 25.38 25.27 25.94 6.02 4.74 17.76 7.05 28.34 33.34
Diff. -7.97 -8.08 -7.40 -27.33 -28.61 -15.59 -26.30 -5.01 -

DUMMY
ImageNet-10

10 72.80

1 44.93 - 45.69 40.98 17.84 32.07 41.00 44.27 53.91
2 57.84 - 58.47 52.04 29.13 44.89 54.47 56.53 59.69
5 67.20 - 63.11 64.60 44.56 55.13 65.87 67.36 64.47

Avg. 56.66 - 55.76 52.54 30.51 44.03 53.78 56.05 59.36
Diff. 2.70 - 3.60 6.82 28.85 15.33 5.58 3.31 -

20 76.60

1 42.00 - 43.13 36.13 14.51 24.98 24.09 34.64 53.07
2 53.93 - 54.82 46.91 19.09 31.27 33.16 42.22 58.96
5 59.56 - 61.27 56.44 27.78 36.44 46.02 57.11 64.38

Avg. 51.83 - 53.07 46.49 20.46 30.90 34.42 44.66 58.80
Diff. 6.97 - 5.73 12.31 38.34 27.90 24.38 14.14 -

LBPE score is used for ranking samples, and the selection results are purely based on the LBPE score
without considering the class balance. “LBPE + Balanced” indicates that both elements are included
for sample selection. The empirical findings conclusively affirm the effectiveness of the two rules,
which constitute the principal contributions of our YOCO method.

Standard Deviation of Experiments. Different training dynamics and network initializations
impact the final results. Therefore, the reported results are averaged over three different training
dynamics, and each training dynamic is evaluated based on three different network initializations.
See Appendix B.2 for the primary results table with standard deviation.

4.3 Analysis of Two Rules

4.3.1 Analysis of LBPE Score for Sample Ranking

Tab. 3 illustrates the robust performance of our YOCO method across diverse network structures,
including ConvNet, ResNet, and DenseNet, demonstrating its strong generalization ability. Addition-
ally, we present different sample ranking metrics from dataset pruning methods on these networks,
demonstrating that our method outperforms both random selection and other data pruning methods.

In Tab. 4, we experiment with prioritizing easy samples over hard ones. We achieve this by reversing
the importance metrics introduced by AUM [35], Forg. [41], and EL2N [34] that originally prioritize
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Table 3: Accuracies on different network
structures and different sample ranking
metrics. (IDC [19] condensed CIFAR-
10: IPC10→1)

ConvNet [12] ResNet [13] DenseNet [14]

Random 28.23 24.14 24.63
SSP[40] 27.83 24.64 24.75
Entropy[3] 30.30 30.53 29.93
AUM[35] 13.30 15.04 14.56
Forg.[41] 16.68 16.75 17.43
EL2N[34] 16.95 19.98 21.43
Ours 42.28 34.53 34.29

Table 4: Prioritizing easy samples is better for differ-
ent dataset pruning and dataset condensation methods.
“R?” represents whether to reverse the metrics which
prioritize hard samples. (CIFAR-10: IPC10→1)

Method R? IDC[19] DREAM[24] MTT[1] DSA[50]

AUM [35] - 13.30 14.43 15.33 14.25
AUM [35] ✓ 37.97 38.18 16.63 18.23
Forg. [41] - 16.68 16.26 18.82 16.55
Forg. [41] ✓ 36.69 36.15 16.65 17.03
EL2N [34] - 16.95 18.13 16.98 13.14
EL2N [34] ✓ 33.11 34.36 19.01 21.29
Ours - 42.28 42.29 22.02 22.40

Table 5: Balanced construction works on different dataset pruning methods. “B?” represents
whether to use balanced construction. The subscript +value indicates the accuracy gain from balanced
construction. (IDC [19] condensed CIFAR-10: IPC10→T)

IPCT B? Random SSP [40] Entropy [3] AUM [35] Forg. [41] EL2N [34] Ours

IPC1 - 28.23 27.83 30.30 13.30 16.68 16.95 37.63
✓ 30.05+1.82 33.21+5.38 33.67+3.37 15.64+2.34 19.09+2.41 18.43+1.48 42.28+4.65

IPC2 - 37.10 34.95 38.88 18.44 22.13 23.26 42.99
✓ 39.44+2.34 40.57+5.62 42.17+3.29 23.84+5.40 28.06+5.93 26.54+3.28 46.67+3.68

IPC5 - 52.92 48.47 52.85 41.40 45.49 46.58 53.86
✓ 52.64−0.28 49.44+0.97 54.73+1.88 47.23+5.83 48.02+2.53 48.86+2.28 55.96+2.10

hard samples. Our results indicate that across various condensed datasets, including IDC [19],
DREAM [24], MTT [1], and DSA [50], there is a distinct advantage in prioritizing easier samples
over harder ones. These findings lend support to our Rule 1.

4.3.2 Analysis of Balanced Construction

Fig. 2 presents the class distributions with and without a balanced construction for different datasets
and different IPCF→T. As explained in YOCO settings, our balanced construction is based on the
multi-formation framework from IDC [19]. Therefore, the x-axis represents the count of images after
multi-formation instead of the condensed images. It is evident that a ranking strategy relying solely
on the LBPE score can result in a significant class imbalance, particularly severe in the ImageNet
dataset. As depicted in Fig. 2(f), three classes have no image patches left. Our balanced construction
method effectively mitigates this issue. Notably, in the case of ImageNet-1010→1, the balanced
construction boosts the accuracy by an impressive 19.37%.

To better understand the impact of balanced class distribution on various dataset pruning methods,
we conducted a comparative analysis, as presented in Tab. 5. Clearly, achieving a balanced class
distribution significantly enhances the performance of all examined methods. Remarkably, our
proposed method consistently outperforms others under both imbalanced and balanced class scenarios,
further substantiating the efficacy of our approach.

4.4 Other Analysis

Sample Importance Rules Differ between Condensed Dataset and Full Dataset. In Fig. 3, we
compare Sample Importance Rules for Condensed Datasets (IPC10, IPC50) and the Full Dataset
(IPC5000), by adjusting the pruning ratio from 10% to 90%. Unmarked solid lines mean prioritizing
easy samples, dashed lines suggest prioritizing hard samples, while marked solid lines depict the
accuracy disparity between the preceding accuracies. Therefore, the grey region above zero indi-
cates “Prefer easy samples” (Ruleeasy), while the blue region below zero represents “Prefer hard
samples”(Rulehard). We have two observations. First, as the pruning ratio increases, there is a
gradual transition from Rulehard to Ruleeasy. Second, the turning point of this transition depends
on the dataset size. Specifically, the turning points for IPC10, IPC50, and IPC5000 occur at pruning
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Figure 2: Balanced and imbalanced selection by ranking
samples with LBPE score. DatasetF→T denotes resizing the
dataset from IPCF to IPCT. Accuracies for each setting are
also listed in the legend. (IDC [19] condensed datasets)
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ratios of 24%, 38%, and 72%, respectively. These experimental outcomes substantiate our Rule 1
that condensed datasets should adhere to Ruleeasy .

Figure 4: Illustration of the multi-formation
with a factor of 2. (Taken from IDC [19])

Performance Gap from Multi-formation. We
would like to explain the huge performance gap be-
tween multi-formation-based methods (IDC [19] and
DREAM [24]) and other methods (MTT [1], KIP [33],
and DSA [50]) in Tab. 2 and Tab. 4. The potential
reason is that a single image can be decoded to 22 = 4
low-resolution images via multi-formation. As a re-
sult, methods employing multi-formation generate
four times as many images compared to those that
do not use multi-formation. The illustration is shown
in Fig. 4.

Why Use LBPE Score from the Top-K Training Epochs with the Highest Accuracy? As shown
in Eq. 2, different training epoch t leads to a different LBPE score. Fig. 5 illustrates the accuracy
of the dataset selected via the LBPE score across specific training epochs. We select LBPE scores
from the initial 100 epochs out of 1000 original epochs to reduce computational costs. We have two
observations. First, the model’s accuracy during the first few epochs is substantially low. LBPE scores
derived from these early-stage epochs might not accurately represent the samples’ true importance
since the model is insufficiently trained. Second, there’s significant variance in accuracy even after
40 epochs, leading to potential instability in the LBPE score selection. To address this, we average
LBPE scores from epochs with top-K accuracy, thereby reducing variability and ensuring a more
reliable sample importance representation.

Speculating on Why LBPE Score Performs Better at Certain Epochs? In Fig. 7, we present the
distribution of LBPE scores at various training epochs, with scores arranged in ascending order for
each class to facilitate comparison across epochs. Our experiment finds the LBPE scores decrease
as the epoch number increases. The superior accuracy of LBPE90 is due to two reasons. First, the
model at the 90th epoch is more thoroughly trained than the model at the first epoch, leading to more
accurate LBPE scores. Second, the LBPE90 score offers a more uniform distribution and a wider
range [0, 1], enhancing sample distinction. In contrast, the LBPE1000 score is mostly concentrated
within a narrow range [0, 0.1] for the majority of classes, limiting differentiation among samples.
More possible reasons will be explored in future studies.

Visualization. Fig. 6 visualizes the easy and hard samples identified by our YOCO method. We
notice that most easy samples have a distinct demarcation between the object and its background. This
is particularly evident in the classes of “vacuum cleaner” and “cocktail shaker”. The easy samples in
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Figure 7: LBPE scores at different epochs (LBPEepoch) for ten classes of the CIFAR-10 dataset.

these two classes have clean backgrounds, while the hard samples have complex backgrounds. The
visualization provides evidence of our method’s ability to identify easy and hard samples.

5 Conclusion, Limitation and Future Work

We introduce You Only Condense Once (YOCO), a novel approach that resizes condensed datasets
flexibly without an extra condensation process, enabling them to adjust to varying computational
constraints. YOCO comprises two key rules. First, YOCO employs the Logit-Based Prediction Error
(LBPE) score to rank the importance of training samples and emphasizes the benefit of prioritizing
easy samples with low LBPE scores. Second, YOCO underscores the need to address the class
imbalance in condensed datasets and utilizes Balanced Construction to solve the problem. Our
experiments validated YOCO’s effectiveness across different networks and datasets. These insights
offer valuable directions for future dataset condensation and dataset pruning research.

We acknowledge several limitations and potential areas for further investigation. First, although our
method uses early training epochs to reduce computational costs, determining the sample importance
in the first few training epochs or even before training is interesting for future work. Second, we only
utilize the LBPE score to establish the importance of samples within the dataset. However, relying
on a single metric might not be the optimal approach. There are other importance metrics, such as
SSP [40] and AUM [35], that could be beneficial to integrate into our methodology. Third, as our
current work only covers clean datasets like CIFAR-10, the performance of our method on noisy
datasets requires further investigation.

The border impact is shown in Appendix C.
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