

000 CONVERGENCE ANALYSIS OF NESTEROV'S ACCEL- 001 ERATED GRADIENT DESCENT UNDER RELAXED AS- 002 SUMPTIONS 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 We study convergence rates of Nesterov's Accelerated Gradient Descent (NAG)
014 method for convex optimization in both deterministic and stochastic settings.
015 We focus on a more general smoothness condition raised from several machine
016 learning problems empirically and theoretically. We show the accelerated con-
017 vergence rate of order $\mathcal{O}(1/T^2)$ in terms of the function value gap, given ac-
018 cess to exact gradients of objective functions, matching the optimal rate for stan-
019 dard smooth convex optimization in (Nesterov, 1983). Under the relaxed affine-
020 variance noise assumption for stochastic optimization, we establish the high-
021 probability convergence rate of order $\tilde{\mathcal{O}}\left(\sqrt{\log(1/\delta)/T}\right)$ and this rate could
022 improve to $\tilde{\mathcal{O}}(\log(1/\delta)/T^2)$ when the noise parameters are sufficiently small.
023 Here, T denotes the total number of iterations and δ is the probability margin. Up
024 to logarithm factors, our probabilistic convergence rate reaches the same order of
025 the expected rate obtained in (Ghadimi & Lan, 2016) where the assumptions of
026 bounded variance noise and Lipschitz smoothness are required.

028 1 INTRODUCTION

030 In this paper, we consider the following classical unconstrained optimization problem,

$$031 \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}), \quad (1)$$

033 where the objective function $f(\mathbf{x})$ is convex and can be potentially stochastic, i.e.,

$$035 f(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}[f_{\mathbf{z}}(\mathbf{x}; \mathbf{z})].$$

036 Here \mathcal{D} is a probability distribution from which the random vector \mathbf{z} is drawn.

038 Gradient-based algorithms (Robbins & Monro, 1951; Nesterov, 1983; 2013; Duchi et al., 2011)
039 play an important role in solving (1). [As usual, one typically focuses on the function value gap for](#)
040 [convex objectives and the squared gradient norm for general non-convex ones.](#)¹ In the deterministic
041 setting with access to the exact gradient $\nabla f(\mathbf{x})$, Gradient Descent (GD) achieves a convergence
042 rate of $\mathcal{O}(1/T)$ for smooth convex functions (Nesterov, 2013), whereas for smooth non-convex
043 functions, the rate of the same order is obtained for the squared gradient norm. Here, T is the
044 total number of iterations. The convergence rate for smooth convex optimization can be improved
045 to $\mathcal{O}(1/T^2)$ using Nesterov's Accelerated Gradient Descent (NAG), as established in the seminal
046 work (Nesterov, 1983). Furthermore, this complexity bound is known to be optimal [among gradient](#)
047 [based algorithms](#) (Nemirovskij & Yudin, 1983), without further assumptions.

048 For stochastic optimization where only the gradient estimator is accessible, Stochastic Gradient
049 Descent (SGD) (Robbins & Monro, 1951) is commonly used. Lan (2012) provided an expected
050 upper bound of order $\mathcal{O}\left(1/T + \sigma/\sqrt{T}\right)$ for convex objective functions and Ghadimi & Lan (2013)

051 ¹ An extensive literature on minimizing structured non-convex functions focuses on the function value
052 gap. Examples include work on Polyak-Łojasiewicz functions (Karimi et al., 2016), (strongly) quasiconvex
053 functions (Hinder et al., 2020) and (strongly) quasiconvex functions (Grad et al., 2025). This is beyond the
054 discussion of this paper.

054 obtained the bound of the same order for the non-convex case, both of them assuming bounded
 055 variance noise with noise parameter σ and smooth objective functions. This bound is optimal in
 056 the non-convex setting since it matches the lower bound in (Arjevani et al., 2023). To study the
 057 acceleration behavior in the stochastic convex optimization, Lan (2012); Ghadimi & Lan (2016)
 058 explored (and generalized) stochastic NAG (SNAG) and obtained the expected convergence rate of
 059 order $\mathcal{O}\left(1/T^2 + \sigma/\sqrt{T}\right)$ for smooth objective functions, which in general cannot be improved in
 060 the same setting (Nemirovskij & Yudin, 1983; Lan, 2012).
 061

062 Although much theoretical progress has been made on gradient-based algorithms, most of these
 063 analysis required Lipschitz smoothness condition (Ghadimi & Lan, 2013; 2016; Levy et al., 2018;
 064 Ward et al., 2020; Attia & Koren, 2023), i.e., $\exists L > 0$, such that

$$065 \quad \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d,$$

066 or equivalently $\|\nabla^2 f(\mathbf{x})\| \leq L, \forall \mathbf{x} \in \mathbb{R}^d$ for twice-differentiable functions. Recently, several
 067 researchers have found evidence that this condition is not satisfied by many important machine
 068 learning models (Chen et al., 2023), such as neural network models (Zhang et al., 2020b) and dis-
 069 tributionally robust optimization (Jin et al., 2021). Based on empirical observations, Zhang et al.
 070 (2020b) proposed (L_0, L_1) -smoothness condition, allowing $\|\nabla^2 f(\mathbf{x})\|$ to grow linearly with re-
 071 spect to $\|\nabla f(\mathbf{x})\|$, and later Zhang et al. (2020a) further relaxed this condition, not requiring the
 072 second differentiability of the objective function, i.e., there exist $L_0, L_1 \geq 0$, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,
 073 such that $\|\mathbf{x} - \mathbf{y}\| \leq 1/L_1$,
 074

$$075 \quad \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq (L_0 + L_1 \|\nabla f(\mathbf{x})\|) \|\mathbf{x} - \mathbf{y}\|. \quad (2)$$

076 Based on this generalized smoothness condition, Yu et al. (2025) studied Randomized Stochastic
 077 Accelerated Gradient Descent (RSAG) proposed in (Ghadimi & Lan, 2016) and provided high-
 078 probability convergence rate of order $\tilde{\mathcal{O}}\left(1/T + \sigma/\sqrt{T}\right)$ for both convex and non-convex optimi-
 079 zation (under sub-Gaussian relaxed affine-variance noise), which implies a gap between optimal rate
 080 obtained in the smooth convex optimization. Under a similar generalized smoothness condition, Li
 081 et al. (2024) showed accelerated convergence rate of order $\mathcal{O}\left(1/T^2\right)$ for deterministic NAG in con-
 082 vexit optimization, and they also provided expected convergence rate of order $\mathcal{O}\left(1/T + \sigma/\sqrt{T}\right)$ for
 083 SGD in the non-convex stochastic optimization. To the best of our knowledge, it remains an open
 084 question whether SNAG can achieve an accelerated convergence rate of order $\tilde{\mathcal{O}}\left(1/T^2 + \sigma/\sqrt{T}\right)$
 085 under the generalized smoothness condition for convex optimization. We believe that a proof for the
 086 stochastic setting presents certain challenges; in particular, the analysis for deterministic NAG by
 087 (Li et al., 2024) does not appear to be trivially extendable.
 088

089 In this paper, we aim to close this gap, developing the accelerated convergence rate for SNAG under
 090 more generalized smoothness and relaxed affine-variance noises for stochastic convex optimization.
 091 Specifically, inspired by the theoretical examples in (Taheri & Thrampoulidis, 2023) and (Chen
 092 et al., 2023), we focus on the following more general and practical smoothness condition.

093 **Definition 1** $((L_0, L_1, L_2)$ -smoothness). *Let $L_i \geq 0, \forall 1 \leq i \leq 3$. $f(\cdot)$ is (L_0, L_1, L_2) -smooth if
 094 and only if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ such that $\|\mathbf{x} - \mathbf{y}\| \leq \min\{1/L_1, 1/L_2\}$ ²,*

$$095 \quad \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq (L_0 + L_1 \|\nabla f(\mathbf{x})\|^p + L_2 (f(\mathbf{x}) - f^*)^q) \|\mathbf{x} - \mathbf{y}\|, \quad (3)$$

096 where $p \in [0, 2)$ and $q \geq 0$.

097 Obviously, Definition 1 covers a broader range of relaxed smoothness. Particularly, it is situated
 098 between two related notions: $(L_0, L_1, 0)$ -smoothness, which is empirically verified (Zhang et al.,
 099 2020b) for neural networks training and is theoretically proved for phase retrieval from (Chen et al.,
 100 2023) and the appendix, and $(L_0, 0, L_2)$ -smoothness, which is theoretically proven for specific shal-
 101 low neural networks from (Taheri & Thrampoulidis, 2023) and the appendix.

102 Our analysis relies on a relaxed affine-variance noise condition, which will be formally defined in (5)
 103 (Hong & Lin, 2024; Yu et al., 2025). This condition was initially proposed by (Khaled & Richtárik,
 104

105 ²For the sake of rigor, we define $1/0 = +\infty$ throughout the paper.

2023) in the expected form given in (6), and many practical stochastic gradient settings, such as sub-sampling and compression schemes satisfy this noise model, but not bounded variance or the strong growth condition that the stochastic gradient $g(\mathbf{x})$ of f at \mathbf{x} satisfies, for some non-negative constants B ,

$$\mathbb{E} \left[\|g(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \right] \leq B \|\nabla f(\mathbf{x})\|^2, \forall \mathbf{x} \in \mathbb{R}^d. \quad (4)$$

Closely related to our works are (Vaswani et al., 2019; Gupta et al., 2024). Under the strong growth condition, Vaswani et al. (2019) analyzed the Accelerated Coordinate Descent method (ACDM) (Nesterov, 2012), while Gupta et al. (2024) studied SNAG when $B \leq 1$. Both works achieved the expected accelerated convergence rates in the (strongly) convex setting, but only under the standard smoothness condition.

We summarize our main contributions as follows.

- (a) Motivated by several machine learning problems, we propose a more general smoothness condition defined in Definition 1.
- (b) Under this new smoothness condition, we analyze NAG in the deterministic and convex setting, and we show the accelerated convergence rate of order $\mathcal{O}(1/T^2)$, matching the optimal rate in (Nesterov, 1983).
- (c) For stochastic optimizations under this general smoothness, we focus on the sub-Gaussian version of relaxed affine-variance noise (Assumption 3), and we prove that SNAG converges at the rate of $\tilde{\mathcal{O}}\left(1/T^2 + \sqrt{(A+B+C)/T}\right)$ in high probability. This rate matches the optimal convergence rate for smooth convex optimization under bounded variance noise (Lan, 2012; Ghadimi & Lan, 2016). It could improve to $\tilde{\mathcal{O}}(1/T^2)$ if the noise parameters A, B and C are small enough.
- (d) As a byproduct, we apply our analysis to standard smooth optimization under the expected relaxed affine-variance noises (Assumption 4), and we demonstrate that SNAG reaches the convergence rate of order $\mathcal{O}\left((1+B)/T^2 + \sqrt{(A+C)/T}\right)$ in expectation.

The rest of this paper are organized as follows. We first briefly discuss some extra works related to NAG, generalized smoothness condition and the relaxed noise assumption. We then introduce some necessary assumptions and notations in Section 3. In Section 4, we provide the convergence results under (L_0, L_1, L_2) -smoothness, either in the deterministic setting or in the stochastic setting. In Section 5, we present the expected convergence rate of SNAG under the classic smoothness. In Section 6, we conduct numerical experiments and show the better performance of SNAG compared to SGD for the two-layer neural network and the phase retrieval model. In Section ??, we provide a proof sketch for high-probability convergence under the generalized smoothness. We also provide the convergence result for non-convex stochastic optimization under the generalized smoothness and relaxed noise assumptions in Section G. All the omitted proofs and lemmas are in the appendix.

2 RELATED WORK

We only briefly mention the most related works due to space and knowledge constraints.

Accelerated Gradient Descent NAG (Nesterov, 1983) was originally designed for smooth and convex optimizations in the deterministic setting, and it achieved the accelerated convergence rate of order $\mathcal{O}(1/T^2)$, compared to $\mathcal{O}(1/T)$ of GD. Numerous literature focused on the theoretical and practical convergence behavior of NAG and its variants (Nesterov, 2005; Beck & Teboulle, 2009). For example, Su et al. (2016) introduced a second-order ODE and accompanying tools for characterizing NAG. Lan (2012) generalized NAG for non-smooth and stochastic convex problems under certain conditions and provided optimal convergence rates under proper step sizes. Ghadimi & Lan (2016) proposed RSAG, and showed expected convergence rate of $\mathcal{O}\left(1/T + C/\sqrt{T}\right)$ in the non-convex case while $\mathcal{O}\left(1/T^2 + C/\sqrt{T}\right)$ in the convex case, both under bounded variance noises and smoothness. Li et al. (2024) obtained convergence rate of order $\mathcal{O}(1/T^2)$ for NAG under generalized smoothness and convexity, matching those for standard smooth convex optimizations. Their

162 analysis is limited to the non-stochastic case. Under mild noises in (4) and standard smoothness,
 163 Vaswani et al. (2019) proved that ACDM (Nesterov, 2012), which is a variant of SNAG , could reach
 164 expected accelerated convergence rates in both convex and strongly convex cases. ~~Under the same
 165 setting, Gupta et al. (2024) proposed a new accelerated gradient method named AGNES and they
 166 proved that the algorithm could achieve acceleration, requiring fewer hyperparameters than ACDM .
 167 They also demonstrated that SNAG could achieve acceleration rate when $B \ll 1$. Furthermore,
 168 Hermant et al. (2025) showed the expected convergence rate of $\mathcal{O}((B+1)/T^2)$ and almost-sure
 169 rate of $o((B+1)/T^2)$ for ACDM in general convex optimization problems, and they derived fast
 170 convergence rates for ACDM in strongly convex optimization problems.~~

171 **Relaxed affine-variance noise and its variants** Affine-variance noise (i.e., $A = 0$ in (6)) has
 172 attracted increasing attention as it can characterize gradient noises in many practical problems, such
 173 as machine learning with feature noise (Fuller, 2009; Khani & Liang, 2020), robust linear regression
 174 (Xu et al., 2008) and multilayer networks (Faw et al., 2022). Bottou et al. (2018) analyzed vanilla
 175 SGD and pointed out that there is no essential difference in the analysis between the bounded vari-
 176 ance noise and the affine-variance noise under standard smoothness. For Adagrad-Norm, Faw et al.
 177 (2022) provided expected convergence rates of order $\tilde{\mathcal{O}}(1/\sqrt{T})$ in the non-convex setting and this
 178 rate could reach $\tilde{\mathcal{O}}(1/T)$ when B, C are of order $\mathcal{O}(1/\sqrt{T})$. Under the same setting, Wang et al.
 179 (2023) further proposed a novel auxiliary function for analysis and obtained a tighter bound espe-
 180 cially when $C = 0$. Attia & Koren (2023) derived high probability convergence for Adagrad-Norm
 181 in both convex and non-convex cases, under almost-sure version of affine-variance noises. Khaled &
 182 Richtárik (2023) proposed the relaxed affine-variance noise (see (6)), and they derived an expected
 183 convergence rate of order $\mathcal{O}(1/\sqrt{T})$ for SGD in the non-convex and smooth setting. Hong & Lin
 184 (2024) considered sub-Gaussian version of the relaxed affine-variance noise, and they derived prob-
 185 abilistic convergence rates under (L_0, L_1) -smoothness. Yu et al. (2025) analyzed RSAG (covering
 186 SGD as a special case) in both convex and non-convex settings under (L_0, L_1) -smoothness.
 187

188 **Generalized smoothness** Motivated by practical observations, Zhang et al. (2020b) proposed
 189 (L_0, L_1) -smoothness for twice differentiable functions. They showed $\mathcal{O}(1/T)$ convergence rate for
 190 GD and $\mathcal{O}(1/\sqrt{T})$ convergence rate for SGD in the non-convex setting, involving extra clipping
 191 mechanisms. Zhang et al. (2020a) improved the convergence analysis on problem-dependent pa-
 192 rameters for clipped SGD under essentially the same smoothness. In the analysis of Adagrad-Norm
 193 under affine-variance noises, Faw et al. (2023) derived convergence bounds of order $\tilde{\mathcal{O}}(1/\sqrt{T})$
 194 in the non-convex case when $B < 1$. Wang et al. (2023) gave a counter-example showing the
 195 necessity of prior knowledge on problem parameters for learning rates in AdaGrad under (L_0, L_1) -
 196 smoothness. Via a notion of continuity, Guille-Escuret et al. (2021) demonstrated that the strong
 197 convexity and smoothness have a weakness resulting in a lack of robustness for tuning first-order
 198 algorithms, and they presented promising alternatives.
 199

200 Refer to Table 1 and Table 2 for comparisons of the most relevant works.

203 3 PRELIMINARIES

205 We consider Problem (1) over the Euclidean space \mathbb{R}^d with the l_2 norm, denoted as $\|\cdot\|$. We first
 206 introduce the following assumption.
 207

208 **Assumption 1** (Below bounded). *There exists a minimizer $\mathbf{x}^* \in \mathbb{R}^d$ and the objective function is
 209 bounded from below, i.e.,*

$$210 \quad f(\mathbf{x}^*) = f^* := \inf_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) > -\infty. \\ 211$$

212 In the stochastic setting, we make the following assumptions.

213 **Assumption 2** (Unbiased estimator). *The gradient oracle returns an unbiased estimator of $\nabla f(\mathbf{x})$,
 214 i.e., for all $\mathbf{x} \in \mathbb{R}^d$,*

$$215 \quad \mathbb{E}_{\mathbf{z}} [\nabla f_{\mathbf{z}}(\mathbf{x}; \mathbf{z})] = \nabla f(\mathbf{x}).$$

216 **Assumption 3** (Relaxed affine-variance (sub-Gaussian form)). *The gradient oracle satisfies that for*
 217 *some constants $A, B, C \geq 0$,*
 218

$$219 \mathbb{E}_{\mathbf{z}} \left[\exp \left(\frac{\|\nabla f_{\mathbf{z}}(\mathbf{x}; \mathbf{z}) - \nabla f(\mathbf{x})\|^2}{A(f(\mathbf{x}) - f^*) + B\|\nabla f(\mathbf{x})\|^2 + C} \right) \right] \leq \exp(1), \forall \mathbf{x} \in \mathbb{R}^d. \quad (5)$$

222 **Assumption 4** (Relaxed affine-variance (expected form)). *The gradient oracle satisfies that for*
 223 *some constants $A, B, C \geq 0$,*
 224

$$225 \mathbb{E}_{\mathbf{z}} \left[\|\nabla f_{\mathbf{z}}(\mathbf{x}; \mathbf{z}) - \nabla f(\mathbf{x})\|^2 \right] \leq A(f(\mathbf{x}) - f^*) + B\|\nabla f(\mathbf{x})\|^2 + C, \forall \mathbf{x} \in \mathbb{R}^d. \quad (6)$$

227 Assumption 2 is a relevant assumption for studying many practical settings and is also commonly
 228 used in the analysis of stochastic optimization. Assumption 3 is weaker than the bounded noise in
 229 (Zhang et al., 2020b;a) and the almost-sure version of (relaxed) affine-variance noise in (Attia &
 230 Koren, 2023; Hong & Lin, 2024; Yu et al., 2025). Although While Assumption 3 is stronger than
 231 its expected version in Assumption 4 as it controls all moments of the noise distribution, while
 232 Assumption 4 only controls its second moment (the variance), the former one could lead to high-
 233 probability convergence, which could ensure corresponding expected convergences. Assumption
 234 4 was initially proposed by Khaled & Richtárik (2023) under the name expected smoothness. Its
 235 original, equivalent form is: $\mathbb{E}_{\mathbf{z}} \left[\|\nabla f_{\mathbf{z}}(\mathbf{x}; \mathbf{z})\|^2 \right] \leq A(f(\mathbf{x}) - f^*) + \tilde{B}\|\nabla f(\mathbf{x})\|^2 + C, \forall \mathbf{x} \in \mathbb{R}^d$.
 236

237 **Notations** We denote the set $\{1, \dots, T\}$ as $[T]$. We use $\mathbb{E}_t[\cdot] \triangleq \mathbb{E}[\cdot | \mathbf{z}_1, \dots, \mathbf{z}_{t-1}]$ to represent
 238 the conditional expectation, where \mathbf{z}_i is the random sample in the i -th gradient oracle. The notation
 239 $a \sim \mathcal{O}(b)$ and $a \leq \mathcal{O}(b)$ refer to $c_1 b \leq a \leq c_2 b$ and $a \leq c_3 b$ with c_1, c_2, c_3 being positive constants,
 240 respectively. Also, we write $\tilde{\mathcal{O}}(b)$ for $\mathcal{O}(b \cdot \text{poly}(\log b))$. Throughout the paper, we define $0^0 = 1$.
 241

242 4 CONVERGENCE OF NAG UNDER (L_0, L_1, L_2) -SMOOTHNESS

244 In this section, we assume that the objective function satisfies Definition 1. We present convergence
 245 results for the deterministic case in Section 4.1 and for the stochastic case in Section 4.2. The detail
 246 proofs for this section will be given in Section D and Section E of the appendix.
 247

248 4.1 CONVERGENCE RESULTS FOR DETERMINISTIC OPTIMIZATION

250 We first present convergence rates of NAG in the deterministic case with a slight modification (see
 251 Algorithm 1). This modified NAG is proposed by (Li et al., 2024) where they obtained the optimal
 252 convergence rate under a general smoothness for convex non-stochastic optimizations. The only
 253 difference between Algorithm 1 and original NAG (Nesterov, 1983) is that the latter directly sets
 254 $A_t = B_t$. Such a modification could be used to control the gradient norms (or function value gaps)
 255 in the analysis.
 256

257 **Algorithm 1** Nesterov’s Accelerated Gradient Descent (NAG)

258 **Require:** Horizon T , $\mathbf{x}_0^{ag} = \mathbf{x}_0 \in \mathbb{R}^d$, step sizes $\beta, \{\lambda_t\}_{t \in [T]}$ and $A_0 = 1/\beta, B_0 = 0$.
 259

- 1: **for** $t = 1, \dots, T$ **do**
- 2: $B_t = B_{t-1} + \frac{1}{2}(1 + \sqrt{4B_{t-1} + 1})$;
- 3: $A_t = B_t + \frac{1}{\beta}$;
- 4: $\mathbf{x}_t^{md} = \frac{A_{t-1}}{A_t} \mathbf{x}_{t-1}^{ag} + \left(1 - \frac{A_{t-1}}{A_t}\right) \mathbf{x}_{t-1}$;
- 5: $\mathbf{x}_t = \mathbf{x}_{t-1} - \lambda_t \nabla f(\mathbf{x}_t^{md})$;
- 6: $\mathbf{x}_t^{ag} = \mathbf{x}_t^{md} - \beta \nabla f(\mathbf{x}_t^{md})$.

266
 267 To better understand the NAG method, we provide the following lemma summarized from
 268 (d’Aspremont et al., 2021; Li et al., 2024).
 269

Lemma 4.1. *For all $0 \leq t \leq T$, we have*

270 1. $\frac{1}{4}t^2 \leq B_t \leq t^2$;
 271
 272 2. $(A_t - A_{t-1})^2 = (B_t - B_{t-1})^2 = B_t < A_t$; $(A_t - A_{t-1})^2 = (B_t - B_{t-1})^2 = B_t \leq A_t$
 273
 274 3. $A_t - A_{t-1} = B_t - B_{t-1} \geq 1$. Thus, $\{A_t\}_{t \in [T]}$ and $\{B_t\}_{t \in [T]}$ are both monotonically
 275 increasing sequences.

276 The above lemma plays vital roles both in the induction argument for bounding the function value
 277 gap and in the final convergence analysis. Refer to Section H for the complete proof.

278 **Theorem 1.** Let $T > 0$ and f be an (L_0, L_1, L_2) -smooth convex function. Suppose that $\{\mathbf{x}_t^{ag}\}_{t \in [T]}$
 279 is a sequence generated by Algorithm 1 with step sizes β, λ_t satisfying

280
$$\beta = \frac{1}{\mathcal{L}_1}, \quad \lambda_t = (A_t - A_{t-1})\beta, \quad (7)$$

 281

283 where \mathcal{L}_1 is a constant, depending on the smoothness parameters $\{L_i\}_{i \in [3]}, p, q$, with its explicit
 284 expression in (27). Then, under Assumption 1, we have³

285
$$f(\mathbf{x}_T^{ag}) - f^* \leq \mathcal{O}\left(\frac{1}{T^2}\right). \quad (8)$$

 286

288 Considering the definition of \mathcal{L}_1 in (27), β could reduce to $1/2L$ when the objective function is L -
 289 smooth, which aligns with $\beta = 1/L$ in (Nesterov, 1983) up to a constant. Furthermore, Theorem 1
 290 recovers the convergence rate of order $\mathcal{O}(1/T^2)$ obtained in (Nesterov, 1983) where the smoothness
 291 is required. This bound is optimal (Nemirovskij & Yudin, 1983) for smooth convex optimization
 292 when d is large enough.

294 4.2 CONVERGENCE RESULTS FOR STOCHASTIC OPTIMIZATION

296 In this section, we provide a probabilistic convergence result for SNAG (see Algorithm 2) under the
 297 relaxed affine-variance noise assumption of its sub-Gaussian form. Compared to Algorithm 1, the
 298 only difference is that stochastic gradients, instead of accurate gradients, are accessible. Obviously,
 299 Lemma 4.1 still holds for the stochastic case.

300 **Algorithm 2** Stochastic Nesterov’s Accelerated Gradient Descent (SNAG)

302 **Require:** Horizon T , $\mathbf{x}_0^{ag} = \mathbf{x}_0 \in \mathbb{R}^d$, step sizes $\beta, \{\lambda_t\}_{t \in [T]}$ and $A_0 = 1/\beta, B_0 = 0$.
 303 1: **for** $t = 1, \dots, T$ **do**
 304 2: $B_t = B_{t-1} + \frac{1}{2}(1 + \sqrt{4B_{t-1} + 1})$;
 305 3: $A_t = B_t + \frac{1}{\beta}$;
 306 4: $\mathbf{x}_t^{md} = \frac{A_{t-1}}{A_t} \mathbf{x}_{t-1}^{ag} + \left(1 - \frac{A_{t-1}}{A_t}\right) \mathbf{x}_{t-1}$;
 307 5: **Set** $\mathbf{g}_t = \nabla f_{\mathbf{z}}(\mathbf{x}_t^{md}; \mathbf{z}_t)$;
 308 6: $\mathbf{x}_t = \mathbf{x}_{t-1} - \lambda_t \mathbf{g}_t$;
 309 7: $\mathbf{x}_t^{ag} = \mathbf{x}_t^{md} - \beta \mathbf{g}_t$.

 311

312 **Theorem 2.** Let $T > 0$ and $\delta \in (0, \frac{1}{3})$. Suppose that $\{\mathbf{x}_t^{ag}\}_{t \in [T]}$ is a sequence generated by
 313 Algorithm 2, f is (L_0, L_1, L_2) -smooth and convex, and the step sizes β, λ_t satisfy that

314
$$\beta = \min\left\{\frac{1}{\mathcal{G}_1}, \frac{1}{\mathcal{G}_2 T^{\frac{6}{5}}}, \frac{1}{\mathcal{G}_3 T^{\frac{2}{3}}}, \frac{1}{\mathcal{M} T^{\frac{3}{2}}}, \frac{1}{\mathcal{M}^2 T}\right\}, \quad \lambda_t = \frac{1}{4}\beta(A_t - A_{t-1}), \quad (9)$$

 315

316 where $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ and \mathcal{M} are polynomials of $\log \frac{T}{\delta}$, depending on the noise and smoothness parameters⁴. Under Assumptions 1, 2 and 3, with probability at least $1 - 3\delta$, we have⁵

317
$$f(\mathbf{x}_T^{ag}) - f^* \leq \tilde{\mathcal{O}}\left(\frac{1}{T^2} + \sqrt{\frac{A + B + C}{T}}\right).$$

 318

322 ³We state the explicit convergence result in (42).

323 ⁴The explicit expressions of these notations are presented in (43), (44), (45) and (46).

324 ⁵Refer (73) for the explicit convergence result.

324 Theorem 2 provides accelerated convergence rates in high probability. [Up to logarithm factors](#),
 325 this convergence rate matches the expected convergence rate in (Ghadimi & Lan, 2016), where
 326 they assumed bounded variance noise and standard smoothness, and it is unimprovable for smooth
 327 convex stochastic optimization (Lan, 2012).

328 Furthermore, the convergence rate in Theorem 2 could accelerate to $\tilde{\mathcal{O}}(1/T^2)$ if the noise param-
 329 eters are sufficiently small, which matches the rate for the deterministic NAG in (Li et al., 2024)
 330 [under a generalized \$\(L_0, L_1, 0\)\$ -smoothness: \$\|\nabla^2 f\(\mathbf{x}\)\| \leq l\(\|\nabla f\(\mathbf{x}\)\|\)\$ with a sub-quadratic non-](#)
 331 [decreasing positive function \$l\$ up to logarithm factors](#). Note that Li et al. (2024) did not provide the
 332 analysis for NAG and we consider the [\$\(L_0, L_1, L_2\)\$ -smoothness](#). To extend to stochastic setting,
 333 we modify the step size slightly by a constant factor and $\beta \sum_{i=1}^t A_i \|\nabla f(\mathbf{x}_i^{md})\|^2$ appears in (61),
 334 which makes it feasible to bound $\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2$ in stochastic optimization. Combining with sev-
 335 eral probabilistic lemmas, we could finish the proof. We refer to Section E for the complete proof.
 336 Our analysis for the above theorem, which relies on Assumption 3, does not apply under the weaker
 337 noise condition of Assumption 4 in the generalized smoothness.
 338

340 5 CONVERGENCE OF NAG UNDER LIPSCHITZ SMOOTHNESS

343 We apply our analysis to smooth stochastic optimization and demonstrate that SNAG could reach
 344 the accelerated convergence rate in expectation under the relaxed affine-variance noises and standard
 345 smoothness.

346 **Theorem 3.** *Let $T > 0$, f be L -smooth and convex. Suppose that $\{\mathbf{x}_t^{ag}\}_{t \in [T]}$ is a sequence gener-
 347 ated by Algorithm 2 with step sizes*

$$349 \quad \beta = \min \left\{ \frac{1}{2L(1+B)}, \frac{1}{\mathcal{Q}^{\frac{1}{2}}T^{\frac{3}{2}}}, \frac{1}{\mathcal{Q}T} \right\}, \quad \lambda_t = \frac{\beta}{2(1+B)} (A_t - A_{t-1}), \quad (10)$$

352 where $\mathcal{Q} = A\mathcal{F}_3 + C$ is a constant depending on the parameters of smoothness and noise with \mathcal{F}_3
 353 defined in (78). Under Assumptions 1, 2 and 4, we have⁶

$$354 \quad \mathbb{E}[f(\mathbf{x}_T^{ag}) - f^*] \leq \mathcal{O} \left(\frac{1+B}{T^2} + \sqrt{\frac{A+C}{T}} \right). \quad (11)$$

358 The above theorem relaxes the bounded variance noise assumption in (Ghadimi & Lan, 2016) while
 359 providing the optimal expected convergence rate. Furthermore, Theorem 3 improves the conver-
 360 gence rate of order $\mathcal{O}(1/T + C/\sqrt{T})$ for SGD and RSAG in (Yu et al., 2025) under the same
 361 assumption. [Compared to Theorem 2, the suboptimal term \$\mathcal{O}\(\sqrt{B/T}\)\$ with respect to \$B\$ dis-](#)
 362 [appears in \(11\), which aligns with the expected result of \$\mathcal{O}\(\(B+1\)/T^2\)\$ and almost-sure result of](#)
 363 [\$o\(\(B+1\)/T^2\)\$ in \(Hermant et al., 2025\) where they focused on smooth stochastic optimization](#)
 364 [with noise satisfying \(4\).](#)

367 6 NUMERICAL EXPERIMENT

370 In this section, we show the practical convergence behavior of SNAG (Algorithm 2) compared to
 371 stochastic AGD (Algorithm 3 discussed in the appendix) and SGD, i.e.,

$$373 \quad \mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla_{\mathbf{z}} f(\mathbf{x}_t; \mathbf{z}_t), \quad (12)$$

375 on the two-layer neural network (13) and phase retrieval model (14). [We prove that both the two](#)
 376 [models satisfy the \$\(L_0, L_1, L_2\)\$ -smoothness condition in Section B.](#)

377 ⁶The detail convergence result is presented in (80).

378 **Two-layer neural network** Considering the following problem,
 379

$$380 \quad \min_{\mathbf{x} \in \mathbb{R}^{\tilde{d}}} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f(y_i \Phi(\mathbf{x}, \mathbf{w}_i)), \quad (13)$$

382 where $\mathbf{w}_i \in \mathbb{R}^d$ is the data point and its associated label $y_i \in \{\pm 1\}$. The function $f(\cdot)$ is the
 383 exponential loss i.e., $f(t) = \exp(-t)$ and $\Phi(\cdot)$ is a two-layer neural network with m neurons defined
 384 as
 385

$$386 \quad \Phi(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^m a_j \sigma(\langle \mathbf{x}_j, \mathbf{w} \rangle),$$

388 Here $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is the activation function and $\mathbf{x}_j \in \mathbb{R}^d$ denotes the input weight vector of the j th
 389 hidden neuron. $\mathbf{x} \in \mathbb{R}^{\tilde{d}}$ represents the concatenation of these weights, i.e., $\mathbf{x} = [\mathbf{x}_1; \mathbf{x}_2; \dots; \mathbf{x}_m]$
 390 where $\tilde{d} = md$. We assume that only \mathbf{x}_j can be updated during training, while $a_j \in \mathbb{R}$ are initialized
 391 randomly and kept fixed.
 392

393 We conduct experiment on the specific shallow neural network with $m = 30$ hidden neurons, expo-
 394 nential loss $f(t) = \exp(-t)$ and smoothed-leaky-ReLU activation function, i.e.,
 395

$$396 \quad \sigma(t) = t \mathbb{I}(t \geq 0) + 0.2t \mathbb{I}(t < 0),$$

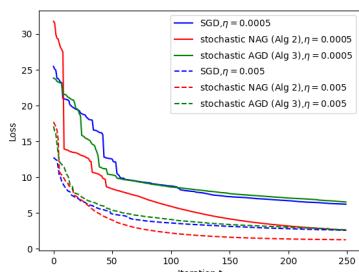
397 where $\mathbb{I}(\cdot)$ is the 0 – 1 indicator function. We generate the data point $\mathbf{w}_i \in \mathbb{R}^d$, where dimension
 398 $d = 10$, coordinate-wise from Gaussian distribution $\mathcal{N}(0, 25)$ with its binary label $y_i \in \{\pm 1\}$
 399 chosen randomly. The second layer weights are generated randomly from $a_j \in \{\pm \frac{1}{m}\}$ and kept
 400 fixed during training.

401 **Phase retrieval** Phase retrieval is a classic model in the field of machine learning and signal pro-
 402 cessing (Drent, 1994; Miao et al., 1999; Chen et al., 2023). In this setting, we are aimed to solve
 403 the following problem, i.e.,
 404

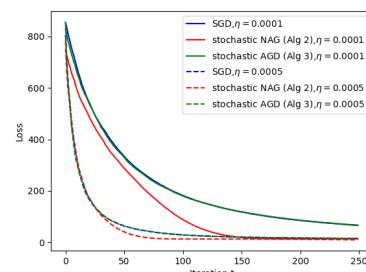
$$405 \quad \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) := \frac{1}{2m} \sum_{i=1}^m (y_i - |\mathbf{a}_i^\top \mathbf{x}|^2)^2. \quad (14)$$

406 Here, y_i represents the intensity measurements, i.e., $y_i = |\mathbf{a}_i^\top \mathbf{z}|$, $\forall i \in [m]$ with $\mathbf{a}_i \in \mathbb{R}^d$ being the
 407 fixed parameters and $\mathbf{z} \in \mathbb{R}^d$ being the true objects.

408 The data in our experiment are generated by $y_i = |\mathbf{a}_i^\top \mathbf{z}|^2 + \epsilon_i$, $i \in [m]$, where each coordinate
 409 of both the measurement vector $\mathbf{a}_i \in \mathbb{R}^d$ and the true parameter \mathbf{z} satisfy Gaussian distribution
 410 $\mathcal{N}(0, 0.5)$, and $\epsilon_i \sim \mathcal{N}(0, 25)$ is the noise. Here, we set the number of samples $m = 1000$ and the
 411 dimension $d = 10$.
 412



424 (a) Two-layer neural network



425 (b) Phase retrieval model

426 Figure 1: Experiment results. We run each algorithm 100 times and plot the average loss at each
 427 iteration.

428 **Experiment Setup** We set $\beta = \eta$ in Algorithm 2 and $\lambda_t = \eta$ in Algorithm 3 where η is also the
 429 step size of SGD. The stochastic gradient in each step is computed by samples randomly chosen
 430 with batch size 10. We start the training process with the initial vector satisfying $\mathcal{N}(1, 25)$.
 431

432 **Results** As Figure 1 shows, SGD and stochastic AGD (Algorithm 2) exhibit comparable performance under these two possibly non-convex setting, complementing their theoretical analysis.
 433 Stochastic NAG performs best among the three especially with small step size though we only prove
 434 its acceleration theoretically in the convex case.
 435

437 7 CONCLUSION

438 In this paper, motivated by several machine learning problems, we propose a new general smooth-
 439 ness, which generalizes the global smoothness and (L_0, L_1) -smoothness. Under this condition, we
 440 analyze NAG method and obtain the accelerated convergence rate of order $\mathcal{O}(1/T^2)$ for convex
 441 optimizations with access to accurate gradients. For stochastic optimization, we obtain acceler-
 442 ated probabilistic convergence rates of order $\tilde{\mathcal{O}}\left(1/T^2 + \sqrt{(A+B+C)/T}\right)$ under sub-Gaussian
 443 relaxed affine-variance noises. Furthermore, we apply our analysis to smooth optimizations and
 444 obtain the result of order $\mathcal{O}\left((B+1)/T^2 + \sqrt{(A+C)/T}\right)$ the same convergence rates in expec-
 445 tation under expected relaxed affine-variance noises. All the above derived convergence rates are
 446 optimal without further assumptions.
 447

448 REFERENCES

449 Yossi Arjevani, Yair Carmon, John Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
 450 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 199(1):165–
 451 214, 2023. <https://doi.org/10.1007/s10107-022-01822-7>.

452 Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: Full adaptivity with high probability to
 453 unknown parameters, unbounded gradients and affine variance. In *International Conference on
 454 Machine Learning*, 2023.

455 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
 456 problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.

457 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 458 learning. *SIAM Review*, 60(2):223–311, 2018. <https://doi.org/10.1137/16M1080173>.

459 Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimiza-
 460 tion is as efficient as smooth nonconvex optimization. In *International Conference on Machine
 461 Learning*, pp. 5396–5427. PMLR, 2023.

462 Jan Drenth. Principles of protein X-ray crystallography. *Springer Advanced Texts in Chemistry*,
 463 1994.

464 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 465 stochastic optimization. *Journal of Machine Learning Research*, 12(7), 2011.

466 Alexandre d’Aspremont, Damien Scieur, Adrien Taylor, et al. Acceleration methods. *Foundations
 467 and Trends® in Optimization*, 5(1-2):1–245, 2021.

468 Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
 469 Rachel Ward. The power of adaptivity in SGD: Self-tuning step sizes with unbounded gradients
 470 and affine variance. In *Conference on Learning Theory*, 2022.

471 Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
 472 ness: A stopped analysis of adaptive SGD. In *Conference on Learning Theory*, 2023.

473 Wayne A Fuller. *Measurement error models*. John Wiley & Sons, 2009.

474 Saeed Ghadimi and Guang Hui Lan. Stochastic first-and zeroth-order methods for non-
 475 convex stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.
<https://doi.org/10.1137/120880811>.

486 Saeed Ghadimi and Guang Hui Lan. Accelerated gradient methods for nonconvex non-
 487 linear and stochastic programming. *Mathematical Programming*, 156(1):59–99, 2016.
 488 <https://doi.org/10.1007/s10107-015-0871-8>.

489 Sorin-Mihai Grad, Felipe Lara, and Raúl T Marcavillaca. Strongly quasiconvex functions: what we
 490 know (so far). *Journal of Optimization Theory and Applications*, 205(2):38, 2025.

492 Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, and Ioannis Mitliagkas. A study of con-
 493 dition numbers for first-order optimization. In *International Conference on Artificial Intelligence
 494 and Statistics*, pp. 1261–1269. PMLR, 2021.

496 Kanan Gupta, Jonathan W Siegel, and Stephan Wojtowytzsch. Nesterov acceleration despite very
 497 noisy gradients. *Advances in Neural Information Processing Systems*, 37:20694–20744, 2024.

498 Julien Hermant, Marien Renaud, Jean-François Aujol, Charles Dossal, and Aude Rondepierre. Gra-
 499 dient correlation is a key factor to accelerate SGD with momentum. In *International Conference
 500 on Learning Representations*, 2025.

502 Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
 503 functions and beyond. In *Conference on Learning Theory*, pp. 1894–1938. PMLR, 2020.

504 Yu Su Hong and Jun Hong Lin. Revisiting convergence of AdaGrad with relaxed assumptions. In
 505 *Uncertainty in Artificial Intelligence*, 2024.

507 Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-convex distributionally robust
 508 optimization: Non-asymptotic analysis. *Advances in Neural Information Processing Systems*, 34:
 509 2771–2782, 2021.

510 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 511 gradient methods under the polyak-łojasiewicz condition. In *Joint European Conference on Ma-
 512 chine Learning and Knowledge Discovery in Databases*, pp. 795–811. Springer, 2016.

513 Ali Kavis, Kfir Levy, and Volkan Cevher. High probability bounds for a class of nonconvex algo-
 514 rithms with AdaGrad stepsize. In *International Conference on Learning Representations*, 2022.

516 Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. *Transactions
 517 on Machine Learning Research*, 2023.

519 Fereshte Khani and Percy Liang. Feature noise induces loss discrepancy across groups. In *Inter-
 520 national Conference on Machine Learning*, 2020.

522 Guang Hui Lan. An optimal method for stochastic composite optimization. *Mathematical Program-
 523 ming*, 133(1):365–397, 2012. <https://doi.org/10.1007/s10107-010-0434-y>.

524 Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceler-
 525 ation. In *Advances in Neural Information Processing Systems*, 2018.

527 Hao Chuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
 528 optimization under generalized smoothness. In *Advances in Neural Information Processing Sys-
 529 tems*, 2024.

530 Xiao Yu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum.
 531 In *Workshop on Beyond First Order Methods in ML Systems at ICML*, 2020.

533 Jianwei Miao, Pambos Charalambous, Janos Kirz, and David Sayre. Extending the methodology of
 534 X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. *Nature*,
 535 400(6742):342–344, 1999.

536 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 537 efficiency in optimization. 1983.

539 Yu Nesterov. Smooth minimization of non-smooth functions. *Mathematical Programming*, 103(1):
 127–152, 2005.

540 Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM*
 541 *Journal on Optimization*, 22(2):341–362, 2012.
 542

543 Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
 544 $\mathcal{O}(1/k^2)$. *Doklady AN USSR*, 269(3):543–547, 1983.
 545

546 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 547 Science & Business Media, 2013.
 548

549 Herbert Robbins and Sutton Monro. A stochastic approximation method. *Annals of Mathematical*
 550 *Statistics*, pp. 400–407, 1951.
 551

552 Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling Nesterov’s
 553 accelerated gradient method: Theory and insights. *Journal of Machine Learning Research*, 17
 554 (153):1–43, 2016.
 555

556 Hossein Taheri and Christos Thrampoulidis. Fast convergence in learning two-layer neural networks
 557 with separable data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 558 pp. 9944–9952, 2023.
 559

560 Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for over-
 561 parameterized models and an accelerated perceptron. In *The 22nd International Conference on*
 562 *Artificial Intelligence and Statistics*, pp. 1195–1204. PMLR, 2019.
 563

564 Bo Han Wang, Hui Shuai Zhang, Zhi Ming Ma, and Wei Chen. Convergence of AdaGrad for non-
 565 convex objectives: Simple proofs and relaxed assumptions. In *Conference on Learning Theory*,
 566 2023.
 567

568 Rachel Ward, Xiao Xia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp convergence over noncon-
 569 vex landscapes. *Journal of Machine Learning Research*, 21(219):1–30, 2020.
 570

571 Huan Xu, Constantine Caramanis, and Shie Mannor. Robust regression and lasso. In *Advances in*
 572 *Neural Information Processing Systems*, 2008.
 573

574 Chenhao Yu, Yusu Hong, and Junhong Lin. Convergence analysis of stochastic accelerated gradient
 575 methods for generalized smooth optimizations. *arXiv preprint arXiv:2502.11125*, 2025.
 576

577 Bo Hang Zhang, Ji Kai Jin, Cong Fang, and Li Wei Wang. Improved analysis of clipping algorithms
 578 for non-convex optimization. In *Advances in Neural Information Processing Systems*, 2020a.
 579

580 Jing Zhao Zhang, Tian Xing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping acceler-
 581 ates training: A theoretical justification for adaptivity. In *International Conference on Learning*
 582 *Representations*, 2020b.
 583

584 DECLARATION OF LLM USAGE

585 We used a large language model (LLM) only for language polishing (grammar, clarity, and style).
 586 The model did not generate ideas, analyses, results, or citations. The authors are fully responsible
 587 for all content.
 588

589 A COMPARISONS OF PREVIOUS WORK WITH OURS

590 B EXAMPLES SATISFYING THE (L_0, L_1, L_2) -SMOOTHNESS CONDITION

591 B.1 TWO-LAYER NEURAL NETWORKS

592 Recall the two-layer neural network model in (13) and we have the following lemma from (Taheri
 593 & Thrampoulidis, 2023). We refer interested readers to see the proof in their paper.

Table 1: Related works under the generalized smoothness condition.

	Alg.	Convexity	Noise	Smoothness	Conv. type	Conv. rate	Extra cond. for gradient
Zhang et al. (2020b)	SGD	non-convex	bounded (a.s.)	(L_0, L_1)	\mathbb{E}	$\frac{1+C}{\sqrt{T}}$	✓
Li et al. (2024)	SGD	non-convex	bounded variance	generalized (L_0, L_1)	\mathbb{E}	$\frac{1+\sqrt{C}}{\sqrt{T}}$	
Li et al. (2024)	NAG	convex	-	generalized (L_0, L_1)	-	$\frac{1}{T^2}$	
Yu et al. (2025)	SGD or RSAG	non-convex	relaxed affine (a.s.)	(L_0, L_1)	$\mathbf{w.h.p}$	$\frac{1}{T} + \frac{\sqrt{A} + \sqrt{C}}{\sqrt{T}}$	
		convex					
Thm 1	NAG	convex	-	(L_0, L_1, L_2)	-	$\frac{1}{T^2}$	
Thm 2	SNAG	convex	relaxed affine (a.s.)	(L_0, L_1, L_2)	$\mathbf{w.h.p}$	$\frac{1}{T^2} + \sqrt{\frac{A+B+C}{T}}$	
Thm 3	SNAG	convex	relaxed affine	smooth	\mathbb{E}	$\frac{B+1}{T^2} + \sqrt{\frac{A+C}{T}}$	

¹ Indeed, Li et al. (2024) provided the probabilistic results for SGD while the dependence of the probability margin is the polynomial of $1/\delta$. In order to distinguish them from other high-probability results with dependence of $\log \frac{T}{\delta}$, we consider them as the expected results.

² “Alg.”, “con.” and “cond.” are the shorthand of the words “algorithm”, “convergence” and “condition”.

³ We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Table 2: Previous works related to NAG.

	Algorithm	Convexity	Noise	Smoothness	Conv. type	Conv. rate
Nesterov (1983)	NAG	convex	-	Lipschitz	-	$\frac{1}{T^2}$
Ghadimi & Lan (2016)	RSAG	non-convex	bounded variance	Lipschitz	\mathbb{E}	$\frac{1}{T} + \sqrt{\frac{C}{T}}$
		convex				$\frac{1}{T^2} + \sqrt{\frac{C}{T}}$
Vaswani et al. (2019)	SNAG	convex	strongly growth	Lipschitz	\mathbb{E}	$\frac{B+1}{T^2}$
Li et al. (2024)	NAG	convex	-	generalized (L_0, L_1)	-	$\frac{1}{T^2}$
Hermant et al. (2025)	SNAG	convex	strongly growth	Lipschitz	a.s.	$\frac{B+1}{T^2}$
Thm 1	NAG	convex	-	(L_0, L_1, L_2)	-	$\frac{1}{T^2}$
Thm 2	SNAG	convex	relaxed affine (a.s.)	(L_0, L_1, L_2)	$\mathbf{w.h.p}$	$\frac{1}{T^2} + \sqrt{\frac{A+B+C}{T}}$
Thm 3	SNAG	convex	relaxed affine	smooth	\mathbb{E}	$\frac{B+1}{T^2} + \sqrt{\frac{A+C}{T}}$

¹ As discussed in Section 2, Vaswani et al. (2019); Hermant et al. (2025) analyzed ACDM, which is a variant of SNAG. However, ACDM is equivalent to SNAG with the specific step size setting in the convex case.

² “Con” and “cond” are the shorthand of the words “convergence” and “condition”.

³ We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Lemma B.1 (Lemma 5 in (Taheri & Thrampoulidis, 2023)). *Let F be in (13) and Φ be a two layer neural network with the activation function satisfying that there exist $L, \alpha, l > 0$, such that*

$$|\sigma''(t)| \leq L, \quad \alpha \leq \sigma'(t) \leq l, \quad \forall t \in \mathbb{R}.$$

Then, F is self-bounded of gradient and Hessian with constants $h = \frac{lR}{\sqrt{m}}$, $H = \frac{LR^2}{m^2} + \frac{l^2R^2}{m}$, i.e.,

$$\|\nabla F(\mathbf{x})\| \leq hF(\mathbf{x}), \quad \|\nabla^2 F(\mathbf{x})\| \leq HF(\mathbf{x}),$$

where $R = \max_{i \in [n]} \|\mathbf{w}_i\|$, $R = \max_{i \in [n]} \|\mathbf{x}_i\|$.

In the next lemma, we denote F^* is the minimum of $F(\mathbf{x})$ in (13), i.e., $F(\mathbf{x}) \geq F^*, \forall \mathbf{x} \in \mathbb{R}^d$.

Lemma B.2. *Under the condition of Lemma B.1, $F(\mathbf{x})$ in (13) is $(L_0, 0, L_2)$ -smooth, where L_0 and L_2 are non-negative constants such that $L_2 = \max\{h, He\}$, $L_0 = L_2 F^*$, $L_2 \log L_2 \geq h \log H$, $L_0 = L_2 F^*$.*

648 *Proof.* For any $\|\mathbf{x} - \mathbf{y}\| \leq 1/L_2$, define $\gamma(t) = t(\mathbf{y} - \mathbf{x}) + \mathbf{x}, t \in [0, 1]$. Then, for any $\mu \in [0, 1]$
 649 we have,
 650

$$\begin{aligned} 651 \quad F(\gamma(\mu)) &= \int_0^\mu \langle \nabla F(\gamma(t)), \mathbf{y} - \mathbf{x} \rangle dt + F(\mathbf{x}) \\ 652 \\ 653 \quad &\leq \int_0^\mu \|\nabla F(\gamma(t))\| \cdot \|\mathbf{y} - \mathbf{x}\| dt + F(\mathbf{x}) \\ 654 \\ 655 \quad &\leq h \|\mathbf{y} - \mathbf{x}\| \int_0^\mu F(\gamma(t)) dt + F(\mathbf{x}), \end{aligned} \quad (15)$$

656 where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
 657 from Lemma B.1. By Gronwall's inequality, we have
 658

$$659 \quad F(\gamma(\mu)) \leq F(\mathbf{x}) \cdot \exp(\mu h \|\mathbf{y} - \mathbf{x}\|), \quad \mu \in [0, 1]. \quad (16)$$

660 Moreover, we have
 661

$$662 \quad \nabla F(\mathbf{y}) - \nabla F(\mathbf{x}) = \nabla F(\gamma(1)) - \nabla F(\gamma(0)) = \int_0^1 \nabla^2 F(\gamma(t))(\mathbf{y} - \mathbf{x}) dt, \quad (17)$$

663 which implies,
 664

$$\begin{aligned} 665 \quad \|\nabla F(\mathbf{y}) - \nabla F(\mathbf{x})\| &= \left\| \int_0^1 \nabla^2 F(\gamma(t))(\mathbf{y} - \mathbf{x}) dt \right\| \\ 666 \\ 667 \quad &\leq \int_0^1 \|\nabla^2 F(\gamma(t))\| \|\mathbf{y} - \mathbf{x}\| dt \\ 668 \\ 669 \quad &\leq H \|\mathbf{y} - \mathbf{x}\| \int_0^1 F(\gamma(t)) dt \\ 670 \\ 671 \quad &\leq H \|\mathbf{y} - \mathbf{x}\| \int_0^1 F(\mathbf{x}) \cdot \exp(th \|\mathbf{y} - \mathbf{x}\|) dt. \end{aligned} \quad (18)$$

672 Since $\|\mathbf{y} - \mathbf{x}\| \leq \frac{1}{L_2}$, we have
 673

$$\begin{aligned} 674 \quad \|\nabla F(\mathbf{y}) - \nabla F(\mathbf{x})\| &\leq H F(\mathbf{x}) \exp\left(\frac{h}{L_2}\right) \|\mathbf{y} - \mathbf{x}\| \\ 675 \\ 676 \quad &= \left(H \exp\left(\frac{h}{L_2}\right) F^* + H \exp\left(\frac{h}{L_2}\right) (F(\mathbf{x}) - F^*) \right) \|\mathbf{y} - \mathbf{x}\|. \end{aligned} \quad (19)$$

677 By the constraints that $L_2 = \max\{h, H\}$, we have
 678

$$679 \quad L_2 \geq H \exp\left(\frac{h}{L_2}\right).$$

680 Combining with the fact that F^* is positive for the exponential loss, we have
 681

$$682 \quad \|\nabla F(\mathbf{y}) - \nabla F(\mathbf{x})\| \leq (L_0 + L_2 (F(\mathbf{x}) - F^*)) \|\mathbf{y} - \mathbf{x}\|. \quad (20)$$

683 \square

684 B.2 PHASE RETRIEVAL MODEL

685 We then provide the proof that the phase retrieval model in (14) satisfying (L_0, L_1, L_2) -smoothness
 686 condition. The following lemma is presented in (Chen et al., 2023).

687 **Lemma B.3.** *The function $f(\mathbf{x})$ in (14) belongs to $\mathcal{L}_{\text{sym}}^*(\frac{2}{3})$, i.e., for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,*

$$688 \quad \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq \left(L'_0 + L'_1 \|\nabla f(\mathbf{x})\|^{\frac{2}{3}} + L'_2 \|\mathbf{x} - \mathbf{y}\|^2 \right) \|\mathbf{x} - \mathbf{y}\|, \quad (21)$$

689 where L'_0, L'_1, L'_2 are non-negative constants.
 690

691 Thus, we could derive Lemma B.4.
 692

702 **Lemma B.4.** Suppose that $f(\mathbf{x})$ is the phase retrieval model defined in (21). Then, $f(\mathbf{x})$ is
 703 $(L_0, L_1, 0)$ -smooth, where $L_0 = L'_0 + L'_2/L_1^2$ and $L_1 = L'_1$.
 704

705 *Proof.* By (21), for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ such that $\|\mathbf{x} - \mathbf{y}\| \leq \frac{1}{L_1}$, we have
 706

$$\begin{aligned} 709 \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| &\leq \left(L'_0 + L'_1 \|\nabla f(\mathbf{x})\|^{\frac{2}{3}} + L'_2/L_1^2 \right) \|\mathbf{x} - \mathbf{y}\| \\ 710 &= \left(L_0 + L_1 \|\nabla f(\mathbf{x})\|^{\frac{2}{3}} \right) \|\mathbf{x} - \mathbf{y}\|. \\ 711 \end{aligned}$$

□

716 C COMPLEMENTARY LEMMAS

717 The following lemma characterizes the relationship between the gradient and the function value gap
 718 under the smoothness condition. Refer to (Attia & Koren, 2023) for a proof.
 719

720 **Lemma C.1.** Let $f(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}$ be an L -smooth function with minimum f^* . Then, we have
 721

$$723 \|\nabla f(\mathbf{x}_t)\|^2 \leq 2L(f(\mathbf{x}_t) - f^*). \\ 724$$

725 Lemma C.2 and Lemma C.3 are the key to the analysis for (L_0, L_1, L_2) -smooth functions.
 726

727 **Lemma C.2.** If $f(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}$ is (L_0, L_1, L_2) -smooth with minimum f^* , then for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$
 728 such that $\|\mathbf{x} - \mathbf{y}\| \leq \min\{1/L_1, 1/L_2\}$, we have
 729

$$730 f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x})\|^p + L_2 (f(\mathbf{x}) - f^*)^q}{2} \|\mathbf{x} - \mathbf{y}\|^2. \\ 731$$

732 *Proof.*
 733

$$\begin{aligned} 734 f(\mathbf{y}) - f(\mathbf{x}) - \langle \mathbf{y} - \mathbf{x}, \nabla f(\mathbf{x}) \rangle &= \int_0^1 \langle \nabla f(\theta \mathbf{y} + (1 - \theta) \mathbf{x}) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle d\theta \\ 735 &\leq \int_0^1 \|\nabla f(\theta \mathbf{y} + (1 - \theta) \mathbf{x}) - \nabla f(\mathbf{x})\| \cdot \|\mathbf{x} - \mathbf{y}\| d\theta \\ 736 &\leq \int_0^1 \theta \cdot (L_0 + L_1 \|\nabla f(\mathbf{x})\|^p + L_2 (f(\mathbf{x}) - f^*)^q) \|\mathbf{x} - \mathbf{y}\|^2 d\theta \\ 737 &= \frac{L_0 + L_1 \|\nabla f(\mathbf{x})\|^p + L_2 (f(\mathbf{x}) - f^*)^q}{2} \|\mathbf{x} - \mathbf{y}\|^2, \\ 738 \end{aligned}$$

739 where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
 740 from the definition of (L_0, L_1, L_2) -smoothness. □
 741

742 **Lemma C.3.** If $f(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}$ is (L_0, L_1, L_2) -smooth with minimum f^* , then we have
 743

$$744 \|\nabla f(\mathbf{x}_t)\|^2 \leq 4L_0 \Delta_t + (2 - p) \left((2p)^{\frac{p}{2}} 2L_1 \Delta_t \right)^{\frac{2}{2-p}} + 4L_2 \Delta_t^{q+1} + 8(L_1 + L_2)^2 \Delta_t^2, \quad (22) \\ 745$$

746 where $\Delta_t = f(\mathbf{x}_t) - f^*$.
 747

756 *Proof.* Let $\mathbf{x} = \mathbf{x}_t - \frac{1}{L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q)} \nabla f(\mathbf{x}_t)$. It is easy to verify
 757 $\|\mathbf{x} - \mathbf{x}_t\| \leq \min\{1/L_1, 1/L_2\}$. By Lemma C.2, we have
 758

$$\begin{aligned}
 759 \quad f(\mathbf{x}) &\leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t)\|^p + L_2 \Delta_t^q}{2} \|\mathbf{x} - \mathbf{x}_t\|^2 \\
 760 \quad &= f(\mathbf{x}_t) - \frac{\|\nabla f(\mathbf{x}_t)\|^2}{L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q)} \\
 761 \quad &\quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t)\|^p + L_2 \Delta_t^q}{2(L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q))^2} \cdot \|\nabla f(\mathbf{x}_t)\|^2 \\
 762 \quad &\leq f(\mathbf{x}_t) - \frac{\|\nabla f(\mathbf{x}_t)\|^2}{L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q)} \\
 763 \quad &\quad + \frac{\|\nabla f(\mathbf{x}_t)\|^2}{2(L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q))},
 \end{aligned}$$

764 which implies
 765

$$\frac{\|\nabla f(\mathbf{x}_t)\|^2}{2(L_0 + L_1(\|\nabla f(\mathbf{x}_t)\| + \|\nabla f(\mathbf{x}_t)\|^p) + L_2(\|\nabla f(\mathbf{x}_t)\| + \Delta_t^q))} \leq f(\mathbf{x}_t) - f(\mathbf{x}) \leq \Delta_t.$$

766 Re-arranging the above inequality, we obtain that
 767

$$\|\nabla f(\mathbf{x}_t)\|^2 \leq 2L_0 \Delta_t + 2L_1 \|\nabla f(\mathbf{x}_t)\|^p \Delta_t + 2L_2 \Delta_t^{q+1} + 2(L_1 + L_2) \|\nabla f(\mathbf{x}_t)\| \cdot \Delta_t.$$

768 When $p > 0$, applying Young's inequality, we have
 769

$$\begin{aligned}
 770 \quad \|\nabla f(\mathbf{x}_t)\|^2 &\leq 2L_0 \Delta_t + \frac{1}{4} \|\nabla f(\mathbf{x}_t)\|^2 + \left(1 - \frac{p}{2}\right) \left((2p)^{\frac{p}{2}} 2L_1 \Delta_t\right)^{\frac{2}{2-p}} \\
 771 \quad &\quad + 2L_2 \Delta_t^{q+1} + \frac{1}{4} \|\nabla f(\mathbf{x}_t)\|^2 + 4(L_1 + L_2)^2 \Delta_t^2. \tag{23}
 \end{aligned}$$

772 Note that (23) still holds when $p = 0$ since $0^0 = 1$. Hence,
 773

$$\|\nabla f(\mathbf{x}_t)\|^2 \leq 4L_0 \Delta_t + (2-p) \left((2p)^{\frac{p}{2}} 2L_1 \Delta_t\right)^{\frac{2}{2-p}} + 4L_2 \Delta_t^{q+1} + 8(L_1 + L_2)^2 \Delta_t^2.$$

774 \square

775 **Corollary 1.** Let $f(\cdot)$ be an (L_0, L_1, L_2) -smooth function with minimum f^* . If $f(\mathbf{x}_t) - f^* \leq G$,
 776 then we have
 777

$$\|\nabla f(\mathbf{x}_t)\|^2 \leq g(G),$$

778 where $g(\cdot) : \mathbb{R} \rightarrow \mathbb{R}$ is defined as
 779

$$g(\mu) = 4L_0 \mu + (2-p) \left((2p)^{\frac{p}{2}} 2L_1 \mu\right)^{\frac{2}{2-p}} + 4L_2 \mu^{q+1} + 8(L_1 + L_2)^2 \mu^2. \tag{24}$$

800 The following lemma plays crucial role in our probabilistic analysis. Refer to (Li & Orabona, 2020)
 801 for a proof.
 802

803 **Lemma C.4** (Lemma 1 in (Li & Orabona, 2020)). Assume that $\{Z_t\}_{t \in [T]}$ is a martingale difference
 804 sequence with respect to $\gamma_1, \gamma_2, \dots, \gamma_T$ and $\mathbb{E}_t[\exp(Z_t^2/\sigma_t^2)] \leq \exp(1)$ for all $1 \leq t \leq T$, where
 805 σ_t is a sequence of measurable random variables with respect to $\gamma_1, \gamma_2, \dots, \gamma_{t-1}$. Then, for any
 806 fixed $\lambda > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have
 807

$$\sum_{t=1}^T Z_t \leq \frac{3\lambda}{4} \sum_{t=1}^T \sigma_t^2 + \frac{1}{\lambda} \log \frac{1}{\delta}.$$

810 **D PROOF OF THEOREM 1**
 811

812 We first present the explicit expressions of $\mathcal{C}_1, \mathcal{F}_1, \mathcal{L}_1$,

813
$$\mathcal{C}_1 = \Delta_0^{ag} + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad (25)$$

814
$$\mathcal{F}_1 = \mathcal{C}_1 + \frac{1}{L_1 + L_2} \sqrt{g(\mathcal{C}_1)} + \frac{L_0 + L_1 (g(\mathcal{C}_1))^{\frac{p}{2}} + L_2 \mathcal{C}_1^q}{2 (L_1 + L_2)^2}, \quad (26)$$

815
$$\mathcal{L}_1 = 2 \left(L_0 + L_1 \left((g(\mathcal{F}_1))^{\frac{1}{2}} + (g(\mathcal{F}_1))^{\frac{p}{2}} \right) + L_2 \left((g(\mathcal{F}_1))^{\frac{1}{2}} + \mathcal{F}_1^q \right) + 8\mathcal{C}_1^2 (L_1 + L_2)^4 \right), \quad (27)$$

816 where $g(\cdot) : \mathbb{R} \rightarrow \mathbb{R}$ is a function defined in (24). Then, we will provide some useful lemmas.
 817 Lemma D.1 follows from the analysis in (Ghadimi & Lan, 2016) and is derived from the iteration
 818 steps in Algorithm 1.

819 **Lemma D.1.** *Let $\{\mathbf{x}_k^{md}\}_{k \in [T]}$ and $\{\mathbf{x}_k^{ag}\}_{k \in [T]}$ be the two sequences generated by Algorithm 1.
 820 Then we have for all $k \in [T]$,*

821
$$\|\mathbf{x}_k^{md} - \mathbf{x}_{k-1}^{ag}\|^2 \leq \frac{1}{A_k \cdot A_{k-1}} \sum_{i=1}^{k-1} \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md})\|^2.$$

822 *Proof.* From Algorithm 1, we have

823
$$\begin{aligned} \mathbf{x}_k^{ag} - \mathbf{x}_k &= \mathbf{x}_k^{md} - \beta \nabla f(\mathbf{x}_k^{md}) - \mathbf{x}_{k-1} + \lambda_k \nabla f(\mathbf{x}_k^{md}) \\ &= \frac{A_{k-1}}{A_k} (\mathbf{x}_{k-1}^{ag} - \mathbf{x}_{k-1}) + (\lambda_k - \beta) \nabla f(\mathbf{x}_k^{md}). \end{aligned}$$

824 Since $\mathbf{x}_0^{ag} = \mathbf{x}_0$, we obtain that

825
$$\mathbf{x}_k^{ag} - \mathbf{x}_k = \frac{1}{A_k} \sum_{i=1}^k A_i (\lambda_i - \beta) \nabla f(\mathbf{x}_i^{md}),$$

826 which implies

827
$$\|\mathbf{x}_k^{ag} - \mathbf{x}_k\| \leq \frac{1}{A_k} \sum_{i=1}^k A_i |\lambda_i - \beta| \cdot \|\nabla f(\mathbf{x}_i^{md})\|. \quad (28)$$

828 Applying the iteration step in Algorithm 1 again, we have

829
$$\mathbf{x}_k^{md} - \mathbf{x}_{k-1}^{ag} = \left(1 - \frac{A_{k-1}}{A_k}\right) (\mathbf{x}_{k-1} - \mathbf{x}_{k-1}^{ag}).$$

830 Combining with (28), we have

831
$$\|\mathbf{x}_k^{md} - \mathbf{x}_{k-1}^{ag}\| \leq \left(1 - \frac{A_{k-1}}{A_k}\right) \cdot \frac{1}{A_{k-1}} \sum_{i=1}^{k-1} A_i |\lambda_i - \beta| \cdot \|\nabla f(\mathbf{x}_i^{md})\|. \quad (29)$$

832 Using the fact that

833
$$\sum_{i=1}^{k-1} A_i \cdot \left(1 - \frac{A_{i-1}}{A_i}\right) = A_{k-1} - A_0,$$

834 we have

835
$$\begin{aligned} &\|\mathbf{x}_k^{md} - \mathbf{x}_{k-1}^{ag}\|^2 \\ &\leq \left(1 - \frac{A_{k-1}}{A_k}\right)^2 \cdot \frac{1}{A_{k-1}^2} \left[\sum_{i=1}^{k-1} A_i \left(1 - \frac{A_{i-1}}{A_i}\right) \cdot \frac{|\lambda_i - \beta|}{1 - \frac{A_{i-1}}{A_i}} \|\nabla f(\mathbf{x}_i^{md})\| \right]^2 \\ &\leq \left(1 - \frac{A_{k-1}}{A_k}\right)^2 \cdot \frac{A_{k-1} - A_0}{A_{k-1}^2} \sum_{i=1}^{k-1} A_i \left(1 - \frac{A_{i-1}}{A_i}\right) \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{(A_i - A_{i-1})^2} \|\nabla f(\mathbf{x}_i^{md})\|^2 \\ &\leq \frac{1}{A_k \cdot A_{k-1}} \sum_{i=1}^{k-1} \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md})\|^2, \end{aligned}$$

864 where the second inequality follows from Jensen's inequality and the last inequality holds since
 865 Lemma 4.1. \square
 866

867 In the next Lemma, we assume the function value gap is bounded. Under this assumption, the
 868 analysis for (L_0, L_1, L_2) -smooth and L smooth objective functions becomes similar. With reference
 869 to (Nesterov, 1983; Ghadimi & Lan, 2016; d'Aspremont et al., 2021), we provide the following
 870 analysis with a step size specific to the novel smoothness condition.
 871

872 **Lemma D.2.** *Suppose that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_1, \forall l \in [t]$. Then, under the conditions of Theorem 1,
 873 we have*

$$874 \quad \Delta_t^{ag} \leq \frac{\mathcal{C}_1}{A_t \beta},$$

876 where \mathcal{C}_1 is a constant related to the initial point and is defined in (25).
 877

878 *Proof.* By Corollary 1 and the assumption that $\Delta_l^{md} \leq \mathcal{F}_1, \forall l \in [t]$, we have $\|\nabla f(\mathbf{x}_l^{md})\|^2 \leq$
 879 $g(\mathcal{F}_1), \forall l \in [t]$. Therefore,

$$881 \quad \|\mathbf{x}_l^{ag} - \mathbf{x}_l^{md}\| = \beta \|\nabla f(\mathbf{x}_l^{md})\| \leq \beta \sqrt{g(\mathcal{F}_1)} \leq \min\{1/L_1, 1/L_2\},$$

883 where the last inequality holds since $\beta = \frac{1}{\mathcal{L}_1}$ with \mathcal{L}_1 defined in (27). By Lemma C.2, we have
 884

$$885 \quad f(\mathbf{x}_l^{ag}) \leq f(\mathbf{x}_l^{md}) + \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_l^{ag} - \mathbf{x}_l^{md} \rangle + \frac{L_0 + L_1(g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q}{2} \|\mathbf{x}_l^{ag} - \mathbf{x}_l^{md}\|^2$$

$$886 \quad = f(\mathbf{x}_l^{md}) - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{L_0 + L_1(g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md})\|^2. \quad (30)$$

890 By the convexity and the iteration step in Algorithm 1, we have

$$891 \quad f(\mathbf{x}_l^{md}) - \left[\frac{A_{l-1}}{A_l} \cdot f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot f^* \right]$$

$$892 \quad = \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot [f(\mathbf{x}_l^{md}) - f^*] + \frac{A_{l-1}}{A_l} \cdot [f(\mathbf{x}_l^{md}) - f(\mathbf{x}_{l-1}^{ag})]$$

$$893 \quad \leq \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_l^{md} - \mathbf{x}^* \rangle + \frac{A_{l-1}}{A_l} \cdot \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_l^{md} - \mathbf{x}_{l-1}^{ag} \rangle$$

$$894 \quad = \left\langle \nabla f(\mathbf{x}_l^{md}), \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot (\mathbf{x}_l^{md} - \mathbf{x}^*) + \frac{A_{l-1}}{A_l} \cdot (\mathbf{x}_l^{md} - \mathbf{x}_{l-1}^{ag}) \right\rangle$$

$$895 \quad = \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle. \quad (31)$$

903 Combining (30) and (31), we obtain that

$$904 \quad f(\mathbf{x}_l^{ag}) \leq \frac{A_{l-1}}{A_l} \cdot f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot f^* + \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle$$

$$905 \quad - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{L_0 + L_1(g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md})\|^2. \quad (32)$$

910 Also,

$$911 \quad \|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - 2\lambda_l \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle + \lambda_l^2 \|\nabla f(\mathbf{x}_l^{md})\|^2$$

$$912 \quad = \|\mathbf{x}_{l-1} - \lambda_l \nabla f(\mathbf{x}_l^{md}) - \mathbf{x}^*\|^2 = \|\mathbf{x}_l - \mathbf{x}^*\|^2.$$

913 Hence,

$$914 \quad \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle = \frac{1}{2\lambda_l} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] + \frac{\lambda_l}{2} \|\nabla f(\mathbf{x}_l^{md})\|^2. \quad (33)$$

918 Substituting (33) into (32), we have
919

$$920 \quad f(\mathbf{x}_l^{ag}) \leq \frac{A_{l-1}}{A_l} \cdot f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) \cdot f^* + \frac{A_l - A_{l-1}}{2A_l \cdot \lambda_l} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] \\ 921 \\ 922 \quad - \beta \left(1 - \frac{\left(L_0 + L_1 (g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q \right) \beta}{2} - \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l} \right) \|\nabla f(\mathbf{x}_l^{md})\|^2. \quad (34)$$

923 By the constraint of λ_l in (7) and applying Lemma 4.1, we obtain that
924

$$925 \quad \lambda_l \cdot \frac{A_l - A_{l-1}}{A_l} = \beta \cdot \frac{(A_l - A_{l-1})^2}{A_l} = \beta \frac{(B_l - B_{l-1})^2}{B_l + 1/\beta} = \beta \frac{B_l}{B_l + 1/\beta} < \beta.$$

926 Also, recalling the constraint of β in (7), we have and
927

$$928 \quad \left(L_0 + L_1 (g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q \right) \beta \leq \frac{1}{2}.$$

929 Therefore,
930

$$931 \quad 1 - \frac{\left(L_0 + L_1 (g(\mathcal{F}_1))^{\frac{p}{2}} + L_2 \mathcal{F}_1^q \right) \beta}{2} - \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l} \geq \frac{1}{4}.$$

932 Combining with (34) and reorganizing the terms, we have
933

$$934 \quad \Delta_l^{ag} \leq -\frac{1}{4}\beta \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{A_{l-1}}{A_l} \cdot \Delta_{l-1}^{ag} + \frac{A_l - A_{l-1}}{2A_l \cdot (A_l - A_{l-1})\beta} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] \\ 935 \\ 936 \quad = -\frac{1}{4}\beta \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{A_{l-1}}{A_l} \cdot \Delta_{l-1}^{ag} + \frac{1}{2\beta A_l} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right]. \quad (35)$$

937 With both sides of the above inequality multiplying A_l , we have
938

$$939 \quad A_l \Delta_l^{ag} + \frac{1}{2\beta} \|\mathbf{x}_l - \mathbf{x}^*\|^2 \leq A_{l-1} \Delta_{l-1}^{ag} + \frac{1}{2\beta} \|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \frac{1}{4}\beta A_l \|\nabla f(\mathbf{x}_l^{md})\|^2. \quad (36)$$

940 Summing up over $l \in [t]$ and re-arranging the inequality, we obtain that
941

$$942 \quad \Delta_t^{ag} \leq \frac{A_0}{A_t} \Delta_0^{ag} + \frac{1}{2\beta A_t} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 = \frac{1}{A_t \beta} \Delta_0^{ag} + \frac{1}{2\beta A_t} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \\ 943 \\ 944 \quad = \frac{1}{A_t \beta} \left(\Delta_0^{ag} + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \right). \quad (37)$$

945 \square

946 Based on the proof for Lemma D.2, we will prove the bound of $f(\mathbf{x}_t^{md}) - f^*$ for all $t \in [T]$, using
947 an induction argument.
948

949 **Lemma D.3.** *Under the conditions of Theorem 1, we have*
950

$$951 \quad f(\mathbf{x}_t^{md}) - f^* \leq \mathcal{F}_1, \quad \forall t \in [T],$$

952 where \mathcal{F}_1 is defined in (26).
953

954 *Proof.* It is apparent that $f(\mathbf{x}_1^{md}) - f^* = f(\mathbf{x}_0^{ag}) - f^* \leq \mathcal{F}_1$ since $\mathbf{x}_0^{ag} = \mathbf{x}_0$. Suppose that for
955 some $t \in [T]$,

$$956 \quad f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_1, \quad \forall l \in [t].$$

957 Next, we will bound $f(\mathbf{x}_{t+1}^{md}) - f^*$. By Lemma D.1, we have
958

$$959 \quad \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \leq \frac{1}{A_{t+1} \cdot A_t} \sum_{i=1}^t \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md})\|^2 \\ 960 \\ 961 \quad \leq \sum_{i=1}^t \frac{(A_i - A_{i-1} - 1)^2}{A_i - A_{i-1}} \beta^2 \|\nabla f(\mathbf{x}_i^{md})\|^2 \\ 962 \\ 963 \quad \leq \beta^2 \sum_{i=1}^t (A_i - A_{i-1}) \|\nabla f(\mathbf{x}_i^{md})\|^2,$$

972 where the second and the third inequalities follow from Lemma 4.1. Applying Lemma 4.1 again and
 973 using the fact that $A_i = B_i + 1/\beta, \forall i \in [T]$, we have
 974

$$975 \quad \| \mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag} \|^2 \leq \beta^2 \sum_{i=1}^t \sqrt{A_i} \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq \beta^{\frac{5}{2}} \sum_{i=1}^t A_i \|\nabla f(\mathbf{x}_i^{md})\|^2. \quad (38)$$

978 Since the assumption that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_1, \forall l \in [t]$, (36) holds here for all $l \in [t]$. Therefore,
 979 summing up (36) over $l \in [t]$, we have
 980

$$981 \quad \frac{1}{4} \beta \sum_{i=1}^t A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq A_0 \Delta_0^{ag} + \frac{1}{2\beta} \|\mathbf{x}_0 - \mathbf{x}^*\|^2. \quad (39)$$

984 Combining (38) and (39) and the constraint of β , we obtain that
 985

$$986 \quad \| \mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag} \|^2 \leq \sqrt{\beta} \cdot 4 \left(\Delta_0^{ag} + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \right) \leq \frac{1}{(L_1 + L_2)^2}.$$

988 Applying Lemma C.2 again, we have
 989

$$990 \quad \begin{aligned} & f(\mathbf{x}_{t+1}^{md}) \\ & \leq f(\mathbf{x}_t^{ag}) + \langle \nabla f(\mathbf{x}_t^{ag}), \mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag} \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ & \leq f(\mathbf{x}_t^{ag}) + \|\nabla f(\mathbf{x}_t^{ag})\| \cdot \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\| + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ & \leq f(\mathbf{x}_t^{ag}) + \frac{1}{L_1 + L_2} \|\nabla f(\mathbf{x}_t^{ag})\| + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2(L_1 + L_2)^2}, \end{aligned} \quad (40)$$

998 where the second inequality holds since Cauchy-Schwarz inequality. Further, considering the as-
 999 sumption that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_1, \forall l \in [t]$, (37) holds here. Noting that $A_t \beta = (B_t + \frac{1}{\beta}) \cdot \beta \geq 1$,
 1000 we could deduce
 1001

$$1002 \quad \Delta_t^{ag} \leq \Delta_0^{ag} + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 = \mathcal{C}_1. \quad (41)$$

1005 Plugging (41) into (40), subtracting f^* from both sides and applying Corollary 1, we obtain that
 1006

$$1007 \quad \Delta_{t+1}^{md} \leq \mathcal{C}_1 + \frac{1}{L_1 + L_2} \sqrt{g(\mathcal{C}_1)} + \frac{L_0 + L_1 (g(\mathcal{C}_1))^{\frac{p}{2}} + L_2 \mathcal{C}_1^q}{2(L_1 + L_2)^2} = \mathcal{F}_1,$$

1009 where $g(\cdot)$ is the function defined in (24). Therefore, the induction is complete and we obtain the
 1010 desired result. \square
 1011

1012 Now we are ready to obtain the main convergence result.
 1013

1015 *Proof of Theorem 1.* Noting that $\Delta_t^{md} \leq \mathcal{F}_1, \forall t \in [T]$ proved in Lemma D.3, we could apply
 1016 Lemma D.2 and obtain that

$$1017 \quad \Delta_T^{ag} \leq \frac{1}{A_T \beta} \left(\Delta_0^{ag} + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \right) = \frac{\mathcal{C}_1 \cdot \mathcal{L}_1}{A_T}.$$

1020 Applying Lemma 4.1, we obtain that
 1021

$$1022 \quad \Delta_T^{ag} \leq \frac{4\mathcal{C}_1 \cdot \left(2 \left(L_0 + L_1 \left((g(\mathcal{F}_1))^{\frac{1}{2}} + (g(\mathcal{F}_1))^{\frac{p}{2}} \right) + L_2 \left((g(\mathcal{F}_1))^{\frac{1}{2}} + \mathcal{F}_1^q \right) + 8\mathcal{C}_1^2 (L_1 + L_2)^4 \right) \right)}{T^2}. \quad (42)$$

1024 \square
 1025

1026 **E PROOF OF THEOREM 2**
1027

1028 We first introduce some notations used in Theorem 2, i.e.,
1029

1030 $\mathcal{M} = \sqrt{A\mathcal{F}_2 + Bg(\mathcal{F}_2) + C}, \quad \mathcal{G}_1 = \max \{\mathcal{G}_{1,1}, \mathcal{G}_{1,2}, \mathcal{G}_{1,3}, \mathcal{G}_{1,4}\},$
1031
1032 $\mathcal{G}_2 = (595)^{\frac{2}{5}} (L_1 + L_2)^{\frac{4}{5}} \mathcal{M}^{\frac{4}{5}} \left(\log \frac{Te}{\delta} \right)^{\frac{2}{5}}, \quad \mathcal{G}_3 = (595)^{\frac{2}{3}} (L_1 + L_2)^{\frac{4}{3}} \mathcal{M}^{\frac{4}{3}} \left(\log \frac{Te}{\delta} \right)^{\frac{2}{3}}, \quad (43)$
1033

1034 where
1035

1036 $\mathcal{G}_{1,1} = L_1 \left(\sqrt{g(\mathcal{F}_2)} + \mathcal{M} \sqrt{\log \frac{Te}{\delta}} \right), \quad \mathcal{G}_{1,2} = L_2 \left(\sqrt{g(\mathcal{F}_2)} + \mathcal{M} \sqrt{\log \frac{Te}{\delta}} \right),$
1037
1038 $\mathcal{G}_{1,3} = 4 \left(L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q \right), \quad \mathcal{G}_{1,4} = 4624 (L_1 + L_2)^4 \mathcal{C}_2^2. \quad (44)$
1039
1040

1041 Furthermore,

1042
1043 $\mathcal{F}_2 = \mathcal{H} + \frac{\sqrt{g(\mathcal{H})}}{L_1 + L_2} + \frac{L_0 + L_1 (g(\mathcal{H}))^{\frac{p}{2}} + L_2 \mathcal{H}^q}{2(L_1 + L_2)^2}, \quad (45)$
1044

1045 with the notations
1046

1047 $\mathcal{C}_2 = \Delta_0^{ag} + 2 \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad \mathcal{H} = 2\mathcal{C}_2 + 17 \log \frac{Te}{\delta}. \quad (46)$
1048

1049 In what follows, we will present several high-probability lemmas for the probabilistic analysis.
1050

1051 **E.1 PRELIMINARIES**
1052

1053 The following lemma bound the noise norm under Assumption 3.

1054 **Lemma E.1.** *Given $T \geq 1$, suppose that for any $t \in [T]$, $\mathbf{v}_t = \nabla f_{\mathbf{z}}(\mathbf{x}_t; \mathbf{z}_t) - \nabla f(\mathbf{x}_t)$ satisfies
1055 Assumption 3. Then, for any given $\delta \in (0, 1)$, it holds that with probability at least $1 - \delta$,*

1056
1057 $\|\mathbf{v}_t\|^2 \leq (A(f(\mathbf{x}_t) - f^*) + B \|\nabla f(\mathbf{x}_t)\|^2 + C) \log \frac{Te}{\delta}, \quad \forall t \in [T]. \quad (47)$
1058

1059
1060 *Proof.* Denote $\zeta_t = \frac{\|\mathbf{v}_t\|^2}{A(f(\mathbf{x}_t) - f^*) + B \|\nabla f(\mathbf{x}_t)\|^2 + C}$, $\forall t \in [T]$, where T is fixed. By the definition of
1061 the noise model, we have
1062

1063 $\mathbb{E}_t [\exp(\zeta_t)] \leq e, \quad \text{thus,} \quad \mathbb{E} [\exp(\zeta_t)] \leq e.$
1064

1065 By Markov's inequality, for any $\beta \in \mathbb{R}$,

1066
1067 $\mathbb{P} \left(\max_{t \in [T]} \zeta_t \geq \beta \right) = \mathbb{P} \left(\exp \left(\max_{t \in [T]} \zeta_t \right) \geq e^\beta \right)$
1068
1069 $\leq e^{-\beta} \mathbb{E} \left[\exp \left(\max_{t \in [T]} \zeta_t \right) \right] \leq e^{-\beta} \mathbb{E} \left[\sum_{t=1}^T \exp(\zeta_t) \right] \leq e^{-\beta} Te.$
1070
1071

1072 Therefore, with probability at least $1 - \delta$, we have
1073

1074 $\|\mathbf{v}_t\|^2 \leq (A(f(\mathbf{x}_t) - f^*) + B \|\nabla f(\mathbf{x}_t)\|^2 + C) \log \frac{Te}{\delta}, \quad \forall t \in [T].$
1075

1076 \square
1077

1078 Next, we will establish a probabilistic upper bound for summation of the two martingale difference
1079 sequences based on the noise assumption and Lemma C.4.

1080 **Lemma E.2.** *Given $T \geq 1$ and $\delta \in (0, 1)$, if Assumptions 1, 2 and 3 hold, then with probability at*
 1081 *least $1 - \delta$, for all $l \in [T]$, we have*

$$1083 \quad \sum_{k=1}^l -A_k \langle \xi_k, \nabla f(\mathbf{x}_k^{md}) \rangle \leq \frac{1}{4A_T \mathcal{M}^2} \sum_{k=1}^l A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 \mathcal{M}_k^2 + 3A_T \mathcal{M}^2 \log \frac{T}{\delta}, \quad (48)$$

1086 where

$$1088 \quad \mathcal{M}_t = \sqrt{A \Delta_t^{md} + B g(\Delta_t^{md}) + C}, \quad (49)$$

1090 \mathcal{M} is defined in (43) and $g(\cdot)$ is a function defined in (24).

1092 *Proof.* Let $X_k = -A_k \langle \xi_k, \nabla f(\mathbf{x}_k^{md}) \rangle$. Note that \mathbf{x}_k^{md} and \mathbf{x}_{k-1} are random variables dependent on $\mathbf{z}_1, \dots, \mathbf{z}_{k-1}$ and ξ_k is dependent on $\mathbf{z}_1, \dots, \mathbf{z}_k$. It is apparent that X_k is the martingale difference sequence since

$$1095 \quad \mathbb{E}_k [X_k] = -A_k \langle \mathbb{E}_k [\xi_k], \nabla f(\mathbf{x}_k^{md}) \rangle = 0.$$

1097 Also, by Assumption 3 and applying Cauchy-Schwarz inequality, we have

$$1099 \quad \mathbb{E}_k \left[\exp \left(\frac{X_k^2}{A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 (A \Delta_k^{md} + B \|\nabla f(\mathbf{x}_k^{md})\|^2 + C)} \right) \right] \\ 1100 \quad \leq \mathbb{E}_k \left[\exp \left(\frac{A_k^2 \|\xi_k\|^2 \|\nabla f(\mathbf{x}_k^{md})\|^2}{A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 (A \Delta_k^{md} + B \|\nabla f(\mathbf{x}_k^{md})\|^2 + C)} \right) \right] \leq \exp(1) \quad (50)$$

1106 Thus, given any $l \in [T]$, applying Lemma C.4, we have that for any $\lambda > 0$, with probability at least
 1107 $1 - \delta$,

$$1108 \quad \sum_{k=1}^l X_k \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 (A \Delta_k^{md} + B \|\nabla f(\mathbf{x}_k^{md})\|^2 + C) + \frac{1}{\lambda} \log \frac{1}{\delta} \\ 1109 \quad \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 \mathcal{M}_k^2 + \frac{1}{\lambda} \log \frac{1}{\delta}, \quad (51)$$

1114 where the second inequality follows from Lemma C.3. For any fixed λ , we can rescale over δ and
 1115 have that with probability at least $1 - \delta$, for all $l \in [T]$,

$$1117 \quad \sum_{k=1}^l X_k \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k^2 \|\nabla f(\mathbf{x}_k^{md})\|^2 \mathcal{M}_k^2 + \frac{1}{\lambda} \log \frac{T}{\delta}.$$

1120 Let $\lambda = \frac{1}{3A_T \mathcal{M}^2}$, and we obtain the desired result. \square

1122 **Lemma E.3.** *Given $T \geq 1$ and $\delta \in (0, 1)$, if Assumptions 1, 2 and 3 hold. Then, with probability at*
 1123 *least $1 - \delta$, for all $l \in [T]$, we have*

$$1125 \quad \sum_{k=1}^l (A_k - A_{k-1}) \langle \xi_k, \mathbf{x}^* - \mathbf{x}_{k-1} \rangle \leq \frac{3 \log \frac{T}{\delta}}{2\mathcal{P}(\mathcal{F}_2)} \sum_{k=1}^l A_k \|\mathbf{x}^* - \mathbf{x}_{k-1}\|^2 \mathcal{M}_k^2 + \frac{\mathcal{P}(\mathcal{F}_2)}{2}, \quad (52)$$

1128 where \mathcal{M}_k is defined in (49) and $\mathcal{P}(\mathcal{F}_2)$ is defined in (62).

1130 *Proof.* Let $Y_k = (A_k - A_{k-1}) \langle \xi_k, \mathbf{x}^* - \mathbf{x}_{k-1} \rangle$. Note that \mathbf{x}_k^{md} and \mathbf{x}_{k-1} are random variables dependent on $\mathbf{z}_1, \dots, \mathbf{z}_{k-1}$ and ξ_k is dependent on $\mathbf{z}_1, \dots, \mathbf{z}_k$. It is apparent that Y_k is the martingale difference sequence since

$$1133 \quad \mathbb{E}_k [Y_k] = (A_k - A_{k-1}) \langle \mathbb{E}_k [\xi_k], \mathbf{x}^* - \mathbf{x}_{k-1} \rangle = 0.$$

1134 Also, by Assumption 3 and applying Cauchy-Schwarz inequality, we have
 1135

$$\begin{aligned} 1136 \quad & \mathbb{E}_k \left[\exp \left(\frac{Y_k^2}{A_k \|x^* - x_{k-1}\|^2 (A\Delta_k^{md} + B \|\nabla f(x_k^{md})\|^2 + C)} \right) \right] \\ 1137 \quad & \leq \mathbb{E}_k \left[\exp \left(\frac{(A_k - A_{k-1})^2 \|\xi_k\|^2 \|x^* - x_{k-1}\|^2}{A_k \|x^* - x_{k-1}\|^2 (A\Delta_k^{md} + B \|\nabla f(x_k^{md})\|^2 + C)} \right) \right] \leq \exp(1), \end{aligned} \quad (53)$$

1142 where the last inequality follows from Lemma 4.1. Thus, given any $l \in [T]$, applying Lemma C.4,
 1143 we have that for any $\lambda > 0$, with probability at least $1 - \delta$,

$$\begin{aligned} 1145 \quad & \sum_{k=1}^l Y_k \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k \|x^* - x_{k-1}\|^2 (A\Delta_k^{md} + B \|\nabla f(x_k^{md})\|^2 + C) + \frac{1}{\lambda} \log \frac{1}{\delta} \\ 1146 \quad & \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k \|x^* - x_{k-1}\|^2 \mathcal{M}_k^2 + \frac{1}{\lambda} \log \frac{1}{\delta}, \end{aligned} \quad (54)$$

1150 where the second inequality follows from Lemma C.3 and the definition of \mathcal{M}_k in (49). For any
 1151 fixed λ , we can rescale over δ and have that with probability at least $1 - \delta$, for all $l \in [T]$,

$$\sum_{k=1}^l Y_k \leq \frac{3\lambda}{4} \sum_{k=1}^l A_k \|x^* - x_{k-1}\|^2 \mathcal{M}_k^2 + \frac{1}{\lambda} \log \frac{T}{\delta}.$$

1156 Let $\lambda = \frac{2 \log \frac{T}{\delta}}{\mathcal{P}(\mathcal{F}_2)}$, and we obtain the desired result. \square
 1157

1158 We provide the following lemma for Algorithm 2, which is similar to Lemma D.1 in the deterministic
 1159 case.

1160 **Lemma E.4.** *Let $\{x_k^{md}\}_{k \in [T]}$ and $\{x_k^{ag}\}_{k \in [T]}$ be the two sequences generated by Algorithm 2.
 1161 Then we have that for all $k \in [T]$,*

$$\|x_k^{md} - x_{k-1}^{ag}\|^2 \leq \frac{1}{A_k \cdot A_{k-1}} \sum_{i=1}^{k-1} \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{A_i - A_{i-1}} \|g_i\|^2.$$

1166 *Proof.* Lemma E.4 can be seen as a corollary of Lemma D.1. As long as we replace the accurate
 1167 gradient $\nabla f(x_k^{md})$ in Lemma D.1 with the stochastic gradient g_t , the proof is finished. \square
 1168

1169 E.2 CONVERGENCE ANALYSIS

1171 In the next two lemmas, we assume that Δ_l^{md} is bounded in the first t iterations and derive the iteration
 1172 sequence based on the above analysis, in preparation for the induction argument in Lemma E.7.

1173 **Lemma E.5.** *Suppose that $f(x_l^{md}) - f^* \leq \mathcal{F}_2, \forall l \in [t]$. Then, under (47), for all $l \in [t]$, the
 1174 conditions of Theorem 2, we have that for all $l \in [t]$, given $\delta \in (0, 1)$, with probability at least $1 - \delta$*

$$\begin{aligned} 1176 \quad & A_l \Delta_l^{ag} + \frac{2}{\beta} \|x_l - x^*\|^2 \leq A_{l-1} \Delta_{l-1}^{ag} + \frac{2}{\beta} \|x_{l-1} - x^*\|^2 - \frac{1}{2} \beta A_l \|\nabla f(x_l^{md})\|^2 + \frac{1}{2} \beta A_l \|\xi_l\|^2 \\ 1177 \quad & + \langle \xi_l, -\beta A_l \nabla f(x_l^{md}) + (A_l - A_{l-1})(x^* - x_{l-1}) \rangle. \end{aligned} \quad (55)$$

1178 *Proof.* Suppose that (47) in Lemma E.1 always happen, then we deduce (55) always holds. Since
 1179 (47) holds with probability at least $1 - \delta$, it follows that (55) happens with probability at least $1 - \delta$.
 1180 With the assumption that $\Delta_l^{md} \leq \mathcal{F}_2, \forall l \in [t]$ and applying Corollary 1, we have $\|\nabla f(x_l^{md})\| \leq$
 1181 $\sqrt{g(\mathcal{F}_2)}, \forall l \in [t]$. Therefore,

$$\begin{aligned} 1184 \quad & \|x_l^{ag} - x_l^{md}\| = \beta \|\nabla f(x_l^{md}) + \xi_l\| \leq \beta (\|\nabla f(x_l^{md})\| + \|\xi_l\|) \\ 1185 \quad & \leq \beta \left(\sqrt{g(\mathcal{F}_2)} + \mathcal{M} \sqrt{\log \frac{T_e}{\delta}} \right) \leq \min \{1/L_1, 1/L_2\}, \end{aligned}$$

1188 where the first inequality follows from the triangle inequality and the second inequality holds since
 1189 (47). The last inequality holds since $\beta \leq 1/\mathcal{G}_{1,1}$ and $\beta \leq 1/\mathcal{G}_{1,2}$ with $\mathcal{G}_{1,1}, \mathcal{G}_{1,2}$ defined in (44). By
 1190 Lemma C.2, we have

$$\begin{aligned}
 1192 \quad f(\mathbf{x}_l^{ag}) &\leq f(\mathbf{x}_l^{md}) + \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_l^{ag} - \mathbf{x}_l^{md} \rangle + \frac{L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q}{2} \|\mathbf{x}_l^{ag} - \mathbf{x}_l^{md}\|^2 \\
 1193 &= f(\mathbf{x}_l^{md}) - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \beta \langle \nabla f(\mathbf{x}_l^{md}), \boldsymbol{\xi}_l \rangle \\
 1194 &\quad + \frac{L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2. \tag{56}
 \end{aligned}$$

1198 Note that (31) is derived from the convexity of f and the iteration step

$$\mathbf{x}_t^{md} = \frac{A_{t-1}}{A_t} \mathbf{x}_{t-1}^{ag} + \left(1 - \frac{A_{t-1}}{A_t}\right) \mathbf{x}_{t-1},$$

1202 which is the same in Algorithm 1 and Algorithm 2. Thus, (31) holds here. Combining (31) and (56),

$$\begin{aligned}
 1203 \quad f(\mathbf{x}_l^{ag}) &\leq \frac{A_{l-1}}{A_l} f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) f^* + \left(1 - \frac{A_{l-1}}{A_l}\right) \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle \\
 1204 &\quad - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \beta \langle \nabla f(\mathbf{x}_l^{md}), \boldsymbol{\xi}_l \rangle + \frac{L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2. \tag{57}
 \end{aligned}$$

1210 Also, by the iteration step, we have

$$\begin{aligned}
 1212 \quad \|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - 2\lambda_l \langle \nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l, \mathbf{x}_{l-1} - \mathbf{x}^* \rangle + \lambda_l^2 \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2 \\
 1213 &= \|\mathbf{x}_{l-1} - \lambda_l (\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l) - \mathbf{x}^*\|^2 = \|\mathbf{x}_l - \mathbf{x}^*\|^2.
 \end{aligned}$$

1215 Hence,

$$\langle \nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_k, \mathbf{x}_{l-1} - \mathbf{x}^* \rangle = \frac{1}{2\lambda_l} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] + \frac{\lambda_l}{2} \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2. \tag{58}$$

1220 Combining with the fact that

$$\|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2 = \|\nabla f(\mathbf{x}_l^{md})\|^2 + 2 \langle \boldsymbol{\xi}_l, \nabla f(\mathbf{x}_l^{md}) \rangle + \|\boldsymbol{\xi}_l\|^2 \leq 2 \|\nabla f(\mathbf{x}_l^{md})\|^2 + 2 \|\boldsymbol{\xi}_l\|^2, \tag{59}$$

1224 we have

$$\begin{aligned}
 1226 \quad f(\mathbf{x}_l^{ag}) &\leq \frac{A_{l-1}}{A_l} f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) f^* + \frac{A_l - A_{l-1}}{2A_l \cdot \lambda_l} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] \\
 1227 &\quad - \beta \left(1 - \left(L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q\right) \beta - \frac{\lambda_l (A_l - A_{l-1})}{\beta A_l}\right) \|\nabla f(\mathbf{x}_l^{md})\|^2 \\
 1228 &\quad + \left(\left(L_0 + L_1 (g(\mathcal{F}_2))^{\frac{p}{2}} + L_2 \mathcal{F}_2^q\right) \beta^2 + \frac{\lambda_l (A_l - A_{l-1})}{A_l}\right) \|\boldsymbol{\xi}_l\|^2 \\
 1229 &\quad + \left\langle \boldsymbol{\xi}_l, -\beta \nabla f(\mathbf{x}_l^{md}) + \frac{A_l - A_{l-1}}{A_l} (\mathbf{x}^* - \mathbf{x}_{l-1}) \right\rangle. \tag{60}
 \end{aligned}$$

1235 Since the setting of λ_l in (9), we have

$$\frac{A_l - A_{l-1}}{2A_l \cdot \lambda_l} = \frac{2}{A_l \cdot \beta},$$

1239 and

$$\frac{A_l - A_{l-1}}{A_l} \lambda_l = \frac{A_l - A_{l-1}}{4A_l} \cdot \beta (A_l - A_{l-1}) \leq \frac{\beta}{4},$$

where the inequality follows from Lemma 4.1. Combining with the constraint that $\beta \leq 1/\mathcal{G}_{1,3}$, we have

$$\begin{aligned} f(\mathbf{x}_l^{ag}) &\leq \frac{A_{l-1}}{A_l} f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) f^* + \frac{2}{A_l \cdot \beta} \left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2 \right] \\ &\quad - \frac{1}{2} \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{1}{2} \beta \|\boldsymbol{\xi}_l\|^2 + \left\langle \boldsymbol{\xi}_l, -\beta \nabla f(\mathbf{x}_l^{md}) + \frac{A_l - A_{l-1}}{A_l} (\mathbf{x}^* - \mathbf{x}_{l-1}) \right\rangle. \end{aligned}$$

Multiplying A_l on both sides and re-arranging the inequality, we obtain the desired result. \square

Lemma E.6. Under the condition of Lemma E.5, let (47), (48) and (52). Then for any $\delta \in (0, 1/3)$, it holds that with probability at least $1 - 3\delta$,

$$A_l \Delta_l^{ag} + \frac{2}{\beta} \|\mathbf{x}_l - \mathbf{x}^*\|^2 + \frac{1}{4} \beta \sum_{i=1}^l A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq \mathcal{P}(\mathcal{F}_2), \forall 0 \leq l \leq t, \quad (61)$$

where

$$\mathcal{P}(\mathcal{F}_2) = \frac{2\mathcal{C}_2}{\beta} + \frac{17}{2} T A_T \beta \mathcal{M}^2 \log \frac{T \epsilon}{\delta}, \quad (62)$$

and \mathcal{C}_2 is defined in (46).

Proof. It is apparent that

$$A_0 \Delta_0^{ag} + \frac{2}{\beta} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \leq \mathcal{P}(\mathcal{F}_2).$$

Suppose that for some $k \in [t-1]$,

$$A_l \Delta_l^{ag} + \frac{2}{\beta} \|\mathbf{x}_l - \mathbf{x}^*\|^2 + \frac{1}{4} \beta \sum_{i=1}^l A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq \mathcal{P}(\mathcal{F}_2), \forall 0 \leq l \leq k. \quad (63)$$

In what follows, we will bound

$$A_{k+1} \Delta_{k+1}^{ag} + \frac{2}{\beta} \|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 + \frac{1}{4} \beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2.$$

Note that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_2, \forall l \in [t]$, according to Lemma E.5, (55) and $\mathcal{M}_l \leq \mathcal{M}$ hold here for all $l \in [k+1]$. Thus, summing up (55) over $l \in [k+1]$, we have

$$\begin{aligned} A_{k+1} \Delta_{k+1}^{ag} + \frac{2}{\beta} \|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 &\leq A_0 \Delta_0^{ag} + \frac{2}{\beta} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{1}{2} \beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \\ &\quad + \frac{1}{2} \beta \sum_{i=1}^{k+1} A_i \|\boldsymbol{\xi}_i\|^2 - \beta \sum_{i=1}^{k+1} A_i \langle \boldsymbol{\xi}_i, \nabla f(\mathbf{x}_i^{md}) \rangle + \sum_{i=1}^{k+1} (A_i - A_{i-1}) \langle \boldsymbol{\xi}_i, \mathbf{x}^* - \mathbf{x}_{i-1} \rangle. \end{aligned} \quad (64)$$

Applying (48) and letting $l = k+1$, we have

$$\begin{aligned} -\beta \sum_{i=1}^{k+1} A_i \langle \boldsymbol{\xi}_i, \nabla f(\mathbf{x}_i^{md}) \rangle &\leq \frac{1}{4 A_T \mathcal{M}^2} \beta \sum_{i=1}^{k+1} A_i^2 \|\nabla f(\mathbf{x}_i^{md})\|^2 \mathcal{M}_i^2 + 3 A_T \beta \mathcal{M}^2 \log \frac{T}{\delta} \\ &\leq \frac{1}{4} \beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 + 3 A_T \beta \mathcal{M}^2 \log \frac{T}{\delta}, \end{aligned} \quad (65)$$

where the second inequality follows from $\mathcal{M}_i \leq \mathcal{M}$ and $A_i \leq A_T$ for all $i \in [k+1]$. Similarly, applying (52), we obtain that

$$\begin{aligned} \sum_{i=1}^{k+1} (A_i - A_{i-1}) \langle \boldsymbol{\xi}_i, \mathbf{x}^* - \mathbf{x}_{i-1} \rangle &\leq \frac{3 \log \frac{T}{\delta}}{2 \mathcal{P}(\mathcal{F}_2)} \sum_{i=1}^{k+1} A_i \|\mathbf{x}^* - \mathbf{x}_{i-1}\|^2 \mathcal{M}_i^2 + \frac{\mathcal{P}(\mathcal{F}_2)}{2} \\ &\leq \frac{3}{4} \beta \log \frac{T}{\delta} \sum_{i=1}^{k+1} A_i \mathcal{M}_i^2 + \frac{\mathcal{P}(\mathcal{F}_2)}{2} \\ &\leq \frac{3}{4} \beta T \cdot A_T \mathcal{M}^2 \log \frac{T}{\delta} + \frac{\mathcal{P}(\mathcal{F}_2)}{2}, \end{aligned} \quad (66)$$

1296 where the second inequality holds since
 1297

$$1298 \quad \|\mathbf{x}_i - \mathbf{x}^*\|^2 \leq \frac{1}{2}\beta \cdot \mathcal{P}(\mathcal{F}_2), \quad \forall 0 \leq i \leq k,$$

1299 derived from (63), and the last inequality follows from $\mathcal{M}_i \leq \mathcal{M}$ and $A_i \leq A_T$ for all $i \in [k+1]$.
 1300 Combining (64), (65) and (66), we have
 1301

$$1302 \quad A_{k+1}\Delta_{k+1}^{ag} + \frac{2}{\beta}\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \\ 1303 \leq A_0\Delta_0^{ag} + \frac{2}{\beta}\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{1}{2}\beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 + \frac{1}{2}\beta \sum_{i=1}^{k+1} A_i \|\xi_i\|^2 \\ 1304 \\ 1305 + \frac{1}{4}\beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 + 3A_T\beta\mathcal{M}^2 \log \frac{T}{\delta} + \frac{3}{4}\beta T \cdot A_T\mathcal{M}^2 \log \frac{T}{\delta} + \frac{\mathcal{P}(\mathcal{F}_2)}{2}.$$

1306 Applying (48) with the assumption that $\Delta_l^{md} \leq \mathcal{F}_2, \forall l \in [t]$,
 1307

$$1308 \quad \|\xi_l\|^2 \leq \mathcal{M}^2 \log \frac{T}{\delta}.$$

1309 Combining the above inequalities, we obtain that
 1310

$$1311 \quad A_{k+1}\Delta_{k+1}^{ag} + \frac{2}{\beta}\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \\ 1312 \\ 1313 \leq A_0\Delta_0^{ag} + \frac{2}{\beta}\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{1}{4}\beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \\ 1314 \\ 1315 + \left(\frac{1}{2} \log \frac{T}{\delta} + \frac{3}{4} \log \frac{T}{\delta} \right) T \cdot A_T\beta\mathcal{M}^2 + 3A_T\beta\mathcal{M}^2 \log \frac{T}{\delta} + \frac{\mathcal{P}(\mathcal{F}_2)}{2} \\ 1316 \\ 1317 \leq A_0\Delta_0^{ag} + \frac{2}{\beta}\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{1}{4}\beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 + \frac{17}{4}T A_T\beta\mathcal{M}^2 \log \frac{T}{\delta} + \frac{\mathcal{P}(\mathcal{F}_2)}{2}.$$

1318 Hence, we could deduce that
 1319

$$1320 \quad A_{k+1}\Delta_{k+1}^{ag} + \frac{2}{\beta}\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 + \frac{1}{4}\beta \sum_{i=1}^{k+1} A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq \mathcal{P}(\mathcal{F}_2), \quad (67)$$

1321 since
 1322

$$1323 \quad \mathcal{P}(\mathcal{F}_2) = \frac{2}{\beta} \left(\Delta_0^{ag} + 2\|\mathbf{x}_0 - \mathbf{x}^*\|^2 \right) + \frac{17}{2}T A_T\beta\mathcal{M}^2 \log \frac{T}{\delta}.$$

1324 \square

1325 Based on previous lemmas, we will provide the upper bound of Δ_t^{md} for all $t \in [T]$.
 1326

1327 **Lemma E.7.** *Under the condition of Theorem 2, let (47), (48) and (52). Then for any given
 1328 $\delta \in (0, 1/3)$ we have that with probability at least $1 - 3\delta$,*

$$1329 \quad f(\mathbf{x}_t^{md}) - f^* \leq \mathcal{F}_2, \forall t \in [T], \quad (68)$$

1330 where \mathcal{F}_2 is defined in (45).
 1331

1332 *Proof.* It is apparent that $f(\mathbf{x}_1^{md}) - f^* = f(\mathbf{x}_0^{ag}) - f^* \leq \mathcal{F}_2$. Suppose that for some $t \in [T]$,
 1333

$$1334 \quad f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_2, \forall l \in [t].$$

1335 Then, by Lemma E.6, (61) holds. Next, we will bound $f(\mathbf{x}_{t+1}^{md}) - f^*$. By Lemma E.4, we have
 1336

$$1337 \quad \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \leq \frac{1}{A_{t+1} \cdot A_t} \sum_{i=1}^t \frac{A_i^2 \cdot (\lambda_i - \beta)^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md}) + \xi_i\|^2 \\ 1338 \\ 1339 \leq 2 \sum_{i=1}^t \frac{\lambda_i^2 + \beta^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md}) + \xi_i\|^2, \quad (69)$$

1350 where the second inequality holds since $(a - b)^2 \leq 2a^2 + 2b^2$ and $A_i \leq A_t \leq A_{t+1}, \forall i \in [t]$. Also,
1351 since $\lambda_t = \frac{1}{4}\beta(A_t - A_{t-1})$ for all $t \in [T]$, we have
1352

$$\begin{aligned} 1353 \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 &\leq 2\beta^2 \sum_{i=1}^t \frac{\frac{1}{16}(A_i - A_{i-1})^2 + 1}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md}) + \boldsymbol{\xi}_i\|^2 \\ 1354 &\leq \frac{17}{8}\beta^2 \sum_{i=1}^t (A_i - A_{i-1}) \|\nabla f(\mathbf{x}_i^{md}) + \boldsymbol{\xi}_i\|^2 \\ 1355 &\leq \frac{17}{4}\beta^2 \sum_{i=1}^t (A_i - A_{i-1}) \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\boldsymbol{\xi}_i\|^2 \right), \end{aligned}$$

1361 where the second inequality follows from Lemma 4.1 and the last inequality holds since $\|\mathbf{a} + \mathbf{b}\|^2 \leq 1362 2\|\mathbf{a}\|^2 + 2\|\mathbf{b}\|^2$. Applying Lemma 4.1 and using the fact that $\sqrt{\beta A_i} = \sqrt{\beta B_i + 1} \geq 1, \forall i \in [T]$,
1363 we have
1364

$$\begin{aligned} 1365 \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 &\leq \frac{17}{4}\beta^2 \sum_{i=1}^t \sqrt{A_i} \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\boldsymbol{\xi}_i\|^2 \right) \\ 1366 &\leq \frac{17}{4}\beta^{\frac{5}{2}} \sum_{i=1}^t A_i \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\boldsymbol{\xi}_i\|^2 \right). \end{aligned} \quad (70)$$

1371 Since the assumption that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_2, \forall l \in [t]$, by (61), we have
1372

$$\beta \sum_{i=1}^t A_i \|\nabla f(\mathbf{x}_i^{md})\|^2 \leq 4\mathcal{P}(\mathcal{F}_2).$$

1375 Combining with (70), (47) and recalling the expression of $\mathcal{P}(\mathcal{F}_2)$ in (62), we obtain that
1376

$$\begin{aligned} 1377 \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 &\leq 17\beta^{\frac{3}{2}}\mathcal{P}(\mathcal{F}_2) + \frac{17}{4}\beta^{\frac{5}{2}}TA_T\mathcal{M}^2 \log \frac{Te}{\delta} \\ 1378 &= 34\sqrt{\beta} \cdot \mathcal{C}_2 + \frac{289}{2}\beta^{\frac{5}{2}}TA_T\mathcal{M}^2 \log \frac{Te}{\delta} + \frac{17}{4}\beta^{\frac{5}{2}}TA_T\mathcal{M}^2 \log \frac{Te}{\delta} \\ 1379 &= 34\sqrt{\beta} \cdot \mathcal{C}_2 + \frac{595}{4}\beta^{\frac{5}{2}}TA_T\mathcal{M}^2 \log \frac{Te}{\delta}. \end{aligned}$$

1383 Combining with Lemma 4.1 and the setting that $A_T = B_T + 1/\beta$, we have
1384

$$\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \leq 34\sqrt{\beta} \cdot \mathcal{C}_2 + \frac{595}{4}\beta^{\frac{5}{2}}T^3\mathcal{M}^2 \log \frac{Te}{\delta} + \frac{595}{4}\beta^{\frac{3}{2}}T\mathcal{M}^2 \log \frac{Te}{\delta}.$$

1387 Since $\beta \leq \min \left\{ 1/\mathcal{G}_{1,4}, 1/\left(\mathcal{G}_2 T^{\frac{6}{5}}\right), 1/\left(\mathcal{G}_3 T^{\frac{2}{3}}\right) \right\}$, where $\mathcal{G}_{1,4}, \mathcal{G}_2, \mathcal{G}_3$ are defined in (43), (44),
1388

$$\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \leq \frac{1}{(L_1 + L_2)^2}.$$

1391 Hence, applying Lemma C.2 and Cauchy-Schwarz inequality, we have
1392

$$\begin{aligned} 1393 f(\mathbf{x}_{t+1}^{md}) &\leq f(\mathbf{x}_t^{ag}) + \langle \nabla f(\mathbf{x}_t^{ag}), \mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag} \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ 1394 &\leq f(\mathbf{x}_t^{ag}) + \|\nabla f(\mathbf{x}_t^{ag})\| \cdot \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\| + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ 1395 &\leq f(\mathbf{x}_t^{ag}) + \frac{1}{L_1 + L_2} \|\nabla f(\mathbf{x}_t^{ag})\| + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t^{ag})\|^p + L_2 (\Delta_t^{ag})^q}{2(L_1 + L_2)^2}. \end{aligned} \quad (71)$$

1401 Since the assumption that $\Delta_l^{md} \leq \mathcal{F}_2, \forall l \in [t]$, by Lemma E.6, we have
1402

$$\Delta_t^{ag} \leq \frac{\mathcal{P}(\mathcal{F}_2)}{A_t} \leq \beta \cdot \mathcal{P}(\mathcal{F}_2), \quad (72)$$

1404 where the second inequality holds since $A_t \geq 1/\beta$. Plugging (62) into (72), we obtain that
1405

$$1406 \quad \Delta_t^{ag} \leq 2\mathcal{C}_2 + \frac{17}{2}T^3\beta^2\mathcal{M}^2 \log \frac{Te}{\delta} + \frac{17}{2}T\beta\mathcal{M}^2 \log \frac{Te}{\delta} \leq 2\mathcal{C}_2 + 17 \log \frac{Te}{\delta} = \mathcal{H},$$

1408 where the last inequality follow from
1409

$$1410 \quad \beta \leq \frac{1}{\mathcal{M}T^{\frac{3}{2}}}, \quad \text{and} \quad \beta \leq \frac{1}{\mathcal{M}^2T}.$$

1412 Note that \mathcal{H} is independent on \mathcal{F}_2 . By Corollary 1, we have $\|\nabla f(\mathbf{x}_t^{ag})\| \leq \sqrt{g(\mathcal{H})}$. Combining
1413 with (71) and subtracting f^* from both sides, we obtain that
1414

$$1415 \quad \Delta_{t+1}^{md} \leq \mathcal{H} + \frac{\sqrt{g(\mathcal{H})}}{L_1 + L_2} + \frac{L_0 + L_1(g(\mathcal{H}))^{\frac{p}{2}} + L_2\mathcal{H}^q}{2(L_1 + L_2)^2} = \mathcal{F}_2.$$

1418 Now we finish the induction and obtain the desired result. \square
1419

1420 With the above lemmas, we are ready to prove the final convergence result.
1421

1423 *Proof of Theorem 2.* In what follows, we assume (47), (48) and (52) always hold, and under these
1424 conditions we prove the desired error bounds. Using Lemmas E.1, E.2 and E.3, (47), (48) and (52)
1425 hold with probability at least $1 - 3\delta$. Thus, the desired error bounds also hold with probability at
1426 least $1 - 3\delta$.

1427 By Lemma E.7, (68) holds. Based on Lemma E.6, we obtain that
1428

$$1429 \quad \Delta_T^{ag} \leq \frac{\mathcal{P}(\mathcal{F}_2)}{A_T} \leq \frac{8\mathcal{C}_2}{T^2\beta} + \frac{17}{2}T\beta\mathcal{M}^2 \log \frac{Te}{\delta}.$$

1431 Since the constraints of β in (9), we have
1432

$$1433 \quad \Delta_T^{ag} \leq \frac{8\mathcal{C}_2}{T^2} (L_1 + L_2) \left(\sqrt{g(\mathcal{F}_2)} + \mathcal{M} \sqrt{\log \frac{Te}{\delta}} \right) \\ 1434 \quad + \frac{32\mathcal{C}_2}{T^2} \left(L_0 + L_1(g(\mathcal{F}_2))^{\frac{p}{2}} + L_2\mathcal{F}_2^q + 1156(L_1 + L_2)^4\mathcal{C}_2^2 \right) \\ 1435 \quad + \frac{8\mathcal{C}_2}{T^{\frac{4}{3}}} (595)^{\frac{2}{5}} (L_1 + L_2)^{\frac{4}{5}} \mathcal{M}^{\frac{4}{5}} \left(\log \frac{Te}{\delta} \right)^{\frac{2}{5}} + \frac{8\mathcal{C}_2}{T^{\frac{4}{3}}} (595)^{\frac{2}{3}} (L_1 + L_2)^{\frac{4}{3}} \mathcal{M}^{\frac{4}{3}} \left(\log \frac{Te}{\delta} \right)^{\frac{2}{3}} \\ 1436 \quad + \frac{8\mathcal{C}_2\mathcal{M}^2}{T} + \frac{\mathcal{M}}{\sqrt{T}} \left(\frac{17}{2} \log \frac{Te}{\delta} + 8\mathcal{C}_2 \right). \quad (73)$$

F PROOF OF THEOREM 3

1447 We first provide the following lemma as a key to the induction argument in Lemma F.2.
1448

1449 **Lemma F.1.** *Under the conditions of Theorem 3, for all $t \in [T]$, it holds that*

$$1450 \quad \mathbb{E}[A_t \Delta_t^{ag}] + \frac{1+B}{\beta} \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|^2] \\ 1451 \quad \leq \frac{\mathcal{C}_3}{\beta} - \frac{1}{2}\beta \sum_{l=1}^t A_l \mathbb{E}[\|\nabla f(\mathbf{x}_l^{md})\|^2] + \frac{1}{2(1+B)} \beta \sum_{l=1}^t A_l \mathbb{E}[A \Delta_l^{md} + C],$$

1456 where
1457

$$\mathcal{C}_3 = \Delta_0^{ag} + (1+B) \|\mathbf{x}_0 - \mathbf{x}^*\|^2. \quad (74)$$

1458 *Proof.* By the descent lemma for Lipschitz smooth functions and the iteration step in Algorithm 2,

$$\begin{aligned}
 1460 \quad f(\mathbf{x}_l^{ag}) &\leq f(\mathbf{x}_l^{md}) + \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_l^{ag} - \mathbf{x}_l^{md} \rangle + \frac{L}{2} \|\mathbf{x}_l^{ag} - \mathbf{x}_l^{md}\|^2 \\
 1461 \\
 1462 &= f(\mathbf{x}_l^{md}) - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \beta \langle \nabla f(\mathbf{x}_l^{md}), \boldsymbol{\xi}_l \rangle + \frac{L}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2.
 \end{aligned}$$

1464 Note that (31), (58) and (59) still holds here as they are independent of the smoothness condition.
1465 Thus,

$$\begin{aligned}
 1466 \quad f(\mathbf{x}_l^{ag}) & \\
 1467 &\leq \frac{A_{l-1}}{A_l} f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) f^* + \left(1 - \frac{A_{l-1}}{A_l}\right) \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}^* \rangle \\
 1468 &\quad - \beta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \beta \langle \nabla f(\mathbf{x}_l^{md}), \boldsymbol{\xi}_l \rangle + \frac{L}{2} \beta^2 \|\nabla f(\mathbf{x}_l^{md}) + \boldsymbol{\xi}_l\|^2 \\
 1469 &\leq \frac{A_{l-1}}{A_l} f(\mathbf{x}_{l-1}^{ag}) + \left(1 - \frac{A_{l-1}}{A_l}\right) f^* + \frac{A_l - A_{l-1}}{2A_l \cdot \lambda_l} [\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2] \\
 1470 &\quad - \beta \left(1 - \frac{L\beta}{2} - \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \|\nabla f(\mathbf{x}_l^{md})\|^2 + \left(\frac{L\beta^2}{2} + \frac{\lambda_l (A_l - A_{l-1})}{2A_l}\right) \|\boldsymbol{\xi}_l\|^2 \\
 1471 &\quad + \left\langle \boldsymbol{\xi}_l, \left(-\beta + L\beta^2 + \frac{\lambda_l (A_l - A_{l-1})}{A_l}\right) \nabla f(\mathbf{x}_l^{md}) \right\rangle + \left\langle \boldsymbol{\xi}_l, \frac{A_l - A_{l-1}}{A_l} (\mathbf{x}^* - \mathbf{x}_{l-1}) \right\rangle. \quad (75)
 \end{aligned}$$

1479 By Assumption 4, we obtain that for all $l \in [T]$,

$$\mathbb{E} [\|\boldsymbol{\xi}_l\|^2] = \mathbb{E} [\mathbb{E}_l [\|\boldsymbol{\xi}_l\|^2]] \leq \mathbb{E} [A_l \Delta_l^{md} + B \|\nabla f(\mathbf{x}_l^{md})\|^2 + C]. \quad (76)$$

1482 With multiplying A_l and taking expectation on both sides of (75), we have

$$\begin{aligned}
 1483 \quad \mathbb{E} [A_l \Delta_l^{ag}] &\leq \mathbb{E} [A_{l-1} \Delta_{l-1}^{ag}] + \frac{A_l - A_{l-1}}{2\lambda_l} \mathbb{E} [\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2] \\
 1484 &\quad - \beta A_l \left(1 - \frac{L\beta}{2} - \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \mathbb{E} [\|\nabla f(\mathbf{x}_l^{md})\|^2] \\
 1485 &\quad + \beta A_l \left(\frac{L\beta}{2} + \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \mathbb{E} [\|\boldsymbol{\xi}_l\|^2] \\
 1486 &\leq \mathbb{E} [A_{l-1} \Delta_{l-1}^{ag}] + \frac{A_l - A_{l-1}}{2\lambda_l} \mathbb{E} [\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2] \\
 1487 &\quad - \beta A_l \left(1 - \frac{L\beta}{2} - \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \mathbb{E} [\|\nabla f(\mathbf{x}_l^{md})\|^2] \\
 1488 &\quad + \beta A_l \left(\frac{L\beta}{2} + \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \mathbb{E} [A_l \Delta_l^{md} + B \|\nabla f(\mathbf{x}_l^{md})\|^2 + C] \\
 1489 &= \mathbb{E} [A_{l-1} \Delta_{l-1}^{ag}] + \frac{A_l - A_{l-1}}{2\lambda_l} \mathbb{E} [\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2] \\
 1490 &\quad - \beta A_l \left(1 - (1+B) \left(\frac{L\beta}{2} + \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right)\right) \mathbb{E} [\|\nabla f(\mathbf{x}_l^{md})\|^2] \\
 1491 &\quad + \beta A_l \left(\frac{L\beta}{2} + \frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l}\right) \mathbb{E} [A_l \Delta_l^{md} + C], \quad (77)
 \end{aligned}$$

1504 where the second inequality follows from (76). Since $\lambda_k = \frac{\beta}{2(1+B)} (A_k - A_{k-1})$
1505 $\lambda_k = \frac{1}{2}\beta (A_k - A_{k-1})$, we have

$$\frac{A_l - A_{l-1}}{2\lambda_l} = \frac{1+B}{\beta},$$

1509 and

$$\frac{\lambda_l (A_l - A_{l-1})}{2\beta A_l} = \frac{(A_l - A_{l-1})^2}{4A_l (1+B)} \leq \frac{1}{4(1+B)},$$

1512 where the inequality follows from Lemma 4.1. Combining with (77), we have
 1513

$$\begin{aligned}
 1514 \mathbb{E}[A_l \Delta_l^{ag}] &\leq \mathbb{E}[A_{l-1} \Delta_{l-1}^{ag}] + \frac{1+B}{\beta} \mathbb{E}\left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2\right] \\
 1515 &\quad - \beta A_l \left(1 - (1+B) \left(\frac{L\beta}{2} + \frac{1}{4(1+B)}\right)\right) \mathbb{E}\left[\|\nabla f(\mathbf{x}_l^{md})\|^2\right] \\
 1516 &\quad + \beta A_l \left(\frac{L\beta}{2} + \frac{1}{4(1+B)}\right) \mathbb{E}[A \Delta_l^{md} + C] \\
 1517 &\leq \mathbb{E}[A_{l-1} \Delta_{l-1}^{ag}] + \frac{1+B}{\beta} \mathbb{E}\left[\|\mathbf{x}_{l-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}_l - \mathbf{x}^*\|^2\right] \\
 1518 &\quad - \frac{1}{2} \beta A_l \mathbb{E}\left[\|\nabla f(\mathbf{x}_l^{md})\|^2\right] + \frac{1}{2(1+B)} \beta A_l \mathbb{E}[A \Delta_l^{md} + C],
 \end{aligned}$$

1521 where the last inequality follows from $\beta \leq \frac{1}{2L(1+B)}$. Re-arranging the above inequality and summing up over $l \in [t]$, we obtain that
 1522

$$\begin{aligned}
 1523 \mathbb{E}[A_t \Delta_t^{ag}] &+ \frac{1+B}{\beta} \mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^*\|^2\right] \\
 1524 &\leq A_0 \Delta_0^{ag} + \frac{1+B}{\beta} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{1}{2} \beta \sum_{l=1}^t A_l \mathbb{E}\left[\|\nabla f(\mathbf{x}_l^{md})\|^2\right] \\
 1525 &\quad + \frac{1}{2(1+B)} \beta \sum_{l=1}^t A_l \mathbb{E}[A \Delta_l^{md} + C] \\
 1526 &= \frac{\mathcal{C}_3}{\beta} - \frac{1}{2} \beta \sum_{l=1}^t A_l \mathbb{E}\left[\|\nabla f(\mathbf{x}_l^{md})\|^2\right] + \frac{1}{2(1+B)} \beta \sum_{l=1}^t A_l \mathbb{E}[A \Delta_l^{md} + C],
 \end{aligned}$$

1527 where the last line holds since $A_0 = 1/\beta$. □
 1528

1529 Similar to Lemma E.7, we will bound the function value gap in expectation by induction.
 1530

1531 **Lemma F.2.** *Under the condition of Theorem 3, we have*

$$1532 \mathbb{E}[f(\mathbf{x}_t^{md}) - f^*] \leq \mathcal{F}_3, \forall t \in [T],$$

1533 where

$$1534 \mathcal{F}_3 = \left(2 + 5\sqrt{2L(1+B)}\right) \mathcal{C}_3 + 1 + 10\sqrt{2L}, \quad (78)$$

1535 with \mathcal{C}_3 defined in (74).

1536 *Proof.* We will prove this lemma by induction. Obviously, we have $\mathbb{E}[f(\mathbf{x}_1^{md}) - f^*] = f(\mathbf{x}_0^{ag}) - f^* \leq \mathcal{F}_3$. Suppose that for some $t \in [T]$,

$$1537 \mathbb{E}[f(\mathbf{x}_l^{md}) - f^*] \leq \mathcal{F}_3, \forall l \in [t].$$

1538 Next, we will bound $\mathbb{E}[f(\mathbf{x}_{t+1}^{md}) - f^*]$. Since (69) is independent of the smoothness condition, it
 1539 still holds here.

$$\begin{aligned}
 1540 \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 &\leq 2 \sum_{i=1}^t \frac{\lambda_i^2 + \beta^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md}) + \boldsymbol{\xi}_i\|^2 \\
 1541 &\leq 2 \sum_{i=1}^t \frac{\frac{1}{4}(A_i - A_{i-1})^2 \beta^2 + \beta^2}{A_i - A_{i-1}} \|\nabla f(\mathbf{x}_i^{md}) + \boldsymbol{\xi}_i\|^2 \\
 1542 &\leq \frac{5}{2} \beta^2 \sum_{i=1}^t (A_i - A_{i-1}) \|\nabla f(\mathbf{x}_i^{md}) + \boldsymbol{\xi}_i\|^2 \\
 1543 &\leq 5\beta^2 \sum_{i=1}^t (A_i - A_{i-1}) \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\boldsymbol{\xi}_i\|^2\right),
 \end{aligned}$$

1566 where the second inequality holds since the constraint of λ_i in (44), the third inequality follows from
 1567 Lemma 4.1 and the last inequality holds since $\|\mathbf{a} + \mathbf{b}\|^2 \leq 2(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2)$. Applying Lemma 4.1
 1568 again and using the fact that $\sqrt{\beta A_t} = \sqrt{\beta(B_t + 1/\beta)} \geq 1, \forall t \in [T]$, we have
 1569

$$1570 \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \leq 5\beta^2 \sum_{i=1}^t \sqrt{A_i} \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\xi_i\|^2 \right) \leq 5\beta^{\frac{5}{2}} \sum_{i=1}^t A_i \left(\|\nabla f(\mathbf{x}_i^{md})\|^2 + \|\xi_i\|^2 \right). \\ 1571 \quad \quad \quad (79)$$

1572 Taking expectation on both sides of the above inequality and combining with (76), we obtain that
 1573

$$1574 \mathbb{E} \left[\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \right] \leq 5\beta^{\frac{5}{2}} \sum_{i=1}^t A_i \left(\mathbb{E} \left[\|\nabla f(\mathbf{x}_i^{md})\|^2 \right] + \mathbb{E} \left[A\Delta_i^{md} + B\|\nabla f(\mathbf{x}_i^{md})\|^2 + C \right] \right) \\ 1575 \\ 1576 = 5\beta^{\frac{5}{2}} (1+B) \sum_{i=1}^t A_i \mathbb{E} \left[\|\nabla \Psi(\mathbf{x}_i^{md})\|^2 \right] + 5\beta^{\frac{5}{2}} \sum_{i=1}^t A_i \mathbb{E} [A\Delta_i^{md} + C] \\ 1577 \\ 1578 \leq 10\beta^{\frac{1}{2}} (1+B) \mathcal{C}_3 + 10\beta^{\frac{5}{2}} \sum_{i=1}^t A_i \mathbb{E} [A\Delta_i^{md} + C] \\ 1579 \\ 1580 \leq 10\beta^{\frac{1}{2}} (1+B) \mathcal{C}_3 + 10\beta^{\frac{5}{2}} \cdot T \cdot A_T (A\mathcal{F}_3 + C) \\ 1581 \\ 1582 \leq 10\beta^{\frac{1}{2}} (1+B) \mathcal{C}_3 + 10\beta^{\frac{5}{2}} T^3 (A\mathcal{F}_3 + C) + 10\beta^{\frac{3}{2}} T (A\mathcal{F}_3 + C), \\ 1583 \\ 1584$$

1585 where the second inequality follows from Lemma F.1, the third inequality holds since $A_i \leq A_T, \forall i \in [t]$ and the assumption that $\mathbb{E} [\Delta_i^{md}] \leq \mathcal{F}_3, \forall i \in [t]$, and the last inequality follows
 1586 from Lemma 4.1 with $A_t = B_t + 1/\beta, \forall t \in [T]$. Since the constraints of β in (10), we have
 1587

$$1588 \mathbb{E} \left[\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \right] \leq \frac{5\sqrt{2(1+B)}}{\sqrt{L}} \mathcal{C}_3 + \frac{10\sqrt{2}}{\sqrt{L(1+B)}}.$$

1589 Applying the descent lemma again, we obtain that
 1590

$$1591 f(\mathbf{x}_{t+1}^{md}) \leq f(\mathbf{x}_t^{ag}) + \langle \nabla f(\mathbf{x}_t^{ag}), \mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag} \rangle + \frac{L}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ 1592 \\ 1593 \leq f(\mathbf{x}_t^{ag}) + \|\nabla f(\mathbf{x}_t^{ag})\| \cdot \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\| + \frac{L}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ 1594 \\ 1595 \leq f(\mathbf{x}_t^{ag}) + \frac{1}{2L} \|\nabla f(\mathbf{x}_t^{ag})\|^2 + \frac{L}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 + \frac{L}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \\ 1596 \\ 1597 \leq f(\mathbf{x}_t^{ag}) + (f(\mathbf{x}_t^{ag}) - f^*) + L \cdot \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2,$$

1598 where we apply Cauchy-Schwarz inequality in the second inequality and apply Young's inequality
 1599 in the third line. The last inequality follows from Lemma C.1. Subtracting f^* from both sides and
 1600 taking expectation, we have
 1601

$$1602 \mathbb{E} [\Delta_{t+1}^{md}] \leq 2\mathbb{E} [\Delta_t^{ag}] + L \cdot \mathbb{E} \left[\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t^{ag}\|^2 \right].$$

1603 With the assumption that $f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_3, \forall l \in [t]$ and applying Lemma F.1, we obtain that
 1604

$$1605 \mathbb{E} [\Delta_t^{ag}] \leq \frac{1}{A_t \beta} \mathcal{C}_3 + \frac{1}{2A_t(1+B)} \beta \cdot \sum_{i=1}^t A_i \mathbb{E} [A\Delta_i^{md} + C] \\ 1606 \\ 1607 \leq \mathcal{C}_3 + \frac{1}{2(1+B)} \beta T (A\mathcal{F}_3 + C) \leq \mathcal{C}_3 + \frac{1}{2},$$

1608 where the second inequality holds since $A_t \geq 1/\beta$ and $A_i \leq A_t, \forall i \in [t]$, and the last line follows
 1609 from the definition of β . Therefore, we have
 1610

$$1611 \mathbb{E} [\Delta_{t+1}^{md}] \leq \left(2 + 5\sqrt{2L(1+B)} \right) \mathcal{C}_3 + 1 + 10\sqrt{2L} = \mathcal{F}_3.$$

1612 Now we finish the induction and obtain the desired result. \square

1620 Based on Lemma F.1 and Lemma F.2, we could obtain the final convergence rate.
 1621

1622 *Proof of Theorem 3.* By Lemma F.2, we have $\mathbb{E} [f(\mathbf{x}_t^{md}) - f^*] \leq \mathcal{F}_3, \forall t \in [T]$. Then, combining
 1623 Lemma F.1, Assumption 4 and the fact that $A_t \leq A_T, \forall t \in [T]$, we obtain that
 1624

$$\begin{aligned} 1625 \mathbb{E} [f(\mathbf{x}_T^{ag}) - f^*] &\leq \frac{1}{A_T \beta} \mathcal{C}_3 + \frac{\beta}{2A_T(1+B)} T \cdot A_T (A\mathcal{F}_3 + C) \\ 1626 &\leq \frac{8L(1+B)\mathcal{C}_3}{T^2} + \frac{4\mathcal{C}_3\mathcal{Q}}{T} + \frac{4\mathcal{C}_3\sqrt{\mathcal{Q}}}{\sqrt{T}} + \frac{\sqrt{\mathcal{Q}}}{2\sqrt{T}}, \end{aligned} \quad (80)$$

1627 where the second inequality holds since Lemma 4.1 and the setting of β in (10). \square
 1628

G NON-CONVEX OPTIMIZATION

1633 In this section, we present Stochastic Accelerated Gradient Descent (stochastic AGD) (Algorithm
 1634 3) and its convergence analysis. Algorithm 3 could reduce to some famous algorithms, such as
 1635 SGD, and was well studied in (Ghadimi & Lan, 2016; Kavis et al., 2022; Yu et al., 2025). SNAG
 1636 (Algorithm 2) can be viewed a special case of Algorithm 3. To apply our theoretical analysis from
 1637 the convex case to the non-convex case, we adopt a different step size setting.
 1638

Algorithm 3 Stochastic Accelerated Gradient Descent (stochastic AGD)

1640 **Require:** Horizon T , $\mathbf{x}_0^{ag} = \mathbf{x}_0 \in \mathbb{R}^d$, step sizes $\{\beta_t\}_{t \in [T]}, \{\lambda_t\}_{t \in [T]}$.
 1641 1: **for** $t = 1, \dots, T$ **do**
 1642 2: $\mathbf{x}_t^{md} = (1 - \alpha_t) \mathbf{x}_{t-1}^{ag} + \alpha_t \mathbf{x}_{t-1}$;
 1643 3: **Set** $\mathbf{g}_t = \nabla f_{\mathbf{z}}(\mathbf{x}_t^{md}; \mathbf{z}_t)$;
 1644 4: $\mathbf{x}_t = \mathbf{x}_{t-1} - \lambda_t \mathbf{g}_t$;
 1645 5: $\mathbf{x}_t^{ag} = \mathbf{x}_t^{md} - \beta_t \mathbf{g}_t$.

1647 We have the following results for the above algorithm.

1648 **Theorem 4.** Let $T > 0$ and f be an (L_0, L_1, L_2) -smooth function. Under Assumptions 1-3, consider
 1649 Algorithm 3 with $\alpha_t = \frac{2}{t+1}$, $\lambda_t = \eta$ and $\beta_t = \eta\alpha_t + \lambda_t, \forall t \in [T]$. Let

$$1650 \eta = \min \left\{ \frac{1}{(L_1 + L_2)\mathcal{Y}}, \frac{1}{8\mathcal{Y}_1(B \log \frac{T_e}{\delta} + 1)}, \frac{1}{4\sqrt{A\mathcal{Y}_1 T \log \frac{T_e}{\delta}}\mathcal{F}_4}, \frac{1}{4\sqrt{C\mathcal{Y}_1 T \log \frac{T_e}{\delta}}}, \frac{1}{6\mathcal{P}_c^2 \log \frac{T_e}{\delta}} \right\},$$

1651 where

$$1652 \mathcal{Y} = \sqrt{A \log \frac{T_e}{\delta}} \mathcal{F}_4 + \left(\sqrt{B \log \frac{T_e}{\delta}} + 1 \right) \sqrt{g(\mathcal{F}_4)} + \sqrt{C \log \frac{T_e}{\delta}}, \quad (81)$$

$$1653 \mathcal{Y}_1 = L_0 + L_1 (g(\mathcal{K}))^{\frac{p}{2}} + L_2 \mathcal{K}^q, \quad (82)$$

$$1654 \mathcal{P}_c = \sqrt{A\mathcal{F}_4 + Bg(\mathcal{F}_4) + C},$$

$$1655 \mathcal{K} = \mathcal{F}_4 + \frac{1}{L_1 + L_2} \sqrt{g(\mathcal{F}_4)} + \frac{L_0 + L_1 (g(\mathcal{F}_4))^{\frac{p}{2}} + L_2 \mathcal{F}_4^q}{2(L_1 + L_2)^2},$$

$$1656 \mathcal{F}_4 = \Delta_1^{md} + 1 + \frac{1}{L_1 + L_2} \sqrt{g(1 + \Delta_1^{md})} + \frac{L_0 + L_1 (g(1 + \Delta_1^{md}))^{\frac{p}{2}} + L_2 (1 + \Delta_1^{md})^q}{2(L_1 + L_2)^2},$$

1657 and g is the function given by (24). Then with probability at least $1 - 2\delta$,

$$\begin{aligned} 1658 \frac{1}{T} \sum_{l=1}^T \|\nabla f(\mathbf{x}_l^{md})\|^2 &\leq \frac{2(1 + \Delta_1^{md})}{T} (L_1 + L_2) \mathcal{Y} + \frac{16(1 + \Delta_1^{md})}{T} \mathcal{Y}_1 \left(B \log \frac{T_e}{\delta} + 1 \right) \\ 1659 &\quad + \frac{8(1 + \Delta_1^{md})}{\sqrt{T}} \left(\sqrt{A\mathcal{F}_4} + \sqrt{C} \right) \sqrt{\mathcal{Y}_1 \log \frac{T_e}{\delta}} \\ 1660 &\quad + \frac{12(1 + \Delta_1^{md})}{T} \mathcal{P}_c^2 \log \frac{T_e}{\delta}. \end{aligned} \quad (83)$$

1674 The upper rate from (83) is of order $\tilde{O}(1/T + \sqrt{(A+C)/T})$, which matches that in (Ghadimi &
 1675 Lan, 2016) for stochastic AGD with bounded variances and also the lower rate in (Arjevani et al.,
 1676 2023) of finding stationary points in non-convex smooth stochastic optimizations with bounded
 1677 variances when $C > 0$.

1678 Under the (L_0, L_1) -smoothness assumption, Yu et al. (2025) analyzed stochastic AGD for non-
 1679 convex objective functions and they proved that the average of the squared norm converges at the
 1680 rate of $\tilde{O}(1/T + \sqrt{(A+C)/T})$ with high probability. Here, we follow the analytical approach
 1681 from (Yu et al., 2025) and make slight modifications to the proof methods to accommodate the
 1682 more general smooth assumptions. To prove the theorem, we first provide several useful lemmas
 1683 following from (Ghadimi & Lan, 2016; Kavis et al., 2022; Yu et al., 2025).

1684 **Proposition G.1** (Proposition 5.2 in (Kavis et al., 2022)). *Denote $\alpha_t = \frac{2}{t+1}$ and $\Gamma_t = (1 - \alpha_t) \Gamma_{t-1}$
 1685 with $\Gamma_1 = 1$, $\forall t \in [T]$. We have that for all $t \in [T]$,*

$$1686 \quad \Gamma_t \sum_{k=1}^t \frac{\alpha_k}{\Gamma_k} = 1, \quad (84)$$

1690 and

$$1691 \quad \left[\sum_{k=t}^T (1 - \alpha_k) \Gamma_k \right] \frac{\alpha_t}{\Gamma_t} \leq 2. \quad (85)$$

1695 **Lemma G.1.** *Given $T \geq 1$ and $\delta \in (0, 1)$, if Assumptions 2 and 3 hold, then with probability at
 1696 least $1 - \delta$,*

$$1697 \quad \sum_{k=1}^l -\langle \nabla f(\mathbf{x}_k^{md}), \boldsymbol{\xi}_k \rangle \leq \frac{1}{4} \sum_{k=1}^l \frac{\mathcal{P}_k^2}{\mathcal{P}_c^2} \|\nabla f(\mathbf{x}_k^{md})\|^2 + 3\mathcal{P}_c^2 \log \frac{T}{\delta}, \quad \forall l \in [T], \quad (86)$$

1701 where

$$1702 \quad \mathcal{P}_k = \sqrt{A\Delta_k^{md} + Bg(\Delta_k^{md}) + C}, \quad (87)$$

1704 and \mathcal{P}_c is given by (82).

1706 *Proof.* Let $Z_k = -\langle \nabla f(\mathbf{x}_k^{md}), \boldsymbol{\xi}_k \rangle$. Note that $\nabla f(\mathbf{x}_k^{md})$ is a random variable dependent on
 1707 $\mathbf{z}_1, \dots, \mathbf{z}_{k-1}$ and $\boldsymbol{\xi}_k$ is dependent on $\mathbf{z}_1, \dots, \mathbf{z}_k$. Therefore, it is apparent that Z_k is a martingale
 1708 difference sequence since

$$1710 \quad \mathbb{E}[-\langle \nabla f(\mathbf{x}_k^{md}), \boldsymbol{\xi}_k \rangle | \mathbf{z}_1, \dots, \mathbf{z}_{k-1}] = -\langle \nabla f(\mathbf{x}_k^{md}), \mathbb{E}_k[\boldsymbol{\xi}_k] \rangle = 0.$$

1712 Also by Assumption 3 and applying Cauchy-Schwarz inequality, we obtain that

$$1713 \quad \mathbb{E}_k \left[\exp \left(\frac{Z_k^2}{\|\nabla f(\mathbf{x}_k^{md})\|^2 (A\Delta_k^{md} + B\|\nabla f(\mathbf{x}_k^{md})\|^2 + C)} \right) \right] \\ 1714 \quad \leq \mathbb{E}_k \left[\exp \left(\frac{\|\nabla f(\mathbf{x}_k^{md})\|^2 \|\boldsymbol{\xi}_k\|^2}{\|\nabla f(\mathbf{x}_k^{md})\|^2 (A\Delta_k^{md} + B\|\nabla f(\mathbf{x}_k^{md})\|^2 + C)} \right) \right] \leq e.$$

1720 Therefore, given any $l \in [T]$, applying Lemma C.4, we have that for any $\lambda > 0$, with probability at
 1721 least $1 - \delta$,

$$1723 \quad \sum_{k=1}^l Z_k \leq \frac{3\lambda}{4} \sum_{k=1}^l \|\nabla f(\mathbf{x}_k^{md})\|^2 (A\Delta_k^{md} + B\|\nabla f(\mathbf{x}_k^{md})\|^2 + C) + \frac{1}{\lambda} \log \frac{1}{\delta} \\ 1724 \quad \leq \frac{3\lambda}{4} \sum_{k=1}^l \|\nabla f(\mathbf{x}_k^{md})\|^2 \mathcal{P}_k^2 + \frac{1}{\lambda} \log \frac{1}{\delta}$$

1728 where \mathcal{P}_k is defined in (87). For any fixed λ , we can re-scale over δ and have that with probability
1729 at least $1 - \delta$, for all $l \in [T]$,

$$1731 \quad \sum_{k=1}^l -\langle \nabla f(\mathbf{x}_k^{md}), \boldsymbol{\xi}_k \rangle \leq \frac{3\lambda}{4} \sum_{t=1}^l \|\nabla f(\mathbf{x}_k^{md})\|^2 \mathcal{P}_k^2 + \frac{1}{\lambda} \log \frac{T}{\delta}. \quad (88)$$

1734 Let $\lambda = \frac{1}{3\mathcal{P}_c^2}$, and we obtain the desired result. \square
1735

1736 **Proposition G.2.** *Let $\{\mathbf{x}_t\}_{t \in [T]}$ and $\{\mathbf{x}_t^{md}\}_{t \in [T]}$ be generated by Algorithm 3. We have*

$$1738 \quad \mathbf{x}_t^{md} - \mathbf{x}_{t-1} = (1 - \alpha_t) \Gamma_{t-1} \sum_{k=1}^{t-1} \frac{\alpha_k}{\Gamma_k} \frac{(\lambda_k - \beta_k)}{\alpha_k} \mathbf{g}_k, \quad (89)$$

1741 and

$$1743 \quad \|\mathbf{x}_t^{md} - \mathbf{x}_{t-1}\|^2 \leq (1 - \alpha_t) \Gamma_t \sum_{k=1}^{t-1} \frac{\alpha_k}{\Gamma_k} \frac{(\lambda_k - \beta_k)^2}{\alpha_k^2} \|\mathbf{g}_k\|^2. \quad (90)$$

1746 *Proof.* From Algorithm 3, we have

$$1748 \quad \mathbf{x}_k^{ag} - \mathbf{x}_k = \mathbf{x}_k^{md} - \beta_k \mathbf{g}_k - \mathbf{x}_{k-1} + \lambda_k \mathbf{g}_k = (1 - \alpha_k) (\mathbf{x}_{k-1}^{ag} - \mathbf{x}_{k-1}) + (\lambda_k - \beta_k) \mathbf{g}_k.$$

1749 Since $\mathbf{x}_0^{ag} = \mathbf{x}_0$, we obtain that

$$1752 \quad \mathbf{x}_k^{ag} - \mathbf{x}_k = \sum_{i=1}^k \left(\prod_{j=i+1}^k (1 - \alpha_j) \right) (\lambda_i - \beta_i) \mathbf{g}_i = \Gamma_k \sum_{i=1}^k \frac{1}{\Gamma_i} (\lambda_i - \beta_i) \mathbf{g}_i.$$

1755 Taking the norm function on both sides and applying the triangle inequality, we have

$$1757 \quad \|\mathbf{x}_k^{ag} - \mathbf{x}_k\| \leq \Gamma_k \sum_{i=1}^k \frac{1}{\Gamma_i} |\lambda_i - \beta_i| \cdot \|\mathbf{g}_i\| = \Gamma_k \sum_{i=1}^k \frac{\alpha_i}{\Gamma_i} \frac{|\lambda_i - \beta_i|}{\alpha_i} \cdot \|\mathbf{g}_i\|. \quad (91)$$

1759 By the iteration step in Algorithm 3, we have

$$1761 \quad \mathbf{x}_k^{md} - \mathbf{x}_{k-1} = (1 - \alpha_k) (\mathbf{x}_{k-1}^{ag} - \mathbf{x}_{k-1}).$$

1763 Combining with (91), we obtain that

$$1764 \quad \|\mathbf{x}_k^{md} - \mathbf{x}_{k-1}\| = (1 - \alpha_k) \|\mathbf{x}_{k-1}^{ag} - \mathbf{x}_{k-1}\| \leq (1 - \alpha_k) \Gamma_{k-1} \sum_{i=1}^{k-1} \frac{\alpha_i}{\Gamma_i} \frac{|\lambda_i - \beta_i|}{\alpha_i} \cdot \|\mathbf{g}_i\|.$$

1767 Similarly, by the convexity of norm square and (84),

$$1769 \quad \|\mathbf{x}_k^{md} - \mathbf{x}_{k-1}\|^2 \leq (1 - \alpha_k)^2 \Gamma_{k-1} \sum_{i=1}^{k-1} \frac{\alpha_i}{\Gamma_i} \frac{(\lambda_i - \beta_i)^2}{\alpha_i^2} \|\mathbf{g}_i\|^2 = (1 - \alpha_k) \Gamma_k \sum_{i=1}^{k-1} \frac{\alpha_i}{\Gamma_i} \frac{(\lambda_i - \beta_i)^2}{\alpha_i^2} \|\mathbf{g}_i\|^2.$$

1772 \square

1774 **Lemma G.2.** *Let $\{a_t\}_{t \in [n]}$ be a sequence of non-negative real numbers. We have*

$$1775 \quad \sqrt{\sum_{i=1}^n a_i} \leq \sum_{i=1}^n \sqrt{a_i}.$$

1779 In the following analysis, denote $\triangle_t = f(\mathbf{x}_t) - f^*$ for simplicity.

1780 **Proposition G.3.** *Under the conditions and notations of Theorem 4, $\triangle_t^{md} \leq \mathcal{F}_4, \forall t \in [T]$, hold
1781 with probability at least $1 - \delta$.*

1782 *Proof.* We assume that (47) and (86) always happen and then deduce $\Delta_t^{md} \leq \mathcal{F}_4$ for all $t \in [T]$.
1783 Since (47) and (86) happen with probability at least $1 - \delta$ separately, $\Delta_t^{md} \leq \mathcal{F}_4, \forall t \in [T]$, holds
1784 with probability at least $1 - 2\delta$. It is obvious that $f(\mathbf{x}_1^{md}) - f^* \leq \mathcal{F}_4$. Therefore, by Corollary 1 we
1785 have $\mathcal{P}_1 \leq \mathcal{P}_c$. Suppose that for some $t \in [T]$,

$$1787 \quad f(\mathbf{x}_l^{md}) - f^* \leq \mathcal{F}_4, \quad \forall l \in [t].$$

1788 By the triangle inequality of the norm function, we have that for all $l \in [t]$,

$$\begin{aligned} 1790 \quad \|\mathbf{g}_l\| &\leq \|\mathbf{g}_l - \nabla f(\mathbf{x}_l^{md})\| + \|\nabla f(\mathbf{x}_l^{md})\| \\ 1791 \quad &\leq \sqrt{\left(A\Delta_l^{md} + B\|\nabla f(\mathbf{x}_l^{md})\|^2 + C\right)\log\frac{T_e}{\delta}} + \|\nabla f(\mathbf{x}_l^{md})\| \\ 1792 \quad &\leq \sqrt{A\log\frac{T_e}{\delta}\Delta_l^{md}} + \left(\sqrt{B\log\frac{T_e}{\delta}} + 1\right)\|\nabla f(\mathbf{x}_l^{md})\| + \sqrt{C\log\frac{T_e}{\delta}}, \end{aligned} \quad (92)$$

1797 where the second inequality follows from Lemma E.1 and the last inequality follows from Lemma
1798 G.2. Combining with Corollary 1 and the assumption that $\Delta_l^{md} \leq \mathcal{F}_4, \forall l \in [t]$, we have
1799

$$1800 \quad \|\mathbf{g}_l\| \leq \mathcal{Y}, \quad \forall l \in [t]. \quad (93)$$

1802 By the iteration step of Algorithm 3, we have

$$1803 \quad \|\mathbf{x}_l - \mathbf{x}_{l-1}\| = \lambda_l \|\mathbf{g}_l\| = \eta \|\mathbf{g}_l\| \leq \eta \mathcal{Y} \leq \min\{1/L_1, 1/L_2\}, \quad \forall l \in [t],$$

1805 where the last inequality follows from the restriction of η . Thus, we could apply Lemma C.2 and
1806 obtain that

$$\begin{aligned} 1808 \quad &f(\mathbf{x}_l) - f(\mathbf{x}_{l-1}) \\ 1809 \quad &\leq \langle \nabla f(\mathbf{x}_{l-1}), \mathbf{x}_l - \mathbf{x}_{l-1} \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \|\mathbf{x}_l - \mathbf{x}_{l-1}\|^2 \\ 1810 \quad &= -\eta \langle \nabla f(\mathbf{x}_{l-1}), \mathbf{g}_l \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \eta^2 \|\mathbf{g}_l\|^2 \\ 1811 \quad &= -\eta \langle \nabla f(\mathbf{x}_l^{md}) + \nabla f(\mathbf{x}_{l-1}) - \nabla f(\mathbf{x}_l^{md}), \nabla f(\mathbf{x}_l^{md}) + \xi_l \rangle \\ 1812 \quad &\quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \eta^2 \|\mathbf{g}_l\|^2 \\ 1813 \quad &= -\eta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle - \eta \langle \nabla f(\mathbf{x}_{l-1}) - \nabla f(\mathbf{x}_l^{md}), \mathbf{g}_l \rangle \\ 1814 \quad &\quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \eta^2 \|\mathbf{g}_l\|^2 \\ 1815 \quad &\leq -\eta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle + \eta \|\nabla f(\mathbf{x}_{l-1}) - \nabla f(\mathbf{x}_l^{md})\| \|\mathbf{g}_l\| \\ 1816 \quad &\quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \eta^2 \|\mathbf{g}_l\|^2, \end{aligned}$$

1825 where the first equation follows from the update rule in Algorithm 3 and the last line follows from
1826 Cauchy-Schwarz inequality. Applying Lemma G.2 with $\frac{\beta_t - \lambda_t}{\alpha_t} = \lambda_t = \eta$, we have
1827

$$\begin{aligned} 1829 \quad \|\mathbf{x}_l^{md} - \mathbf{x}_{l-1}\| &= (1 - \alpha_l) \Gamma_{l-1} \left\| \sum_{k=1}^{l-1} \frac{\alpha_k}{\Gamma_k} \frac{(\lambda_k - \beta_k)}{\alpha_k} \mathbf{g}_k \right\| \leq (1 - \alpha_l) \Gamma_{l-1} \sum_{k=1}^{l-1} \frac{\alpha_k}{\Gamma_k} \eta \|\mathbf{g}_k\| \\ 1830 \quad &\leq \eta \mathcal{Y} \Gamma_{l-1} \sum_{k=1}^{l-1} \frac{\alpha_k}{\Gamma_k} \leq \min\{1/L_1, 1/L_2\}, \end{aligned} \quad (94)$$

1834 where the first inequality follows from the triangle inequality and the second inequality holds since
1835 (92). The last inequality follows from (84). Note that $\|\mathbf{g}_l\| \leq \mathcal{Y}$ for all $l \in [t]$ and $\|\mathbf{x}_l^{md} - \mathbf{x}_{l-1}\|$

depends on $\mathbf{g}_1, \dots, \mathbf{g}_{l-1}$. Thus, (94) holds for all $l \in [t+1]$. Applying Definition 1, we have that

$$\begin{aligned}
 & f(\mathbf{x}_l) - f(\mathbf{x}_{l-1}) \\
 & \leq -\eta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle + \eta (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) \|\mathbf{x}_{l-1} - \mathbf{x}_l^{md}\| \|\mathbf{g}_l\| \\
 & \quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \eta^2 \|\mathbf{g}_l\|^2 \\
 & \leq -\eta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q}{2} \|\mathbf{x}_{l-1} - \mathbf{x}_l^{md}\|^2 \\
 & \quad + (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) \eta^2 \|\mathbf{g}_l\|^2 \\
 & \leq -\eta \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle \\
 & \quad + \frac{\eta^2}{2} (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) (1 - \alpha_l) \Gamma_l \sum_{k=1}^{l-1} \frac{\alpha_k}{\Gamma_k} \|\mathbf{g}_k\|^2 \\
 & \quad + \eta^2 (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) \|\mathbf{g}_l\|^2, \tag{95}
 \end{aligned}$$

where the second inequality follows from the fact that $ab \leq \frac{a^2+b^2}{2}$ and the last inequality follows from (90). Summing up the above inequality over $l \in [t]$, we obtain that

$$\begin{aligned}
 f(\mathbf{x}_t) - f(\mathbf{x}_0) & \leq \frac{\eta^2}{2} \sum_{l=1}^t \left[(L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) (1 - \alpha_l) \Gamma_l \sum_{k=1}^l \frac{\alpha_k}{\Gamma_k} \|\mathbf{g}_k\|^2 \right] \\
 & \quad + \eta^2 \sum_{l=1}^t (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) \|\mathbf{g}_l\|^2 \\
 & \quad - \eta \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \sum_{l=1}^t \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle \\
 & \leq \frac{\eta^2}{2} \sum_{l=1}^t \left[\sum_{k=l}^t (L_0 + L_1 \|\nabla f(\mathbf{x}_{k-1})\|^p + L_2 \Delta_{k-1}^q) (1 - \alpha_k) \Gamma_k \right] \frac{\alpha_l}{\Gamma_l} \|\mathbf{g}_l\|^2 \\
 & \quad + \eta^2 \sum_{l=1}^t (L_0 + L_1 \|\nabla f(\mathbf{x}_{l-1})\|^p + L_2 \Delta_{l-1}^q) \|\mathbf{g}_l\|^2 \\
 & \quad - \eta \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \sum_{l=1}^t \langle \nabla f(\mathbf{x}_l^{md}), \xi_l \rangle. \tag{96}
 \end{aligned}$$

By (94), we have that $\|\mathbf{x}_l^{md} - \mathbf{x}_{l-1}\| \leq \min\{1/L_1, 1/L_2\}$ for all $l \in [t+1]$. Thus, applying Lemma C.2 again, we obtain that

$$\begin{aligned}
 f(\mathbf{x}_{l-1}) & \leq f(\mathbf{x}_l^{md}) + \langle \nabla f(\mathbf{x}_l^{md}), \mathbf{x}_{l-1} - \mathbf{x}_l^{md} \rangle \\
 & \quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_l^{md})\|^p + L_2 (\Delta_l^{md})^q}{2} \|\mathbf{x}_{l-1} - \mathbf{x}_l^{md}\|^2 \\
 & \leq f(\mathbf{x}_l^{md}) + \|\nabla f(\mathbf{x}_l^{md})\| \cdot \|\mathbf{x}_{l-1} - \mathbf{x}_l^{md}\| \\
 & \quad + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_l^{md})\|^p + L_2 (\Delta_l^{md})^q}{2} \|\mathbf{x}_{l-1} - \mathbf{x}_l^{md}\|^2,
 \end{aligned}$$

where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f^* from both sides and applying the assumption that $\Delta_l^{md} \leq \mathcal{F}_4, \forall l \in [t]$, we have

$$f(\mathbf{x}_{l-1}) - f^* \leq \mathcal{F}_4 + \frac{1}{L_1 + L_2} \sqrt{g(\mathcal{F}_4)} + \frac{L_0 + L_1 (g(\mathcal{F}_4))^{\frac{p}{2}} + L_2 \mathcal{F}_4^q}{2(L_1 + L_2)^2} = \mathcal{K}, \quad \forall l \in [t].$$

1890 Thus, by Corollary 1, we have $\|\nabla f(\mathbf{x}_l)\| \leq \sqrt{g(\mathcal{K})}$ for all $l \in [t-1]$. Combining with (96), we
 1891 obtain that

$$\begin{aligned}
 1893 \quad f(\mathbf{x}_t) - f(\mathbf{x}_0) &\leq \frac{\eta^2}{2} \mathcal{Y}_1 \sum_{l=1}^t \left[\sum_{k=l}^t (1 - \alpha_k) \Gamma_k \right] \frac{\alpha_l}{\Gamma_l} \|\mathbf{g}_l\|^2 + \eta^2 \mathcal{Y}_1 \sum_{l=1}^t \|\mathbf{g}_l\|^2 \\
 1894 \\
 1895 \\
 1896 \\
 1897 \\
 1898 \\
 1899 \\
 1900 \\
 1901 \\
 1902 \\
 1903 \\
 1904 \\
 1905 \\
 1906 \\
 1907 \\
 1908 \\
 1909 \\
 1910 \\
 1911 \\
 1912 \\
 1913 \\
 1914 \\
 1915 \\
 1916 \\
 1917 \\
 1918 \\
 1919 \\
 1920 \\
 1921 \\
 1922 \\
 1923 \\
 1924 \\
 1925 \\
 1926 \\
 1927 \\
 1928 \\
 1929 \\
 1930 \\
 1931 \\
 1932 \\
 1933 \\
 1934 \\
 1935 \\
 1936 \\
 1937 \\
 1938 \\
 1939 \\
 1940 \\
 1941 \\
 1942 \\
 1943
 \end{aligned}
 \begin{aligned}
 \frac{\alpha_l}{\Gamma_l} \|\mathbf{g}_l\|^2 + \eta^2 \mathcal{Y}_1 \sum_{l=1}^t \|\mathbf{g}_l\|^2 \\
 - \eta \sum_{t=1}^l \|\nabla f(\mathbf{x}_k^{md})\|^2 - \eta \sum_{t=1}^l \langle \nabla f(\mathbf{x}_k^{md}), \boldsymbol{\xi}_t \rangle \\
 \leq 2\eta^2 \mathcal{Y}_1 \sum_{l=1}^t \|\mathbf{g}_l\|^2 - \eta \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 - \eta \sum_{l=1}^t \langle \nabla f(\mathbf{x}_l^{md}), \boldsymbol{\xi}_l \rangle, \tag{97}
 \end{aligned}$$

where the second inequality follows from (85). Using the fact that $\|\mathbf{a} + \mathbf{b}\|^2 \leq 2\|\mathbf{a}\|^2 + 2\|\mathbf{b}\|^2$ and applying (47), we have that for all $l \in [t]$,

$$\begin{aligned}
 \|\mathbf{g}_l\|^2 &\leq 2\|\boldsymbol{\xi}_l\|^2 + 2\|\nabla f(\mathbf{x}_k^{md})\|^2 \\
 &\leq 2\left(A\Delta_l^{md} + B\|\nabla f(\mathbf{x}_l^{md})\|^2 + C\right) \log \frac{T\epsilon}{\delta} + 2\|\nabla f(\mathbf{x}_l^{md})\|^2 \\
 &= 2\left(A \log \frac{T\epsilon}{\delta} \Delta_l^{md} + \left(B \log \frac{T\epsilon}{\delta} + 1\right) \|\nabla f(\mathbf{x}_l^{md})\|^2 + C \log \frac{T\epsilon}{\delta}\right).
 \end{aligned}$$

Combining with (97) and applying Lemma G.1 to the summation of the martingale difference sequence, we obtain that

$$\begin{aligned}
 1913 \quad f(\mathbf{x}_t) - f(\mathbf{x}_0) &\leq 4\eta^2 \mathcal{Y}_1 \left(B \log \frac{T\epsilon}{\delta} + 1\right) \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 + 4\eta^2 \mathcal{Y}_1 A \log \frac{T\epsilon}{\delta} \sum_{l=1}^t \Delta_l^{md} \\
 1914 \\
 1915 \\
 1916 \\
 1917 \\
 1918 \\
 1919 \\
 1920 \\
 1921 \\
 1922 \\
 1923 \\
 1924 \\
 1925 \\
 1926 \\
 1927 \\
 1928 \\
 1929 \\
 1930 \\
 1931 \\
 1932 \\
 1933 \\
 1934 \\
 1935 \\
 1936 \\
 1937 \\
 1938 \\
 1939 \\
 1940 \\
 1941 \\
 1942 \\
 1943
 \end{aligned}
 \begin{aligned}
 &+ 4\eta^2 t \mathcal{Y}_1 C \log \frac{T\epsilon}{\delta} - \eta \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{1}{4}\eta \sum_{l=1}^t \frac{\mathcal{P}_l^2}{\mathcal{P}_c^2} \|\nabla f(\mathbf{x}_l^{md})\|^2 + 3\eta \mathcal{P}_c^2 \log \frac{T\epsilon}{\delta} \\
 &\leq -\frac{\eta}{2} \sum_{l=1}^t \|\nabla f(\mathbf{x}_l^{md})\|^2 + \frac{1}{4} + \frac{1}{4} + \frac{1}{2}. \tag{98}
 \end{aligned}$$

Since $\mathbf{x}_1^{md} = (1 - \alpha_1) \mathbf{x}_0^{ag} + \alpha_1 \mathbf{x}_0$ and $\mathbf{x}_0^{ag} = \mathbf{x}_0$, we have $f(\mathbf{x}_0) = f(\mathbf{x}_1^{md})$. Thus,

$$\Delta_t \leq \Delta_1^{md} + 1. \tag{99}$$

Since (94) holds for all $l \in [t+1]$, we have that

$$\|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t\| \leq \min\{1/L_1, 1/L_2\}.$$

Therefore, applying Lemma C.2 again, we obtain that

$$\begin{aligned}
 1930 \quad f(\mathbf{x}_{t+1}^{md}) &\leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1}^{md} - \mathbf{x}_t \rangle + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t)\|^p + L_2 \Delta_t^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t\|^2 \\
 1931 \\
 1932 \\
 1933 \\
 1934 \\
 1935 \\
 1936 \\
 1937 \\
 1938 \\
 1939 \\
 1940 \\
 1941 \\
 1942 \\
 1943
 \end{aligned}
 \begin{aligned}
 &\leq f(\mathbf{x}_t) + \|\nabla f(\mathbf{x}_t)\| \cdot \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t\| + \frac{L_0 + L_1 \|\nabla f(\mathbf{x}_t)\|^p + L_2 \Delta_t^q}{2} \|\mathbf{x}_{t+1}^{md} - \mathbf{x}_t\|^2,
 \end{aligned}$$

where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f^* from both sides and combining with (99), we have

$$\begin{aligned}
 1937 \quad \Delta_{t+1}^{md} \\
 1938 \\
 1939 \\
 1940 \\
 1941 \\
 1942 \\
 1943
 \end{aligned}
 \begin{aligned}
 &< \Delta_1^{md} + 1 + \frac{1}{L_1 + L_2} \sqrt{g(1 + \Delta_1^{md})} + \frac{L_0 + L_1 (g(1 + \Delta_1^{md}))^{\frac{p}{2}} + L_2 (1 + \Delta_1^{md})^q}{2(L_1 + L_2)^2} \leq \mathcal{F}_4. \tag{100}
 \end{aligned}$$

Now we finish the induction and obtain the desired result. \square

1944 *Proof of Theorem 4.* From Proposition G.3, we have that with probability at least $1 - 2\delta$, $\Delta_t^{md} \leq \mathcal{F}_4$
 1945 for all $t \in [T]$. Thus, (98) holds when $t = T$, i.e.,
 1946

$$1947 \quad \frac{\eta}{2} \sum_{l=1}^T \|\nabla f(\mathbf{x}_l^{md})\|^2 \leq 1 + \Delta_1^{md}. \quad (101)$$

1950 Dividing $T\eta/2$ on both sides and combining with the constraints of η , we get the desired results. \square
 1951

1952 H OMITTED PROOF

1954 *Proof of Lemma 4.1.* To start with, we will prove the first line by induction. It is obvious that the
 1955 inequality holds for $B_0 = 0$. Suppose that for some $0 \leq t \leq T$, we have
 1956

$$1957 \quad \frac{1}{4}k^2 \leq B_k \leq k^2, \forall k \in [t].$$

1959 Then, we have

$$1960 \quad B_{t+1} \leq t^2 + \frac{1}{2} \left(1 + \sqrt{4t^2 + 1} \right) \leq t^2 + \frac{1}{2} (1 + 2t + 1) \leq (t + 1)^2,$$

1963 and

$$1964 \quad B_{t+1} \geq \frac{1}{4}t^2 + \frac{1}{2} \left(1 + \sqrt{t^2 + 1} \right) \geq \frac{1}{4}(t + 1)^2.$$

1966 Therefore, we finish the proof for $\frac{1}{4}t^2 \leq B_t \leq t^2, \forall t \in [T]$. For the second conclusion in
 1967 Lemma 4.1,
 1968

$$1969 \quad (A_t - A_{t-1})^2 = (B_t - B_{t-1})^2 = \frac{1}{4} \left(1 + 2\sqrt{4B_{t-1} + 1} + 4B_{t-1} + 1 \right)$$

$$1970 \quad = B_{t-1} + \frac{1}{2} \left(1 + \sqrt{4B_{t-1} + 1} \right)$$

$$1972 \quad = B_t.$$

1974 Since $B_t \geq \frac{1}{4}t^2, \forall t \in [T]$, we have $B_t \geq 0, \forall t \in [T]$. Therefore,
 1975

$$1976 \quad A_t - A_{t-1} = B_t - B_{t-1} = \frac{1}{2} + \frac{1}{2}\sqrt{4B_{t-1} + 1} \geq 1.$$

1978 Now we finish the proof for all the inequalities. \square
 1979

1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997