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ABSTRACT

We study convergence rates of Nesterov’s Accelerated Gradient Descent (NAG)
method for convex optimization in both deterministic and stochastic settings.
We focus on a more general smoothness condition raised from several machine
learning problems empirically and theoretically. We show the accelerated con-
vergence rate of order O (1 /T 2) in terms of the function value gap, given ac-
cess to exact gradients of objective functions, matching the optimal rate for stan-
dard smooth convex optimization in (Nesterov, |1983). Under the relaxed affine-
variance noise assumption for stochastic optimization, we establish the high-

probability convergence rate of order O ( log (1/6) / T) and this rate could

improve to O (log (1/8) /T?) when the noise parameters are sufficiently small.
Here, T' denotes the total number of iterations and ¢ is the probability margin. Up
to logarithm factors, our probabilistic convergence rate reaches the same order of
the expected rate obtained in (Ghadimi & Lan, 2016) where the assumptions of
bounded variance noise and Lipschitz smoothness are required.

1 INTRODUCTION

In this paper, we consider the following classical unconstrained optimization problem,

min f(x), 1

zeRY

where the objective function f(x) is convex and can be potentially stochastic, i.e.,

f(@) = Egno[fz (25 2)].
Here D is a probability distribution from which the random vector z is drawn.

Gradient-based algorithms (Robbins & Monrol (1951} [Nesterov, {1983} 2013 |Duchi et al., 2011
play an important role in solving (I). As usual, one typically focuses on the function value gap for
convex objectives and the squared gradient norm for general non-convex onesﬂ In the deterministic
setting with access to the exact gradient V f (), Gradient Descent (GD) achieves a convergence
rate of O(1/T) for smooth convex functions (Nesterov, 2013), whereas for smooth non-convex
functions, the rate of the same order is obtained for the squared gradient norm. Here, T is the
total number of iterations. The convergence rate for smooth convex optimization can be improved
to O(1/T?) using Nesterov’s Accelerated Gradient Descent (NAG), as established in the seminal
work (Nesterov, |1983)). Furthermore, this complexity bound is known to be optimal among gradient
based algorithms (Nemirovskij & Yudin, |1983)), without further assumptions.

For stochastic optimization where only the gradient estimator is accessible, Stochastic Gradient
Descent (SGD) (Robbins & Monrol [1951) is commonly used. |Lan| (2012) provided an expected

upper bound of order O (1 /T+a/ \/T) for convex objective functions and |Ghadimi & Lan|(2013)

! An extensive literature on minimizing structured non-convex functions focuses on the function value
gap. Examples include work on Polyak-tojasiewicz functions (Karimi et al., |2016), (strongly) quasar-convex
functions (Hinder et al., [2020) and (strongly) quasiconvex functions (Grad et al., 2025). This is beyond the
discussion of this paper.
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obtained the bound of the same order for the non-convex case, both of them assuming bounded
variance noise with noise parameter o and smooth objective functions. This bound is optimal in
the non-convex setting since it matches the lower bound in (Arjevani et al., [2023). To study the
acceleration behavior in the stochastic convex optimization, [Lan| (2012); |Ghadimi & Lan| (2016)
explored (and generalized) stochastic NAG (SNAG) and obtained the expected convergence rate of

order O (1 /T? + o/ \/T) for smooth objective functions, which in general cannot be improved in
the same setting (Nemirovskij & Yudin, |1983}; |Lan, 2012]).

Although much theoretical progress has been made on gradient-based algorithms, most of these
analysis required Lipschitz smoothness condition (Ghadimi & Lan, 2013 |2016; [Levy et al., 2018;
Ward et al., [2020; |Attia & Korenl, 2023)), i.e., 3L > 0, such that

IVf () = Vi@l <Lz -yl ey e R

or equivalently HV2 f (:n)H < L,Vx € R? for twice-differentiable functions. Recently, several
researchers have found evidence that this condition is not satisfied by many important machine
learning models (Chen et al.l [2023)), such as neural network models (Zhang et al., 2020b) and dis-
tributionally robust optimization (Jin et al., 2021). Based on empirical observations, Zhang et al.
(2020b) proposed (Lo, L1)-smoothness condition, allowing ||V2 f (zc)” to grow linearly with re-
spect to |V f (x)]|, and later Zhang et al.[(2020a) further relaxed this condition, not requiring the
second differentiability of the objective function, i.e., there exist Ly, L; > 0, for any &,y € R4,
such that ||z — y|| < 1/Ly,

IV (@) = Vi@l < Lo+ L |[VF (@) [le -yl 2

Based on this generalized smoothness condition, [Yu et al.| (2025) studied Randomized Stochastic
Accelerated Gradient Descent (RSAG) proposed in (Ghadimi & Lan, 2016) and provided high-

probability convergence rate of order O (1 /T +0o/ \/T) for both convex and non-convex optimiza-

tion (under sub-Gaussian relaxed affine-variance noise), which implies a gap between optimal rate
obtained in the smooth convex optimization. Under a similar generalized smoothness condition, [Li
et al.|(2024) showed accelerated convergence rate of order O (1 / T2) for deterministic NAG in con-

vex optimization, and they also provided expected convergence rate of order O (1 /T 4o/ \/T) for
SGD in the non-convex stochastic optimization. To the best of our knowledge, it remains an open
question whether SNAG can achieve an accelerated convergence rate of order O 1/T? +o/VT

under the generalized smoothness condition for convex optimization. We believe that a proof for the
stochastic setting presents certain challenges; in particular, the analysis for deterministic NAG by
(L1 et al., [2024)) does not appear to be trivially extendable.

In this paper, we aim to close this gap, developing the accelerated convergence rate for SNAG under
more generalized smoothness and relaxed affine-variance noises for stochastic convex optimization.
Specifically, inspired by the theoretical examples in (Taheri & Thrampoulidis} |2023) and (Chen
et al.| 2023)), we focus on the following more general and practical smoothness condition.

Definition 1 ((Lg, L1, Lo)-smoothness). Let L; > 0,V1 < i < 3. f(-) is (Lo, L1, La)-smooth if
and only if for any z,y € R such that ||x — y|| < min {1/Ly,1/L

IVf(x) = VIl < (Lo + L1 [VF(@)|” + Lz (f(z) — ) |z — yll, 3)
where p € [0,2) and g > 0.

Obviously, Definition |1| covers a broader range of relaxed smoothness. Particularly, it is situated
between two related notions: (Lo, L1, 0)-smoothness, which is empirically verified (Zhang et al.,
2020b)) for neural networks training and is theoretically proved for phase retrieval from (Chen et al.,
2023)) and the appendix, and (L, 0, Lo )-smoothness, which is theoretically proven for specific shal-
low neural networks from (Taheri & Thrampoulidis| 2023)) and the appendix.

Our analysis relies on a relaxed affine-variance noise condition, which will be formally defined in (3))
(Hong & Lin, 2024} Yu et al., 2025). This condition was initially proposed by (Khaled & Richtarik,

?For the sake of rigor, we define 1 /0 = o0 throughout the paper.
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2023) in the expected form given in (6), and many practical stochastic gradient settings, such as
sub-sampling and compression schemes satisfy this noise model, but not bounded variance or the
strong growth condition that the stochastic gradient g(x) of f at « satisfies, for some non-negative
constants B,

E[llg(x) - Vi@)I’] < BIVI @) Vo € R o)

Closely related to our works are (Vaswani et al.,[2019; |Gupta et al., 2024). Under the strong growth
condition, Vaswani et al.| (2019) analyzed the Accelerated Coordinate Descent method (ACDM)
(Nesterov, [2012), while |Gupta et al.| (2024) studied SNAG when B < 1. Both works achieved the
expected accelerated convergence rates in the (strongly) convex setting, but only under the standard
smoothness condition.

‘We summarize our main contributions as follows.

(a) Motivated by several machine learning problems, we propose a more general smoothness con-
dition defined in Definition[1l

(b) Under this new smoothness condition, we analyze NAG in the deterministic and convex setting,
and we show the accelerated convergence rate of order O (1 /T 2) , matching the optimal rate in
(Nesterov), [1983)).

(c) For stochastic optimizations under this general smoothness, we focus on the sub-Gaussian ver-
sion of relaxed affine-variance noise (Assumption [3), and we prove that SNAG converges at

the rate of O (1 J/T?+\/(A+B+C)/ T) in high probability. This rate matches the optimal

convergence rate for smooth convex optimization under bounded variance noise (Lan, 2012}

Ghadimi & Lan, 2016). It could improve to O (1 /T 2) if the noise parameters A, B and C are
small enough.

(d) As a byproduct, we apply our analysis to standard smooth optimization under the expected
relaxed affine-variance noises (Assumption , and we demonstrate that SNAG reaches the con-

vergence rate of order O ((1 +B)/T* +\/(A+C)/ T) in expectation.

The rest of this paper are organized as follows. We first briefly discuss some extra works related
to NAG, generalized smoothness condition and the relaxed noise assumption. We then introduce
some necessary assumptions and notations in Section[3] In Section[d] we provide the convergence
results under (Lo, L1, Lo )-smoothness, either in the deterministic setting or in the stochastic setting.
In Section [5] we present the expected convergence rate of SNAG under the classic smoothness. In
Section[6] we conduct numerical experiments and show the better performance of SNAG compared
to SGD for the two- layer neural network and the phase retrieval model IﬂSee&eﬂ—'L‘Lwejafe’ﬁdH
o ’ o : 3 ss: We also provide
the convergence result for non-convex stochastlc 0pt1m1zat10n under the generahzed smoothness and
relaxed noise assumptions in Section [G| All the omitted proofs and lemmas are in the appendix.

2  RELATED WORK
We only briefly mention the most related works due to space and knowledge constraints.

Accelerated Gradient Descent NAG (Nesterov, |1983) was originally designed for smooth and
convex optimizations in the deterministic setting, and it achieved the accelerated convergence rate
of order O (1/T?), compared to O (1/T') of GD. Numerous literature focused on the theoretical and
practical convergence behavior of NAG and its variants (Nesterov, 2005; |[Beck & Teboulle, 2009).
For example, |Su et al.|(2016) introduced a second-order ODE and accompanying tools for charac-
terizing NAG. |Lan| (2012)) generalized NAG for non-smooth and stochastic convex problems under
certain conditions and provided optimal convergence rates under proper step sizes. (Ghadimi & Lan

(2016) proposed RSAG, and showed expected convergence rate of O (1 /T+C/ \/T) in the non-
convex case while O (1 /T? +C/NT ) in the convex case, both under bounded variance noises and

smoothness. |Li et al.[(2024)) obtained convergence rate of order O (1 / T2) for NAG under gener-
alized smoothness and convexity, matching those for standard smooth convex optimizations. Their
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analysis is limited to the non-stochastic case. Under mild noises in @[) and standard smoothness,
Vaswani et al.[(2019) proved that ACDM (Nesterov, 2012), which is a variant of SNAG, could reach
expected accelerated convergence rates in both convex and strongly convex cases. Under the same
setting, |Gupta et al.| (2024) proposed a new accelerated gradient method named AGNES and they
proved that the algorithm could achieve acceleration, requiring fewer hyperparameters than ACDM.

sev—abe—demenstatedthat S A S —esukdachieve aeeclerateonrae—when—H - Furthermore,
Hermant et al.| (2025) showed the expected convergence rate of O ((B + 1) /T?) and almost-sure

rate of o (B + 1) /T?) for ACDM in general convex optimization problems, and they derived fast
convergence rates for ACDM in strongly convex optimization problems.

Relaxed affine-variance noise and its variants Affine-variance noise (i.e., A = 0 in (@)) has
attracted increasing attention as it can characterize gradient noises in many practical problems, such
as machine learning with feature noise (Fuller, 2009; |[Khani & Liang| [2020), robust linear regression
(Xu et al.l [2008) and multilayer networks (Faw et al.| [2022). Bottou et al.| (2018)) analyzed vanilla
SGD and pointed out that there is no essential difference in the analysis between the bounded vari-
ance noise and the affine-variance noise under standard smoothness. For Adagrad-Norm, [Faw et al.

(2022) provided expected convergence rates of order O ( 1/VT ) in the non-convex setting and this

rate could reach O (1/T") when B, C are of order O (1 / \/T) Under the same setting, [Wang et al.

(2023) further proposed a novel auxiliary function for analysis and obtained a tighter bound espe-
cially when C = 0. |Attia & Koren| (2023) derived high probability convergence for Adagrad-Norm
in both convex and non-convex cases, under almost-sure version of affine-variance noises. [Khaled &
Richtarik| (2023)) proposed the relaxed affine-variance noise (see (6))), and they derived an expected

convergence rate of order O (1 / VT ) for SGD in the non-convex and smooth setting. [Hong & Lin

(2024) considered sub-Gaussian version of the relaxed affine-variance noise, and they derived prob-
abilistic convergence rates under (Lg, L1)-smoothness. |Yu et al. (2025)) analyzed RSAG (covering
SGD as a special case) in both convex and non-convex settings under (Lo, L1)-smoothness.

Generalized smoothness Motivated by practical observations, Zhang et al. (2020b)) proposed
(Lo, L1)-smoothness for twice differentiable functions. They showed O (1/T") convergence rate for

GD and O (1 / VT ) convergence rate for SGD in the non-convex setting, involving extra clipping

mechanisms. [Zhang et al.| (2020a) improved the convergence analysis on problem-dependent pa-
rameters for clipped SGD under essentially the same smoothness. In the analysis of Adagrad-Norm

under affine-variance noises, [Faw et al.| (2023)) derived convergence bounds of order 0 (1 / \/T )

in the non-convex case when 5 < 1. Wang et al.|(2023) gave a counter-example showing the
necessity of prior knowledge on problem parameters for learning rates in AdaGrad under (Lo, L1)-
smoothness. Via a notion of continuity, |Guille-Escuret et al.| (2021)) demonstrated that the strong
convexity and smoothness have a weakness resulting in a lack of robustness for tuning first-order
algorithms, and they presented promising alternatives.

Refer to Table[I]and Table 2] for comparisons of the most relevant works.

3 PRELIMINARIES

We consider Problem (T)) over the Euclidean space R? with the I norm, denoted as ||-||. We first
introduce the following assumption.

Assumption 1 (Below bounded). There exists a minimizer =* € R® and the objective function is
bounded from below, i.e.,

fx*)=f"= inf f(z)>—o0.
zER?

In the stochastic setting, we make the following assumptions.

Assumption 2 (Unbiased estimator). The gradient oracle returns an unbiased estimator of V f (),
i.e, forall x € R4,

E, [Vfa(2;2)] = V().
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Assumption 3 (Relaxed affine-variance (sub-Gaussian form)). The gradient oracle satisfies that for
some constants A, B,C' > 0,

< exp(1),Vzx € R%. (5)

z

o < |V fal:z) = V(@) )
A(f(@) = [+ BIVI @) +C

Assumption 4 (Relaxed affine-variance (expected form)). The gradient oracle satisfies that for
some constants A, B,C > 0,

E, [||sz(a:;z) — Vf(w)ﬂ < A(f(z) — f*) + B|Vf (@)|? + C,Vx € R™ (6)

Assumption [2]is a relevant assumption for studying many practical settings and is also commonly
used in the analysis of stochastic optimization. Assumption [3]is weaker than the bounded noise in
(Zhang et al., |2020bja) and the almost-sure version of (relaxed) affine-variance noise in (Attia &
Koren, 2023; [Hong & Lin| 2024} [Yu et all 2025). AlthoughWhile Assumption [3]is stronger than
its expected version in Assumption [4] as it controls all moments of the noise distribution, while
Assumption 4 only controls its second moment (the variance), the former one could lead to high-
probability convergence, which could ensure corresponding expected convergences. Assumption
was initially proposed by |[Khaled & Richtarik| (2023) under the name expected smoothness. Its

original, equivalent form is: |, [Hsz(w; Z)H2:| <A(f(m) — f*)+ B||Vf (z)|® + C,Vx € R%.

Notations We denote the set {1,---,7} as [T]. We use E;[-] £ E[:|zy,--- ,2; 1] to represent
the conditional expectation, where z; is the random sample in the i-th gradient oracle. The notation
a~ O(b)and a < O(b) refer to c1b < a < coband a < c3b with ¢1, 2, ¢3 being positive constants,
respectively. Also, we write O(b) for O(b - poly(log b)). Throughout the paper, we define 0° = 1.

4 CONVERGENCE OF NAG UNDER (Lg, L1, Ly)-SMOOTHNESS

In this section, we assume that the objective function satisfies Definition [T} We present convergence
results for the deterministic case in Section[4.I]and for the stochastic case in Section[4.2] The detail
proofs for this section will be given in Section[D]and Section [E] of the appendix.

4.1 CONVERGENCE RESULTS FOR DETERMINISTIC OPTIMIZATION

We first present convergence rates of NAG in the deterministic case with a slight modification (see
Algorithm [I). This modified NAG is proposed by (Li et al.,[2024) where they obtained the optimal
convergence rate under a general smoothness for convex non-stochastic optimizations. The only
difference between Algorithm E] and original NAG (Nesterov, [1983)) is that the latter directly sets
A; = B;. Such a modification could be used to control the gradient norms (or function value gaps)
in the analysis.

Algorithm 1 Nesterov’s Accelerated Gradient Descent (NAG)

Require: Horizon T, z(? = o € RY, step sizes 3, {\¢ }re[r) and Ag = 1/, By = 0.
1. fort=1,---,T do

2: Bt:Bt,1+%(1+\/4Bt,1+1);
3: At = Bt + %,

4: xd = A;lwtazl + (1 - AZI) Ti—1;
5: xy =i — MV f(xld);

6: xy! = xd — BV f(zm?).

To better understand the NAG method, we provide the following lemma summarized from
(d’ Aspremont et al., 2021} [Li et al., [2024)).

Lemma 4.1. Forall0 <t < T, we have
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1. 32 < By < 1%
2. (At - At,1)2 = (Bt - Bt71)2 = Bt < At,' p— 2 = = 2 =

3. Ay — A1 = B, — By_1 > 1. Thus, {At}te[T] and {Bt}te[T] are both monotonically
increasing sequences.

The above lemma plays vital roles both in the induction argument for bounding the function value
gap and in the final convergence analysis. Refer to Section[H] for the complete proof.
Theorem 1. Let T > 0 and f be an (Lo, L1, Lo)-smooth convex function. Suppose that{x{’}, e[T]
is a sequence generated by Algorithm[I|with step sizes [3, \; satisfying
1
BZE’ )\t:(At—At—l)ﬁa (7
1

where L1 is a constant, depending on the smoothness parameters {Li}ie[?,] , D, q, with its explicit
expression in (27). Then, under Assumption|l} we havd)|

ra) -1 <0(g). ®

Considering the definition of £ in (27), S could reduce to 1/2L when the objective function is L-
smooth, which aligns with 5 = 1/L in (Nesterov, |1983)) up to a constant. Furthermore, Theorem
recovers the convergence rate of order O (1 / T2) obtained in (Nesterov, |1983)) where the smoothness
is required. This bound is optimal (Nemirovskij & Yudinl |1983) for smooth convex optimization
when d is large enough.

4.2 CONVERGENCE RESULTS FOR STOCHASTIC OPTIMIZATION

In this section, we provide a probabilistic convergence result for SNAG (see Algorithm [2) under the
relaxed affine-variance noise assumption of its sub-Gaussian form. Compared to Algorithm|[I] the
only difference is that stochastic gradients, instead of accurate gradients, are accessible. Obviously,
Lemma (. 1] still holds for the stochastic case.

Algorithm 2 Stochastic Nesterov’s Accelerated Gradient Descent (SNAG)

Require: Horizon T, z(? = o € RY, step sizes 3, {\¢ }se(r) and Ag = 1/, By = 0.
1: fort=1,---,T do
2| By=Bi1+35(1+/4B_1 +1);
Ay = B + %;
wpd = Aoa? 4 (1- A @
Set g; = V f, (z}"%; 24);
Ty =Ty 1 — Mgt

ag _ .md
z,” =z — Bgy.

A A

Theorem 2. Let T > 0 and § € (0,3%). Suppose that {x}? }err) is a sequence generated by

Algorithm fis (Lo, L1, La)-smooth and convex, and the step sizes [3, \; satisfy that

1 1 1 1 1 1
= i IR 9 9 3 5 )\ = - A — A _ s 9
I5] mln{g1 T8 ggT% MTE MQT} t 45( t t—1) 9)
where G1,Go, G3 and M are polynomials of log %, depending on the noise and smoothness param-
etersﬂ Under Assumptions [Z]and E] with probability at least 1 — 36, we haveE]

rep)-r<0( g H5EE),

3We state the explicit convergence result in (@2).
*The explicit expressions of these notations are presented in (@3}, @), @3) and [@8).
SRefer (73) for the explicit convergence result.
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Theorem [2] provides accelerated convergence rates in high probability. Up to logarithm factors,
this convergence rate matches the expected convergence rate in (Ghadimi & Lan, 2016), where
they assumed bounded variance noise and standard smoothness, and it is unimprovable for smooth
convex stochastic optimization (Lan} 2012).

Furthermore, the convergence rate in Theorem [2| could accelerate to O (1 / T2) if the noise param-
eters are sufficiently small, which matches the rate for the deterministic NAG in (Li et al.| [2024)
under a generalized (Lo, L1,0)-smoothness: ||V2f (x) H < I(|IVf (x)|) with a sub-quadratic non-
decreasing positive function [ up to logarithm factors. Note that|Li et al.|(2024) did not provide the
analysis for NAG and we consider the (Lg, L1, Ls)-smoothness. To extend to stochastic setting,

t

we modify the step size slightly by a constant factor and 3 > A; ||V f (:/cg”d)H2 appears in (61)),
i=1

which makes it feasible to bound Hazt R in stochastic optimization. Combining with sev-

eral probabilistic lemmas, we could finish the proof. We refer to Section [E] for the complete proof.

Our analysis for the above theorem, which relies on Assumption 3] does not apply under the weaker

noise condition of Assumption[d]in the generalized smoothness.

|

5 CONVERGENCE OF NAG UNDER LIPSCHITZ SMOOTHNESS

We apply our analysis to smooth stochastic optimization and demonstrate that SNAG could reach
the accelerated convergence rate in expectation under the relaxed affine-variance noises and standard
smoothness.

Theorem 3. Let T > 0, f be L-smooth and convex. Suppose that {x;’ }te[T is a sequence gener-
ated by Algorithm 2| with step sizes

L 1 11 R -
ﬂmm{QL(HB)’Q;T%’QT}’ M= sarp) A Ay, (19)

where Q = AF3 + C is a constant depending on the pammeters of smoothness and noise with F3
defined in ([T8). Under Assumptions|i} |2 iand we havd|

E[f (27") = 7] <0<1;QB+\/A;C>~ (11)

The above theorem relaxes the bounded variance noise assumption in (Ghadimi & Lan, 2016)) while
providing the optimal expected convergence rate. Furthermore, Theorem [3] improves the conver-

gence rate of order O (1 /T +C/ \/T) for SGD and RSAG in (Yu et al. [2025) under the same

assumption. Compared to Theorem the suboptimal term O («/B / T) with respect to B disap-

pears in (TT), which aligns with the expected result of O ((B + 1) /T?) and almost-sure result of

o ((B+1)/T?) in (Hermant et al.| 2025) where they focused on smooth stochastic optimization
with noise satisfying (@).

6 NUMERICAL EXPERIMENT

In this section, we show the practical convergence behavior of SNAG (Algorithm [2) compared to
stochastic AGD (Algorithm [3]discussed in the appendix) and SGD, i.e.,

Tip1 =T — NV f(x4; 20), (12)

on the two-layer neural network (T3) and phase retrieval model (14). We prove that both the two
models satisfy the (Lg, L1, Lo)-smoothness condition in Section [B|

The detail convergence result is presented in (30).
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Two-layer neural network Considering the following problem,

min F(x) = % Z f (w:i® (z,w;)), (13)
i=1

xzcRd

where w; € R is the data point and its associated label y; € {41}. The function f(-) is the
exponential loss i.e., f(t) = exp(—t) and ®(-) is a two-layer neural network with m neurons defined
as

Oz, w) = Zaj0(<ﬁﬂjaw>)7

Here o : R — R is the activation function and x; € R? denotes the input weight vector of the jth
hidden neuron. € R? represents the concatenation of these weights, i.e., € = [®1;To; ;T

where d = md. We assume that only x; can be updated during training, while a; € R are initialized
randomly and kept fixed.

We conduct experiment on the specific shallow neural network with m = 30 hidden neurons, expo-
nential loss f(t) = exp(—t) and smoothed-leaky-ReLU activation function, i.e.,

o(t) =tI(t > 0) + 0.2¢I(t < 0),

where I(-) is the 0 — 1 indicator function. We generate the data point w; € R, where dimension
d = 10, coordinate-wise from Gaussian distribution A (0, 25) with its binary label y; € {£1}
chosen randomly. The second layer weights are generated randomly from a; € {:I:%} and kept
fixed during training.

Phase retrieval Phase retrieval is a classic model in the field of machine learning and signal pro-
cessing (Drenthl (1994} Miao et al.l [1999; |Chen et al.| 2023). In this setting, we are aimed to solve
the following problem, i.e.,

1

. _ - AT a2 2
min flz) = 2 2 (yl ’arw| ) . (14)

,Vi € [m] with a; € RY being the

Here, y; represents the intensity measurements, i.e., y; = |aiT z
fixed parameters and z € R¢ being the true objects.

. . 2 ) .
The data in our experiment are generated by y; = |aiTz| + €;,i € [m], where each coordinate

of both the measurement vector a; € R and the true parameter z satisfy Gaussian distribution
N (0,0.5), and €; ~ N (0,25) is the noise. Here, we set the number of samples m = 1000 and the
dimension d = 10.

—— 5GD,7=0.0005 — 56D,7=0.0001
—— stochastic NAG (Alg 2),n= 0.0005 800 —— stochastic NAG (Alg 2),n= 0.0001
— stochastic AGD (Alg 3),) =0.0005 — stochastic AGD (Alg 3),7=0.0001
25 --- 5GD,N=0.005 --- 5GD,n=0.0005

--- stochastic NAG (Alg 2).n=0.005 600 --- stochastic NAG (Alg 2).n= 0.0005
20 --- stochastic AGD (Alg 3).n =0.005 —-- stochastic AGD (Alg 3).n =0.0005

Loss.
G

Lo
.

200

(a) Two-layer neural network (b) Phase retrieval model

Figure 1: Experiment results. We run each algorithm 100 times and plot the average loss at each
iteration.

Experiment Setup We set 3 = 7 in Algorithm[2]and A\, = 7 in Algorithm [3] where 7 is also the
step size of SGD. The stochastic gradient in each step is computed by samples randomly chosen
with batch size 10. We start the training process with the initial vector satisfying N (1, 25).
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Results As Figure [I] shows, SGD and stochastic AGD (Algorithm [2)) exhibit comparable per-
formance under these two possibly non-convex setting, complementing their theoretical analysis.
Stochastic NAG performs best among the three especially with small step size though we only prove
its acceleration theoretically in the convex case.

7 CONCLUSION

In this paper, motivated by several machine learning problems, we propose a new general smooth-
ness, which generalizes the global smoothness and (Lg, L )-smoothness. Under this condition, we
analyze NAG method and obtain the accelerated convergence rate of order O (1 / T2) for convex
optimizations with access to accurate gradients. For stochastic optimization, we obtain acceler-

ated probabilistic convergence rates of order O (1 J/T?+/(A+B+C)/ T) under sub-Gaussian

relaxed affine-variance noises. Furthermore, we apply our analysis to smooth optimizations and

obtain the result of order O ((B +1)/T* +\/(A+C) /T)fh&&&m&e@averge%eﬂes in expec-

tation under expected relaxed affine-variance noises. All the above derived convergence rates are
optimal without further assumptions.
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DECLARATION OF LLM USAGE

We used a large language model (LLM) only for language polishing (grammar, clarity, and style).
The model did not generate ideas, analyses, results, or citations. The authors are fully responsible
for all content.

A COMPARISONS OF PREVIOUS WORK WITH OURS

B EXAMPLES SATISFYING THE (Lg, Ly, L)-SMOOTHNESS CONDITION

B.1 TWO-LAYER NEURAL NETWORKS

Recall the two-layer neural network model in (T3) and we have the following lemma from (Taheri
& Thrampoulidis, |2023)). We refer interested readers to see the proof in their paper.

11



Under review as a conference paper at ICLR 2026

Table 1: Related works under the generalized smoothness condition.

Alg. Convexity Noise Smoothness Conv. Conv. Extra cqnd.
L ~ type rate for gradient
Zhang et al.|(2020b) SGD non-convex b(z';ff)ed (Lo, L) E % v
. J bounded . 11T
Li et al. j2024) SGD non-convex variance generalized (Lo, L1) E Ve
Li et al.|(2024) NAG convex - generalized (Lo, L1) - #
- SGD or | Non-convex | rejaxed affine 1 VAT
Yu et al.|(2025) RSAG - @s) (Lo, L1) w.h.p T+ =
Thm|1 NAG convex - (Lo, L1, L2) - #
Thm|2) SNAG convex rela)zz(.jsifﬁne (Lo, L1, L2) w.h.p # + 4/ A-F;;—FC
Thm/|3 SNAG convex relaxed affine smooth E % + #

! Indeed, |Li et al.| (2024) provided the probabilistic results for SGD while the dependence of the probability margin is the polynomial of 1/5. In
order to distinguish them from other high-probability results with dependence of log %, we consider them as the expected results.

2 “Alg.”, “con.” and “cond.” are the shorthand of the words “algorithm”, “convergence” and “condition”.
3 We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Table 2: Previous works related to NAG.

Algorithm Convexity Noise Smoothness Conv. Conv.
~ type rate
Nesterov|(1983) NAG convex - Lipschitz - o
— non-convex bounded . . T+ %
Ghadimi & Lan|(2016) RSAG . Lipschitz E
variance 1 C
convex 7z T\ T
- . . BA1
%Vaswam et al.|(2019) SNAG convex strongly growth Lipschitz E T—é
Li et al.{(2024) NAG convex - generalized (Lo, L1) - ﬁ
Hermant et al.|(2025) SNAG convex strongly growth Lipschitz a.s. %
Thm{l NAG convex - (Lo, L1, Lg) - #
Thm 2| SNAG convex relax(zdsz;fhne (Lo, L1, L2) w.h.p # 44 /%
Thm|3 SNAG convex relaxed affine smooth E % + 4/ #

! As discussed in Section Vaswani et al.|(2019);/Hermant et al.|(2025) analyzed ACDM, which is a variant of SNAG. However, ACDM is
equivalent to SNAG with the specific step size setting in the convex case.

2 “Con” and “cond” are the shorthand of the words “convergence” and “condition”.

3 We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Lemma B.1 (Lemma 5 in (Taheri & Thrampoulidis| [2023)). Let F' be in @]) and ® be a two layer
neural network with the activation function satisfying that there exist L, o, > 0, such that

lo"(t)| <L, a<d'(t)<l, VteR.

Then, F is self-bounded of gradient and Hessian with constants h = ‘& H = LI ZQRQ, ie.,

IVF(@)| < hF(z), |[V*F(@)|| < HF(x),
where R = max ||w; ||[{R=mesctteA
i€[n] i€[n]

In the next lemma, we denote F'* is the minimum of F'(z) in (I3), i.e., F'(z) > F*,Vx € RY.

Lemma B.2. Under the condition of Lemma F(x) in (@) is (Lo,0,Ls)-smooth,
where Lo and Lo are nom-negative constants such that Ly = max{h,He}, Ly = LoF*

LotogFr=tlog HiLo="ot

12
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Proof. For any || — y|| < 1/Ls, define y(t) = t(y — x) + «,t € [0,1]. Then, for any 1 € [0, 1]
we have,

Foo) = [ " (VF(0)y - @) dt + F(a)
< [CIVFGOI - Iy~ ol + Fo)
0

<hly— =] / " Foy(t)de + Flz), (15)

where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
from Lemma[B.I] By Gronwall’s inequality, we have

F(y(w) <F(x) - exp(uh|ly —z[l), p<[0,1]. (16)

Moreover, we have
1
VF(y) - VF() <VF((1) = VF6O) = [ PRa0)w-= (7)
which implies,

IVF(y) - VE@)| = \ / V2B (1) - w)dtH

1
2 —x
< / 12 F(v(8)| lly — | dt
<H|y—z| / Fly(t))dt

1
<Hly- ol | Fla)-exp(thly - o). ()
0
Since |ly — z|| < -, we have

IVF(y) - VF(a)| <HF(z) exp(L%) ly — 2|

h| o h .

= | Hexp(-—)F" + Hexp(—) (F(z) = F") | [y — [ . (19
Lo Lo

By the constraints that Ly = max {h, He }£rlogfr>-hlegH, we have

h
Ly ZHGXP([Z)~

Combining with the fact that F'* is positive for the exponential loss, we have

IVF(y) = VF(z)|| < (Lo + L2 (F(x) — F7)) |y — || (20)

B.2 PHASE RETRIEVAL MODEL

We then provide the proof that the phase retrieval model in (T4) satisfying (Lo, L1, L2)-smoothness
condition. The following lemma is presented in (Chen et al., 2023).

Lemma B.3. The function f(x) in (14) belongs to L3 (%), ie., forany x,y € R?,
IVf@) = Vi@l < (Lo + Ly IVF @)1 + Ly e — yl*) o ]l @

where Ly, LY, L}, are non-negative constants.

Thus, we could derive Lemma[B.4]

13
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Lemma B.4. Suppose that f(x) is the phase retrieval model defined in 2I). Then, f(x) is
(Lo, L1, 0)-smooth, where Lo = L}y + L/L% and L, = L.

Proof. By 1), for any =,y € R? such that ||z — y|| < L%, we have

IV (@) = V@)l < (Lo + L5 IV @)F + Lo/L3) |l — ]

= (Lo+ L 195 @)]17) e — v

C COMPLEMENTARY LEMMAS

The following lemma characterizes the relationship between the gradient and the function value gap
under the smoothness condition. Refer to (Attia & Koren, [2023)) for a proof.

Lemma C.1. Let f(-) : R? — R be an L-smooth function with minimum f*. Then, we have
IV f(@)lI* < 2L (f (@) — f7) -

Lemma|C.2|and Lemma|C.3]are the key to the analysis for (Lg, L1, L2 )-smooth functions.
Lemma C.2. If f(-) : R — R is (Lo, L1, Lo)-smooth with minimum f*, then for any x,y € R?
such that || — y|| < min{1/Ly,1/Ls}, we have

F) < F@) + (VI (@) — ) + Lo+ Ly HVf(w)HpJ;Lz (f(zx) — fz)" Iz — .

Proof.

fy) — f@) — (y— 2,V (@) = / (VF(Oy + (1 - 0)x) — Vi(z),y - x)df

0

< [ IVs6y+ 1= 0)2) = Vi@ o~y
0

1
< / 0 (Lo+ Ly V(@) + Lo (f(z) — £9)) ||z — y]* df

_ Lo+ Ly [[VF(@)|” + L2 (f(x) — £*)°
2

2
e —yll”,

where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
from the definition of (Lg, L1, L2)-smoothness.

Lemma C.3. If f(-) : R? — Ris (Lo, L1, Lo )-smooth with minimum f*, then we have

2

IVf @) < 4Lots + (2= p) (202 2L1) T + 4L AT +8(Ly+ L) 02, 22)
where Ny = f(xy) — f*.

14
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_ 1 . .
Proof Let @ = @ — e TmTF IV i@ Lo r@aTap v/ (@) Ttis easy to verify
|z — @ <min{1/Ly,1/L;}. By Lemma|C.2| we have

LO +L1 ||Vf (a:t)”p +L2 t || H
2
IV £ ()]
Lo+ Li (IVf ()| + [V f (@)|I”) + Lo (IV.f (o) | + A7)
Lo+ Ly |V f () [[” + Lo A

(@) <f(2) +(Vf(2), @ —a0) +

=f(z) —

+ 5+ 197 @)l
2(Lo-+ Ly (IVf @)+ VS @)IP) + L (195 (@)l + A7)
ey I (@)
Lo+ Li (N F @I+ 197 @) + Lo (V7 @l + 47
. I (@)

2(Lo+ L (IVf ()| + IV (@)I") + L2 (IV f ()| + AF))

which implies

IVf ()]
2(Lo + Ly (IVSf (@) + IV (@)l) + L (IVf (@) | + AF))

Re-arranging the above inequality, we obtain that

< flx) = fx) <Ay

IV (@0)||* < 2Lo2se + 2Ly |V f (@) D¢ + 2L2ATH +2 Ly + Lo) |V f (@0)]] - B

When p > 0,Fhen; applying Young’s inequality, we have
2 1 2 p z =
IV @)ll” <2Lobe + 2 IVF ()" + (1 =5 ) ((2p)% 21
1
2L AP 4 2 VS @) + 4 (L + L2)* A7, (23)

Note that (23)) still holds when p = 0 since 0° = 1. Hence,
%
IVf (@)l” < 4LoAt + (2 —p) ((Qp)% 2L1At) T AL AT 8 (L + Lo)” AL,
O

Corollary 1. Ler f(-) be an (Lg, L1, La)-smooth function with minimum f*. If f(x:) — f* < G,
then we have

V£l < 9(G),
where g(-) : R — R is defined as

P
2

g0) = ALop+ (2= p) ((20)8 2Lapt) 7 +4Lopt 8 (Lo + LY i 4

The following lemma plays crucial role in our probabilistic analysis. Refer to (Li & Orabonal [2020)
for a proof.

Lemma C.4 (Lemma [ in (Li & Orabona, 2020)). Assume that {Z; }c (7| is a martingale difference

sequence with respect to 1,2, -+ ,yr and Ei[exp (Zf/of)] < exp(l) forall 1 <t < T, where
oy is a sequence of measurable random variables with respect to v1,72, - ,Vi—1. Then, for any
fixed A > 0 and 0 € (0, 1), with probability at least 1 — §, we have

ZZt Zat log 5

t=1
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D PROOF OF THEOREM ]

We first present the explicit expressions of Cy, F1, L1,

a 1 *
C =AY + §||:1:0—:c\|2, (25)

Lo+ L1 (9(C1)) % + Lot
2(Ly + Ly)?

L1=2(Lo+ L ((@(F))F + 0FD)F) + Lo ((0FD)F +F) +86 (L + L)) . @D

where g (-) : R — R is a function defined in (24). Then, we will provide some useful lemmas.
Lemma @ follows from the analysis in (Ghadimi & Lan, [2016) and is derived from the iteration
steps in Algorithm [T}

Lemma D.1. Let {w?d} ke[T] and {x}?} ke[T] be the two sequences generated by Algorithm
Then we have for all k € [T,

1 LA2 (- .
Hwk _wk 1|| = Ay - A IZ A; — Az R va d)H

1
Fi1=C +——+ C1) + , 26
1 1+L1+L2 9(C1) (26)

Proof. From Algorithm|[I] we have
2y — @ = = BV (@) - 21 + MV S ()

S (a3 — i) + O = 6) VI ().
Since z;? = x(, we obtain that
g — Tk = ZA i — B) Vf(zmd),
which implies
g — | <fZA X = Bl [V @) (28)

Applying the iteration step in Algorithm |I|aga1n, we have
m a Ag-1 a
R (1— AL )(mk_l—xkgl).

Combining with (28)), we have

A =

E—1 md
Hmk —sck 1H<( Ay )'Ak IZAi|A¢—5|'||Vf(% )H (29)
=1

Using the fact that

ZA’L < > Ak 17A07

we have

|l — 22 ||

2
A\ 1 [ Ai I\ — Bl md
S(l Ak) v ;Ai(l i >.1_M||Vf(a:i )|
Ar-1\® Axoi — Ao X ( i_l) A2 (N y
<(1- : A (1- i 2
<( Ak) e ; ) 2O o e
1 A2 ( md
_Ak Ap_q A, — A ||Vf )H )
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where the second inequality follows from Jensen’s inequality and the last inequality holds since
Lemma .1} O

In the next Lemma, we assume the function value gap is bounded. Under this assumption, the
analysis for (Lo, L1, L2)-smooth and L smooth objective functions becomes similar. With reference
to (Nesterovl [1983; |Ghadimi & Lan, 2016} |d’ Aspremont et al., 2021), we provide the following
analysis with a step size specific to the novel smoothness condition.

Lemma D.2. Suppose that f (a:lmd) — [* < F1, VI € [t]. Then, under the conditions of Theorem
we have

C1
AP < ——,
bTAB

where Cy is a constant related to the initial point and is defined in 23)).

Proof. By Corollary [1{ and the assumption that A"® < Fy, VI € [t], we have HVf(aclmd)H2 <

g(F1), VI € [t]. Therefore,

[’ — 2| = BV /()| < BVg(F1) < min{1/Ly,1/Ls},
where the last inequality holds since 5 = E% with £, defined in (27). By Lemma we have

’ " may agmay , Lot Di(@(F))E + LoFY 1 g
i) <1 (@) + (VS e - apt) 4 LRI E DT g g

2
Lo+ Ly (9(F1))? + LyF!
~F () = [V |+ R g s . o
By the convexity and the iteration step in Algorithm[I] we have
A a A «
o)~ ey + (- 52) ]
A m «1, Ai- m a
B (1_ Ai) f @) - £+ ;111 [ (@) = (2%)]
< (1 - A/lll) (V) z —z*) + Ajé(l (Vi) "t —af?))
A o, A m a
(st (1- 22 ) - @) + A -t
A
=1~ zilz1> V() z —a”). G

Combining (30) and (31)), we obtain that

a A— a A * A m *
P <2 g )+ (1- 22 (1225 ) (Vs e - o)
Lo+ Ly (g (F1))? + LoFY?
BV + Lot ORI g2 gy 7 @
Also,
o1 — 2*|* = 20 (Vf (@), 21 — =) + A7 |V £ (@)
= ||m1—1 — )\sz(w{”d) — a:*||2 =||x; — a:*HQ
Hence,

1 A
(Vi) @i —a) = i e '~ o —a"*| + VAP 6
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Substituting (33) into (32)), we have
a A a A * A — A * *
f (@) <= 1~f<wl_91)+(1— : 1>~f o e =2~ e — 2]

- A A 24; -\
(L0+L1(9(-7:1))g+L2f1q>3 A (A = Apq)
1 (A -1 mdy |2
-B|1- 5 ATy [VF | 34
By the constraint of )\, in (7)) and applying Lemma4.1] we obtain that
)\Z_Al_Alflzﬂ_(Al_Alfl) —ﬂ( - B 1)225 B _g4
Ay Ay B +1/8 B +1/8
Also, recalling the constraint of 3 in , we have and
2 1
(Lo +Li(g (]'—1))3 +L2]'—f) B < 3
Therefore,
. (Lo + L1 (9(F1))” +L2}—f) s CNA-AL) 1
2 284; 4
Combining with (34) and reorganizing the terms, we have
A4 A=A 2 2
Aa9<_7 md N4 |: L — ¥ = — * i|
p ||Vf || + A, -1+ 24, (A, — A1) B |11 — x| |z — ™|
Aic1 a 1 2 .2
:—*BHVf O+ A+ g5 (i1 = @I =l - 2*I1%] (35)
With both sides of the above inequality multiplying Ay, we have
a * 1 m 2
AN g—l—*”ﬂ:l—:n 1 < A WAV 6||asl_1—:c Hz—Z,BAlHVf(a:l d)H . (36)
Summing up overl € [t] and re-arranging the 1nequa1ity, we obtain that
AO 1 2 1 2
Aag < Aag _ * Aag _ *
A 0 + 2514,‘, Hwo T H A 6 0 2614,‘, Hwo T H
1 1 2
DY+ = —x" . 37
a5 (68 + 5 leo =21 @)
O

Based on the proof for Lemma we will prove the bound of f (w;”d) — f*forallt € [T], using
an induction argument.

Lemma D.3. Under the conditions of Theorem[I} we have
fe?) — f*<F, Vte[T],
where F is defined in (26)).

Proof. It is apparent that f (z"?) — f* = f (z(?) — f* < Fi since @’ = xo. Suppose that for
some ¢ € [T,

f 2] — f* < FL Ve Tt
Next, we will bound f (%% ) — f*. By Lemma|D.1] we have
t

a 1 A%.()\ m
o | < g S A O " v s

t A1)
SZ(AZ : 1__11) 82|V £ ()|

<23 (A - A ||V F @)

i=1
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where the second and the third inequalities follow from Lemma[d.1} Applying Lemmaf.T|again and
using the fact that A; = B; + 1/3,Vi € [T, we have

t

et — | </32Z\FHW " %Z Vs (38)

Since the assumption that f (z]"?) — f* < Fy, VI € [t], (36) holds here for all [ € [t]. Therefore,
summing up (36) over [ € [t], we have

1 : m a *
ZﬁZAi V@) < Agirl 9+ﬁ o — 2* || (39)

Combining (38) and (39) and the constraint of 3, we obtain that

@ 1
||“3t+1_wtgH <\f (Aog *||w -z ||> (

L+ Lg)
Applying Lemma|C.2]again, we have

f@ﬁ@
u Lo+ L1 |V f(xi)||” + Ly (AF9) ag2

<f (@) + (V@) apd — ) + = Ll B H 2 H at — x|

" " " " Lo+ L, |Vf Py Ly (AY) w12
Sf@ﬂ)+HVﬂwﬂHMHw4€—wﬁH+ o I NI L (B s

. Lo + Ly IV (59" + Ly (A59)?
<f(x$) + v - — 40
S +L IV £ (9] + A (40)

where the second inequality holds since Cauchy-Schwarz inequality. Further, considering the as-
sumption that f (x]"?) — f* < Fy,VI € [t], (37) holds here. Noting that 4,3 = (Bt + %) B>1,
we could deduce

1
AP <84 llmo - 272 = o, (1)
Plugging (@) into (@0), subtracting f* from both sides and applying Corollary [T} we obtain that

Lo+ 14 (g(Cl))% + LQCf
2(Ly + Ly)?

1
Aﬁdlﬁﬁ-i-m g(C1) + =7,

where g(-) is the function defined in (24). Therefore, the induction is complete and we obtain the
desired result. O

Now we are ready to obtain the main convergence result.

Proof of Theorem[I} Noting that A" < F;,Vt € [T proved in Lemma we could apply
Lemma (D2l and obtain that

I R A ) Ci- L
Afﬁ,q@(ﬂf+z“”‘ww>: o

Applying Lemma[&.T] we obtain that

16+ (2 (Lo + Ln ((9(F)* + (9(F)?) + La ((9(F1)* + F7) + 83 (L + L)) )
T2 '

AP <
(42)
O
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E PROOF OF THEOREM 2]

We first introduce some notations used in Theorem[2] i.e.,

M =\/AF, + Bg(F) + C, G = max{G11,G12,G1,3.G14},

s

2 4 4 T 8 2 4 T 3
Go = (595)% (L1 + Lo)* M3 (log ;) . Gy = (595)% (Ly + Ly)3 M# <log 66) . (43)

where
Te Te
Gia=1L (\/ g (F2) + My/log 5) ; Gio= Lo (\/9 (F2) + My /log 5) )
Gis=4 (LO YL (g(F))E + Lg]-"g) , Gia=4624 (L + Ly)* C2. (44)
Furthermore,

g(H) Lo+ Ly (g(H))? + LyHe

Fo=H+
? L+ Ly 2(L1 +L2)2

; (45)

with the notations
T
Cy = A 42|z — ¥, H=2cz+1710g7€. (46)

In what follows, we will present several high-probability lemmas for the probabilistic analysis.

E.1 PRELIMINARIES

The following lemma bound the noise norm under Assumption 3]

Lemma E.1. Given T' > 1, suppose that for any t € [T], vy = Vf, (x1;2¢) — Vf (x:) satisfies
Assumption E] Then, for any given ¢ € (0,1), it holds that with probability at least 1 — 6,

Te
lodl? < (A (@) = £+ BIVF @) +C) log =, Ve e [1]. )
Proof. Denote (; = vl Yt € [T], where T is fixed. By the definition of

) A(f(ze)—f*)+BIVf(z:)|*+C°
the noise model, we have

E;[exp (¢¢)] <e, thus, Elexp ()] <e.

By Markov’s inequality, for any g € R,
P (max G > 5) =P (exp (max Ct> > eB>
te[T) te([T]
T
<e "R <e PE <e PTe.
<e {eXp (g?ﬁ Ct)] <e LZ—; exp (Ct)] <e "Te

Therefore, with probability at least 1 — J, we have

ol < (A(F@) ~ 1)+ BIVF @) +C)log -, vt e [T].

O

Next, we will establish a probabilistic upper bound for summation of the two martingale difference
sequences based on the noise assumption and Lemma |C.4
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Lemma E.2. Given T > 1 and § € (0,1), if Assumptions @ and hold, then with probability at
least 1 — 6, for alll € [T, we have

l l

1 T
> Ak (& V@) < e 2 AV | ME 434 MPlog T @®)
k=1 k=1

where

M, =\/ALp + By (Ap?) +C, (49)

M is defined in @3) and g (-) is a function defined in 24).

Proof. Let Xj, = —Ap (&, V f(x%)). Note that ] and x_; are random variables depen-
dent on z1,--- ,z;_1 and & is dependent on z1, - - - ,z. It is apparent that X}, is the martingale
difference sequence since

Ey, [X3] = — Ay (Bx [€4], V(') = 0.
Also, by Assumption [3|and applying Cauchy-Schwarz inequality, we have

Ex |exp X’%
k
A2 ||V f ()| (AAZ” +B||Vf (@p)|” + 0)
[ 2 2 mdy||2 1
<E, | exp A,; €61 [V f (@) : cempl)  (50)
A ||V fapd)|* (ange+ B[V f (@pd)|* +C)

Thus, given any [ € [T, applying Lemma we have that for any A > 0, with probability at least

l l
3A mds 112 m md 112 1 1
;Xk§Z;A§|{Vf(mkd)|| (AAderBHVf(:ckd)H +C’)+Xlog3
3\ 11
<AV MR+ 5 log <, (5
k=1

where the second inequality follows from Lemma[C.3] For any fixed ), we can rescale over ¢ and
have that with probability at least 1 — ¢, for all [ € [T,

! !
3A , 2 1 T
;Xk < Z;Ai [V f ()| M3 + Xlog 3

Let A = and we obtain the desired result. O

1
3AT M?2>
LemmaE.3. Given T > 1and § € (0,1), if Assumptions|l} 2| and[3| hold. Then, with probability at
least 1 — 0, for all | € [T, we have

l

> (A = Axc) (@ — @) <

k=1

where My, is defined in @9) and P(Fz) is defined in (62)).

3log %
2P(F2)

l
) P(F,
S A - g+ P2

k=1

(52)

Proof. LetYy, = (A — Ag—1) (€k, ™ — xk_1). Note that :c’k”d and x;,_; are random variables de-
pendent on z1, - - - ,Z,_1 and & is dependent on zq, - - - , zg. It is apparent that Y} is the martingale
difference sequence since

Ex [Yi] = (Ax — Ap—1) (Ex [€x] , 2" — 24—1) = 0.
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Also, by Assumption [3]and applying Cauchy-Schwarz inequality, we have

Y2
Ex |exp 5
Al = @al]® (ADp + B[V (ap
A — Ay -
<E, |exp (Ag Qk D 16k |l — @ 1|| < exp(1), (53)
Al = aal® (AL + BV ()

where the last inequality follows from Lemma Thus, given any [ € T], applying Lemma |C.4}
we have that for any A > 0, with probability at least 1 — 6,

l

3\ md WLd 2 l 1
> s kZlAka —mial’ (AL + BV @) +C) + flog
3 o . L g L
S PR B

where the second inequality follows from Lemma [C.3] and the definition of M, in (#9). For any
fixed A, we can rescale over ¢ and have that with probability at least 1 — ¢, for all [ € [T,

T
ZYk ZA;CHw —x_ 1H M:i+ logg.

T
Let A = 21°€% and we obtain the desired result. O
P(F2)

We provide the following lemma for Algorithm[2] which is similar to Lemma[D.T]in the deterministic
case.

Lemma E4. Let {w?d} ke[T] and {x}?} ke[T] be the two sequences generated by Algorithm

Then we have that for all k € [T,

” 1 A2 ( i )
— AL AL — A, — A1

lgill* -

i

Proof. Lemma[%zq can be seen as a corollary of Lemma|[D.I] As long as we replace the accurate
gradient V f (z**) in Lemma with the stochastic gradient g;, the proof is finished. O

E.2 CONVERGENCE ANALYSIS

In the next two lemmas, we assume that A" is bounded in the first ¢ iterations and derive the itera-
tion sequence based on the above analysis, in preparation for the induction argument in LemmaE.7}

Lemma E.5. Suppose that f( G — fr < P,V € i) Then under (FED for alll € H,{he

a 2 2
AzAngrEsz—ﬂc I <A1y 1+ 3 sz el —*/D’AzHVf Bl +§ﬂAz I&1”

+ (&, ﬂAsz( ) (A= A (2 —x1)) (55)

(4711016 prooad Y a 05 O110 Hat{oopapp O

With the assumpt1on that A”Ld < ]-"g,Vl € [t] and applying Corollaryl we have IV f(z )| <

Vg (F2),Vl € [t]. Therefore,
Hw?”—w?”dl\ = ||V f(") + &l < B (|VF ()| + 1&ll)

<p (\/g(]:Q) + My /log ;) <min{1/Ly,1/Ls},
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where the first inequality follows from the triangle inequality and the second inequality holds since
(@7). The last inequality holds since 8 < 1/G; 1 and 8 < 1/G; 2 with Gy 1, Gy 2 defined in (44). By
LemmalC.2} we have

@) <7 () + (91 — ) 4 Dt LT LT s
— (@) = B[V (@] D)|]” = B(V (@), &)
n Lo+ Ly (9(];2))5 +L2F§162 ’

Note that (31)) is derived from the convexity of f and the iteration step

A A
w:snd: ;17:1113?314-(1— ,Ztl)xt_l’

Vi@ + &l (56)

§A211f(m?31)+(1_141 1>f +( A 1)<Vf md 1—w>

Lo+ Ly (9(]:2))2 + L2]'—§1B2

. V5 @) + &l

(57

— BV @)~ B (VI (@), &) +

Also, by the iteration step, we have
iy — 2| = 20 (Vf (@) + & — o) + 03 |V (i) + &
= ||z =\ (VH@) + &) — 2" =l — 2|
Hence,
(12 * 12 )\l md 2
iy =@ = 2 - 2*°] + 5 [ V@) + &
(58)

(Vf(x )+ €y — x*) = 2%\1 {

Combining with the fact that

V£ + &7 = |V @) +2(&, V@) + |&]? < 2|V |+ 28],
(59)

we have

agy A1 a A1\ . Al 1 12 )12
ey <Aty o)+ (1- 220 ) o SR s — o~ a7
B 2 A\ p N (A=A mdy||2
ﬂ( (L0+L1< (F))* + L273) 8 o )HW(scl )|
3 N (A — A
+ (2o + o@D + Larg) 57+ AHETE e
A — A
+ <£z, BV fla) + S (@ - wll>>. (60)
Since the setting of \; in (E[), we have
A—A_ 2
24- N A B
and
A — A A — A B
= . _ < 2
Al )\l 4Al B(Al Al*l) =7
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where the inequality follows from Lemma[4.1] Combining with the constraint that 3 < 1/G; sFhus;
we have

f (or) <A

_ A 2
1 ag A1 * 2 )2
L (@) + (12 220) £+ 2 s — o1 — - o]

1 mdvn2 1 m A—Aia
- 55 ||Vf(ml d)” + 55 ||€lH2 + <€l, —BV f(x; d) + Tl (x* — 331—1)> .
Multiplying A; on both sides and re-arranging the inequality, we obtain the desired result. [

Lemma E.6. Under the condition of LemmalE.3| let @7), @8) and (52). Thenfor-any-6-c—(6:1/3)
-+ hotds thatwith-probabilit-ieast— 35

>

l
2 1
MBSl = | 8 A Vs @) < P(F) W0 <1<t (61)
where
20, 17
P(F) = ; + TATﬁM21og 5 (62)

and Cs is defined in (@6).

Proof. 1t is apparent that
ag , 2 .
AoAg” + llzo—= I < P(F2).

Suppose that for some k € [t — 1],

ALY+ ,”xl,m*”z+ BZA |V f@ph)||* < P(Fa), W0 <1< k. (63)
=1
In what follows, we will bound
k+1

A1+ % ||$lc+1—f’3 1> + BZA |V f (] md H

Note that f (w{”d) — f* < Fy, Vi € [t], according to Lemma (33) and M; < M hold here for
all [ € [k + 1]. Thus, summing up (33)) over [ € [k + 1], we have
k+1
A1 07, + = Hmkﬂ —a*|? < AgAY + f||w0 — x> - 7/32A 1V £ ()|

k+1 k+1 k+1
+ BZA I&l1* = B> Ai (&, V(D)) + > (Ai — Aisy) (€ 2" — 1) . (64)
i=1 i=1
Applying @ and letting [ = k + 1, we have
k+1 1 kt1 T
md 2 md 2 2
—B;A & VI@") < MQ/fZA IV £(@)|[* MZ + 3A78M? log 5
s,
<= A; ™" + 34 21 65
/3; |97 + 3475M log T (65)
where the second inequality follows from M; < M and A; < Ar forall ¢ € [k + 1]. Similarly,
applying (32), we obtain that

k+1 T k+1
* 31 * 2 2 P(*FQ)
;(Ai_Aifl) (&, " —x;_1) S2P(]—') ; A |l* —xiq||]" M5 + 5
k+1
3 T 2 P(F2)
4ﬁlog—ZA M 5
3 T P(]:Q)
< 2
4ﬁT Ar M*1 5 + —— 7 (66)

24



Under review as a conference paper at ICLR 2026

where the second inequality holds since
1
& — 2| < 3B P(F2), WO<i<h
derived from (63)), and the last inequality follows from M; < M and A; < A forall i € [k + 1].

Combining (64), (63) and (66), we have

Ak+1Ak+1 + ﬂ”warl - ||2
1 k+1 k+1
<AGA + —||azofa:*||2**5214 |V £ (|| + 6ZA &1
k+1
T 3 T  P(Fa)
md 2 - e . 2 _
+ /3ZA V£ (@) + 3Ar6M log = + 3BT - ApM?log = + — =

Applying ([@8) with the assumption that A"¢ < F», Vi € [t],
Te
e < Me10g Z°.

Combining the above inequalities, we obtain that

a 2 *
Ap1 A+ B||f'3k+1 —z*|?
9 k+1
§A0A89+B||mo—w*\|2 fﬁZA |V £ (") H
1. T T T
( log ; 2log6)T ArBM? + 3ArBM? log 5 P(QB)
2 as 2 17 Te P(F2)
ay ®1(|2 md 2 2
<AL + Gl — | —ﬂZA IV f @)+ TArBM? log — + —=.
Hence, we could deduce that
1 k+1
Ak+1Ak+1+ \|mk+17m*||2+ BZA |V () H < P(F), (67)

since

17

a * Te
P(F2) =5 (850 +2 w0 - 2*||*) + 5 TArSM? log =

™| o

Based on previous lemmas, we will provide the upper bound of A7 for all t € [T].

Lemma E.7. Under the condition of Theorem 2} let @7), @8) and B2). Thenfor-any—given
5013 ) wet hettwithsrobeabilimatteast 135

f(xp) = f < RVt e [T), (68)
where Fo is defined in (@3).

Proof. Itis apparent that f (z"?) — f* = f (x3?) — f* < F». Suppose that for some ¢ € [T7],
f@) = f < P Viet).

Then, by Lemma (1) holds. Next, we will bound f (7" +1) f*. By Lemma we have

(A ﬂ

x| <

md
Hthrl _At+1 A, Z A; — va +£’H

t

2
N 15 — Vs + &, (9)
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where the second inequality holds since (¢ — b)® < 2a%42b2 and A; < Ay < Ayy1, Vi € [t]. Also
since Ay = 13 (Ay — Ay_y) forall ¢ € [T, we have

1 A 2
||33t+1*3’3tg” <25 6 (A — A1) +1

'M~

T I e
17 i 2
§§52 Z (Ai = Aiy) |V £ () + &
=1
17 2 ! mdh |12 2
<78 (A= A ([ Vr @)+ l&P) -
=1

where the second inequality follows from Lemmaand the last inequality holds since ||a + b||*> <
2 |lal® + 2 |b]]>. Applying Lemmaand using the fact that /8A; = VBB, +1 > 1,Vi € [T,
we have

et — o) z“zf (IV s + e

17 s
<55 S (sl + ). (70
i=1

Since the assumption that f (z]"?) — f* < F5,VI € [t], by (1), we have

t
s (12
B A Vi@ < 4P(F).
i=1
Combining with (70), @7) and recalling the expression of P(F2) in (62)), we obtain that

Hwt+1*$tg|| <1783 P(F) + 7ﬂ%TATM210g%

289 T
—34\/B - Cy + —52TATM21og Te + T 85 A M2 10g 18 ;
595
=34\/B-Cy + 52TATM2 log 5
Combining with Lemmaand the setting that A = Br + 1/, we have

595 . T 595 T
et — 25|* < 84y/B - Co + Z2B3TM? log — + =2 33T M? log —.
Since 8 < min {1/g1,4, 1/ (QQT%> 1/ (ggT%> }, where G 4, G2, G3 are defined in (@3), @4),
ag||2 1
] —x e ——
ottt - < L
Hence, applying Lemma[C.2]and Cauchy-Schwarz inequality, we have
f (wm)
m a Lo+ Ly ||Vf( )Hp—i_LQ Aa
<f (@) + (VI(@y?), 2l — 27) + 2 H at — x|
Lo+ I ||Vf( )||p+L2 (Aa ) m 2
<flxy) + IIVf(w I [|epis — 2| + 5 i — 2]
a Lo+ Ly |V f(xf)|” + Ly (AF9)?
<f (@) + 19 f(agey) + Lo IV @S e (80 an
L+ L 2 (L1 + Lg)
Since the assumption that A{”d < Fo, VI € [t], by Lemma we have
P(F
AP < (A 2 <5 (7). (72)
t
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where the second inequality holds since A; > 1/4. Plugging (62) into (72)), we obtain that

1 T 1 T T
A% <20, + §T352M2 log Te + gTBMQ log 76 < 9C, + 17log Te =,
where the last inequality follow from
1 1
< — d < —.
b= mrs " = M2T
Note that # is independent on JF». By Corollary [l I we have ||V f(z{?)|| < /g(H). Combining

with (71)) and subtracting f* from both sides, we obtain that

9H) |, Lo+ 11 (9(H)® + LoH?

AT <H 4
G Ly + Lo 2(Ly + Lo)®

= Fo.
Now we finish the induction and obtain the desired result. O
With the above lemmas, we are ready to prove the final convergence result.

Proof of Theorem[Z] In what follows, we assume #7), (#8) and (52) always hold, and under these
conditions we prove the desired error bounds. Using Lemmas [E.1] [E.2] and [E3] &7), @8) and (52)
hold with probability at least 1 — 30. Thus, the desired error bounds also hold with probability at
least 1 — 34.

By Lemmal[E.7] (68) holds. Based on Lemma[E.6] we obtain that

7)(.7:2) 8Cs
Ar — T2[‘3

Te

17
+ TB/\/I2 85

ag
AY <

Since the constraints of 3 in @), we have

NT9<% Ly + L) (x/ (F2) + M 10g>
32C,
T2
L 56

(LO Ly (g (F2))? + L2 + 1156 (Ly + L2)4c§)

2 T 2 4 4 T
2 (595)F (L1 + Lo)® M? <log ;) + 2;62 (595)% (Ly + Lo)® M5 <log ;)

3

8(32./\/12 M (17 Te
— [ = log — + 8C 73
S (G +sar ). 73)
O
F PROOF OF THEOREM 3]
We first provide the following lemma as a key to the induction argument in Lemma[F.2]
Lemma F.1. Under the conditions of Theorem[3} for all t € [T, it holds that
1+ B
ag ok
E[AAY] + 5 o, — 7|
Cs 1, 1 :
3 md
<—=—-= AR |||V — AE AN C
: 2@ E (|75 ))°] + 1+Bﬂ§ E[Anpd+C],
where
Cs = 867 + (1+ B) [lmo — "> (74)
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Proof. By the descent lemma for Lipschitz smooth functions and the iteration step in Algorithm 2]

F@f) <1 (@) + (V). — 2y + 2 g - g

= (a) = [V @) = 8 (VAP €) + 55 i) + &
Note that (3T)), (58) and (39) still holds here as they are 1ndependent of the smoothness condition
Thus,

f ()
Ay

<7 f(m731)+<1—Al 1>f +( Ar 1><Vf ) @y —a*)

= BV I - (VI &) + 56 VS + &l
Ay

_ A A — A 2 2
< ag 11— * A A1 ot _ o
—Alf(l1)+< Al>f+ 24, -\ {lel x| [l 33||}

LB N(A — A L/@ N (A — Apq)
_ﬁ(l_g_m) |V f (2" H +< 9 QA) &)

+ <£l7 (—B gy A A (Al;l All)) Vf(:v%”d)> + <£z, A A g w11)> . (75)

A
By Assumption 4} we obtain that for all [ € [T,

E[le ] =B B le)?]] <E[aapd+ BV +c].

(76)
With multiplying A; and taking expectation on both sides of (73)), we have
BAAY) <E [ A7) + 225 E (o - o) - o - 2]
— BA, (1 - %’B - W) E[[Vf@i)|’]
w0 (5 4+ A8 g 1]
E (A1) + 220 [l — o~ o 27|
_sa, (1 B %ﬁ A (AQlﬂ—Azl‘lz—l)> E {va(w;nd)HQ}
+ BA; (Lf - W} E[Aa7+ BV @) +C]
= (A 887,] + A A [l — o - o]
— B4, (1 ~ (14 B) (Lf + w» E|[[vs@r|]
o (B A e o
where the second inequality follows from (76). Since A\, = ﬁ (A — Ax—1)
=L 8-y — A=), we have

Ay—Ay 1+B

2N B
and
N (A —Aiy) _ (A — Ay)? < 1
2B A, 44,(1+B) ~— 4(1+ B)’
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where the inequality follows from Lemma.I] Combining with (77), we have

1+ B
E[AA] <E [4187%] + —22E (o - 2 = o - 27|
LB 1 NP
LB 1 md
+ A, ( 5 +4(1+B)>E[AAl +C]
1+ B
E[410{%] + =5 [leior - | - o - o]
N md
BAlE [V s @] + 1+B)BA1E [Aapd 4],
where the last inequality follows from 8 < m. Re-arranging the above inequality and sum-

ming up over [ € [¢], we obtain that

1+ B
E[407] + —-=E o - 2|

a 1 +B * 1 . m
<AL+ 5 o =" - 53 A 175 )|°]
=1
1 md
+ mﬁlzlAﬂE AN+ C)
md
g—*BZA”E[HW )+ 1+Bﬂlz;‘41IE AL +CT
where the last line holds since Ag = 1/. O

Similar to Lemma|E.7} we will bound the function value gap in expectation by induction.
Lemma F.2. Under the condition of Theorem 3} we have

E[f (2") - f*] < Fa,Vt € [T,
where
Fy=(2+5v2L(1+B)) Cs+1+10v2L, (78)
with C3 defined in (T4).
Proof. We will prove this lemma by induction. Obviously, we have E [ f (") — f*] = f (x¢?) —
f* < Fs. Suppose that for some ¢ € [T,
E[f (z"") = f*] < Fs, VI € [1].

Next, we will bound E [ f (x}%%) — f*]. Since (69) is independent of the smoothness condition, it
still holds here.

t
/\
i — || b 0 — Vs + &

IV £ (@) + &

(A —Aio 1) ﬁ2+ﬁ2
< 1
72; Ai —Aia

t
<5 Y (A — Aiy) |V F ) + &)

<5823 (i — Avy) ([ V7@ +1€12)
i=1
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where the second inequality holds since the constraint of \; in (@4)), the third inequality follows from
Lemmaand the last inequality holds since ||a + b||* < 2 (||a||2 + ||b||2) Applying Lemma

again and using the fact that \/3A; = /B (B: + 1/8) > 1,Vt € [T], we have
t

ey <5ﬂ2§jf( V@] + &) <585 > A ([0S @) +1&l7) -
i=1

(79)

Taking expectation on both sides of the above inequality and combining with (76), we obtain that

E [Jord - 27)°] <56% ZA (E[Ivs @] +E[asr + B Vi@’ +c])

=58% (14 B) Y AE[[|Vo@r)|*] +55% 3 A 487+ C]

=1 =1
¢
<108% (1+ B)Cs + 1083 Y A;E[AAT 4 C]
i=1

<1087 (1+ B)C3 + 1082 - T - Ay (AF5 + C)

<1082 (1 + B)Cs + 1083 T3 (AF3 + C) + 1083 T (AF3 + O),
where the second inequality follows from Lemma [FI] the third inequality holds since A; <
Ar,Vi € [t] and the assumption that E [A"?] < F3,Vi € [t], and the last inequality follows
from Lemmaf.1|with A, = B, + 1/8,Vt € [T). Since the constraints of 3 in (T0), we have
. 5v2(1L+ B 10v/2
tg||2} < (1+ >Cs+ V2 .

VL L(1+B)

Applying the descent lemma again, we obtain that

[Hmt+1

f(@hs) <f (i) + (V@) — =) + = H“’t+1 ag||2
<f(x?) + HVf(w Hwt+1 - wtgH + = Hthrl ag||2
<f (%) + HVf( NP+ = me 29|+ H T

<f(x? )Jr(f (5’3?9) f)+L- ||33t+1 *mtgH

where we apply Cauchy-Schwarz inequality in the second inequality and apply Young’s inequality
in the third line. The last inequality follows from Lemma|[C.I} Subtracting f* from both sides and
taking expectation, we have

E 7] <2E (5% + L-E [||l=53 - «7|"].

With the assumption that f (a:f”d) — [* < F35,Vl € [t] and applying Lemma we obtain that

E[A{] < B> AE[AA +C]
=1

1 1
Tﬁ A(1+B)

1
<Cs3 + 5T(A]:3+C)SC3+§»

1
2(1+B)

where the second inequality holds since A; > 1/8 and A; < A;,V € [t], and the last line follows
from the definition of 3. Therefore, we have

E[Ad] < (24520 (1+B))Cs+ 1+ 10V2L = F,

Now we finish the induction and obtain the desired result. ]

30



Under review as a conference paper at ICLR 2026

Based on Lemma[F.T]and Lemma[F.2] we could obtain the final convergence rate.

Proof of Theorem[3} By Lemma | we have E [ f (") — f*] < F3,Vt € [T]. Then, combining
Lemma F.1} Assumption[d]and the Fact that Ay < Ap,Vt € [T, we obtain that

a * 1 B
E[f (z7) = 17] SATﬂcs-FQAT(1+B)T~AT(A}'3+C)

BLO+B)Cs 460 4CVQ | V2

< + ; (80)
T? T VT 2JT
where the second inequality holds since Lemmad.T]and the setting of 3 in (T0). O

G NON-CONVEX OPTIMIZATION

In this section, we present Stochastic Accelerated Gradient Descent (stochastic AGD) (Algorithm
and its convergence analysis. Algorithm |3| could reduce to some famous algorithms, such as
SGD, and was well studied in (Ghadimi & Lanl, [2016; Kavis et al.l 2022; |Yu et al., [2025). SNAG
(Algorithm [2)) can be viewed a special case of Algorithm (3| To apply our theoretical analysis from
the convex case to the non-convex case, we adopt a different step size setting.

Algorithm 3 Stochastic Accelerated Gradient Descent (stochastic AGD)

Require: Horizon T, zj? = x¢ € RY, step sizes {Bihieir » {Mhierr)-
I: fort=1,---,T do

2: .’B;nd (1 — O[f) CCt 1 + i1,
3 Setg, = Vf, (z)%2,);

4: Ty = Ty1 — MGt

3 w?.‘] md 57591&

We have the following results for the above algorithm.

Theoremd4. LetT > 0 and f bean (Lo, L1, Lo)-smooth function. UnderAssumptlons 3| consider

Algorltthlth o = f+1’ At =mnand B = noy + A, ¥Vt € [T). Let

1 1 1 1 1

7 = min

(Ll + LQ)y 83)1 (B log Te + 1 4\/Ay1Tlog ]:4 4\/Cy1Tlog GP log Te

T T T
Y= Alogée}“4+<\/Blog;+1>«/g(f4)+\/010g5€, 81)

V1= Lo+ L1 (g(K)? + LoKY,

where

P.=/AF,+ Bg(Fy) +C, (82)
1 Lo+ Ly (9(]:4))g + Ly F}
K=Fi+—\/g(Fi)+ ,
YT L+ Ly 9(F) 2(Ly + Ly)?
Lo+ L ( (1+ Amd)) + Lo (1 + Amd)

i

1
Fa=A+1+ ———/g(1+ A7) +
4 1 I+ Ly g( ) 2(L1+L2)
and g is the function given by [24). Then with probability at least 1 — 20,

1 — a2 2 (14 AP 16 (1 + Ap Te
T;HVf(scl ol S%(LH—MDH—%M (Blog§+1)

+ 8(1+21) }Amd) (\/ATTML f) \/)thj(;e

12 (14 AP) P10 Te

T g5 (83)
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The upper rate from (83) is of order O(1/T + /(A + C)/T), which matches that in (Ghadimi &
Lan, |2016) for stochastic AGD with bounded variances and also the lower rate in (Arjevani et al.,
2023) of finding stationary points in non-convex smooth stochastic optimizations with bounded
variances when C' > 0.

Under the (Lo, L1)-smoothness assumption, [Yu et al.|(2025) analyzed stochastic AGD for non-
convex objective functions and they proved that the average of the squared norm converges at the
rate of O (1 /T+\(A+C)/ T) with high probability. Here, we follow the analytical approach

from (Yu et al.| 2025) and make slight modifications to the proof methods to accommodate the
more general smooth assumptions. To prove the theorem, we first provide several useful lemmas
following from (Ghadimi & Lan, 2016} |[Kavis et al.| 2022} Yu et al., [2025)).

Proposition G.1 (Proposition 5.2 in (Kavis et al..[2022)). Denote oy = t% and I’y = (1 — o) Ih4
with 1 = 1, ¥t € [T). We have that for all t € [T,

ay,
T == _
> 7 =L (84)
k=1
and
) [0
S (l—ap) | = <2 (85)
k=t I

Lemma G.1. Given T > 1 and 6 € (0,1), if Assumptions [2| and |3| hold, then with probability at
least 1 — 9,

2 T
—(Vf £k>§4z ||Vf ol +3P2log 5, WLET], (86)

MN

=
Il
-

where

P =1/AApd + Bg (A7) + C, (87)
and P, is given by (82).
Proof. Let Z, = —(Vf(xz?),&). Note that V f(x"?) is a random variable dependent on

z1, -+ ,2Z,—1 and & is dependent on zq, - - - , z;. Therefore, it is apparent that 7, is a martingale
difference sequence since

[ <vf €t> |Z1a ' 7Zk‘,—1:| = - <vf(x?];nd)7]Ek[€k]> =0
Also by Assumption [3]and applying Cauchy-Schwarz inequality, we obtain that

i . :
Ek exp
[V (Asp + BV (@) + )
[ mdy |2 2 7
<Ey |exp 2HVf<wk )| 1€l 2 -,
[V @) (anpe + BV s(@p| +C)

Therefore, given any [ € [T, applying Lemma|C.4] we have that for any A > 0, with probability at
least 1 — 4,

1 1
PP (A + BV @)+ C) + 5 log 5

BP0+ Liog ]
)H Pk—l—)\logé
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where Py, is defined in (87). For any fixed A, we can re-scale over ¢ and have that with probability
atleast 1 — ¢, forall { € [T,

l
T
D~ (Vay ZHVf P2+ 5 1og 5 (88)
k=1
Let A = and we obtain the desired result. O

37>2 ’

Proposition G.2. Let {x},c[r) and {w?d}tE[T] be generated by Algorithm We have

ar (Mg —
T; d_a:t 1—(1—Ozt I _ IZFZ%gk’ (89)
and
t—1 2
ar (A —
g — a4 ||” < 1—af)FtZF—:(’“a7f’“)|\gk||2. (90)
k=1 k

Proof. From Algorithm 3] we have

zy —zp =2 — Brge — Tp—1 + Mg = (1 — ) (2%, — @e_1) + (M — Br) gr

Since x;? = @, we obtain that

k k k
o 1
p —we=> | [ 01-ay) (Ai_ﬁi)gi:FkZF()\i_Bi)gi-
i=1 \j=i+1 i=1 "t

Taking the norm function on both sides and applying the triangle inequality, we have

k k
1 a; |\ — Bil
ag B asll = DL L .
|25 — x| < ; 7 M= Bil-llgill = I ; o el ChY
By the iteration step in Algorithm 3] we have
'~z = (1—oy) (0%, —@h1) .

Combining with (@T)), we obtain that

Ai —
e — ] = (0= o) [ ] < (01— ) rklz“l' A g,
K3
Similarly, by the convexity of norm square and (34),
k—
|27 — 2 1|| (1 —ar)® T 12% H ill* =1 —ax) L ;af o2 ” gill”.

Lemma G.2. Let {a;}c}n) be a sequence of non-negative real numbers. We have

n n
Z (47 S Z \/a
i=1 i=1

In the following analysis, denote A\; = f (x;) — f* for simplicity.

Proposition G.3. Under the conditions and notations of Theorem ) A4 < F, ¥t € [T), hold
with probability at least 1 — §.
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Proof. We assume that and (86) always happen and then deduce A7 < F, for all t € [T7.
Since and happen with probability at least 1 — § separately, A"? < F,, V¢ € [T, holds
with probability at least 1 — 24. It is obvious that f(x*¢) — f* < F4. Therefore, by Corollarywe
have P; < P.. Suppose that for some ¢ € [T,

fap) = f < Fa, VIEH)
By the triangle inequality of the norm function, we have that for all [ € [t],
lgell < llge = VS (@] + ||V £ ()|

T
g\/(AA;nd + B||Vf(@p)|* +C) log = + ||V ()|

T T T
g\/Alog %A{”d + (\/Blog(se + 1) HVf(wlmd)H +14/C'log Te, (92)

where the second inequality follows from Lemma and the last inequality follows from Lemma
Combining with Corollaryand the assumption that A}”d < Fu, Vi € [t], we have

lgll <Y, Vi€t (93)
By the iteration step of Algorithm 3] we have
@ — i ll = N llgll = nllgill <nY <min{1/L1,1/La}, Vi€ [t],

where the last inequality follows from the restriction of 7. Thus, we could apply Lemma [C.2| and
obtain that

f(@) — fzi-1)
p q
<V (@11), 2t — T11) + Lo+ Iy HVf(wz;)ll + LAY

L Ly ||V )P 4+ Ly ANY
(V) ) + 2 + L1 || f(ﬂﬂl2 DI+ Lo =12
= — (V@) + V(@) = V@), V@) + &)
Lo+ Ly |V f(@i—1)|I” + L2 A

+ 2
= — 0|V = n (T (), &) —n(V(@i1) - V), 1)
Lo+ Ly [V f(z1-1)|]” + Lo A

+ 2
< || VF@PD)| = n (VF@PD, &) + 0 |V F@i1) - V)| o
Lo+ Ly |V f(zi-1)|]” + Lo A

+ 2

[

2
I

1 2
—n* gl

-1 2
—n* gl

L 2
=0 [lgull”

where the first equation follows from the update rule in Algorithm [3|and the last line follows from
Cauchy-Schwarz inequality. Applying Lemmawith ma;ﬁ’ = A\ =1, we have

-1 -1
m (6% )\ —ﬂ e
& — @ || =(1—a) Dia || FZ%% <@Q-a)l1 Y 7:77 gl
k=1 k=1
-1 a
<Y1y F: < min {1/Ly,1/Ls}, (94)
k=1""

where the first inequality follows from the triangle inequality and the second inequality holds since
(©2). The last inequality follows from (84). Note that ||g;|| < Y for all I € [t] and ||} — @;_||
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depends on gy, -+, g;—1. Thus, (94) holds for all I € [t + 1]. Applying Definition[] we have that

flxy) = f(i-1)
< —n||Vf(z H2 — (V). &) +n (Lo + L1 |V f(@i—)||” + L2 AT ) ey — 27| g

Lo+ Ly ||Vf(wl—1)||p+L2A?71 91 2
+ 5 n” [lgul
Lo+ L1 |V f(z_1)||P + Lo AL
<= |V -0 (V@) &) + 5 B |y — 2|
+ (Lo + L |V f(zim)|)? + LaAL_) n? [lgull?
m 2 m
< ||V = n{V (@), &)
2 -1
+ % (Lo DIV F @)l + LA ) (= o) T 5 el
k=1
n?* (Lo + L1 |V f(zi—1)[|” + LaAL ) gl (95)

where the second inequality follows from the fact that ab < a2J2rb2 and the last inequality follows
from (90). Summing up the above inequality over [ € [t], we obtain that

l
(6%
(Lo + Ly [V ()| + LaAT_)) (L =) Y 1?: ngIQ]
k=1

+17 > (Lo+ Ly [V f(@io0)|” + LaAL L) il
=1

o+
-+

=1 =1
t t
(67
ST (B + LIV @)l + L) (- ) T & P
=1 Lk=l
Y (Lot L ISP+ L) Dl
=1
t 9 t
=) |VE@D|T =0 (V) &) (96)
=1 =1

By (©4), we have that ||}* — @;_1|| < min{1/L;,1/Ly} for all I € [t + 1]. Thus, applying
Lemma[C.2]again, we obtain that

f(ﬂ’/‘l—1

~—

<f(e]"h) + (V f(z"), z1-1 — 2" )
Lo+ Ly |V ()" + Ly (A74)°
+ 2
<f(a") + ||V f(a]" || @11 — 2
Lo+ Ly ||Vf( Ty || + Lo (A;nd)
+ 2

Jeis

Jeis =,

where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f* from both
sides and applying the assumption that A" < Fy, VI € [t], we have

. 1 Lo+ L1 (9(Fu) ¥ + LyF?
) — < Fit ——Sg(F) +
f@i1) = fF < Fu L.+ Ly 9(F4) 2(L1+L2)2

=K, Vielt.
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Thus, by Corollary we have |V f(z;)|| < 1/g(K) foralll € [t — 1]. Combining with (96)), we
obtain that

t
Z 1—ak Fk

k=l

t
flao — fao) <3 Y 7 lail® +n2y12||gz||

=1
l

=) _||[VIEr) —nZwak ), &)

t=1

t t
<2V > gl - nZ IV f@r i =0 (Vi@rd) &), oD
=1 =1 =1

where the second inequality follows from (83). Using the fact that ||a + bH2 <2 ||a||2 +2 ||bH2 and
applying (@7), we have that for all [ € [¢],

lonl* <2ll&il* +2 [V ()|
2(Anp + B[V S )| + ) log % +2||V (]|

T T T
=2 (Alog gA;”d + (Blog 7‘3 + 1) V£ ()| + Clog ;) :

Combining with (97) and applying Lemma [G.1] to the summation of the martingale difference se-
quence, we obtain that

Te : mdn |12 Te m
o) = Seo) <uPs (Blow T +1) ST+ a3 Alog 53 6

T : 1
+ 4t Clog = =Y [ VA=) + 7n Z HVf P + 80P 1o

=1

<_ﬂzt:||w ollw +1+1+1 (98)
=24 172

Since 7" = (1 — ay) x(? + a1xo and ¢3! = xg, we have f(xo) = f(x*?). Thus,
Ay < AP (99)
Since (©4) holds for all [ € [t + 1], we have that
|24 — @¢|| < min{1/L1,1/Ly} .

Therefore, applying Lemma [C.2] again, we obtain that

Lo+ Ly |V P4 Ly
f(wﬁrdﬂ f(il?t)+<vf($t wlidl_wt>+ 0 1|| f(;t)” 2 tH t+1_33tH2
Lo+ Ly |V Py Lo
<fan) + 19 @) - s ] + LIV IS L0 s g2

where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f* from both
sides and combining with (99), we have

AT
1 Lo+ Ly (g(1 4+ A™)) % 4 L, (1 + Amd)
<Amd 4= g1+ Apd) 4 22 1 (o ) 22( ) < Fu.
Li+ Loy 2(Ly + L)
(100)
Now we finish the induction and obtain the desired result.
O

36



Under review as a conference paper at ICLR 2026

Proof of Theorem{d] From Proposition we have that with probability at least 1 —24, A" < F,
forall t € [T7]. Thus, holds whent =T, i.e.,

1 Z [V F@@pd)* <1+ A, (101)

Do |

Dividing 7'/2 on both sides and combining with the constraints of 7, we get the desired results. [

H OMITTED PROOF

Proof of Lemma.1] To start with, we will prove the first line by induction. It is obvious that the
inequality holds for By = 0. Suppose that for some 0 < ¢t < T', we have

1
ZkQ < By, < k%, Vk € [t].
Then, we have

By <P+ = (1+\/4t2 ><t2 (12t 4+1) < (t+1)?%

and
1
By 2 J1° + (1 Ve ) S(t+1)?

Therefore, we finish the proof for 7t2 < B, < t2,Vt € [T). For the second conclusion in

Lemma@
(At - At71>2 = (Bt Bt 1 = (]. + 2\/4Bt 1 + + 4Bt 1 + 1)
=Bi_1+ - (1+\/4Bt 1+ )

:Bt.
Since B; > 1t2,Vt € [T, we have B, > 0,V¢ € [T]. Therefore,

1 1
At*At_l :Btht_l = §+§\/4Bt_1+1 Z 1

Now we finish the proof for all the inequalities. O
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