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Abstract

In this study, we revisit the convergence of Ada-
Grad with momentum (covering AdaGrad as a
special case) on non-convex smooth optimization
problems. We consider a general noise model
where the noise magnitude is controlled by the
function value gap together with the gradient
magnitude. This model encompasses a broad
range of noises including bounded noise, sub-
Gaussian noise, affine variance noise and the ex-
pected smoothness, and it has been shown to be
more realistic in many practical applications. Our
analysis yields a probabilistic convergence rate
which, under the general noise, could reach at
Õ(1/

√
T ). This rate does not rely on prior knowl-

edge of problem-parameters and could accelerate
to Õ(1/T ) where T denotes the total number it-
erations, when the noise parameters related to the
function value gap and noise level are sufficiently
small. The convergence rate thus matches the lower
rate for stochastic first-order methods over non-
convex smooth landscape up to logarithm terms
[Arjevani et al., 2023]. We further derive a conver-
gence bound for AdaGrad with momentum, consid-
ering the generalized smoothness where the local
smoothness is controlled by a first-order function
of the gradient norm.

1 INTRODUCTION

In recent years, AdaGrad [Duchi et al., 2011] and its variants
have witnessed a large success in solving the following
stochastic optimization problems:

min
x∈Rd

f(x), where f(x) = Eζ [fζ(x; ζ)].

Distinct from vanilla Stochastic Gradient Descent (SGD)
[Robbins and Monro, 1951], which typically requires

smoothness or Lipschitz constants for tuning step-sizes,
AdaGrad applies an adaptive step-size with each coordinate
satisfying that

ηt,i =
η√∑t

s=1 g
2
s,i + ϵ

, ∀t ∈ N, i ∈ [d],

where ϵ > 0 is a constant and gs,i denotes the i-th coordi-
nate of the stochastic gradient gs. This approach assigns
larger step-sizes for infrequent features whose correspond-
ing gradients are small, reminding learners of taking notice
of those infrequent features. It also liberates the algorithm
from the need for problem-parameters, which may be chal-
lenging to obtain in practical applications. Moreover, Ada-
Grad’s efficiency has been empirically validated, especially
in scenarios with sparse gradients [Duchi et al., 2011].

Numerous works have studied the convergence of AdaGrad
and its scalar version, AdaGrad-Norm [Duchi et al., 2011,
Streeter and McMahan, 2010]. Duchi et al. [2011] first pro-
vided the convergence bound of AdaGrad on online convex
optimization. In non-convex smooth scenario, Ward et al.
[2020] first obtained a convergence bound for AdaGrad-
Norm without pre-tuning step-sizes, assuming bounded gra-
dients and noises. Liu et al. [2023b] proved the convergence
for AdaGrad under coordinate-wise sub-Gaussian noise, dis-
carding the bounded gradient assumption.

Recently, several studies have proven AdaGrad-Norm’s con-
vergence under the affine variance noise, both in expectation
[Faw et al., 2022, Wang et al., 2023] and in high probability
[Attia and Koren, 2023]. The noise model assumes that the
stochastic gradient g(x),∀x ∈ Rd satisfies that for some
constants B,C > 0,

E∥g(x)−∇f(x)∥2 ≤ B∥∇f(x)∥2 + C

or ∥g(x)−∇f(x)∥2 ≤ B∥∇f(x)∥2 + C.
(1)

This noise model, verified in machine learning applications
with feature noise [Fuller, 2009, Khani and Liang, 2020],
and in robust linear regression [Xu et al., 2008], offers a
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more realistic portrayal by allowing the noise norm to in-
crease with the gradient norm, covering both bounded noise
and sub-Gaussian noise. These studies not only provided
a convergence rate of Õ(1/

√
T ), but also addressed chal-

lenges posed by the entanglement of adaptive step-sizes and
stochastic gradients, and the additional variance in (1). How-
ever, to the best of our knowledge, none of existing works
have proved the convergence of vanilla AdaGrad under (1)
without assuming bounded gradients. Moreover, the distinct
step-size for each coordinate in AdaGrad, as opposed to
an unified step-size for all coordinates in AdaGrad-Norm,
brings more challenges when considering (1).

In this paper, we provide a deep analysis framework and
establish a probabilistic convergence bound for AdaGrad
with heavy-ball style momentum, covering AdaGrad as a
special case. More importantly, we consider a general noise
model such that for some constants A,B,C ≥ 0,

∥g(x)−∇f(x)∥2 ≤ A(f(x)− f∗) +B∥∇f(x)∥2 + C,

(2)

where f(x) ≥ f∗,∀x ∈ Rd. It’s obvious to verify that (2) is
strictly weaker than the almost surely affine variance noise in
(1), and thus than the bounded noise or sub-Gaussian noise
condition1. Indeed, (2) could be regarded as an extension
of (1) and the following expected smoothness condition
[Gower et al., 2019, Grimmer, 2019, Wang and Yuan, 2023],

E∥g(x)∥2 ≤ A(f(x)− f∗) +B

or ∥g(x)∥2 ≤ A(f(x)− f∗) +B.
(3)

Existing researches have studied SGD’s convergence be-
havior under (2) with smooth objective functions, both in
asymptotic [Poljak and Tsypkin, 1973] and non-asymptotic
view [Khaled and Richtárik, 2023]. More importantly, it has
been shown that numerous of practical stochastic gradient
settings satisfy (2) but out of the range of (1), including
commonly used perturbation, sub-sampling and compres-
sion [Khaled and Richtárik, 2023]. However, the analysis
for SGD could not be directly extended to AdaGrad due to
the correlation of adaptive-sizes and stochastic gradients,
and the coordinate-wise performance in AdaGrad.

Finally, we apply our analysis framework to the (L0, L1)-
smoothness where the local smoothness of f satisfies that
when ∥y − x∥ ≤ 1/L1,

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1∥∇f(x)∥)∥y − x∥. (4)

This assumption was proposed by [Zhang et al., 2020b]
through empirical studies on language models and later ver-
ified in large language models, e.g., [Zhang et al., 2020a,

1For conciseness, we mainly consider the almost-sure version
of this general noise model. Extending our high probability analy-
sis from an almost-sure version to a sub-Gaussian version is easy,
which will be included in Appendix.

Crawshaw et al., 2022]. (4) generalizes the standard global
smoothness condition and allows unbounded smooth param-
eter, bringing more challenges for the convergence analy-
sis of adaptive methods. Previous works [Faw et al., 2023,
Wang et al., 2023] have derived convergence bounds for
AdaGrad-Norm with (1) and (4). Also, prior knowledge
of problem-parameters is necessary as pointed out by the
counter examples in [Wang et al., 2023]. However, the anal-
ysis for coordinate-wise AdaGrad is non-trivial and requires
more delicate constructions, particularly when considering
the weaker noise assumption in (2).

In the following, we will summarize our main contributions
as follows. We also refer readers to see the comparison of
our results with existing works in Table 1 from the appendix.

Contribution

• We demonstrate the probabilistic convergence of Ada-
Grad with momentum on non-convex smooth optimiza-
tion under a general noise assumption in (2). For an
L-smooth function f , we demonstrate that after T iter-
ations of the algorithm, with probability at least 1− δ,∑T

s=1 ∥∇f(xs)∥2/T is bounded by

O

poly
(
log T

δ

)
T

+

√
(A+ C)poly

(
log T

δ

)
T

 ,

which could also accelerate to Õ(1/T ) rate when the
noise parameters A,C are sufficiently low.

• As direct corollaries, we also derive similar probabilis-
tic convergence results of AdaGrad on non-convex
smooth optimization with affine variance noise. More
importantly, the convergence rate is optimal and adap-
tive to the noise level C in (1).

• We derive a convergence bound for AdaGrad with mo-
mentum considering (2) and (4). The rate is similar
to the smooth case and adaptive to the noise level
as well, and necessitating problem-parameters to tune
step-sizes.

Our analysis relies on the descent lemma with telescoping,
and the novel decomposition and estimations over the first-
order term related to new proxy step-sizes that are used
to decorrelate stochastic gradients and adaptive step-sizes
in this new noise regime. We also prove that the function
value gap as well as the gradient norm are controlled by the
polynomial of log T along the optimization process.

The rest of the paper are organized as follows. The next
section introduces some extra related works. Section 3 pro-
vides the problem setup and basic assumptions, and the
introduction of AdaGrad with momentum. Section 4 pro-
vides high probability convergence bounds for AdaGrad
with momentum, and also for AdaGrad as direct corollaries.
Section 5 provides proof details for the main results. Section
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6 presents necessary introduction of the generalized smooth
condition and the subsequent convergence result. All miss-
ing proofs for some of the lemmas and convergence results
under generalized smoothness are given in Appendix.

2 RELATED WORKS

SGD and its adaptive variants have been a target of intense
interest in the last decade. We refer to [Bottou et al., 2018,
Ruder, 2016] for an overview. We limit our discussions to
the most relevant literature in the sequel.

Convergence of AdaGrad Numerous of works mainly
studied the convergence of AdaGrad-Norm over non-convex
smooth landscape. Li and Orabona [2019] first proved the
convergence for AdaGrad-Norm. However, they studied a
variant with a delayed step-size that is independent from the
current stochastic gradient and required knowledge of the
smoothness parameter for tuning step-sizes. Getting rid of
prior-knowledge on problem-parameters, Ward et al. [2020]
relied on a novel proxy step-size technique and showed the
convergence with an uniform bound of stochastic gradients
for vanilla AdaGrad-Norm. Kavis et al. [2022] and Liu et al.
[2023b] proved probabilistic convergence under the sub-
Gaussian noise without relying on the bounded gradient
assumption. In case of the affine variance noise, Faw et al.
[2022] provided the convergence bound. However, their rate
is adaptive to the noise level only when B ∼ O(1/T ). Wang
et al. [2023] relied on a distinct framework to improve the de-
pendency on T in the convergece rate [Faw et al., 2022] and
achieved the adaptivity on noise level without any restriction
over B. Concurrently, Attia and Koren [2023] deduced a
probabilistic bound, using a novel induction argument to
control the function value gap. Their result also adapted
to the noise level without further requirement on B. Liu
et al. [2023a] formulated a convergence bound for AdaGrad-
Norm and its acceleration version in quasar-convex smooth
setting.

The element-wise version of AdaGrad was first studied in
[Duchi et al., 2011] on online convex optimization. In non-
convex smooth case, a line of works investigated AdaGrad
with bounded gradients. Zou et al. [2019] explored the con-
vergence of AdaGrad with a heavy-ball or Nesterov style
momentum. Zhou et al. [2020] also covered AdaGrad in
their analysis, but they deduced a bound under requiring
bounded gradients’ summation. Défossez et al. [2022] stud-
ied AdaGrad with Adam-type momentum and improved the
dependency on the momentum parameter β to O((1−β)−1).
Shen et al. [2023] introduced a weighted AdaGrad with uni-
fied momentum covering both heavy-ball and Nesterov’s
acceleration. Recently, Liu et al. [2023b], a work mentioned
before, derived a convergence bound under coordinate-wise
sub-Gaussian noise, i.e., g(x)i −∇f(x)i is sub-Gaussian
for each i ∈ [d], without requiring bounded gradients.

Convergence with affine variance noise We briefly sum-
marize some works on the convergence of SGD or AdaGrad
with (1) and its variants under the non-convex smooth land-
scape. Bertsekas and Tsitsiklis [2000] provided an almost-
surely convergence bound for SGD. In non-asymptotic view,
Bottou et al. [2018] derived a convergence bound for SGD of
the form O(1/T +

√
C/T ) when step-sizes are well tuned

by the smooth parameter, B and C. They also pointed out
that the extension is immediate from the bounded noise case
[Ghadimi and Lan, 2013]. The convergence of AdaGrad-
Norm under (1) has been well studied by [Faw et al., 2022,
Wang et al., 2023, Attia and Koren, 2023] as mentioned
before. Faw et al. [2023] further extended the analysis con-
sidering a generalized smooth condition. However, none
of these existing works could prove the convergence of
coordinate-wise version of AdaGrad under (1) or a weaker
noise condition.

Convergence with the expected smoothness The ex-
pected smoothness condition was once applied for convex
optimization such that for some constant A > 0,

E[∥g(x)− g(x∗)∥2] ≤ A(f(x)− f∗), (5)

where x∗ denotes the global minimizer. Based on (5),
Richtárik and Takác [2020] relied on matrix analysis to
bound the identities of expected iterates of SGD in the set-
ting of stochastic reformulations of linear systems. Gower
et al. [2021] applied (5) to analyze the JacSketch method (a
general form of SAGA) over strongly convex optimization.

Since x∗ is ill-defined for non-convex optimization, Gower
et al. [2019] then directly set E[∥g(x∗)∥2] = B and deduced
the non-convex version of the expected smoothness in (3),
which aligns with the weak growth condition [Vaswani et al.,
2019] when B = 0. Gower et al. [2019] relied on (3) to
analyze SGD over quasi-strongly convex optimization. In-
dependently, Grimmer [2019] relied on (3) and developed
a general framework for SGD equipped with projection op-
erators over convex non-smooth functions. Wang and Yuan
[2023] also used (3) to derive a convergence bound for SGD
using bandwidth-based step-sizes.

Regarding the noise model in (2), Poljak and Tsypkin
[1973] provided an asymptotic convergence bound for SGD
with smooth objective functions. Very recently, Khaled and
Richtárik [2023] derived a non-asymptotic convergence rate
of O(1/

√
T ) for SGD with non-convex smooth functions.

In conclusion, it’s clear to see that (2) is weaker than the
above conditions including (1) (when assuming the exis-
tence of f∗), (3) and (5)2. Our result then shows that Ada-
Grad could find a stationary point under this mild noise as-
sumption without prior knowledge of problem-parameters.

2We make the comparison when assuming all conditions are
in almost-surely form.
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Convergence with generalized smoothness The gener-
alized smooth condition [Zhang et al., 2020b] has been
well studied under different algorithms, e.g., [Qian et al.,
2021, Zhao et al., 2021, Reisizadeh et al., 2023, Zhang et al.,
2020a, Crawshaw et al., 2022]. Considering AdaGrad and
its variants, Faw et al. [2023] established a convergence
bound for AdaGrad-Norm considering (1). However, their
result required B < 1. Wang et al. [2023] further tightened
the dependency to the iteration number T and got rid of
restriction on B.

3 PROBLEM SETTING AND
ALGORITHM

We consider unconstrained stochastic optimization over the
Euclidean space Rd with l2-norm. The objective function
f : Rd → R is L-smooth satisfying that for any x,y ∈ Rd,

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L

2
∥x− y∥2.

Given x ∈ Rd, we assume a gradient oracle that returns a
random vector g(x, z) ∈ Rd, where z denotes a random
sample. The deterministic gradient of f at x is denoted by
∇f(x) ∈ Rd.

Notations We denote the set {1, 2, · · · , T} as [T ], and
use ∥ · ∥, ∥ · ∥1, and ∥ · ∥∞ to represent the l2-norm, l1-norm,
and l∞-norm, respectively. The notations a ∼ O(b) and
a ≤ O(b) refer to a = c1b and a ≤ c2b with c1, c2 being
positive universal constants, and a ≤ Õ(b) indicates a ≤
O(b)poly(log b). For any vector x ∈ Rd, the expressions
x2 and

√
x refer to the coordinate-wise square and square

root. For two vectors x,y ∈ Rd, x ⊙ y and x/y denote
the coordinate-wise product and quotient. 0d and 1d signify
zero and one vectors in d dimensions. Further, we write
1d/x as 1/x, whenever there is no any confusion.

Assumption We make the following assumptions.

• (A1) Bounded below: The objective function is
bounded below, i.e., there exists f∗ > −∞ such that
f(x) ≥ f∗,∀x ∈ Rd;

• (A2) Unbiased estimator: The gradient oracle pro-
vides an unbiased estimator of ∇f(x), i.e., ∀x ∈ Rd,
Ez [g(x, z)] = ∇f(x);

• (A3) Relaxed affine variance noise: The gradient
oracle satisfies that for some constants A,B,C > 0,
∥g(x, z)−∇f(x)∥2 ≤ A(f(x)−f∗)+B∥∇f(x)∥2+
C, a.s.,∀x ∈ Rd.

The first two assumptions are standard in the analysis of
algorithm’s convergence. With a simple calculation, it’s easy
to verify that Assumption (A3) is equivalent to

∥g(x, z)∥2 ≤ A′(f(x)− f∗) +B′∥∇f(x)∥2 + C ′

for another three positive constants A′, B′, C ′. Therefore,
(A3) is a generalization of (1) and (3). For more detailed
examples of stochastic gradient settings satisfying Assump-
tion (A3), we refer interested readers to see [Khaled and
Richtárik, 2023, Proposition 2,3].

Algorithm 1 AdaGrad with momentum

Input: Horizon T , x1 ∈ Rd, β ∈ [0, 1), m0 = v0 = 0d,
η, ϵ > 0, ϵ = ϵ1d

for s = 1, · · · , T do
Draw a random sample zs and generate gs =
g(xs, zs);
vs = vs−1 + g2

s ;
ms = βms−1 − ηgs/

(√
vs + ϵ

)
;

xs+1 = xs +ms;
end for

AdaGrad with momentum Throughout the paper, we
study AdaGrad with momentum given in Algorithm 1. We
can transform Algorithm 1 into the classical Polyak’s heavy-
ball method [Polyak, 1964] with an adaptive step-size:

xs+1 = xs− η
gs√
vs + ϵ

+β(xs−xs−1), ∀s ∈ [T ], (6)

where we set x0 = x1.

AdaGrad AdaGrad is Algorithm 1 with β = 0.

4 MAIN CONVERGENCE RESULT

In this section, we provide the probabilistic convergence
result for Algorithm 1 under Assumption (A3) and smooth
objective functions.

Theorem 1. Given T ≥ 1, let {xs}s∈[T ] be generated by
Algorithm 1. If Assumptions (A1), (A2), (A3) hold, then for
any β ∈ [0, 1), η, ϵ > 0 and δ ∈ (0, 1), it holds that with
probability at least 1− δ,

1

T

T∑
s=1

∥∇f(xs)∥2

≤O

[
∆1

(
B1∆1 +

√
B1L∆+ ϵ

T
+

√
A∆+ C

T

)]
,

where B1 = B +1,∆1 = ∆(1− β)/η, and ∆ is given by3

∆ ∼O

[
f(x1)− f∗ +

√
Cηd

1− β
log

(
T

δ
+

T

ϵ2

)
+
(A+B1L)η

2d2

(1− β)3
log2

(
T

δ
+

T

ϵ2

)]
.

3The detailed expression of ∆ could be found in (20).
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Remark 4.1. With a simple calculation, when η = c1(1−
β)3/2 for some constant c1 > 0, the above upper bound has
a minimum order of O((1−β)−1) with respect to (1−β)−1.
The comparison of existing results with our convergence
bound could be found in Table 1 from the appendix.

Convergence of AdaGrad with affine variance noise As
a direct consequence of Theorem 1, it’s worthy to mention
the following convergence bound for AdaGrad with affine
variance noise considering their empirical significance.

Corollary 1. Under the assumptions and notations of The-
orem 1, let β = 0 and A = 0. Then for any η, ϵ > 0 and
δ ∈ (0, 1), it holds that with probability at least 1− δ,

1

T

T∑
s=1

∥∇f(xs)∥2

≤O

[
∆1

(
B1∆1 +

√
B1L∆+ ϵ

T
+

√
C

T

)]
,

where B1 = B+1,∆1 = ∆/η, and ∆ is defined as follows

∆ ∼O
[
f(x1)− f∗ +

√
Cηd log

(
T

δ
+

T

ϵ2

)
+B1Lη

2d2 log2
(
T

δ
+

T

ϵ2

)]
.

Remark 4.2. 1) Setting η ∼ 1/
(
d log

(
T
δ

))
, then

∆ ∼ 1, and the above derived upper bound is of
order O

(
d2 log2

(
T
δ

)
/T + d log

(
T
δ

)√
C/T

)
, matching

the lower rate in [Arjevani et al., 2023] up to logarithm
factors.
2) The convergence rate is of order Õ(1/T +

√
C/T ), and

when the noise level C is sufficiently low, the convergence
rate could be Õ(1/T ), which aligns with the result for non-
adaptive SGD under the same conditions [Ghadimi and Lan,
2013, Bottou et al., 2018] up to logarithmic terms.
3) As in standard probability theory, the derived high-
probability convergence can ensure expected convergence.
4) Assumption (A3) can be replaced by its sub-Gaussian
form where Ez

[
exp

(
∥g(x,z)−∇f(x)∥2

A(f(x)−f∗)+B∥∇f(x)∥2+C

)]
≤ e,

and our results still hold true, as shown in Appendix.

5 PROOF DETAIL

To start with, we let gs = (gs,i)i be as in Algorithm 1 and
let ∇f(xs) = ḡs = (ḡs,i)i, ξs = (ξs,i)i = gs − ḡs and
∆

(x)
s = f(xs)− f∗.

During the proof, we will introduce several key lemmas to
deduce the final results. All the missing proofs could be
found in Appendix.

5.1 PRELIMINARY

Before proving the main result, we shall introduce several
useful auxiliary sequences. The first sequence {ys}s≥1 is
defined as

y1 = x1,ys =
β

1− β
(xs − xs−1) + xs, ∀s ≥ 2, (7)

following from [Ghadimi et al., 2015, Yang et al., 2016]
which was used to prove the convergence of SGD with
momentum and later applied to handle with many variants
of momentum-based algorithms. When xs is generated by
Algorithm 1, we reveal that ys satisfies that for any s ≥ 1,

ys+1 = ys −
η

1− β

gs
bs

, bs =
√
vs + ϵ. (8)

We let the function value gap ∆
(y)
s = f(ys)− f∗. In addi-

tion, we introduce {Gs}s≥1 and the value G,

Gs =

√
X∆

(x)
s + 2C,

G =
√
X∆+ 2C, X = 2A+ 4LB + 4L,

(9)

where ∆ is as in Theorem 1.

5.2 ROUGH ESTIMATIONS

Motivated by [Faw et al., 2022], we provide some rough
estimations for several key algorithm-dependent terms in
this section. These estimations are not delicate, but they play
vital roles in further deducing the final convergence rate.

Lemma 5.1. For any s ≥ 1 and β ∈ [0, 1),

∥ms∥ ≤ η
√
d

1− β
, ∥ḡs∥ ≤ ∥ḡ1∥+

Lηs
√
d

1− β
.

Lemma 5.2. Suppose that β ∈ [0, 1). Then for any T ≥ 1,

T∑
t=1

∆
(x)
t ≤ ∆

(x)
1 T

+

(
η∥ḡ1∥

√
d

1− β
+

Lη2d

2(1− β)2

)
T 2 +

Lη2dT 3

(1− β)2
.

5.3 START POINT AND DECOMPOSITION

We now proceed the proof for the main result. We fix the
horizon T . Following [Ward et al., 2020], we start from
the descent lemma of smoothness over ys with both sides
subtracting with f∗,

∆
(y)
s+1 ≤ ∆(y)

s + ⟨∇f(ys),ys+1 − ys⟩+
L

2
∥ys+1 − ys∥2.
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Combining with (8), and summing over s ∈ [t],

∆
(y)
t+1 ≤ ∆

(x)
1 +

η

1− β

(
−

t∑
s=1

〈
∇f(ys),

gs
bs

〉)
︸ ︷︷ ︸

A

+
Lη2

2(1− β)2

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 , (10)

where we apply y1 = x1. We subsequently further make a
decomposition over A as

A = −
t∑

s=1

〈
ḡs,

gs
bs

〉
︸ ︷︷ ︸

A.1

+

t∑
s=1

〈
ḡs −∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A.2

. (11)

5.4 ESTIMATING A

The first main challenge comes from the entanglement of
gs and bs emerging in A, which is a key problem distinct
from the analysis for SGD.

Estimating A.1 We adopt the so-called proxy step-size
technique which is a commonly used technique for breaking
the correlation of bs and gs in the analysis of adaptive
methods. This technique relies on introducing appropriate
proxy step-sizes. It has been first introduced in [Ward et al.,
2020] for AdaGrad-Norm with bounded stochastic gradients
and variants of proxy step-sizes have been developed in the
related literature, e.g., [Défossez et al., 2022, Faw et al.,
2022, Attia and Koren, 2023, Liu et al., 2023b]. However,
none of these proxy step-sizes could be potentially applied
for AdaGrad with potential unbounded gradients under the
mild noise model in Assumption (A3).

We thus provide a construction of proxy step-sizes that is
general enough to handle with Assumption (A3). The proxy
step-sizes rely on Gs given in (9), specifically defined in
terms of

as =

√
vs−1 + (Gs1d)

2
+ ϵ, ∀s ∈ [T ]. (12)

Based on the proxy step-size η/as, we further have

A.1 = −
t∑

s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2
−

t∑
s=1

〈
ḡs,

ξs
as

〉
︸ ︷︷ ︸

A.1.1

+

t∑
s=1

〈
ḡs,

(
1

as
− 1

bs

)
gs

〉
︸ ︷︷ ︸

A.1.2

.

(13)

The estimation for A.1.1 relies on a probabilistic analysis
over a summation of martingale difference sequence.

Lemma 5.3. Given T ≥ 1 and δ ∈ (0, 1), if Assumptions
(A2) and (A3) hold, then with probability at least 1− δ,

A.1.1 ≤ 1

4

t∑
s=1

Gs

G

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 3G log

(
T

δ

)
,∀t ∈ [T ],

(14)

where Gs,G are as in (9).

The A.1.2 serves as an error term for introducing as. How-
ever, due to the delicate construction of as, we could esti-
mate the gap as follows,

Lemma 5.4. Under Assumption (A3), let bs = (bs,i)i,as =
(as,i)i be defined in (8) and (12). Then∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ ≤ Gs

as,ibs,i
, ∀s ∈ [T ],∀i ∈ [d].

Based on this lemma, it’s then shown in the following lemma
that A.1.2 could be controlled.

Lemma 5.5. Under Assumption (A3), for any t ≥ 1, if
β ∈ [0, 1), it holds that

A.1.2 ≤ 1

4

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 + t∑
s=1

Gs

∥∥∥∥gsbs
∥∥∥∥2 . (15)

Finally, we rely on the smoothness to estimate A.2.

Lemma 5.6. For any t ≥ 1, if β ∈ [0, 1), it holds that

A.2 ≤ L

2η

t∑
s=1

∥ms−1∥2 +
Lη

2(1− β)2

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 . (16)

5.5 BOUNDING THE FUNCTION VALUE GAP

Based on the above estimations, we could use an induc-
tion argument to deduce an upper bound for function value
gaps. The induction technique is motivated by [Attia and
Koren, 2023] where AdaGrad-Norm with affine variance
noise was studied. As we study a more relaxed assumption
on AdaGrad, it’s required to provide some new estimations.

Proposition 5.1. Under the same conditions of Theorem 1,
the following two inequalities hold with probability at least
1− δ,

∆
(x)
t ≤ ∆, Gt ≤ G, ∀t ∈ [T + 1], (17)

and

∆
(x)
t+1 ≤ ∆− η

1− β

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 , ∀t ∈ [T ], (18)

where ∆ is as in Theorem 1 and Gt,G are as in (9).
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In what follows, we prove Proposition 5.1. We assume that
(14) always happens and then deduce (17) and (18). Recall
that (14) holds with probability at least 1− δ. We therefore
obtain that both (17) and (18) would hold with probability
at least 1−δ. We first plug (13), (14) and (15) into (11), and
then combine with (16) and (10) to get that

∆
(y)
t+1 ≤ ∆

(x)
1 +

η

1− β

t∑
s=1

(
Gs

4G
− 3

4

)∥∥∥∥ ḡs√
as

∥∥∥∥2
+

3Gη
1− β

log

(
T

δ

)
+

η

1− β

t∑
s=1

Gs

∥∥∥∥gsbs
∥∥∥∥2

+
L

2(1− β)

t∑
s=1

∥ms−1∥2 + L̃

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 , (19)

where we let L̃ = Lη2

2(1−β)3 + Lη2

2(1−β)2 . Then, we present the
specific definition of ∆ as

∆ := 4∆
(x)
1 +

12
√
2Cη

1− β
log

(
T

δ

)
(20)

+ 4

(√
2Cη

1− β
+

η2L

(1− β)3
+ L̃

)
d logFT

+
72Xη2

(1− β)2
log2

(
T

δ

)
+

8Xη2

(1− β)2
d2 log2 FT .

Here, FT is a polynomial with respect to T with the detailed
expression in (41) from Appendix. Then, it’s easy to verify
that ∆(x)

1 ≤ ∆. Suppose that for some t ∈ [T ],

∆(x)
s ≤ ∆,∀s ∈ [t], thus, Gs ≤ G,∀s ∈ [t]. (21)

In order to apply (19) to control ∆(x)
t+1, we introduce the

following lemma to lower bound the LHS of (19).

Lemma 5.7. Let ys be defined in (7) and β ∈ [0, 1). Then
for any s ≥ 1,

∆(y)
s ≥ ∆

(x)
s

2
− L∥ms−1∥2

2(1− β)2
.

Based on Lemma 5.7, the LHS of (19) could be lower
bounded in terms of ∆

(x)
t+1. We use (21) to upper bound

the RHS of (19), which leads to

∆
(x)
t+1

2
≤ ∆

(x)
1 − η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 + L∥mt∥2

2(1− β)2

+
3(
√
X∆+

√
2C)η

1− β
log

(
T

δ

)
+ L̃

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2

+
(
√
X∆+

√
2C)η

1− β

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 + t∑

s=1

L∥ms−1∥2

2(1− β)
,

where we use G ≤
√
X∆+

√
2C. Further, using Young’s

inequality twice for the terms related to
√
X∆, and β < 1,

∆
(x)
t+1

2
≤ ∆

4
+∆

(x)
1 − η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2
+

L∥mt∥2

2(1− β)2
+

3
√
2Cη

1− β
log

(
T

δ

)
+

(√
2Cη

1− β
+ L̃

)
t∑

s=1

∥∥∥∥gsbs
∥∥∥∥2 + t∑

s=1

L∥ms−1∥2

2(1− β)

+
18Xη2

(1− β)2
log2

(
T

δ

)
+

2Xη2

(1− β)2

(
t∑

s=1

∥∥∥∥gsbs
∥∥∥∥2
)2

.

(22)

Finally, we shall use the following lemma to further estimate
∥mt∥ and the other two summations related to gs, bs,ms.

Lemma 5.8. Given T ≥ 1 and β ∈ [0, 1), then for any
t ∈ [T ],

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 ≤ d logFT , ∥mt∥2 ≤ η2d

1− β
logFT ,

t∑
s=1

∥ms∥2 ≤ η2d

(1− β)2
logFT ,

where FT is a polynomial with respect to T with the detailed
expression in (41) from Appendix.

Compared with Lemma 5.1, Lemma 5.8 improves the de-
pendency to 1 − β for estimating ∥mt∥2, which leads to
the O((1− β)−1) order for the final convergence as in Re-
mark 4.1. Thus, applying Lemma 5.8 over (22), and then
combining with ∆ in (20),

∆
(x)
t+1

2
≤ ∆

2
− η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 ≤ ∆

2
.

The induction is complete and the desired result in (17) is
proved. Finally, as an intermediate result, we verify (18).

5.6 PROOF OF THE MAIN RESULT

Based on Proposition 5.1, we are able to prove Theorem 1.

Proof of Theorem 1. In what follows, we will obtain the fi-
nal convergence result based on (17) and (18). Since (17)
and (18) hold with probability at least 1− δ, the final con-
vergence result then holds with probability at least 1 − δ.
Let us first set t = T in (18), and we get

η

1− β

T∑
s=1

∥ḡs∥2

∥as∥∞
≤ η

1− β

T∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 ≤ ∆. (23)
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Using (12), the basic inequality and Assumption (A3), we
have that for any s ∈ [T ], with B1 = B + 1,

∥as∥∞ − ϵ ≤ max
i∈[d]

√
vs−1,i + G2

s = max
i∈[d]

√√√√s−1∑
j=1

g2j,i + G2
s

≤

√√√√s−1∑
j=1

∥gj∥2 + G2
s ≤

√√√√2

s−1∑
j=1

(∥ḡj∥2 + ∥ξj∥2) + G2
s

≤

√√√√2

s−1∑
j=1

(A∆
(x)
j +B1∥ḡj∥2 + C) + G2

s . (24)

Further applying (17) where ∆
(x)
s ≤ ∆,Gs ≤ G,∀s ∈ [T ],

∥as∥∞ − ϵ ≤

√√√√2B1

T∑
s=1

∥ḡs∥2 + 2(A∆+ C)T + G2.

Combining with (23), using ∆1 = ∆(1− β)/η, then apply-
ing Young’s inequality,

T∑
s=1

∥ḡs∥2 −∆1ϵ

≤ ∆1


√√√√2B1

T∑
s=1

∥ḡs∥2 +
√
2(A∆+ C)T + G


≤

T∑
s=1

∥ḡs∥2

2
+ ∆2

1B1 +∆1

(√
2(A∆+ C)T + G

)
.

We then re-arrange the order and divide T on both sides,
leading to a desired convergence result

1

T

T∑
s=1

∥ḡs∥2 ≤ 2∆1

[
∆1B1 + G + ϵ

T
+

√
2(A∆+ C)

T

]
.

The proof is complete.

6 CONVERGENCE UNDER
GENERALIZED SMOOTHNESS

In this section, we present the convergence of Algorithm 1
in the generalized smooth case.

6.1 GENERALIZED SMOOTHNESS

For a differentiable objective function f : Rd → R, we con-
sider the following (L0, L1)-smoothness condition: there ex-
ist constants L0, L1 > 0, satisfying that for any x,y ∈ Rd

with ∥x− y∥ ≤ 1/L1,

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1∥∇f(x)∥) ∥x−y∥. (25)

The generalized smooth condition was originally put for-
ward by [Zhang et al., 2020b] for any twice-order differen-
tiable function f satisfying that

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥. (26)

They revealed the superior of SGD with gradient-clipping
in convergence over the vanilla SGD when considering (26).
Moreover, empirical evidence has demonstrated that numer-
ous objective functions satisfy (26) while deviating from the
global smoothness, particularly in large language models,
see e.g., [Zhang et al., 2020b, Figure 1] and [Crawshaw
et al., 2022]. To better explain the convergence of gradient-
clipping algorithms, Zhang et al. [2020a] provided an al-
ternative form in (25), only requiring f to be first-order
differentiable.

The condition in (25) is selected in our paper for three main
reasons. First, it’s easy to verify that (25) is strictly weaker
than L-smoothness. A concrete example is that the simple
function f(x) = x3, x ∈ R does not satisfy any global
smoothness but (25). Second, (25) aligns with the practical
limitation to first-order stochastic gradients in our setting,
making it more reasonable to assume that f is only first-
order differentiable. Finally, both (25) and (26) are shown
to be equivalent up to constant factors for twice-order dif-
ferentiable functions, see [Zhang et al., 2020a, Lemma A.2]
and [Faw et al., 2023, Proposition 1]. Thus, (25) includes
more functions than (26). We refer interested readers to see
[Zhang et al., 2020b,a, Faw et al., 2023] for more discus-
sions and concrete examples of the generalized smoothness.

6.2 CONVERGENCE RESULT

In the following, we establish the convergence bound for
AdaGrad with momentum under the generalized smooth
condition.

Theorem 2. Let T ≥ 1 and δ ∈ (0, 1). Suppose that
{xs}s∈[T ] is a sequence generated by Algorithm 1, f is
(L0, L1)-smooth satisfying (25), Assumptions (A1), (A2),
(A3) hold, and the parameters satisfy that β ∈ [0, 1),

ϵ > 0, η ≤ min

{
C0,

C0

H
,
C0

L
,
(1− β)2

L1

√
d

}
, (27)

where C0 > 0 is a constant, H,L are defined as

H =

√
2AΛx + 2(B + 1)

(
4L1Λx +

√
4L0Λx

)2
+ 2C,

L = 2L0 + 2L1

(
4L1Λx +

√
4L0Λx

)
,

(28)
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and Λy, Λ̃y,Λx are given with the following order,4

Λy ∼ O
(
∆

(x)
1 +

C2
0d+ C0d

(1− β)3
log

(
T

δ
+

T

ϵ2

))
,

Λ̃y =
2Λy(1− β)

η
, Λx ∼ O

(
Λ2
y

)
.

Then, with B1 = B + 1, it holds that with probability at
least 1− δ,

1

T

T∑
s=1

∥∇f(xs)∥2

≤O

(
Λ̃y

(
B1Λ̃y +

√
B1LΛx + ϵ

T
+

√
AΛx + C

T

))
.

It’s easy to verify that Λy ∼ O(log(T/δ)) and thereby
Λx,H,L ∼ O(log2(T/δ)). Then, from (27), when T ≫ d,
a typical setting is η ∼ O(log2(T/δ)). Moreover, the con-
vergence rate is still adaptive to the noise parameters A,C
and requires problem-parameters to tune step-sizes poten-
tially due to the relaxation of smoothness. The subsequent
result for AdaGrad under (25) could be directly deduced
from Theorem 2 and will be presented in Appendix.

7 CONCLUSION

In this paper, we provide high probability convergence
bounds for AdaGrad and its momentum variant under the
non-convex smooth optimization. In particular, we consider
a mild noise model incorporating affine variance noise and
the expected smoothness. We rely on a new proxy step-
size and some delicate estimations to derive the bound. Our
findings reveal that without problem-parameters dependent
step-sizes, AdaGrad can find a stationary point with a rate of
Õ(1/

√
T ), particularly accelerating to Õ(1/T ) when spe-

cific noise parameters are sufficiently small. Furthermore,
we extend our framework to the generalized smooth case
that allows for unbounded smooth parameters, showing the
same convergence rate, albeit that problem-parameters de-
pendent step-sizes are required in the latter.

Limitation Although AdaGrad plays an important role in
the adaptive method field, several other adaptive methods
including RMSProp, Adam and AdamW, may be preferred
in some real applications. Therefore, it is also pertinent
to study these algorithms under relaxed assumptions. In
addition, it is still unknown whether similar convergence
result could be also achieved under an expected version of
Assumption (A3). Finally, as we study a new assumption
over AdaGrad, it would be more beneficial to provide more
experimental results to support the theoretical results.

4The detailed expressions of Λy,Λx could be found in (72)
and (73) respectively from Appendix.
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Revisiting Convergence of AdaGrad with Relaxed Assumptions
(Supplementary Material)

Yusu Hong1 Junhong Lin1

1Zhejiang University

Table 1: Comparison of existing results with ours for AdaGrad/AdaGrad-Norm on non-convex smooth case

Alg. type Smooth Noise
Unbounded
Gradients Conv. type

[Li and Orabona, 2019] Botha L Sub-Gaussian - w.h.p.
[Ward et al., 2020] Scalar L Bounded - E
[Kavis et al., 2022] Scalar L Sub-Gaussian ✓ w.h.p.
[Faw et al., 2022] Scalar L Affine ✓ E

[Wang et al., 2023] Both L/(L0, L1) Affine ✓ E

[Liu et al., 2023b] Both L
Coordinate-wise

Sub-Gaussian ✓ w.h.p.

[Attia and Koren, 2023] Scalar L Affine ✓ w.h.p.
[Faw et al., 2023] Scalar (L0, L1) Affine ✓ E

This paper, Thm. 1 Coordinate L Relaxed Affine ✓ w.h.p.
This paper, Thm. 2 Coordinate (L0, L1) Relaxed Affine ✓ w.h.p.

In the "Alg. type" column, "Scalar" refers to AdaGrad-Norm, "Coordinate" refers to AdaGrad, and
"Both" refers to both algorithms. "Relaxed Affine" corresponds to Assumption (A3) in this paper.
In the "Conv. type" column, "w.h.p." stands for the high probability convergence bound, and "E"
represents the expected convergence bound.

a Li and Orabona [2019] studied a variant of AdaGrad/AdaGrad-Norm using a delayed step-size which
is independent from the current stochastic gradient.

A COMPLEMENTARY LEMMAS

Following [Li and Orabona, 2020, Attia and Koren, 2023], we will first present several important technical lemmas. The first
lemma is a standard result in the smooth-based optimization which will be used in our analysis motivated also by [Attia and
Koren, 2023, Hong and Lin, 2023].

Lemma A.1. Suppose that f is L-smooth and Assumption (A1) holds. Then for any x ∈ Rd,

∥∇f(x)∥2 ≤ 2L(f(x)− f∗).

We introduce a concentration inequality for the martingale difference sequence, see [Li and Orabona, 2020] for a proof.

Lemma A.2. Suppose that {Zs}s∈[T ] is a martingale difference sequence with respect to ζ1, · · · , ζT . Assume that for each
s ∈ [T ], σs is a random variable dependent on ζ1, · · · , ζs−1 and satisfies that

E
[
exp

(
Z2
s

σ2
s

)
| ζ1, · · · , ζs−1

]
≤ e.
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Then, for any λ > 0, and for any δ ∈ (0, 1), it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

The following lemma is a commonly used result in the analysis of adaptive methods. See [Levy et al., 2018] for a proof.

Lemma A.3. Let {αs}s≥1 be a non-negative sequence. For any ε > 0 and positive integer t,

t∑
s=1

αs

ε+
∑s

k=1 αk
≤ log

(
1 +

1

ε

t∑
s=1

αs

)
.

B OMITTED PROOFS UNDER SMOOTH CASE

In this section, we provide the missing detailed proofs for some results and lemmas used in the proof of Theorem 1.

Proof of Remark 4.2. Here, we prove the fourth point in Remark 4.2. Let us fix horizon T and denote γs =
∥gs−ḡs∥2

A∆
(x)
s +B∥ḡs∥2+C

,∀s ∈ [T ]. Then from the new assumption, we have

Ezs [exp (γs)] ≤ e, thus, E [exp(γs)] ≤ e.

By Markov’s inequality, for any E ∈ R,

P
(
max
s∈[T ]

γs ≥ E

)
= P

(
exp

(
max
s∈[T ]

γs

)
≥ eE

)
≤ e−EE

[
exp

(
max
s∈[T ]

γs

)]
≤ e−EE

[
T∑

s=1

exp (γs)

]
≤ e−ET e,

which leads to that with probability at least 1− δ,

∥ξs∥2 = ∥gs − ḡs∥2 ≤ log

(
eT

δ

)(
A∆(x)

s +B∥ḡs∥2 + C
)
, ∀s ∈ [T ]. (29)

Compared (29) with Assumption (A3), an additional log T factor emerges. Hence, Gs and G defined in (9) should be revised
as

Gs =

√(
X∆

(x)
s + 2C

)
log

(
eT

δ

)
, G =

√
(X∆+ 2C) log

(
eT

δ

)
. (30)

Consequently, using the similar analysis in Lemma 5.3, Lemma 5.5 and Lemma 5.6, we could reach (19) with a new Gs and
G in (30). Then, using a similar induction argument, we could deduce the final convergence rate. The additional logarithm
factor will make no essential difference to the order of ∆,∆1 and the convergence rate in Theorem 1 up to logarithm
factors.

Proof of Lemma 5.1. Let us denote ηs = η/(
√
vs + ϵ). Recalling m0 = 0 and ms in Algorithm 1, we have

ms = βms−1 − ηs ⊙ gs = β2ms−2 − βηs−1 ⊙ gs−1 − ηs ⊙ gs = · · · = −
s∑

j=1

βs−jηj ⊙ gj . (31)

Note that |gs,i| ≤
√
vs,i,∀i ∈ [d]. We therefore verify that ∥gs/

√
vs∥ ≤

√
dmaxi∈[d] |gs,i/vs,i| ≤

√
d. Moreover,

∥ms∥ ≤
s∑

j=1

βs−j∥ηj ⊙ gj∥ ≤ η
√
d

s∑
j=1

βs−j

∥∥∥∥ gj√
vj

∥∥∥∥
∞

≤ η
√
d

1− β
. (32)

Using the smoothness of f ,

∥ḡs∥ ≤ ∥ḡs−1∥+ ∥ḡs − ḡs−1∥ ≤ ∥ḡs−1∥+ L∥xs − xs−1∥ = ∥ḡs−1∥+ L∥ms−1∥.
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Further using (32),

∥ḡs∥ ≤ ∥ḡs−1∥+
Lη

√
d

1− β
≤ ∥ḡ1∥+

Lηs
√
d

1− β
.

Proof of Lemma 5.2. Recalling the iteration in Algorithm 1 and then using the descent lemma,

f(xs+1) ≤ f(xs) + ⟨ḡs,xs+1 − xs⟩+
L

2
∥xs+1 − xs∥2 = f(xs) + ⟨ḡs,ms⟩+

L

2
∥ms∥2.

Using Cauchy-Schwarz inequality and Lemma 5.1,

⟨ḡs,ms⟩ ≤ ∥ḡs∥ · ∥ms∥ ≤ η
√
d

1− β

(
∥ḡ1∥+

Lη
√
ds

1− β

)
,

L

2
∥ms∥2 ≤ Lη2d

2(1− β)2
.

Combining with the above, we obtain that

f(xs+1) ≤ f(xs) +
η
√
d

1− β

(
∥ḡ1∥+

Lη
√
ds

1− β

)
+

Lη2d

2(1− β)2
.

With both sides subtracting f∗ and summing up over s ∈ [t], we obtain that

∆
(x)
t+1 ≤ ∆

(x)
1 +

η
√
d

1− β

t∑
s=1

(
∥ḡ1∥+

Lη
√
ds

1− β

)
+

Lη2dt

2(1− β)2
. (33)

We define
∑b

a = 0 when a < b. Then, we sum up both sides of (33) over t ∈ [0, 1, · · · , T − 1] to obtain that

T∑
t=1

∆
(x)
t ≤

T−1∑
t=0

∆
(x)
1 +

η
√
d

1− β

T−1∑
t=0

t∑
s=1

(
∥ḡ1∥+

Lη
√
ds

1− β

)
+

T−1∑
t=0

Lη2dt

2(1− β)2

≤ ∆
(x)
1 T +

η
√
d

1− β

T∑
t=1

t∑
s=1

(
∥ḡ1∥+

Lη
√
ds

1− β

)
+

T∑
t=1

Lη2dt

2(1− β)2

≤ ∆
(x)
1 T +

(
η∥ḡ1∥

√
d

1− β
+

Lη2d

2(1− β)2

)
T 2 +

Lη2dT 3

(1− β)2
.

Proof of Lemma 5.3. Let Xs = −
〈
ḡs,

ξs

as

〉
for any s ∈ [T ]. Note that ḡs and as are random variables dependent on

z1, · · · , zs−1 and ξs is dependent on z1, · · · , zs−1, zs. It is easy to prove that Xs is a martingale difference sequence since

E [Xs | z1, · · · , zs−1] = −
〈
ḡs,

Ezs [ξs]

as

〉
= 0,

where the last equality follows from Assumption (A2). Let

ζs =

∥∥∥∥ ḡsas

∥∥∥∥√A∆
(x)
s +B∥ḡs∥2 + C, ∀s ∈ [T ].

Similarly, ζs is a random variable dependent on z1, · · · , zs−1. Using Cauchy-Schwarz inequality and Assumption (A3), we
have

E
[
exp

(
X2

s

ζ2s

)
| z1, · · · , zs−1

]
≤ E

[
exp

(
∥ξs∥2

A∆
(x)
s +B∥ḡs∥2 + C

)
| z1, · · · , zs−1

]
≤ e.
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Therefore, given any fixed t ∈ [T ], applying Lemma A.2, we have that for any λ > 0, with probability at least 1− δ,

t∑
s=1

X2
s ≤ 3λ

4

t∑
s=1

ζ2s +
1

λ
log

(
1

δ

)
=

3λ

4

t∑
s=1

d∑
i=1

ḡ2s,i
a2s,i

(
A∆(x)

s +B∥ḡs∥2 + C
)
+

1

λ
log

(
1

δ

)

≤ 3λ

4

t∑
s=1

d∑
i=1

ḡ2s,iG2
s

a2s,i
+

1

λ
log

(
1

δ

)
≤ 3λ

4

t∑
s=1

d∑
i=1

ḡ2s,iGs

as,i
+

1

λ
log

(
1

δ

)
, (34)

where the second inequality follows from Lemma A.1 and (9). The last inequality follows from using 1/as,i ≤ 1/Gs,
implied by (12). We then obtain that for any t ∈ [T ], (34) holds with probability at least 1 − δ. Therefore, for any fixed
λ > 0, we can re-scale over δ and have that for all t ∈ [T ], with probability at least 1− δ,

t∑
s=1

X2
s ≤ 3λ

4

t∑
s=1

∥∥∥∥ ḡs√
as

∥∥∥∥2 Gs +
1

λ
log

(
T

δ

)
. (35)

Finally setting λ = 1/(3G), we obtain the desired result.

Proof of Lemma 5.4. Using the basic inequality, Assumption (A3) and Lemma A.1, we have

∥gs∥2 ≤ 2∥ḡs∥2 + 2∥ξs∥2 ≤ 2A∆(x)
s + 2(B + 1)∥ḡs∥2 + 2C ≤ (2A+ 4LB + 4L)∆(x)

s + 2C.

Thus, ∥gs∥ ≤ Gs,∀s ≥ 1. Let as =
√
ṽs + ϵ where ṽs = (ṽs,i)i. Then, for any i ∈ [d],∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ = |
√
ṽs,i −

√
vs,i|

as,ibs,i
=

|ṽs,i − vs,i|
as,ibs,i(

√
ṽs,i +

√
vs,i)

=
1

as,ibs,i

|G2
s − g2s,i|

√
vs,i +

√
ṽs,i

≤ 1

as,ibs,i

G2
s√

vs,i +
√
ṽs,i

≤ Gs

as,ibs,i
. (36)

Proof of Lemma 5.5. Applying Lemma 5.4 and Young’s inequality,

A.1.2 ≤
t∑

s=1

d∑
i=1

∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ |ḡs,i||gs,i| ≤ t∑
s=1

d∑
i=1

Gs

as,ibs,i
|ḡs,i||gs,i| ≤

1

4

t∑
s=1

d∑
i=1

ḡ2s,i
as,i

+

t∑
s=1

d∑
i=1

G2
s

as,i

g2s,i
b2s,i

≤ 1

4

t∑
s=1

d∑
i=1

ḡ2s,i
as,i

+

t∑
s=1

d∑
i=1

Gs

g2s,i
b2s,i

, (37)

where we use 1/as,i ≤ 1/Gs for the last inequality. The proof is complete.

Proof of Lemma 5.7. Using the descent lemma of smoothness and (7),

f(xs) ≤ f(ys) + ⟨∇f(ys),xs − ys⟩+
L

2
∥xs − ys∥2

= f(ys)−
β

1− β
⟨∇f(ys),xs − xs−1⟩+

Lβ2

2(1− β)2
∥xs − xs−1∥2.

Using Young’s inequality and subtracting f∗ on both sides,

∆(x)
s ≤ ∆(y)

s +
1

2L
∥∇f(ys)∥2 +

(L+ L)β2

2(1− β)2
∥xs − xs−1∥2 ≤ 2∆(y)

s +
L∥ms−1∥2

(1− β)2
,

where we apply Lemma A.1 and β ∈ [0, 1). Finally dividing 2 on both sides and re-arranging the order, we obtain the
desired result.
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Proof of Lemma 5.8. Recalling the definition of bs and vs, and then using Lemma A.3,

t∑
s=1

g2s,i
b2s,i

=

t∑
s=1

g2s,i
(
√
vs,i + ϵ)2

≤
t∑

s=1

g2s,i
vs,i + ϵ2

≤ log

(
1 +

1

ϵ2

t∑
s=1

g2s,i

)
. (38)

Using the basic inequality, Assumption (A3), and Lemma A.1,

t∑
j=1

g2j,i ≤
T∑

j=1

g2j,i ≤ 2

T∑
j=1

(ḡ2j,i + ξ2j,i) ≤ 2

T∑
j=1

(∥ḡj∥2 + ∥ξj∥2)

≤ 2A

T∑
j=1

∆
(x)
j + 2(B + 1)

T∑
j=1

∥ḡj∥2 + 2CT ≤ X

T∑
j=1

∆
(x)
j + 2CT. (39)

Combining with (38) and Lemma 5.2, we obtain that

t∑
s=1

g2s,i
b2s,i

≤ log

1 +
1

ϵ2

T∑
j=1

g2j,i

 ≤ log

1 +
1

ϵ2

X

T∑
j=1

∆
(x)
j + 2CT

 ≤ logFT , (40)

where FT is defined as

FT := 1 +
1

ϵ2

[
(∆

(x)
1 X + 2C)T +

(
η∥ḡ1∥

√
d

1− β
+

Lη2d

2(1− β)2

)
XT 2 +

Lη2dXT 3

(1− β)2

]
. (41)

Summing up (40) over i ∈ [d], we prove the first desired result.

Then we move to estimate terms related to ms. Let Ms =
∑s

j=1 β
s−j . For any i ∈ [d], recalling (31) and using the

convexity of the square function,

m2
s,i = η2

 s∑
j=1

βs−jgj,i√
vj,i + ϵ

2

≤ η2Ms

s∑
j=1

βs−jg2j,i
(
√
vj,i + ϵ)2

≤ η2Ms

s∑
j=1

βs−jg2j,i
vj,i + ϵ2

. (42)

Summing over i ∈ [d], using β < 1 with Ms ≤ 1
1−β , Lemma A.3 and s ≤ T ,

∥ms∥2 ≤ η2Ms

d∑
i=1

s∑
j=1

g2j,i√∑j
k=1 g

2
k,i + ϵ2

≤ η2

1− β

d∑
i=1

log

1 +
1

ϵ2

s∑
j=1

g2j,i

 . (43)

We also sum up (42) over s ∈ [t] and apply Lemma A.3 to obtain that

t∑
s=1

m2
s,i ≤ η2

t∑
s=1

Ms

s∑
j=1

βs−jg2j,i
vj,i + ϵ2

= η2
t∑

j=1

g2j,i
vj,i + ϵ2

t∑
s=j

Msβ
s−j

≤ η2

(1− β)2

t∑
j=1

g2j,i
vj,i + ϵ2

≤ η2

(1− β)2
log

1 +
1

ϵ2

t∑
j=1

g2j,i

 .

Summing over i ∈ [d], we obtain that

t∑
s=1

∥ms∥2 ≤ η2

(1− β)2

d∑
i=1

log

1 +
1

ϵ2

t∑
j=1

g2j,i

 . (44)

Finally, we could follow the similar analysis for (39) and (40) to deduce that the terms inside the logarithm operator in (44)
could be further bounded by FT and thereby verify the target results.
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C PROOF OF CONVERGENCE UNDER THE GENERALIZED SMOOTHNESS

In this section, we provide the detailed proof of Theorem 2. We still follow all the notations defined in Section 5. We shall
first introduce two sequences {Hs}s≥1 and {Ls}s≥1 as follows:

Hs =

√
2A∆

(x)
s + 2(B + 1)

(
4L1∆

(x)
s +

√
4L0∆

(x)
s

)2

+ 2C, Ls = 2L0 + 2L1

(
4L1∆

(x)
s +

√
4L0∆

(x)
s

)
. (45)

As a consequence, we slightly change the proxy step-size as in (12) as

ãs =

√
vs−1 + (Hs1d)

2
+ ϵ, ∀s ∈ [T ]. (46)

C.1 CONVERGENCE OF ADAGRAD

As a consequence of Theorem 2, we obtain the following convergence bound for AdaGrad considering affine variance noise
and the generalized smoothness.

Corollary 2. Let T ≥ 1 and δ ∈ (0, 1). Suppose that {xs}s∈[T ] is a sequence generated by Algorithm 1 with β = 0, f is
(L0, L1)-smooth satisfying (25), Assumptions (A1), (A2) hold and Assumption (A3) holds with A = 0, and the parameters
follow the condition in (27) with β = 0, H,L follow the definitions in (28),

Λy ∼ O
(
∆

(x)
1 + C2

0d log

(
T

δ
+

T

ϵ2

))
, Λx ∼ O

(
Λ2
y

)
.

Then it holds that with probability at least 1− δ,

1

T

T∑
s=1

∥∇f(xs)∥2 ≤ 4Λy

η

(
2Λy(B + 1)/η +H+ ϵ

T
+

√
2C

T

)
.

Remark C.1. Wang et al. [2023] provided a convergence rate for AdaGrad-Norm under the generalized smoothness with
the expected affine variance noise, specifically when η < 1

L1
min

{
1

64B , 1
8
√
B

}
, with probability at least 1− δ,

min
t∈[T ]

∥∇f(xt)∥2 = O

(
log(

√
CT )

Tδ2
+

√
C log(

√
CT )√

Tδ2

)
. (47)

Thus, our convergence bound in Corollary 2 could reduce to the AdaGrad-Norm case and match the rate in (47) up to
logarithm factors, while with a better dependency on the probability margin δ.

C.2 TECHNICAL LEMMAS

We provide an equivalent result in [Zhang et al., 2020a, Lemma A.2], which establishes a different relationship of the
gradient norm and the function value gap. We refer to the proof of [Zhang et al., 2020a, Lemma A.2].

Lemma C.1. Suppose that f is (L0, L1)-smooth and Assumption (A1) holds. Then, for any x ∈ Rd,

∥∇f(x)∥ ≤ max
{
4L1(f(x)− f∗),

√
4L0(f(x)− f∗)

}
.

We also have the following lemma to ensure the distance of ys and xs within 1/L1 in order to ensure the generalized
smoothness in (25).

Lemma C.2. Let xs,ys be as in Algorithm 1 and (7). If β ∈ [0, 1), then for any s ≥ 1,

max{∥xs+1 − xs∥, ∥ys − xs∥, ∥ys+1 − ys∥} ≤ η
√
d

(1− β)2
. (48)

As a consequence, when

η ≤ (1− β)2

L1

√
d

, then, max{∥xs+1 − xs∥, ∥ys − xs∥, ∥ys+1 − ys∥} ≤ 1

L1
, ∀s ≥ 1. (49)
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Proof. Recalling in Lemma 5.1, we have already bounded ∥ms∥ that is independent from smooth-related conditions as
follows:

∥xs+1 − xs∥ = ∥ms∥ ≤ η
√
d

1− β
, ∀s ≥ 1. (50)

Applying the definition of ys in (7), (50) and β ∈ [0, 1),1

∥ys − xs∥ =
β

1− β
∥xs − xs−1∥ ≤ η

√
d

(1− β)2
, ∀s ≥ 1. (51)

Using the iteration of ys in (8) and Young’s inequality

∥ys+1 − ys∥ =
η

1− β

∥∥∥∥gsbs
∥∥∥∥ ≤ η

√
d

1− β

∥∥∥∥gsbs
∥∥∥∥
∞

≤ η
√
d

1− β
, ∀s ≥ 1, (52)

where we apply |gs,i/bs,i| ≤ 1,∀i ∈ [d] in the last inequality. Combining with (50), (51) and (52), and using β ∈ [0, 1), we
then deduce an uniform bound for all three gaps. Finally, letting η

√
d

(1−β)2 ≤ 1
L1

, we then prove that (49) holds.

Lemma C.3. Suppose that (49) holds. If f is (L0, L1)-smooth, then for any s ≥ 1,

∥∇f(xs+1)−∇f(xs)∥ ≤ Ls∥xs+1 − xs∥,
∥∇f(ys)−∇f(xs)∥ ≤ Ls∥ys − xs∥,

∥∇f(ys+1)−∇f(ys)∥ ≤ Ls∥ys+1 − ys∥.
(53)

As a consequence, for any s ≥ 1,

f(ys+1)− f(ys)− ⟨∇f(ys),ys+1 − ys⟩ ≤
Ls

2
∥ys+1 − ys∥2,

f(xs)− f(ys)− ⟨∇f(ys),xs − ys⟩ ≤
Ls

2
∥xs − ys∥2,

f(xs+1)− f(xs)− ⟨∇f(xs),xs+1 − xs⟩ ≤
Ls

2
∥xs+1 − xs∥2.

(54)

Proof. Noting that when (49) holds, we could use ∥ys − xs∥ ≤ 1/L1 and the generalized smoothness in (25) to get that

∥∇f(ys)∥ ≤ ∥∇f(xs)∥+ ∥∇f(ys)−∇f(xs)∥
≤ ∥∇f(xs)∥+ (L0 + L1∥∇f(xs)∥)∥ys − xs∥ ≤ 2∥∇f(xs)∥+ L0/L1.

Using Lemma C.1 and combining with Ls in (45), we have

L0 + L1∥∇f(xs)∥ ≤ L0 + L1

(
4L1∆

(x)
s +

√
4L0∆

(x)
s

)
≤ Ls,

L0 + L1∥∇f(ys)∥ ≤ 2L0 + 2L1∥∇f(xs)∥ ≤ 2L0 + 2L1

(
4L1∆

(x)
s +

√
4L0∆

(x)
s

)
≤ Ls. (55)

Thus, combining with (25), we prove (53). Now based on (53), we could deduce (54). We refer to the proof of [Zhang et al.,
2020a, Lemma A.3].

C.3 ROUGH ESTIMATIONS

In generalized smooth cases, we revise the estimations in Lemmas 5.1 and 5.2 as follows.

Lemma C.4. Suppose that f is (L0, L1)-smooth, β ∈ [0, 1) and (49) holds. Then, for any s ≥ 1,

∥ms∥ ≤ η
√
d

1− β
, ∥ḡs∥ ≤ ∥ḡ1∥+

η
√
d

1− β

s∑
j=1

Lj .

1The inequality still holds for s = 1 since x1 = y1.
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Proof. First, the estimation for ∥ms∥ remains unchanged as in Lemma 5.1 since it does not rely on smooth-related
conditions. Note that (49) holds. Then using (53), for any s ≥ 2,

∥ḡs∥ ≤ ∥ḡs−1∥+ ∥ḡs − ḡs−1∥ ≤ ∥ḡs−1∥+ Ls−1∥xs − xs−1∥ = ∥ḡs−1∥+ Ls−1∥ms−1∥. (56)

Further using (56) and the estimation for ∥ms∥, for any s ≥ 2,

∥ḡs∥ ≤ ∥ḡs−1∥+
Ls−1η

√
d

1− β
≤ ∥ḡ1∥+

η
√
d

1− β

s−1∑
j=1

Lj .

Note that the above inequality also holds when s = 1. Thus, the proof is complete.

Lemma C.5. Under the same conditions of Lemma C.4, for any T ≥ 1,

T∑
t=1

∆
(x)
t ≤ IT , IT := ∆

(x)
1 T +

η
√
d

1− β

T∑
t=1

t∑
s=1

∥ḡ1∥+
η
√
d

1− β

s∑
j=1

Lj

+
η2d

2(1− β)2

T∑
t=1

t∑
s=1

Ls. (57)

Proof. Since (49) holds, we could rely on the updated rule in Algorithm 1 and (54) to obtain that

f(xs+1) ≤ f(xs) + ⟨ḡs,xs+1 − xs⟩+
Ls

2
∥xs+1 − xs∥2 = f(xs) + ⟨ḡs,ms⟩+

Ls

2
∥ms∥2. (58)

Using Cauchy-Schwarz inequality and Lemma C.4, for any s ≥ 1,

⟨ḡs,ms⟩ ≤ ∥ḡs∥∥ms∥ ≤ η
√
d

1− β

∥ḡ1∥+
η
√
d

1− β

s∑
j=1

Lj

 ,
Ls

2
∥ms∥2 ≤ Lsη

2d

2(1− β)2
.

Combining the above, subtracting f∗ on both sides of (58) and summing up over s ∈ [t], we obtain that for any t ≥ 1,

∆
(x)
t+1 ≤ ∆

(x)
1 +

η
√
d

1− β

t∑
s=1

∥ḡ1∥+
η
√
d

1− β

s∑
j=1

Lj

+
η2d

2(1− β)2

t∑
s=1

Ls.

We define
∑b

a = 0 when a < b. Then, we sum up over t ∈ [0, 1, · · ·T − 1] and obtain the desired result.

C.4 START POINT AND DECOMPOSITION

To start with, we recall η in (27) and verify that (49) always holds. Then, we could use the descent lemma (54) and apply
(8), and sum up both sides over s ∈ [t] to get that

f(yt+1) ≤ f(x1) +

t∑
s=1

⟨∇f(ys),ys+1 − ys⟩+
t∑

s=1

Ls

2
∥ys+1 − ys∥2

= f(x1) +
η

1− β
· A +

η2

2(1− β)2

t∑
s=1

Ls

∥∥∥∥gsbs
∥∥∥∥2 , (59)

where we use x1 = y1 and the definition of A in (10). We follow the decomposition in (60) and restate as follows,

A = −
t∑

s=1

〈
ḡs,

gs
bs

〉
︸ ︷︷ ︸

A.1

+

t∑
s=1

〈
ḡs −∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A.2

. (60)
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C.5 ESTIMATING A

We then introduce ã in (46) into (60) to derive that

A.1 = −
t∑

s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 − t∑
s=1

〈
ḡs,

ξs
ãs

〉
︸ ︷︷ ︸

A’.1.1

+

t∑
s=1

〈
ḡs,

(
1

ãs
− 1

bs

)
gs

〉
︸ ︷︷ ︸

A’.1.2

. (61)

The technique for estimating A’.1.1 is similar to Lemma 5.3. Let X ′
s = −

〈
ḡs,

ξs

ãs

〉
. We could still verify that X ′

s is

a martingale difference sequence and define ζ ′s =
∥∥∥ ḡs

ãs

∥∥∥√A∆
(x)
s +B∥ḡs∥2 + C. Similarly, ζ ′s is a random variable

dependent on z1, · · · , zs−1. Using Cauchy-Schwarz inequality and Assumption (A3), we have

E

[
exp

[(
X ′

s

ζ ′s

)2
]
| z1, · · · , zs−1

]
≤ E

[
exp

(
∥ξs∥2

A∆
(x)
s +B∥ḡs∥2 + C

)
| z1, · · · , zs−1

]
≤ e.

However, using Lemma C.1 and Hs in (45), we derive that

A∆(x)
s +B∥ḡs∥2 + C ≤ A∆(x)

s +B

(
4L1∆

(x)
s +

√
4L0∆

(x)
s

)2

+ C ≤ H2
s.

Hence, we obtain a different inequality from (34) that

A’.1.1 ≤ 3λ

4

t∑
s=1

d∑
i=1

ḡ2s,i
ã2s,i

(
A∆(x)

s +B∥ḡs∥2 + C
)
+

1

λ
log

(
1

δ

)

≤ 3λ

4

t∑
s=1

d∑
i=1

ḡ2s,iH2
s

ã2s,i
+

1

λ
log

(
1

δ

)
≤ 3λ

4

t∑
s=1

d∑
i=1

ḡ2s,iHs

ãs,i
+

1

λ
log

(
1

δ

)
, (62)

where the last inequality applies 1/ãs,i ≤ 1/Hs from (46). Then, we can re-scale δ and take λ = 1/(3H), leading to the
new estimation as follows: with probability at least 1− δ,

A’.1.1 ≤ 1

4

t∑
s=1

Hs

H

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 + 3H log

(
T

δ

)
, ∀t ∈ [T ]. (63)

The estimation for A’.1.2 remains similar to (15). We first derive from the basic inequality and Assumption (A3) that

∥gs∥2 ≤ 2∥ḡs∥2 + 2∥ξs∥2 ≤ 2A∆(x)
s + 2(B + 1)∥ḡs∥2 + 2C ≤ H2

s.

Then, based on ∥gs∥2 ≤ H2
s , we derive a similar result as in (36) where∣∣∣∣ 1

ãs,i
− 1

bs,i

∣∣∣∣ ≤ Hs

ãs,ibs,i
, ∀s ∈ [T ],∀i ∈ [d].

Then, using a similar deduction in (15), we derive that

A’.1.2 ≤ 1

4

t∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 + t∑
s=1

Hs

∥∥∥∥gsbs
∥∥∥∥2 . (64)

The estimation for A.2 in (60) is revised by the following lemma.

Lemma C.6. Suppose that f is (L0, L1)-smooth and (49) holds. For any t ≥ 1, if β ∈ [0, 1), it holds that

A.2 ≤
t∑

s=1

Ls

2η
∥ms−1∥2 +

t∑
s=1

Lsη

2(1− β)2

∥∥∥∥gsbs
∥∥∥∥2 . (65)
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Proof. Noting that when (49) holds, we could rely on (53) and β ∈ [0, 1) to obtain that

∥ḡs −∇f(ys)∥ ≤ Ls∥ys − xs∥ =
Lsβ

1− β
∥xs − xs−1∥ ≤ Ls

1− β
∥ms−1∥. (66)

Applying Cauchy-Schwarz inequality and using (66),

A.2 ≤
t∑

s=1

∥ḡs −∇f(ys)∥
∥∥∥∥gsbs

∥∥∥∥ ≤
t∑

s=1

Ls

1− β
∥ms−1∥

∥∥∥∥gsbs
∥∥∥∥ ≤

t∑
s=1

Ls

2η
∥ms−1∥2 +

t∑
s=1

Lsη

2(1− β)2

∥∥∥∥gsbs
∥∥∥∥2 .

C.6 BOUNDING THE FUNCTION VALUE GAP

Based on the above estimations, we are now ready to provide the bound for the function value gap along the optimization
trajectory in the following proposition.

Proposition C.1. Under the same conditions in Theorem 2, for any given δ ∈ (0, 1), the following two inequalities hold
with probability at least 1− δ,

∆
(x)
t ≤ Λx, Ht ≤ H, Lt ≤ L, ∀t ∈ [T + 1], (67)

and

∆
(y)
t+1 ≤ Λy −

η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 , ∀t ∈ [T ], (68)

where Ht,Lt are as in (45) and Λx,Λy,H,L are as in Theorem 2.

In what follows, we prove Proposition C.1. First, we verify that (49) holds from the setting of η in (27). Hence, we ensure
that (59) and (65) hold.

In the following, we will assume the inequality (63) holds and then deduce the results in (67) and (68). Noting that (63)
holds with probability at least 1− δ, we thereby deduce that the desired results hold with probability at least 1− δ.

Plugging the estimations (63) and (64) into (61), we obtain the bound for A.1. Then, combining with (65), (60) and (59),
and subtracting f∗ on both sides of (59),

∆
(y)
t+1 ≤ ∆

(x)
1 +

η

1− β

t∑
s=1

(
Hs

4H
− 3

4

)∥∥∥∥ ḡs√
ãs

∥∥∥∥2 + 3Hη

1− β
log

(
T

δ

)
+

η

1− β

t∑
s=1

Hs

∥∥∥∥gsbs
∥∥∥∥2

+

t∑
s=1

Ls

2(1− β)
∥ms−1∥2 +

t∑
s=1

(
Lsη

2

2(1− β)3
+

Lsη
2

2(1− β)2

)∥∥∥∥gsbs
∥∥∥∥2 . (69)

We still rely on an induction argument to deduce the result. First, we define two polynomials Ĩt and J̃t with respect to t and
present the detailed expressions of Λy and Λx that are independent from t as follows:

Ĩt := ∆
(x)
1 · t+ C0

√
d

1− β

(
∥ḡ1∥+

C0

√
dt

1− β

)
· t2 + C2

0d

2(1− β)2
· t2, (70)

J̃t := 1 +
1

ϵ2

2AĨt + 2(B + 1)

(
∥ḡ1∥+

C0

√
dt

1− β

)2

· t+ 2Ct

 , (71)

Λy := ∆
(x)
1 +

3C0

1− β
log

(
T

δ

)
+

C0d

1− β
log J̃T ,

+
C2

0d

2(1− β)3
log J̃T +

(
C2

0d

2(1− β)3
+

C2
0d

2(1− β)2

)
log J̃T , (72)

Λx := (2L0 + 1)Λy + 8L1Λ
2
y +

C2
0d

(1− β)2
log J̃T . (73)

It’s worthy noting that Ĩt and J̃t are deterministic polynomials with respect to t and are dependent on hyper-parameters
C0, β, d and problem-parameters A,B,C. We could verify that Λy ∼ O(log(T/δ))) and Λx ∼ O(log2(T/δ)).
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Induction argument The induction begins by noting that ∆(x)
1 ≤ Λx from (72) and (73). Suppose that for some t ∈ [T ],

∆(x)
s ≤ Λx, thus, Hs ≤ H, Ls ≤ L, ∀s ∈ [t], (74)

where we rely on Hs, Ls in (45), and H,L in (28). We thus apply (74) to (69) and get

∆
(y)
t+1 ≤ ∆

(x)
1 − η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 + 3Hη

1− β
log

(
T

δ

)
+

ηH
1− β

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2

+
L

2(1− β)

t∑
s=1

∥ms−1∥2 +
(

Lη2

2(1− β)3
+

Lη2

2(1− β)2

) t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 . (75)

Then, Lemmas 5.8 should be further revised under the generalized smooth condition as follows.

Lemma C.7. Suppose that f is (L0, L1)-smooth and (49) holds. Then for any t ≥ 1,

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 ≤ d logJt, ∥mt∥2 ≤ η2d

1− β
logJt,

t∑
s=1

∥ms∥2 ≤ η2d

(1− β)2
logJt,

where Jt is a polynomial with respect to t with the detailed expression in (76).

Proof. Recall that the three estimations in (38), (43) and (44) remain unchanged as they are not dependent by smooth-related
conditions. However, we shall revise the estimation for the term inside the logarithm operator. We also start from the basic
inequality and Assumption (A3),

t∑
j=1

g2j,i ≤ 2

t∑
j=1

(ḡ2j,i + ξ2j,i) ≤ 2

t∑
j=1

(∥ḡj∥2 + ∥ξj∥2) ≤ 2

t∑
j=1

(A∆
(x)
j + (B + 1)∥ḡj∥2 + C).

Then, applying Lemma C.4 and Lemma C.5,

1 +
1

ϵ2

t∑
j=1

g2j,i ≤ Jt := 1 +
1

ϵ2

2AIt + 2(B + 1)

t∑
s=1

∥ḡ1∥+
η
√
d

1− β

s∑
j=1

Lj

2

+ 2Ct

 . (76)

Plugging (76) into (38), (43) and (44), we thereby deduce the final result.

Therefore, applying Lemma C.7 to (75), we obtain that

∆
(y)
t+1 ≤ ∆

(x)
1 − η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 + 3Hη

1− β
log

(
T

δ

)
+

Hηd

1− β
logJt

+
Lη2d

2(1− β)3
logJt +

(
Lη2d

2(1− β)3
+

Lη2d
2(1− β)2

)
logJt. (77)

Using (27), we have that

Hη ≤ C0, Lη ≤ C0, Lη2 ≤ C2
0 . (78)

We should also note that It in (57) and Jt in (76) both include Ls, s ≤ t. Then recalling Ĩt and J̃t in (70) and (71), and
applying Ls ≤ L,∀s ≤ t in (74) and (78), we have that for any t ∈ [T ],

It ≤ Ĩt ≤ ĨT , Jt ≤ J̃t ≤ J̃T , logJt ≤ log J̃t ≤ log J̃T . (79)

Then, applying (78) and (79) to (77), and recalling Λy in (72),

∆
(y)
t+1 ≤ Λy −

η

2(1− β)

t∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 ≤ Λy. (80)

Finally, we use the following lemma to control ∆(x)
s by ∆

(y)
s .
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Lemma C.8. Suppose that f is (L0, Lq)-smooth and (49) holds. Let ys be defined in (7) and β ∈ [0, 1). Then for any s ≥ 1,

∆(x)
s ≤ (2L0 + 1)∆(y)

s + 8L1

(
∆(y)

s

)2
+

Ls + 1

2(1− β)2
∥ms−1∥2.

Proof. Since (49) holds, then using (54),

f(xs) ≤ f(ys) + ⟨∇f(ys),xs − ys⟩+
Ls

2
∥xs − ys∥2

= f(ys)−
β

1− β
⟨∇f(ys),xs − xs−1⟩+

Lsβ
2

2(1− β)2
∥xs − xs−1∥2.

Using Young’s inequality and subtracting f∗ on both sides,

∆(x)
s ≤ ∆(y)

s +
1

2
∥∇f(ys)∥2 +

(Ls + 1)β2

2(1− β)2
∥xs − xs−1∥2 ≤ ∆(y)

s + 8L1

(
∆(y)

s

)2
+ 2L0∆

(y)
s +

Ls + 1

2(1− β)2
∥ms−1∥2,

where we apply Lemma C.1 and β ∈ [0, 1) for the last inequality.

Using Lemma C.8, (80), and Lemma C.7, we could bound ∆
(x)
t+1 as

∆
(x)
t+1 ≤ (2L0 + 1)Λy + 8L1Λ

2
y +

(Ls + 1)η2d

2(1− β)2
logJt ≤ (2L0 + 1)Λy + 8L1Λ

2
y +

2C2
0d

2(1− β)2
log J̃T ,

where the last inequality applies (78) and (79). Recalling Λx in (73), we find that

∆
(x)
t+1 ≤ Λx.

Combining with (74), the induction is thus complete. We prove the desired result in (67). Finally, as an intermediate result,
(68) is verified by (80). The proof of Proposition C.1 is complete.

C.7 PROOF OF THE MAIN RESULT

Based on Proposition C.1, we could prove the final convergence result as follows.

Proof of Theorem 2. The proof for the final convergence rate follows the similar idea and some same estimations in the
proof of Theorem 1. Setting t = T in (68), it holds that with probability at least 1− δ,

η

2(1− β)

T∑
s=1

∥ḡs∥2

∥ãs∥∞
≤ η

2(1− β)

T∑
s=1

∥∥∥∥ ḡs√
ãs

∥∥∥∥2 ≤ Λy. (81)

In what follows, we assume that (67) and (68) always hold and deduce the convergence bound under these two inequalities.
Note that (67) and (68) hold with probability at least 1− δ according to Proposition C.1. Thus, the final convergence bound
also holds with probability at least 1− δ. Applying ãs in (46) and (67), and following the similar analysis in (24),

∥ãs∥∞ − ϵ ≤

√√√√2

s−1∑
j=1

(A∆
(x)
j + (B + 1)∥ḡj∥2 + C) +H2

s ≤

√√√√2(B + 1)

s−1∑
j=1

∥ḡj∥2 + 2(AΛx + C)s+H2

≤

√√√√2(B + 1)

T∑
s=1

∥ḡs∥2 + 2(AΛx + C)T +H2, ∀s ∈ [T ].
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Then combining with (81), and letting Λ̃y =
2Λy(1−β)

η ,

T∑
s=1

∥ḡs∥2 ≤ Λ̃y


√√√√2(B + 1)

T∑
s=1

∥ḡs∥2 + 2(AΛx + C)T +H2 + ϵ


≤ Λ̃y


√√√√2(B + 1)

T∑
s=1

∥ḡs∥2 +
√
2(AΛx + C)T +H+ ϵ


≤

T∑
s=1

∥ḡs∥2

2
+ Λ̃2

y(B + 1) + Λ̃y

(√
2(AΛx + C)T +H+ ϵ

)
,

where we apply Young’s inequality for the last inequality. Re-arranging the order and dividing T on both sides, we get

1

T

T∑
s=1

∥ḡs∥2 ≤ 2Λ̃y

(
Λ̃y(B + 1) +H+ ϵ

T
+

√
2(AΛx + C)

T

)
.

D EXPERIMENT

In this section, we present an experiment to verify that AdaGrad can find a stationary point when the noise satisfies
Assumption (A3).
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Figure 1: Training loss vs. steps and gradient norms vs. steps using SGD and AdaGrad.

Experimental Setup We follow the experimental task outlined in [Khaled and Richtárik, 2023], where the objective is to
minimize a regularized logistic regression problem defined as follows:

min
x∈Rd

 1

n

n∑
i=1

log
(
1 + exp(−a⊤i x)

)
+ λ

d∑
j=1

x2
j

1 + x2
j

 . (82)

In [Khaled and Richtárik, 2023], it was verified that using uniform sampling over the a9a dataset and the loss function in
(82), the noise conforms to Assumption (A3) with Â = 10.09, B̂ = 0, Ĉ = 0.373, which closely aligns with the theoretical
values where A = 9, B = 0, C = 0.994. We then executed both SGD and AdaGrad to minimize (82) using a batch size of
256. The learning rates were set to 7× 10−6 for SGD and 5× 10−4 for AdaGrad.

We utilized the a9a dataset and the PyTorch implementations of SGD and AdaGrad. The experiments were conducted on a
single NVIDIA GeForce RTX 4090 GPU.

Results We plotted the training loss and gradient norms against the number of steps in Figure 1, training for 1200 epochs.
The results indicate that both SGD and AdaGrad can find a stationary point given a sufficiently large number of steps T ,
thereby supporting the conclusion in Theorem 1.
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