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ABSTRACT

We study convergence rates of Nesterov’s Accelerated Gradient Descent (NAG)
method for convex optimization in both deterministic and stochastic settings.
We focus on a more general smoothness condition raised from several machine
learning problems empirically and theoretically. We show the accelerated con-
vergence rate of order O

(
1/T 2

)
in terms of the function value gap, given ac-

cess to exact gradients of objective functions, matching the optimal rate for stan-
dard smooth convex optimization in (Nesterov, 1983). Under the relaxed affine-
variance noise assumption for stochastic optimization, we establish the high-
probability convergence rate of order Õ

(√
log (1/δ) /T

)
and this rate could

improve to Õ
(
log (1/δ) /T 2

)
when the noise parameters are sufficiently small.

Here, T denotes the total number of iterations and δ is the probability margin. Up
to logarithm factors, our probabilistic convergence rate reaches the same order of
the expected rate obtained in (Ghadimi & Lan, 2016) where the assumptions of
bounded variance noise and Lipschitz smoothness are required.

1 INTRODUCTION

In this paper, we consider the following classical unconstrained optimization problem,

min
x∈Rd

f(x), (1)

where the objective function f(x) is convex and can be potentially stochastic, i.e.,

f(x) = Ez∼D[fz (x; z)].

Here D is a probability distribution from which the random vector z is drawn.

Gradient-based algorithms (Robbins & Monro, 1951; Nesterov, 1983; 2013; Duchi et al., 2011)
play an important role in solving (1). As usual, one typically focuses on the function value gap for
convex objectives and the squared gradient norm for general non-convex ones.1 In the deterministic
setting with access to the exact gradient ∇f(x), Gradient Descent (GD) achieves a convergence
rate of O(1/T ) for smooth convex functions (Nesterov, 2013), whereas for smooth non-convex
functions, the rate of the same order is obtained for the squared gradient norm. Here, T is the
total number of iterations. The convergence rate for smooth convex optimization can be improved
to O(1/T 2) using Nesterov’s Accelerated Gradient Descent (NAG), as established in the seminal
work (Nesterov, 1983). Furthermore, this complexity bound is known to be optimal among gradient
based algorithms (Nemirovskij & Yudin, 1983), without further assumptions.

For stochastic optimization where only the gradient estimator is accessible, Stochastic Gradient
Descent (SGD) (Robbins & Monro, 1951) is commonly used. Lan (2012) provided an expected
upper bound of order O

(
1/T + σ/

√
T
)

for convex objective functions and Ghadimi & Lan (2013)

1 An extensive literature on minimizing structured non-convex functions focuses on the function value
gap. Examples include work on Polyak-Łojasiewicz functions (Karimi et al., 2016), (strongly) quasar-convex
functions (Hinder et al., 2020) and (strongly) quasiconvex functions (Grad et al., 2025). This is beyond the
discussion of this paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

obtained the bound of the same order for the non-convex case, both of them assuming bounded
variance noise with noise parameter σ and smooth objective functions. This bound is optimal in
the non-convex setting since it matches the lower bound in (Arjevani et al., 2023). To study the
acceleration behavior in the stochastic convex optimization, Lan (2012); Ghadimi & Lan (2016)
explored (and generalized) stochastic NAG (SNAG) and obtained the expected convergence rate of
order O

(
1/T 2 + σ/

√
T
)

for smooth objective functions, which in general cannot be improved in
the same setting (Nemirovskij & Yudin, 1983; Lan, 2012).

Although much theoretical progress has been made on gradient-based algorithms, most of these
analysis required Lipschitz smoothness condition (Ghadimi & Lan, 2013; 2016; Levy et al., 2018;
Ward et al., 2020; Attia & Koren, 2023), i.e., ∃L > 0, such that

∥∇f (x)−∇f (y)∥ ≤ L ∥x− y∥ , ∀x,y ∈ Rd,

or equivalently
∥∥∇2f (x)

∥∥ ≤ L, ∀x ∈ Rd for twice-differentiable functions. Recently, several
researchers have found evidence that this condition is not satisfied by many important machine
learning models (Chen et al., 2023), such as neural network models (Zhang et al., 2020b) and dis-
tributionally robust optimization (Jin et al., 2021). Based on empirical observations, Zhang et al.
(2020b) proposed (L0, L1)-smoothness condition, allowing

∥∥∇2f (x)
∥∥ to grow linearly with re-

spect to ∥∇f (x)∥, and later Zhang et al. (2020a) further relaxed this condition, not requiring the
second differentiability of the objective function, i.e., there exist L0, L1 ≥ 0, for any x,y ∈ Rd,
such that ∥x− y∥ ≤ 1/L1,

∥∇f (x)−∇f (y)∥ ≤ (L0 + L1 ∥∇f (x)∥) ∥x− y∥ . (2)

Based on this generalized smoothness condition, Yu et al. (2025) studied Randomized Stochastic
Accelerated Gradient Descent (RSAG) proposed in (Ghadimi & Lan, 2016) and provided high-
probability convergence rate of order Õ

(
1/T + σ/

√
T
)

for both convex and non-convex optimiza-
tion (under sub-Gaussian relaxed affine-variance noise), which implies a gap between optimal rate
obtained in the smooth convex optimization. Under a similar generalized smoothness condition, Li
et al. (2024) showed accelerated convergence rate of order O

(
1/T 2

)
for deterministic NAG in con-

vex optimization, and they also provided expected convergence rate of order O
(
1/T + σ/

√
T
)

for
SGD in the non-convex stochastic optimization. To the best of our knowledge, it remains an open
question whether SNAG can achieve an accelerated convergence rate of order Õ

(
1/T 2 + σ/

√
T
)

under the generalized smoothness condition for convex optimization. We believe that a proof for the
stochastic setting presents certain challenges; in particular, the analysis for deterministic NAG by
(Li et al., 2024) does not appear to be trivially extendable.

In this paper, we aim to close this gap, developing the accelerated convergence rate for SNAG under
more generalized smoothness and relaxed affine-variance noises for stochastic convex optimization.
Specifically, inspired by the theoretical examples in (Taheri & Thrampoulidis, 2023) and (Chen
et al., 2023), we focus on the following more general and practical smoothness condition.

Definition 1 ((L0, L1, L2)-smoothness). Let Li ≥ 0, ∀1 ≤ i ≤ 3. f(·) is (L0, L1, L2)-smooth if
and only if for any x,y ∈ Rd such that ∥x− y∥ ≤ min {1/L1, 1/L2}2,

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1 ∥∇f(x)∥p + L2 (f(x)− f∗)
q
) ∥x− y∥ , (3)

where p ∈ [0, 2) and q ≥ 0.

Obviously, Definition 1 covers a broader range of relaxed smoothness. Particularly, it is situated
between two related notions: (L0, L1, 0)-smoothness, which is empirically verified (Zhang et al.,
2020b) for neural networks training and is theoretically proved for phase retrieval from (Chen et al.,
2023) and the appendix, and (L0, 0, L2)-smoothness, which is theoretically proven for specific shal-
low neural networks from (Taheri & Thrampoulidis, 2023) and the appendix.

Our analysis relies on a relaxed affine-variance noise condition, which will be formally defined in (5)
(Hong & Lin, 2024; Yu et al., 2025). This condition was initially proposed by (Khaled & Richtárik,

2For the sake of rigor, we define 1/0 = +∞ throughout the paper.
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2023) in the expected form given in (6), and many practical stochastic gradient settings, such as
sub-sampling and compression schemes satisfy this noise model, but not bounded variance or the
strong growth condition that the stochastic gradient g(x) of f at x satisfies, for some non-negative
constants B,

E
[
∥g(x)−∇f(x)∥2

]
≤ B ∥∇f(x)∥2 , ∀x ∈ Rd. (4)

Closely related to our works are (Vaswani et al., 2019; Gupta et al., 2024). Under the strong growth
condition, Vaswani et al. (2019) analyzed the Accelerated Coordinate Descent method (ACDM)
(Nesterov, 2012), while Gupta et al. (2024) studied SNAG when B ≤ 1. Both works achieved the
expected accelerated convergence rates in the (strongly) convex setting, but only under the standard
smoothness condition.

We summarize our main contributions as follows.

(a) Motivated by several machine learning problems, we propose a more general smoothness con-
dition defined in Definition 1.

(b) Under this new smoothness condition, we analyze NAG in the deterministic and convex setting,
and we show the accelerated convergence rate of order O

(
1/T 2

)
, matching the optimal rate in

(Nesterov, 1983).
(c) For stochastic optimizations under this general smoothness, we focus on the sub-Gaussian ver-

sion of relaxed affine-variance noise (Assumption 3), and we prove that SNAG converges at
the rate of Õ

(
1/T 2 +

√
(A+B + C) /T

)
in high probability. This rate matches the optimal

convergence rate for smooth convex optimization under bounded variance noise (Lan, 2012;
Ghadimi & Lan, 2016). It could improve to Õ

(
1/T 2

)
if the noise parameters A,B and C are

small enough.
(d) As a byproduct, we apply our analysis to standard smooth optimization under the expected

relaxed affine-variance noises (Assumption 4), and we demonstrate that SNAG reaches the con-
vergence rate of order O

(
(1 +B) /T 2 +

√
(A+ C) /T

)
in expectation.

The rest of this paper are organized as follows. We first briefly discuss some extra works related
to NAG, generalized smoothness condition and the relaxed noise assumption. We then introduce
some necessary assumptions and notations in Section 3. In Section 4, we provide the convergence
results under (L0, L1, L2)-smoothness, either in the deterministic setting or in the stochastic setting.
In Section 5, we present the expected convergence rate of SNAG under the classic smoothness. In
Section 6, we conduct numerical experiments and show the better performance of SNAG compared
to SGD for the two-layer neural network and the phase retrieval model.In Section ??, we provide a
proof sketch for high-probability convergence under the generalized smoothness. We also provide
the convergence result for non-convex stochastic optimization under the generalized smoothness and
relaxed noise assumptions in Section G. All the omitted proofs and lemmas are in the appendix.

2 RELATED WORK

We only briefly mention the most related works due to space and knowledge constraints.

Accelerated Gradient Descent NAG (Nesterov, 1983) was originally designed for smooth and
convex optimizations in the deterministic setting, and it achieved the accelerated convergence rate
of order O

(
1/T 2

)
, compared to O (1/T ) of GD. Numerous literature focused on the theoretical and

practical convergence behavior of NAG and its variants (Nesterov, 2005; Beck & Teboulle, 2009).
For example, Su et al. (2016) introduced a second-order ODE and accompanying tools for charac-
terizing NAG. Lan (2012) generalized NAG for non-smooth and stochastic convex problems under
certain conditions and provided optimal convergence rates under proper step sizes. Ghadimi & Lan
(2016) proposed RSAG, and showed expected convergence rate of O

(
1/T + C/

√
T
)

in the non-

convex case while O
(
1/T 2 + C/

√
T
)

in the convex case, both under bounded variance noises and

smoothness. Li et al. (2024) obtained convergence rate of order O
(
1/T 2

)
for NAG under gener-

alized smoothness and convexity, matching those for standard smooth convex optimizations. Their

3
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analysis is limited to the non-stochastic case. Under mild noises in (4) and standard smoothness,
Vaswani et al. (2019) proved that ACDM (Nesterov, 2012), which is a variant of SNAG, could reach
expected accelerated convergence rates in both convex and strongly convex cases. Under the same
setting, Gupta et al. (2024) proposed a new accelerated gradient method named AGNES and they
proved that the algorithm could achieve acceleration, requiring fewer hyperparameters than ACDM.
They also demonstrated that SNAG could achieve acceleration rate when B < 1. Furthermore,
Hermant et al. (2025) showed the expected convergence rate of O

(
(B + 1) /T 2

)
and almost-sure

rate of o
(
(B + 1) /T 2

)
for ACDM in general convex optimization problems, and they derived fast

convergence rates for ACDM in strongly convex optimization problems.

Relaxed affine-variance noise and its variants Affine-variance noise (i.e., A = 0 in (6)) has
attracted increasing attention as it can characterize gradient noises in many practical problems, such
as machine learning with feature noise (Fuller, 2009; Khani & Liang, 2020), robust linear regression
(Xu et al., 2008) and multilayer networks (Faw et al., 2022). Bottou et al. (2018) analyzed vanilla
SGD and pointed out that there is no essential difference in the analysis between the bounded vari-
ance noise and the affine-variance noise under standard smoothness. For Adagrad-Norm, Faw et al.
(2022) provided expected convergence rates of order Õ

(
1/
√
T
)

in the non-convex setting and this

rate could reach Õ (1/T ) when B,C are of order O
(
1/
√
T
)

. Under the same setting, Wang et al.
(2023) further proposed a novel auxiliary function for analysis and obtained a tighter bound espe-
cially when C = 0. Attia & Koren (2023) derived high probability convergence for Adagrad-Norm
in both convex and non-convex cases, under almost-sure version of affine-variance noises. Khaled &
Richtárik (2023) proposed the relaxed affine-variance noise (see (6)), and they derived an expected
convergence rate of order O

(
1/
√
T
)

for SGD in the non-convex and smooth setting. Hong & Lin
(2024) considered sub-Gaussian version of the relaxed affine-variance noise, and they derived prob-
abilistic convergence rates under (L0, L1)-smoothness. Yu et al. (2025) analyzed RSAG (covering
SGD as a special case) in both convex and non-convex settings under (L0, L1)-smoothness.

Generalized smoothness Motivated by practical observations, Zhang et al. (2020b) proposed
(L0, L1)-smoothness for twice differentiable functions. They showed O (1/T ) convergence rate for
GD and O

(
1/
√
T
)

convergence rate for SGD in the non-convex setting, involving extra clipping
mechanisms. Zhang et al. (2020a) improved the convergence analysis on problem-dependent pa-
rameters for clipped SGD under essentially the same smoothness. In the analysis of Adagrad-Norm
under affine-variance noises, Faw et al. (2023) derived convergence bounds of order Õ

(
1/
√
T
)

in the non-convex case when B < 1. Wang et al. (2023) gave a counter-example showing the
necessity of prior knowledge on problem parameters for learning rates in AdaGrad under (L0, L1)-
smoothness. Via a notion of continuity, Guille-Escuret et al. (2021) demonstrated that the strong
convexity and smoothness have a weakness resulting in a lack of robustness for tuning first-order
algorithms, and they presented promising alternatives.

Refer to Table 1 and Table 2 for comparisons of the most relevant works.

3 PRELIMINARIES

We consider Problem (1) over the Euclidean space Rd with the l2 norm, denoted as ∥·∥. We first
introduce the following assumption.

Assumption 1 (Below bounded). There exists a minimizer x∗ ∈ Rd and the objective function is
bounded from below, i.e.,

f (x∗) = f∗ := inf
x∈Rd

f(x) > −∞.

In the stochastic setting, we make the following assumptions.

Assumption 2 (Unbiased estimator). The gradient oracle returns an unbiased estimator of ∇f(x),
i.e., for all x ∈ Rd,

Ez [∇fz(x; z)] = ∇f(x).

4
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Assumption 3 (Relaxed affine-variance (sub-Gaussian form)). The gradient oracle satisfies that for
some constants A,B,C ≥ 0,

Ez

[
exp

(
∥∇fz(x; z)−∇f(x)∥2

A (f(x)− f∗) +B ∥∇f (x)∥2 + C

)]
≤ exp(1),∀x ∈ Rd. (5)

Assumption 4 (Relaxed affine-variance (expected form)). The gradient oracle satisfies that for
some constants A,B,C ≥ 0,

Ez

[
∥∇fz(x; z)−∇f(x)∥2

]
≤ A (f(x)− f∗) +B ∥∇f (x)∥2 + C, ∀x ∈ Rd. (6)

Assumption 2 is a relevant assumption for studying many practical settings and is also commonly
used in the analysis of stochastic optimization. Assumption 3 is weaker than the bounded noise in
(Zhang et al., 2020b;a) and the almost-sure version of (relaxed) affine-variance noise in (Attia &
Koren, 2023; Hong & Lin, 2024; Yu et al., 2025). AlthoughWhile Assumption 3 is stronger than
its expected version in Assumption 4 as it controls all moments of the noise distribution, while
Assumption 4 only controls its second moment (the variance), the former one could lead to high-
probability convergence, which could ensure corresponding expected convergences. Assumption
4 was initially proposed by Khaled & Richtárik (2023) under the name expected smoothness. Its
original, equivalent form is: Ez

[
∥∇fz(x; z)∥2

]
≤ A (f(x)− f∗) + B̃ ∥∇f (x)∥2 + C, ∀x ∈ Rd.

Notations We denote the set {1, · · · , T} as [T ]. We use Et[·] ≜ E[·|z1, · · · , zt−1] to represent
the conditional expectation, where zi is the random sample in the i-th gradient oracle. The notation
a ∼ O(b) and a ≤ O(b) refer to c1b ≤ a ≤ c2b and a ≤ c3b with c1, c2, c3 being positive constants,
respectively. Also, we write Õ(b) for O(b · poly(log b)). Throughout the paper, we define 00 = 1.

4 CONVERGENCE OF NAG UNDER (L0, L1, L2)-SMOOTHNESS

In this section, we assume that the objective function satisfies Definition 1. We present convergence
results for the deterministic case in Section 4.1 and for the stochastic case in Section 4.2. The detail
proofs for this section will be given in Section D and Section E of the appendix.

4.1 CONVERGENCE RESULTS FOR DETERMINISTIC OPTIMIZATION

We first present convergence rates of NAG in the deterministic case with a slight modification (see
Algorithm 1). This modified NAG is proposed by (Li et al., 2024) where they obtained the optimal
convergence rate under a general smoothness for convex non-stochastic optimizations. The only
difference between Algorithm 1 and original NAG (Nesterov, 1983) is that the latter directly sets
At = Bt. Such a modification could be used to control the gradient norms (or function value gaps)
in the analysis.

Algorithm 1 Nesterov’s Accelerated Gradient Descent (NAG)

Require: Horizon T , xag
0 = x0 ∈ Rd, step sizes β, {λt}t∈[T ] and A0 = 1/β,B0 = 0.

1: for t = 1, · · · , T do
2: Bt = Bt−1 +

1
2

(
1 +

√
4Bt−1 + 1

)
;

3: At = Bt +
1
β ;

4: xmd
t = At−1

At
xag
t−1 +

(
1− At−1

At

)
xt−1;

5: xt = xt−1 − λt∇f(xmd
t );

6: xag
t = xmd

t − β∇f(xmd
t ).

To better understand the NAG method, we provide the following lemma summarized from
(d’Aspremont et al., 2021; Li et al., 2024).
Lemma 4.1. For all 0 ≤ t ≤ T , we have

5
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1. 1
4 t

2 ≤ Bt ≤ t2;

2. (At −At−1)
2
= (Bt −Bt−1)

2
= Bt < At;(At −At−1)

2
= (Bt −Bt−1)

2
= Bt ≤ At

3. At − At−1 = Bt − Bt−1 ≥ 1. Thus, {At}t∈[T ] and {Bt}t∈[T ] are both monotonically
increasing sequences.

The above lemma plays vital roles both in the induction argument for bounding the function value
gap and in the final convergence analysis. Refer to Section H for the complete proof.
Theorem 1. Let T > 0 and f be an (L0, L1, L2)-smooth convex function. Suppose that{xag

t }t∈[T ]

is a sequence generated by Algorithm 1 with step sizes β, λt satisfying

β =
1

L1
, λt = (At −At−1)β, (7)

where L1 is a constant, depending on the smoothness parameters {Li}i∈[3] , p, q, with its explicit
expression in (27). Then, under Assumption 1, we have3

f (xag
T )− f∗ ≤ O

(
1

T 2

)
. (8)

Considering the definition of L1 in (27), β could reduce to 1/2L when the objective function is L-
smooth, which aligns with β = 1/L in (Nesterov, 1983) up to a constant. Furthermore, Theorem 1
recovers the convergence rate of order O

(
1/T 2

)
obtained in (Nesterov, 1983) where the smoothness

is required. This bound is optimal (Nemirovskij & Yudin, 1983) for smooth convex optimization
when d is large enough.

4.2 CONVERGENCE RESULTS FOR STOCHASTIC OPTIMIZATION

In this section, we provide a probabilistic convergence result for SNAG (see Algorithm 2) under the
relaxed affine-variance noise assumption of its sub-Gaussian form. Compared to Algorithm 1, the
only difference is that stochastic gradients, instead of accurate gradients, are accessible. Obviously,
Lemma 4.1 still holds for the stochastic case.

Algorithm 2 Stochastic Nesterov’s Accelerated Gradient Descent (SNAG)

Require: Horizon T , xag
0 = x0 ∈ Rd, step sizes β, {λt}t∈[T ] and A0 = 1/β,B0 = 0.

1: for t = 1, · · · , T do
2: Bt = Bt−1 +

1
2

(
1 +

√
4Bt−1 + 1

)
;

3: At = Bt +
1
β ;

4: xmd
t = At−1

At
xag
t−1 +

(
1− At−1

At

)
xt−1;

5: Set gt = ∇fz
(
xmd
t ; zt

)
;

6: xt = xt−1 − λtgt;
7: xag

t = xmd
t − βgt.

Theorem 2. Let T > 0 and δ ∈ (0, 1
3 ). Suppose that {xag

t }t∈[T ] is a sequence generated by
Algorithm 2, f is (L0, L1, L2)-smooth and convex, and the step sizes β, λt satisfy that

β = min

{
1

G1
,

1

G2T
6
5

,
1

G3T
2
3

,
1

MT
3
2

,
1

M2T

}
, λt =

1

4
β (At −At−1) , (9)

where G1,G2,G3 and M are polynomials of log T
δ , depending on the noise and smoothness param-

eters4. Under Assumptions 1, 2 and 3, with probability at least 1− 3δ, we have5

f (xag
T )− f∗ ≤ Õ

(
1

T 2
+

√
A+B + C

T

)
.

3We state the explicit convergence result in (42).
4The explicit expressions of these notations are presented in (43), (44), (45) and (46).
5Refer (73) for the explicit convergence result.
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Theorem 2 provides accelerated convergence rates in high probability. Up to logarithm factors,
this convergence rate matches the expected convergence rate in (Ghadimi & Lan, 2016), where
they assumed bounded variance noise and standard smoothness, and it is unimprovable for smooth
convex stochastic optimization (Lan, 2012).

Furthermore, the convergence rate in Theorem 2 could accelerate to Õ
(
1/T 2

)
if the noise param-

eters are sufficiently small, which matches the rate for the deterministic NAG in (Li et al., 2024)
under a generalized (L0, L1, 0)-smoothness:

∥∥∇2f (x)
∥∥ ≤ l (∥∇f (x)∥) with a sub-quadratic non-

decreasing positive function l up to logarithm factors. Note that Li et al. (2024) did not provide the
analysis for NAG and we consider the (L0, L1, L2)-smoothness. To extend to stochastic setting,

we modify the step size slightly by a constant factor and β
t∑

i=1

Ai

∥∥∇f(xmd
i )
∥∥2 appears in (61),

which makes it feasible to bound
∥∥xmd

t+1 − xag
t

∥∥2 in stochastic optimization. Combining with sev-
eral probabilistic lemmas, we could finish the proof. We refer to Section E for the complete proof.
Our analysis for the above theorem, which relies on Assumption 3, does not apply under the weaker
noise condition of Assumption 4 in the generalized smoothness.

5 CONVERGENCE OF NAG UNDER LIPSCHITZ SMOOTHNESS

We apply our analysis to smooth stochastic optimization and demonstrate that SNAG could reach
the accelerated convergence rate in expectation under the relaxed affine-variance noises and standard
smoothness.

Theorem 3. Let T > 0, f be L-smooth and convex. Suppose that {xag
t }t∈[T ] is a sequence gener-

ated by Algorithm 2 with step sizes

β = min

{
1

2L (1 +B)
,

1

Q 1
2T

3
2

,
1

QT

}
, λt =

β

2 (1 +B)
(At −At−1) , (10)

where Q = AF3 + C is a constant depending on the parameters of smoothness and noise with F3

defined in (78). Under Assumptions 1, 2 and 4, we have6

E [f (xag
T )− f∗] ≤O

(
1 +B

T 2
+

√
A+ C

T

)
. (11)

The above theorem relaxes the bounded variance noise assumption in (Ghadimi & Lan, 2016) while
providing the optimal expected convergence rate. Furthermore, Theorem 3 improves the conver-
gence rate of order O

(
1/T + C/

√
T
)

for SGD and RSAG in (Yu et al., 2025) under the same

assumption. Compared to Theorem 2, the suboptimal term O
(√

B/T
)

with respect to B disap-

pears in (11), which aligns with the expected result of O
(
(B + 1) /T 2

)
and almost-sure result of

o
(
(B + 1) /T 2

)
in (Hermant et al., 2025) where they focused on smooth stochastic optimization

with noise satisfying (4).

6 NUMERICAL EXPERIMENT

In this section, we show the practical convergence behavior of SNAG (Algorithm 2) compared to
stochastic AGD (Algorithm 3 discussed in the appendix) and SGD, i.e.,

xt+1 = xt − η∇zf(xt; zt), (12)

on the two-layer neural network (13) and phase retrieval model (14). We prove that both the two
models satisfy the (L0, L1, L2)-smoothness condition in Section B.

6The detail convergence result is presented in (80).
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Two-layer neural network Considering the following problem,

min
x∈Rd̃

F (x) =
1

n

n∑
i=1

f (yiΦ (x,wi)) , (13)

where wi ∈ Rd is the data point and its associated label yi ∈ {±1}. The function f(·) is the
exponential loss i.e., f(t) = exp(−t) and Φ(·) is a two-layer neural network with m neurons defined
as

Φ(x,w) =

m∑
j=1

ajσ(⟨xj ,w⟩),

Here σ : R → R is the activation function and xj ∈ Rd denotes the input weight vector of the jth
hidden neuron. x ∈ Rd̃ represents the concatenation of these weights, i.e., x = [x1;x2; · · · ;xm]

where d̃ = md. We assume that only xj can be updated during training, while aj ∈ R are initialized
randomly and kept fixed.

We conduct experiment on the specific shallow neural network with m = 30 hidden neurons, expo-
nential loss f(t) = exp(−t) and smoothed-leaky-ReLU activation function, i.e.,

σ(t) = tI(t ≥ 0) + 0.2tI(t < 0),

where I(·) is the 0 − 1 indicator function. We generate the data point wi ∈ Rd, where dimension
d = 10, coordinate-wise from Gaussian distribution N (0, 25) with its binary label yi ∈ {±1}
chosen randomly. The second layer weights are generated randomly from aj ∈

{
± 1

m

}
and kept

fixed during training.

Phase retrieval Phase retrieval is a classic model in the field of machine learning and signal pro-
cessing (Drenth, 1994; Miao et al., 1999; Chen et al., 2023). In this setting, we are aimed to solve
the following problem, i.e.,

min
x∈Rd

f(x) :=
1

2m

m∑
i=1

(
yi −

∣∣a⊤
r x
∣∣2)2 . (14)

Here, yi represents the intensity measurements, i.e., yi =
∣∣a⊤

i z
∣∣ , ∀i ∈ [m] with ai ∈ Rd being the

fixed parameters and z ∈ Rd being the true objects.

The data in our experiment are generated by yi =
∣∣a⊤

i z
∣∣2 + ϵi, i ∈ [m], where each coordinate

of both the measurement vector ai ∈ Rd and the true parameter z satisfy Gaussian distribution
N (0, 0.5), and ϵi ∼ N (0, 25) is the noise. Here, we set the number of samples m = 1000 and the
dimension d = 10.

(a) Two-layer neural network (b) Phase retrieval model

Figure 1: Experiment results. We run each algorithm 100 times and plot the average loss at each
iteration.

Experiment Setup We set β = η in Algorithm 2 and λt = η in Algorithm 3 where η is also the
step size of SGD. The stochastic gradient in each step is computed by samples randomly chosen
with batch size 10. We start the training process with the initial vector satisfying N (1, 25).

8
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Results As Figure 1 shows, SGD and stochastic AGD (Algorithm 2) exhibit comparable per-
formance under these two possibly non-convex setting, complementing their theoretical analysis.
Stochastic NAG performs best among the three especially with small step size though we only prove
its acceleration theoretically in the convex case.

7 CONCLUSION

In this paper, motivated by several machine learning problems, we propose a new general smooth-
ness, which generalizes the global smoothness and (L0, L1)-smoothness. Under this condition, we
analyze NAG method and obtain the accelerated convergence rate of order O

(
1/T 2

)
for convex

optimizations with access to accurate gradients. For stochastic optimization, we obtain acceler-
ated probabilistic convergence rates of order Õ

(
1/T 2 +

√
(A+B + C) /T

)
under sub-Gaussian

relaxed affine-variance noises. Furthermore, we apply our analysis to smooth optimizations and
obtain the result of order O

(
(B + 1) /T 2 +

√
(A+ C) /T

)
the same convergence rates in expec-

tation under expected relaxed affine-variance noises. All the above derived convergence rates are
optimal without further assumptions.
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A COMPARISONS OF PREVIOUS WORK WITH OURS

B EXAMPLES SATISFYING THE (L0, L1, L2)-SMOOTHNESS CONDITION

B.1 TWO-LAYER NEURAL NETWORKS

Recall the two-layer neural network model in (13) and we have the following lemma from (Taheri
& Thrampoulidis, 2023). We refer interested readers to see the proof in their paper.
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Table 1: Related works under the generalized smoothness condition.

Alg. Convexity Noise Smoothness Conv.
type

Conv.
rate

Extra cond.
for gradient

Zhang et al. (2020b) SGD non-convex bounded
(a.s.) (L0, L1) E 1+C√

T
✓

Li et al. (2024) SGD non-convex bounded
variance generalized (L0, L1) E 1+

√
C√

T

Li et al. (2024) NAG convex - generalized (L0, L1) - 1
T2

Yu et al. (2025) SGD or
RSAG

non-convex relaxed affine
(a.s.) (L0, L1) w.h.p 1

T +
√

A+
√

C√
T

convex

Thm 1 NAG convex - (L0, L1, L2) - 1
T2

Thm 2 SNAG convex relaxed affine
(a.s.) (L0, L1, L2) w.h.p 1

T2 +
√

A+B+C
T

Thm 3 SNAG convex relaxed affine smooth E B+1

T2 +
√

A+C
T

1 Indeed, Li et al. (2024) provided the probabilistic results for SGD while the dependence of the probability margin is the polynomial of 1/δ. In
order to distinguish them from other high-probability results with dependence of log T

δ , we consider them as the expected results.
2 “Alg.”, “con.” and “cond.” are the shorthand of the words “algorithm”, “convergence” and “condition”.
3 We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Table 2: Previous works related to NAG.

Algorithm Convexity Noise Smoothness Conv.
type

Conv.
rate

Nesterov (1983) NAG convex - Lipschitz - 1
T2

Ghadimi & Lan (2016) RSAG
non-convex bounded

variance Lipschitz E
1
T +

√
C
T

convex 1
T2 +

√
C
T

Vaswani et al. (2019) SNAG convex strongly growth Lipschitz E B+1

T2

Li et al. (2024) NAG convex - generalized (L0, L1) - 1
T2

Hermant et al. (2025) SNAG convex strongly growth Lipschitz a.s. B+1

T2

Thm 1 NAG convex - (L0, L1, L2) - 1
T2

Thm 2 SNAG convex relaxed affine
(a.s.) (L0, L1, L2) w.h.p 1

T2 +
√

A+B+C
T

Thm 3 SNAG convex relaxed affine smooth E B+1

T2 +
√

A+C
T

1 As discussed in Section 2, Vaswani et al. (2019); Hermant et al. (2025) analyzed ACDM, which is a variant of SNAG. However, ACDM is
equivalent to SNAG with the specific step size setting in the convex case.

2 “Con” and “cond” are the shorthand of the words “convergence” and “condition”.
3 We ignore the dependence on the noise parameters order and the logarithm factors of the horizon T in this table.

Lemma B.1 (Lemma 5 in (Taheri & Thrampoulidis, 2023)). Let F be in (13) and Φ be a two layer
neural network with the activation function satisfying that there exist L,α, l > 0, such that

|σ′′(t)| ≤ L, α ≤ σ′(t) ≤ l, ∀t ∈ R.

Then, F is self-bounded of gradient and Hessian with constants h = lR√
m
, H = LR2

m2 + l2R2

m , i.e.,

∥∇F (x)∥ ≤ hF (x),
∥∥∇2F (x)

∥∥ ≤ HF (x),

where R = max
i∈[n]

∥wi∥R = max
i∈[n]

∥xi∥.

In the next lemma, we denote F ∗ is the minimum of F (x) in (13), i.e., F (x) ≥ F ∗, ∀x ∈ Rd̃.

Lemma B.2. Under the condition of Lemma B.1, F (x) in (13) is (L0, 0, L2)-smooth,
where L0 and L2 are non-negative constants such that L2 = max {h,He} , L0 = L2F

∗

L2 logL2 ≥ h logH,L0 = L2F
∗.
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Proof. For any ∥x− y∥ ≤ 1/L2, define γ(t) = t(y − x) + x, t ∈ [0, 1]. Then, for any µ ∈ [0, 1]
we have,

F (γ(µ)) =

∫ µ

0

⟨∇F (γ(t)),y − x⟩ dt+ F (x)

≤
∫ µ

0

∥∇F (γ(t))∥ · ∥y − x∥ dt+ F (x)

≤h ∥y − x∥
∫ µ

0

F (γ(t))dt+ F (x), (15)

where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
from Lemma B.1. By Gronwall’s inequality, we have

F (γ(µ)) ≤F (x) · exp(µh ∥y − x∥), µ ∈ [0, 1]. (16)

Moreover, we have

∇F (y)−∇F (x) =∇F (γ(1))−∇F (γ(0)) =

∫ 1

0

∇2F (γ(t))(y − x)dt, (17)

which implies,

∥∇F (y)−∇F (x)∥ =

∥∥∥∥∫ 1

0

∇2F (γ(t))(y − x)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2F (γ(t))
∥∥ ∥y − x∥ dt

≤H ∥y − x∥
∫ 1

0

F (γ(t))dt

≤H ∥y − x∥
∫ 1

0

F (x) · exp(th ∥y − x∥)dt. (18)

Since ∥y − x∥ ≤ 1
L2

, we have

∥∇F (y)−∇F (x)∥ ≤HF (x) exp(
h

L2
) ∥y − x∥

=

(
H exp(

h

L2
)F ∗ +H exp(

h

L2
) (F (x)− F ∗)

)
∥y − x∥ . (19)

By the constraints that L2 = max {h,He}L2 logL2 ≥ h logH , we have

L2 ≥ H exp(
h

L2
).

Combining with the fact that F ∗ is positive for the exponential loss, we have

∥∇F (y)−∇F (x)∥ ≤ (L0 + L2 (F (x)− F ∗)) ∥y − x∥ . (20)

B.2 PHASE RETRIEVAL MODEL

We then provide the proof that the phase retrieval model in (14) satisfying (L0, L1, L2)-smoothness
condition. The following lemma is presented in (Chen et al., 2023).
Lemma B.3. The function f(x) in (14) belongs to L∗

sym

(
2
3

)
, i.e., for any x,y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤
(
L′
0 + L′

1 ∥∇f(x)∥
2
3 + L′

2 ∥x− y∥2
)
∥x− y∥ , (21)

where L′
0, L

′
1, L

′
2 are non-negative constants.

Thus, we could derive Lemma B.4.
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Lemma B.4. Suppose that f(x) is the phase retrieval model defined in (21). Then, f(x) is
(L0, L1, 0)-smooth, where L0 = L′

0 + L′
2/L

2
1 and L1 = L′

1.

Proof. By (21), for any x,y ∈ Rd such that ∥x− y∥ ≤ 1
L1

, we have

∥∇f(x)−∇f(y)∥ ≤
(
L′
0 + L′

1 ∥∇f(x)∥
2
3 + L′

2/L
2
1

)
∥x− y∥

=
(
L0 + L1 ∥∇f(x)∥

2
3

)
∥x− y∥ .

C COMPLEMENTARY LEMMAS

The following lemma characterizes the relationship between the gradient and the function value gap
under the smoothness condition. Refer to (Attia & Koren, 2023) for a proof.

Lemma C.1. Let f(·) : Rd → R be an L-smooth function with minimum f∗. Then, we have

∥∇f(xt)∥2 ≤ 2L (f (xt)− f∗) .

Lemma C.2 and Lemma C.3 are the key to the analysis for (L0, L1, L2)-smooth functions.

Lemma C.2. If f(·) : Rd → R is (L0, L1, L2)-smooth with minimum f∗, then for any x,y ∈ Rd

such that ∥x− y∥ ≤ min {1/L1, 1/L2}, we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L0 + L1 ∥∇f(x)∥p + L2 (f(x)− f(x∗))
q

2
∥x− y∥2 .

Proof.

f(y)− f(x)− ⟨y − x,∇f (x)⟩ =
∫ 1

0

⟨∇f(θy + (1− θ)x)−∇f(x),y − x⟩ dθ

≤
∫ 1

0

∥∇f(θy + (1− θ)x)−∇f(x)∥ · ∥x− y∥ dθ

≤
∫ 1

0

θ · (L0 + L1 ∥∇f(x)∥p + L2 (f(x)− f∗)
q
) ∥x− y∥2 dθ

=
L0 + L1 ∥∇f(x)∥p + L2 (f(x)− f∗)

q

2
∥x− y∥2 ,

where the first inequality holds since Cauchy-Schwarz inequality and the second inequality follows
from the definition of (L0, L1, L2)-smoothness.

Lemma C.3. If f(·) : Rd → R is (L0, L1, L2)-smooth with minimum f∗, then we have

∥∇f(xt)∥2 ≤ 4L0△t + (2− p)
(
(2p)

p
2 2L1△t

) 2
2−p

+ 4L2△q+1
t + 8 (L1 + L2)

2 △2
t , (22)

where △t = f(xt)− f∗.
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Proof. Let x = xt − 1
L0+L1(∥∇f(xt)∥+∥∇f(xt)∥p)+L2(∥∇f(xt)∥+△q

t )
∇f (xt). It is easy to verify

∥x− xt∥ ≤ min {1/L1, 1/L2}. By Lemma C.2, we have

f (x) ≤f (xt) + ⟨∇f (xt) ,x− xt⟩+
L0 + L1 ∥∇f (xt)∥p + L2△q

t

2
∥x− xt∥2

=f (xt)−
∥∇f (xt)∥2

L0 + L1 (∥∇f (xt)∥+ ∥∇f (xt)∥p) + L2 (∥∇f (xt)∥+△q
t )

+
L0 + L1 ∥∇f (xt)∥p + L2△q

t

2 (L0 + L1 (∥∇f (xt)∥+ ∥∇f (xt)∥p) + L2 (∥∇f (xt)∥+△q
t ))

2 · ∥∇f (xt)∥2

≤f (xt)−
∥∇f (xt)∥2

L0 + L1 (∥∇f (xt)∥+ ∥∇f (xt)∥p) + L2 (∥∇f (xt)∥+△q
t )

+
∥∇f (xt)∥2

2 (L0 + L1 (∥∇f (xt)∥+ ∥∇f (xt)∥p) + L2 (∥∇f (xt)∥+△q
t ))

,

which implies

∥∇f (xt)∥2

2 (L0 + L1 (∥∇f (xt)∥+ ∥∇f (xt)∥p) + L2 (∥∇f (xt)∥+△q
t ))

≤ f (xt)− f (x) ≤ △t.

Re-arranging the above inequality, we obtain that

∥∇f (xt)∥2 ≤ 2L0△t + 2L1 ∥∇f (xt)∥p △t + 2L2△q+1
t + 2 (L1 + L2) ∥∇f (xt)∥ · △t.

When p > 0,Then, applying Young’s inequality, we have

∥∇f (xt)∥2 ≤2L0△t +
1

4
∥∇f (xt)∥2 +

(
1− p

2

)(
(2p)

p
2 2L1△t

) 2
2−p

+ 2L2△q+1
t +

1

4
∥∇f (xt)∥2 + 4 (L1 + L2)

2 △2
t . (23)

Note that (23) still holds when p = 0 since 00 = 1. Hence,

∥∇f (xt)∥2 ≤ 4L0△t + (2− p)
(
(2p)

p
2 2L1△t

) 2
2−p

+ 4L2△q+1
t + 8 (L1 + L2)

2 △2
t .

Corollary 1. Let f(·) be an (L0, L1, L2)-smooth function with minimum f∗. If f(xt) − f∗ ≤ G,
then we have

∥∇f(xt)∥2 ≤ g(G),

where g(·) : R → R is defined as

g(µ) = 4L0µ+ (2− p)
(
(2p)

p
2 2L1µ

) 2
2−p

+ 4L2µ
q+1 + 8 (L1 + L2)

2
µ2. (24)

The following lemma plays crucial role in our probabilistic analysis. Refer to (Li & Orabona, 2020)
for a proof.

Lemma C.4 (Lemma 1 in (Li & Orabona, 2020)). Assume that {Zt}t∈[T ] is a martingale difference
sequence with respect to γ1, γ2, · · · , γT and Et[exp

(
Z2
t /σ

2
t

)
] ≤ exp(1) for all 1 ≤ t ≤ T , where

σt is a sequence of measurable random variables with respect to γ1, γ2, · · · , γt−1. Then, for any
fixed λ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

T∑
t=1

Zt ≤
3λ

4

T∑
t=1

σ2
t +

1

λ
log

1

δ
.
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D PROOF OF THEOREM 1

We first present the explicit expressions of C1,F1,L1,

C1 = △ag
0 +

1

2
∥x0 − x∗∥2 , (25)

F1 = C1 +
1

L1 + L2

√
g(C1) +

L0 + L1 (g(C1))
p
2 + L2Cq

1

2 (L1 + L2)
2 , (26)

L1 = 2
(
L0 + L1

(
(g(F1))

1
2 + (g(F1))

p
2

)
+ L2

(
(g(F1))

1
2 + Fq

1

)
+ 8C2

1 (L1 + L2)
4
)
, (27)

where g (·) : R → R is a function defined in (24). Then, we will provide some useful lemmas.
Lemma D.1 follows from the analysis in (Ghadimi & Lan, 2016) and is derived from the iteration
steps in Algorithm 1.
Lemma D.1. Let

{
xmd
k

}
k∈[T ]

and {xag
k }

k∈[T ]
be the two sequences generated by Algorithm 1.

Then we have for all k ∈ [T ],∥∥xmd
k − xag

k−1

∥∥2 ≤ 1

Ak ·Ak−1

k−1∑
i=1

A2
i · (λi − β)

2

Ai −Ai−1

∥∥∇f(xmd
i )
∥∥2 .

Proof. From Algorithm 1, we have
xag
k − xk =xmd

k − β∇f(xmd
k )− xk−1 + λk∇f(xmd

k )

=
Ak−1

Ak

(
xag
k−1 − xk−1

)
+ (λk − β)∇f(xmd

k ).

Since xag
0 = x0, we obtain that

xag
k − xk =

1

Ak

k∑
i=1

Ai (λi − β)∇f(xmd
i ),

which implies

∥xag
k − xk∥ ≤ 1

Ak

k∑
i=1

Ai |λi − β| ·
∥∥∇f(xmd

i )
∥∥ . (28)

Applying the iteration step in Algorithm 1 again, we have

xmd
k − xag

k−1 =

(
1− Ak−1

Ak

)(
xk−1 − xag

k−1

)
.

Combining with (28), we have∥∥xmd
k − xag

k−1

∥∥ ≤
(
1− Ak−1

Ak

)
· 1

Ak−1

k−1∑
i=1

Ai |λi − β| ·
∥∥∇f(xmd

i )
∥∥ . (29)

Using the fact that
k−1∑
i=1

Ai ·
(
1− Ai−1

Ai

)
= Ak−1 −A0,

we have ∥∥xmd
k − xag

k−1

∥∥2
≤
(
1− Ak−1

Ak

)2

· 1

A2
k−1

[
k−1∑
i=1

Ai

(
1− Ai−1

Ai

)
· |λi − β|
1− Ai−1

Ai

∥∥∇f(xmd
i )
∥∥]2

≤
(
1− Ak−1

Ak

)2

· Ak−1 −A0

A2
k−1

k−1∑
i=1

Ai

(
1− Ai−1

Ai

)
A2

i · (λi − β)
2

(Ai −Ai−1)
2

∥∥∇f(xmd
i )
∥∥2

≤ 1

Ak ·Ak−1

k−1∑
i=1

A2
i · (λi − β)

2

Ai −Ai−1

∥∥∇f(xmd
i )
∥∥2 ,
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where the second inequality follows from Jensen’s inequality and the last inequality holds since
Lemma 4.1.

In the next Lemma, we assume the function value gap is bounded. Under this assumption, the
analysis for (L0, L1, L2)-smooth and L smooth objective functions becomes similar. With reference
to (Nesterov, 1983; Ghadimi & Lan, 2016; d’Aspremont et al., 2021), we provide the following
analysis with a step size specific to the novel smoothness condition.

Lemma D.2. Suppose that f
(
xmd
l

)
− f∗ ≤ F1, ∀l ∈ [t]. Then, under the conditions of Theorem 1,

we have

△ag
t ≤ C1

Atβ
,

where C1 is a constant related to the initial point and is defined in (25).

Proof. By Corollary 1 and the assumption that △md
l ≤ F1, ∀l ∈ [t], we have

∥∥∇f(xmd
l )
∥∥2 ≤

g(F1), ∀l ∈ [t]. Therefore,∥∥xag
l − xmd

l

∥∥ = β
∥∥∇f(xmd

l )
∥∥ ≤ β

√
g(F1) ≤ min {1/L1, 1/L2} ,

where the last inequality holds since β = 1
L1

with L1 defined in (27). By Lemma C.2, we have

f (xag
l ) ≤f

(
xmd
l

)
+
〈
∇f(xmd

l ),xag
l − xmd

l

〉
+

L0 + L1 (g (F1))
p
2 + L2Fq

1

2

∥∥xag
l − xmd

l

∥∥2
=f
(
xmd
l

)
− β

∥∥∇f(xmd
l )
∥∥2 + L0 + L1 (g (F1))

p
2 + L2Fq

1

2
β2
∥∥∇f(xmd

l )
∥∥2 . (30)

By the convexity and the iteration step in Algorithm 1, we have

f
(
xmd
l

)
−
[
Al−1

Al
· f
(
xag
l−1

)
+

(
1− Al−1

Al

)
· f∗
]

=

(
1− Al−1

Al

)
·
[
f
(
xmd
l

)
− f∗]+ Al−1

Al
·
[
f
(
xmd
l

)
− f

(
xag
l−1

)]
≤
(
1− Al−1

Al

)
·
〈
∇f(xmd

l ),xmd
l − x∗〉+ Al−1

Al
·
〈
∇f(xmd

l ),xmd
l − xag

l−1

〉
=

〈
∇f(xmd

l ),

(
1− Al−1

Al

)
·
(
xmd
l − x∗)+ Al−1

Al
·
(
xmd
l − xag

l−1

)〉
=

(
1− Al−1

Al

)
·
〈
∇f(xmd

l ),xl−1 − x∗〉 . (31)

Combining (30) and (31), we obtain that

f (xag
l ) ≤Al−1

Al
· f
(
xag
l−1

)
+

(
1− Al−1

Al

)
· f∗ +

(
1− Al−1

Al

)
·
〈
∇f(xmd

l ),xl−1 − x∗〉
− β

∥∥∇f(xmd
l )
∥∥2 + L0 + L1 (g (F1))

p
2 + L2Fq

1

2
β2
∥∥∇f(xmd

l )
∥∥2 . (32)

Also,

∥xl−1 − x∗∥2 − 2λl

〈
∇f(xmd

l ),xl−1 − x∗〉+ λ2
l

∥∥∇f(xmd
l )
∥∥2

=
∥∥xl−1 − λl∇f(xmd

l )− x∗∥∥2 = ∥xl − x∗∥2 .

Hence,〈
∇f(xmd

l ),xl−1 − x∗〉 = 1

2λl

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
+

λl

2

∥∥∇f(xmd
l )
∥∥2 . (33)
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Substituting (33) into (32), we have

f (xag
l ) ≤Al−1

Al
· f
(
xag
l−1

)
+

(
1− Al−1

Al

)
· f∗ +

Al −Al−1

2Al · λl

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
− β

1−

(
L0 + L1 (g (F1))

p
2 + L2Fq

1

)
β

2
− λl (Al −Al−1)

2βAl

∥∥∇f(xmd
l )
∥∥2 . (34)

By the constraint of λl in (7) and applying Lemma 4.1, we obtain that

λl ·
Al −Al−1

Al
= β · (Al −Al−1)

2

Al
= β

(Bl −Bl−1)
2

Bl + 1/β
= β

Bl

Bl + 1/β
< β.

Also, recalling the constraint of β in (7), we have and(
L0 + L1 (g (F1))

p
2 + L2Fq

1

)
β ≤ 1

2
.

Therefore,

1−

(
L0 + L1 (g (F1))

p
2 + L2Fq

1

)
β

2
− λl (Al −Al−1)

2βAl
≥ 1

4
.

Combining with (34) and reorganizing the terms, we have

△ag
l ≤− 1

4
β
∥∥∇f(xmd

l )
∥∥2 + Al−1

Al
· △ag

l−1 +
Al −Al−1

2Al · (Al −Al−1)β

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
=− 1

4
β
∥∥∇f(xmd

l )
∥∥2 + Al−1

Al
· △ag

l−1 +
1

2βAl

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
. (35)

With both sides of the above inequality multiplying Al, we have

Al△ag
l +

1

2β
∥xl − x∗∥2 ≤ Al−1△ag

l−1 +
1

2β
∥xl−1 − x∗∥2 − 1

4
βAl

∥∥∇f(xmd
l )
∥∥2 . (36)

Summing up over l ∈ [t] and re-arranging the inequality, we obtain that

△ag
t ≤A0

At
△ag

0 +
1

2βAt
∥x0 − x∗∥2 =

1

Atβ
△ag

0 +
1

2βAt
∥x0 − x∗∥2

=
1

Atβ

(
△ag

0 +
1

2
∥x0 − x∗∥2

)
. (37)

Based on the proof for Lemma D.2, we will prove the bound of f
(
xmd
t

)
− f∗ for all t ∈ [T ], using

an induction argument.
Lemma D.3. Under the conditions of Theorem 1, we have

f
(
xmd
t

)
− f∗ ≤ F1, ∀t ∈ [T ],

where F1 is defined in (26).

Proof. It is apparent that f
(
xmd
1

)
− f∗ = f (xag

0 ) − f∗ ≤ F1 since xag
0 = x0. Suppose that for

some t ∈ [T ],
f
(
xmd
l

)
− f∗ ≤ F1, ∀l ∈ [t].

Next, we will bound f
(
xmd
t+1

)
− f∗. By Lemma D.1, we have∥∥xmd

t+1 − xag
t

∥∥2 ≤ 1

At+1 ·At

t∑
i=1

A2
i · (λi − β)

2

Ai −Ai−1

∥∥∇f(xmd
i )
∥∥2

≤
t∑

i=1

(Ai −Ai−1 − 1)
2

Ai −Ai−1
β2
∥∥∇f(xmd

i )
∥∥2

≤β2
t∑

i=1

(Ai −Ai−1)
∥∥∇f(xmd

i )
∥∥2 ,
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where the second and the third inequalities follow from Lemma 4.1. Applying Lemma 4.1 again and
using the fact that Ai = Bi + 1/β, ∀i ∈ [T ], we have

∥∥xmd
t+1 − xag

t

∥∥2 ≤β2
t∑

i=1

√
Ai

∥∥∇f(xmd
i )
∥∥2 ≤ β

5
2

t∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 . (38)

Since the assumption that f
(
xmd
l

)
− f∗ ≤ F1, ∀l ∈ [t], (36) holds here for all l ∈ [t]. Therefore,

summing up (36) over l ∈ [t], we have

1

4
β

t∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 ≤ A0△ag

0 +
1

2β
∥x0 − x∗∥2 . (39)

Combining (38) and (39) and the constraint of β, we obtain that∥∥xmd
t+1 − xag

t

∥∥2 ≤
√

β · 4
(
△ag

0 +
1

2
∥x0 − x∗∥2

)
≤ 1

(L1 + L2)
2 .

Applying Lemma C.2 again, we have

f
(
xmd
t+1

)
≤f (xag

t ) +
〈
∇f(xag

t ),xmd
t+1 − xag

t

〉
+

L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2

∥∥xmd
t+1 − xag

t

∥∥2
≤f (xag

t ) + ∥∇f(xag
t )∥ ·

∥∥xmd
t+1 − xag

t

∥∥+ L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2

∥∥xmd
t+1 − xag

t

∥∥2
≤f (xag

t ) +
1

L1 + L2
∥∇f(xag

t )∥+ L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2 (L1 + L2)
2 , (40)

where the second inequality holds since Cauchy-Schwarz inequality. Further, considering the as-
sumption that f

(
xmd
l

)
− f∗ ≤ F1, ∀l ∈ [t], (37) holds here. Noting that Atβ =

(
Bt +

1
β

)
·β ≥ 1,

we could deduce

△ag
t ≤ △ag

0 +
1

2
∥x0 − x∗∥2 = C1. (41)

Plugging (41) into (40), subtracting f∗ from both sides and applying Corollary 1, we obtain that

△md
t+1 ≤ C1 +

1

L1 + L2

√
g(C1) +

L0 + L1 (g(C1))
p
2 + L2Cq

1

2 (L1 + L2)
2 = F1,

where g(·) is the function defined in (24). Therefore, the induction is complete and we obtain the
desired result.

Now we are ready to obtain the main convergence result.

Proof of Theorem 1. Noting that △md
t ≤ F1, ∀t ∈ [T ] proved in Lemma D.3, we could apply

Lemma D.2 and obtain that

△ag
T ≤ 1

ATβ

(
△ag

0 +
1

2
∥x0 − x∗∥2

)
=

C1 · L1

AT
.

Applying Lemma 4.1, we obtain that

△ag
T ≤

4C1 ·
(
2
(
L0 + L1

(
(g(F1))

1
2 + (g(F1))

p
2

)
+ L2

(
(g(F1))

1
2 + Fq

1

)
+ 8C2

1 (L1 + L2)
4
))

T 2
.

(42)
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E PROOF OF THEOREM 2

We first introduce some notations used in Theorem 2, i.e.,

M =
√

AF2 +Bg (F2) + C, G1 = max {G1,1,G1,2,G1,3,G1,4} ,

G2 = (595)
2
5 (L1 + L2)

4
5 M 4

5

(
log

T e

δ

) 2
5

, G3 = (595)
2
3 (L1 + L2)

4
3 M 4

3

(
log

T e

δ

) 2
3

, (43)

where

G1,1 = L1

(√
g (F2) +M

√
log

T e

δ

)
, G1,2 = L2

(√
g (F2) +M

√
log

T e

δ

)
,

G1,3 = 4
(
L0 + L1 (g (F2))

p
2 + L2Fq

2

)
, G1,4 = 4624 (L1 + L2)

4 C2
2 . (44)

Furthermore,

F2 = H+

√
g(H)

L1 + L2
+

L0 + L1 (g(H))
p
2 + L2Hq

2 (L1 + L2)
2 , (45)

with the notations

C2 = △ag
0 + 2 ∥x0 − x∗∥2 , H = 2C2 + 17 log

T e

δ
. (46)

In what follows, we will present several high-probability lemmas for the probabilistic analysis.

E.1 PRELIMINARIES

The following lemma bound the noise norm under Assumption 3.

Lemma E.1. Given T ≥ 1, suppose that for any t ∈ [T ], υt = ∇fz (xt; zt) − ∇f (xt) satisfies
Assumption 3. Then, for any given δ ∈ (0, 1), it holds that with probability at least 1− δ,

∥υt∥2 ≤
(
A (f(xt)− f∗) +B ∥∇f (xt)∥2 + C

)
log

T e

δ
, ∀t ∈ [T ]. (47)

Proof. Denote ζt = ∥υt∥2

A(f(xt)−f∗)+B∥∇f(xt)∥2+C
, ∀t ∈ [T ], where T is fixed. By the definition of

the noise model, we have

Et [exp (ζt)] ≤ e, thus, E [exp (ζt)] ≤ e.

By Markov’s inequality, for any β ∈ R,

P
(
max
t∈[T ]

ζt ≥ β

)
=P
(
exp

(
max
t∈[T ]

ζt

)
≥ eβ

)
≤e−βE

[
exp

(
max
t∈[T ]

ζt

)]
≤ e−βE

[
T∑

t=1

exp (ζt)

]
≤ e−βT e.

Therefore, with probability at least 1− δ, we have

∥υt∥2 ≤
(
A (f(xt)− f∗) +B ∥∇f (xt)∥2 + C

)
log

T e

δ
, ∀t ∈ [T ].

Next, we will establish a probabilistic upper bound for summation of the two martingale difference
sequences based on the noise assumption and Lemma C.4.
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Lemma E.2. Given T ≥ 1 and δ ∈ (0, 1), if Assumptions 1, 2 and 3 hold, then with probability at
least 1− δ, for all l ∈ [T ], we have

l∑
k=1

−Ak

〈
ξk,∇f(xmd

k )
〉
≤ 1

4ATM2

l∑
k=1

A2
k

∥∥∇f(xmd
k )
∥∥2 M2

k + 3ATM2 log
T

δ
, (48)

where

Mt =
√

A△md
t +Bg

(
△md

t

)
+ C, (49)

M is defined in (43) and g (·) is a function defined in (24).

Proof. Let Xk = −Ak

〈
ξk,∇f(xmd

k )
〉
. Note that xmd

k and xk−1 are random variables depen-
dent on z1, · · · , zk−1 and ξk is dependent on z1, · · · , zk. It is apparent that Xk is the martingale
difference sequence since

Ek [Xk] = −Ak

〈
Ek [ξk] ,∇f(xmd

k )
〉
= 0.

Also, by Assumption 3 and applying Cauchy-Schwarz inequality, we have

Ek

exp
 X2

k

A2
k

∥∥∇f(xmd
k )
∥∥2 (A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)


≤Ek

exp
 A2

k ∥ξk∥
2 ∥∥∇f(xmd

k )
∥∥2

A2
k

∥∥∇f(xmd
k )
∥∥2 (A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)
 ≤ exp(1) (50)

Thus, given any l ∈ [T ], applying Lemma C.4, we have that for any λ > 0, with probability at least
1− δ,

l∑
k=1

Xk ≤3λ

4

l∑
k=1

A2
k

∥∥∇f(xmd
k )
∥∥2 (A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)
+

1

λ
log

1

δ

≤3λ

4

l∑
k=1

A2
k

∥∥∇f(xmd
k )
∥∥2 M2

k +
1

λ
log

1

δ
, (51)

where the second inequality follows from Lemma C.3. For any fixed λ, we can rescale over δ and
have that with probability at least 1− δ, for all l ∈ [T ],

l∑
k=1

Xk ≤ 3λ

4

l∑
k=1

A2
k

∥∥∇f(xmd
k )
∥∥2 M2

k +
1

λ
log

T

δ
.

Let λ = 1
3ATM2 , and we obtain the desired result.

Lemma E.3. Given T ≥ 1 and δ ∈ (0, 1), if Assumptions 1, 2 and 3 hold. Then, with probability at
least 1− δ, for all l ∈ [T ], we have

l∑
k=1

(Ak −Ak−1) ⟨ξk,x∗ − xk−1⟩ ≤
3 log T

δ

2P(F2)

l∑
k=1

Ak ∥x∗ − xk−1∥2 M2
k +

P(F2)

2
, (52)

where Mk is defined in (49) and P(F2) is defined in (62).

Proof. Let Yk = (Ak −Ak−1) ⟨ξk,x∗ − xk−1⟩. Note that xmd
k and xk−1 are random variables de-

pendent on z1, · · · , zk−1 and ξk is dependent on z1, · · · , zk. It is apparent that Yk is the martingale
difference sequence since

Ek [Yk] = (Ak −Ak−1) ⟨Ek [ξk] ,x
∗ − xk−1⟩ = 0.
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Also, by Assumption 3 and applying Cauchy-Schwarz inequality, we have

Ek

exp
 Y 2

k

Ak ∥x∗ − xk−1∥2
(
A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)


≤Ek

exp
 (Ak −Ak−1)

2 ∥ξk∥2 ∥x∗ − xk−1∥2

Ak ∥x∗ − xk−1∥2
(
A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)
 ≤ exp(1), (53)

where the last inequality follows from Lemma 4.1. Thus, given any l ∈ [T ], applying Lemma C.4,
we have that for any λ > 0, with probability at least 1− δ,

l∑
k=1

Yk ≤3λ

4

l∑
k=1

Ak ∥x∗ − xk−1∥2
(
A△md

k +B
∥∥∇f

(
xmd
k

)∥∥2 + C
)
+

1

λ
log

1

δ

≤3λ

4

l∑
k=1

Ak ∥x∗ − xk−1∥2 M2
k +

1

λ
log

1

δ
, (54)

where the second inequality follows from Lemma C.3 and the definition of Mk in (49). For any
fixed λ, we can rescale over δ and have that with probability at least 1− δ, for all l ∈ [T ],

l∑
k=1

Yk ≤ 3λ

4

l∑
k=1

Ak ∥x∗ − xk−1∥2 M2
k +

1

λ
log

T

δ
.

Let λ =
2 log T

δ

P(F2)
, and we obtain the desired result.

We provide the following lemma for Algorithm 2, which is similar to Lemma D.1 in the deterministic
case.
Lemma E.4. Let

{
xmd
k

}
k∈[T ]

and {xag
k }

k∈[T ]
be the two sequences generated by Algorithm 2.

Then we have that for all k ∈ [T ],∥∥xmd
k − xag

k−1

∥∥2 ≤ 1

Ak ·Ak−1

k−1∑
i=1

A2
i · (λi − β)

2

Ai −Ai−1
∥gi∥2 .

Proof. Lemma E.4 can be seen as a corollary of Lemma D.1. As long as we replace the accurate
gradient ∇f(xmd

k ) in Lemma D.1 with the stochastic gradient gt, the proof is finished.

E.2 CONVERGENCE ANALYSIS

In the next two lemmas, we assume that △md
l is bounded in the first t iterations and derive the itera-

tion sequence based on the above analysis, in preparation for the induction argument in Lemma E.7.
Lemma E.5. Suppose that f

(
xmd
l

)
− f∗ ≤ F2, ∀l ∈ [t]. Then, under (47), for all l ∈ [t],the

conditions of Theorem 2, we have that for all l ∈ [t], given δ ∈ (0, 1), with probability at least 1− δ

Al△ag
l +

2

β
∥xl − x∗∥2 ≤Al−1△ag

l−1 +
2

β
∥xl−1 − x∗∥2 − 1

2
βAl

∥∥∇f(xmd
l )
∥∥2 + 1

2
βAl ∥ξl∥2

+
〈
ξl,−βAl∇f(xmd

l ) + (Al −Al−1) (x
∗ − xl−1)

〉
. (55)

Proof. Suppose that (47) in Lemma E.1 always happen, then we deduce (55) always holds. Since
(47) holds with probability at least 1− δ, it follows that (55) happens with probability at least 1− δ.
With the assumption that △md

l ≤ F2, ∀l ∈ [t] and applying Corollary 1, we have
∥∥∇f(xmd

l )
∥∥ ≤√

g (F2), ∀l ∈ [t]. Therefore,∥∥xag
l − xmd

l

∥∥ =β
∥∥∇f(xmd

l ) + ξl
∥∥ ≤ β

(∥∥∇f(xmd
l )
∥∥+ ∥ξl∥

)
≤β

(√
g(F2) +M

√
log

T e

δ

)
≤ min {1/L1, 1/L2} ,
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where the first inequality follows from the triangle inequality and the second inequality holds since
(47). The last inequality holds since β ≤ 1/G1,1 and β ≤ 1/G1,2 with G1,1,G1,2 defined in (44). By
Lemma C.2, we have

f (xag
l ) ≤f

(
xmd
l

)
+
〈
∇f(xmd

l ),xag
l − xmd

l

〉
+

L0 + L1 (g(F2))
p
2 + L2Fq

2

2

∥∥xag
l − xmd

l

∥∥2
=f
(
xmd
l

)
− β

∥∥∇f(xmd
l )
∥∥2 − β

〈
∇f(xmd

l ), ξl
〉

+
L0 + L1 (g(F2))

p
2 + L2Fq

2

2
β2
∥∥∇f(xmd

l ) + ξl
∥∥2 . (56)

Note that (31) is derived from the convexity of f and the iteration step

xmd
t =

At−1

At
xag
t−1 +

(
1− At−1

At

)
xt−1,

which is the same in Algorithm 1 and Algorithm 2. Thus, (31) holds here. Combining (31) and (56),

f (xag
l )

≤Al−1

Al
f
(
xag
l−1

)
+

(
1− Al−1

Al

)
f∗ +

(
1− Al−1

Al

)〈
∇f(xmd

l ),xl−1 − x∗〉
− β

∥∥∇f(xmd
l )
∥∥2 − β

〈
∇f(xmd

l ), ξl
〉
+

L0 + L1 (g(F2))
p
2 + L2Fq

2

2
β2
∥∥∇f(xmd

l ) + ξl
∥∥2 .
(57)

Also, by the iteration step, we have

∥xl−1 − x∗∥2 − 2λl

〈
∇f(xmd

l ) + ξl,xl−1 − x∗〉+ λ2
l

∥∥∇f(xmd
l ) + ξl

∥∥2
=
∥∥xl−1 − λl

(
∇f(xmd

l ) + ξl
)
− x∗∥∥2 = ∥xl − x∗∥2 .

Hence,〈
∇f(xmd

l ) + ξk,xl−1 − x∗〉 = 1

2λl

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
+

λl

2

∥∥∇f(xmd
l ) + ξl

∥∥2 .
(58)

Combining with the fact that∥∥∇f(xmd
l ) + ξl

∥∥2 =
∥∥∇f(xmd

l )
∥∥2 + 2

〈
ξl,∇f(xmd

l )
〉
+ ∥ξl∥2 ≤ 2

∥∥∇f(xmd
l )
∥∥2 + 2 ∥ξl∥2 ,

(59)

we have

f (xag
l ) ≤Al−1

Al
f
(
xag
l−1

)
+

(
1− Al−1

Al

)
f∗ +

Al −Al−1

2Al · λl

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
− β

(
1−

(
L0 + L1 (g(F2))

p
2 + L2Fq

2

)
β − λl (Al −Al−1)

βAl

)∥∥∇f(xmd
l )
∥∥2

+

((
L0 + L1 (g(F2))

p
2 + L2Fq

2

)
β2 +

λl (Al −Al−1)

Al

)
∥ξl∥2

+

〈
ξl,−β∇f(xmd

l ) +
Al −Al−1

Al
(x∗ − xl−1)

〉
. (60)

Since the setting of λl in (9), we have

Al −Al−1

2Al · λl
=

2

Al · β
,

and
Al −Al−1

Al
λl =

Al −Al−1

4Al
· β (Al −Al−1) ≤

β

4
,
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where the inequality follows from Lemma 4.1. Combining with the constraint that β ≤ 1/G1,3Thus,
we have

f (xag
l ) ≤Al−1

Al
f
(
xag
l−1

)
+

(
1− Al−1

Al

)
f∗ +

2

Al · β

[
∥xl−1 − x∗∥2 − ∥xl − x∗∥2

]
− 1

2
β
∥∥∇f(xmd

l )
∥∥2 + 1

2
β ∥ξl∥2 +

〈
ξl,−β∇f(xmd

l ) +
Al −Al−1

Al
(x∗ − xl−1)

〉
.

Multiplying Al on both sides and re-arranging the inequality, we obtain the desired result.

Lemma E.6. Under the condition of Lemma E.5, let (47), (48) and (52). Thenfor any δ ∈ (0, 1/3),
it holds that with probability at least 1− 3δ,

Al△ag
l +

2

β
∥xl − x∗∥2 + 1

4
β

l∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 ≤ P(F2), ∀0 ≤ l ≤ t, (61)

where

P(F2) =
2C2
β

+
17

2
TATβM2 log

T e

δ
, (62)

and C2 is defined in (46).

Proof. It is apparent that

A0△ag
0 +

2

β
∥x0 − x∗∥2 ≤ P(F2).

Suppose that for some k ∈ [t− 1],

Al△ag
l +

2

β
∥xl − x∗∥2 + 1

4
β

l∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 ≤ P(F2), ∀0 ≤ l ≤ k. (63)

In what follows, we will bound

Ak+1△ag
k+1 +

2

β
∥xk+1 − x∗∥2 + 1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 .

Note that f
(
xmd
l

)
− f∗ ≤ F2, ∀l ∈ [t], according to Lemma E.5, (55) and Ml ≤ M hold here for

all l ∈ [k + 1]. Thus, summing up (55) over l ∈ [k + 1], we have

Ak+1△ag
k+1 +

2

β
∥xk+1 − x∗∥2 ≤ A0△ag

0 +
2

β
∥x0 − x∗∥2 − 1

2
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2

+
1

2
β

k+1∑
i=1

Ai ∥ξi∥2 − β

k+1∑
i=1

Ai

〈
ξi,∇f(xmd

i )
〉
+

k+1∑
i=1

(Ai −Ai−1) ⟨ξi,x∗ − xi−1⟩ . (64)

Applying (48) and letting l = k + 1, we have

−β

k+1∑
i=1

Ai

〈
ξi,∇f(xmd

i )
〉
≤ 1

4ATM2
β

k+1∑
i=1

A2
i

∥∥∇f(xmd
i )
∥∥2 M2

i + 3ATβM2 log
T

δ

≤1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 + 3ATβM2 log

T

δ
, (65)

where the second inequality follows from Mi ≤ M and Ai ≤ AT for all i ∈ [k + 1]. Similarly,
applying (52), we obtain that

k+1∑
i=1

(Ai −Ai−1) ⟨ξi,x∗ − xi−1⟩ ≤
3 log T

δ

2P(F2)

k+1∑
i=1

Ai ∥x∗ − xi−1∥2 M2
i +

P(F2)

2

≤3

4
β log

T

δ

k+1∑
i=1

AiM2
i +

P(F2)

2

≤3

4
βT ·ATM2 log

T

δ
+

P(F2)

2
, (66)
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where the second inequality holds since

∥xi − x∗∥2 ≤ 1

2
β · P(F2), ∀0 ≤ i ≤ k,

derived from (63), and the last inequality follows from Mi ≤ M and Ai ≤ AT for all i ∈ [k + 1].
Combining (64), (65) and (66), we have

Ak+1△ag
k+1 +

2

β
∥xk+1 − x∗∥2

≤A0△ag
0 +

2

β
∥x0 − x∗∥2 − 1

2
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 + 1

2
β

k+1∑
i=1

Ai ∥ξi∥2

+
1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 + 3ATβM2 log

T

δ
+

3

4
βT ·ATM2 log

T

δ
+

P(F2)

2
.

Applying (48) with the assumption that △md
l ≤ F2, ∀l ∈ [t],

∥ξl∥2 ≤ M2 log
T e

δ
.

Combining the above inequalities, we obtain that

Ak+1△ag
k+1 +

2

β
∥xk+1 − x∗∥2

≤A0△ag
0 +

2

β
∥x0 − x∗∥2 − 1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2

+

(
1

2
log

T e

δ
+

3

4
log

T

δ

)
T ·ATβM2 + 3ATβM2 log

T

δ
+

P(F2)

2

≤A0△ag
0 +

2

β
∥x0 − x∗∥2 − 1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 + 17

4
TATβM2 log

T e

δ
+

P(F2)

2
.

Hence, we could deduce that

Ak+1△ag
k+1 +

2

β
∥xk+1 − x∗∥2 + 1

4
β

k+1∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 ≤ P(F2), (67)

since

P(F2) =
2

β

(
△ag

0 + 2 ∥x0 − x∗∥2
)
+

17

2
TATβM2 log

T e

δ
.

Based on previous lemmas, we will provide the upper bound of △md
t for all t ∈ [T ].

Lemma E.7. Under the condition of Theorem 2, let (47), (48) and (52). Thenfor any given
δ ∈ (0, 1/3) we have that with probability at least 1− 3δ,

f
(
xmd
t

)
− f∗ ≤ F2, ∀t ∈ [T ], (68)

where F2 is defined in (45).

Proof. It is apparent that f
(
xmd
1

)
− f∗ = f (xag

0 )− f∗ ≤ F2. Suppose that for some t ∈ [T ],

f
(
xmd
l

)
− f∗ ≤ F2, ∀l ∈ [t].

Then, by Lemma E.6, (61) holds. Next, we will bound f
(
xmd
t+1

)
− f∗. By Lemma E.4, we have∥∥xmd

t+1 − xag
t

∥∥2 ≤ 1

At+1 ·At

t∑
i=1

A2
i · (λi − β)

2

Ai −Ai−1

∥∥∇f(xmd
i ) + ξi

∥∥2
≤2

t∑
i=1

λ2
i + β2

Ai −Ai−1

∥∥∇f(xmd
i ) + ξi

∥∥2 , (69)
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where the second inequality holds since (a− b)
2 ≤ 2a2+2b2 and Ai ≤ At ≤ At+1, ∀i ∈ [t]. Also,

since λt =
1
4β (At −At−1) for all t ∈ [T ], we have

∥∥xmd
t+1 − xag

t

∥∥2 ≤2β2
t∑

i=1

1
16 (Ai −Ai−1)

2
+ 1

Ai −Ai−1

∥∥∇f(xmd
i ) + ξi

∥∥2
≤17

8
β2

t∑
i=1

(Ai −Ai−1)
∥∥∇f(xmd

i ) + ξi
∥∥2

≤17

4
β2

t∑
i=1

(Ai −Ai−1)
(∥∥∇f(xmd

i )
∥∥2 + ∥ξi∥2

)
,

where the second inequality follows from Lemma 4.1 and the last inequality holds since ∥a+ b∥2 ≤
2 ∥a∥2 + 2 ∥b∥2. Applying Lemma 4.1 and using the fact that

√
βAi =

√
βBi + 1 ≥ 1, ∀i ∈ [T ],

we have ∥∥xmd
t+1 − xag

t

∥∥2 ≤17

4
β2

t∑
i=1

√
Ai

(∥∥∇f(xmd
i )
∥∥2 + ∥ξi∥2

)
≤17

4
β

5
2

t∑
i=1

Ai

(∥∥∇f(xmd
i )
∥∥2 + ∥ξi∥2

)
. (70)

Since the assumption that f
(
xmd
l

)
− f∗ ≤ F2, ∀l ∈ [t], by (61), we have

β

t∑
i=1

Ai

∥∥∇f(xmd
i )
∥∥2 ≤ 4P(F2).

Combining with (70), (47) and recalling the expression of P(F2) in (62), we obtain that∥∥xmd
t+1 − xag

t

∥∥2 ≤17β
3
2P(F2) +

17

4
β

5
2TATM2 log

T e

δ

=34
√
β · C2 +

289

2
β

5
2TATM2 log

T e

δ
+

17

4
β

5
2TATM2 log

T e

δ

=34
√
β · C2 +

595

4
β

5
2TATM2 log

T e

δ
.

Combining with Lemma 4.1 and the setting that AT = BT + 1/β, we have∥∥xmd
t+1 − xag

t

∥∥2 ≤ 34
√

β · C2 +
595

4
β

5
2T 3M2 log

T e

δ
+

595

4
β

3
2TM2 log

T e

δ
.

Since β ≤ min
{
1/G1,4, 1/

(
G2T

6
5

)
, 1/

(
G3T

2
3

)}
, where G1,4,G2,G3 are defined in (43), (44),∥∥xmd

t+1 − xag
t

∥∥2 ≤ 1

(L1 + L2)
2 .

Hence, applying Lemma C.2 and Cauchy-Schwarz inequality, we have

f
(
xmd
t+1

)
≤f (xag

t ) +
〈
∇f(xag

t ),xmd
t+1 − xag

t

〉
+

L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2

∥∥xmd
t+1 − xag

t

∥∥2
≤f (xag

t ) + ∥∇f(xag
t )∥ ·

∥∥xmd
t+1 − xag

t

∥∥+ L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2

∥∥xmd
t+1 − xag

t

∥∥2
≤f (xag

t ) +
1

L1 + L2
∥∇f(xag

t )∥+ L0 + L1 ∥∇f(xag
t )∥p + L2 (△ag

t )
q

2 (L1 + L2)
2 . (71)

Since the assumption that △md
l ≤ F2, ∀l ∈ [t], by Lemma E.6, we have

△ag
t ≤ P(F2)

At
≤β · P(F2), (72)
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where the second inequality holds since At ≥ 1/β. Plugging (62) into (72), we obtain that

△ag
t ≤2C2 +

17

2
T 3β2M2 log

T e

δ
+

17

2
TβM2 log

T e

δ
≤ 2C2 + 17 log

T e

δ
= H,

where the last inequality follow from

β ≤ 1

MT
3
2

, and β ≤ 1

M2T
.

Note that H is independent on F2. By Corollary 1, we have ∥∇f(xag
t )∥ ≤

√
g(H). Combining

with (71) and subtracting f∗ from both sides, we obtain that

△md
t+1 ≤ H+

√
g(H)

L1 + L2
+

L0 + L1 (g(H))
p
2 + L2Hq

2 (L1 + L2)
2 = F2.

Now we finish the induction and obtain the desired result.

With the above lemmas, we are ready to prove the final convergence result.

Proof of Theorem 2. In what follows, we assume (47), (48) and (52) always hold, and under these
conditions we prove the desired error bounds. Using Lemmas E.1, E.2 and E.3, (47), (48) and (52)
hold with probability at least 1 − 3δ. Thus, the desired error bounds also hold with probability at
least 1− 3δ.

By Lemma E.7, (68) holds. Based on Lemma E.6, we obtain that

△ag
T ≤ P(F2)

AT
≤ 8C2

T 2β
+

17

2
TβM2 log

T e

δ
.

Since the constraints of β in (9), we have

△ag
T ≤8C2

T 2
(L1 + L2)

(√
g (F2) +M

√
log

T e

δ

)

+
32C2
T 2

(
L0 + L1 (g (F2))

p
2 + L2Fq

2 + 1156 (L1 + L2)
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2

)
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4
5

(595)
2
5 (L1 + L2)

4
5 M 4

5

(
log

T e

δ

) 2
5
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T

4
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(595)
2
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4
3 M 4

3

(
log

T e

δ

) 2
3

+
8C2M2

T
+

M√
T

(
17

2
log

T e

δ
+ 8C2

)
. (73)

F PROOF OF THEOREM 3

We first provide the following lemma as a key to the induction argument in Lemma F.2.

Lemma F.1. Under the conditions of Theorem 3, for all t ∈ [T ], it holds that

E [At△ag
t ] +

1 +B

β
E
[
∥xt − x∗∥2

]
≤C3

β
− 1

2
β

t∑
l=1

AlE
[∥∥∇f(xmd

l )
∥∥2]+ 1

2 (1 +B)
β

t∑
l=1

AlE
[
A△md

l + C
]
,

where

C3 = △ag
0 + (1 +B) ∥x0 − x∗∥2 . (74)
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Proof. By the descent lemma for Lipschitz smooth functions and the iteration step in Algorithm 2,

f (xag
l ) ≤f
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xmd
l

)
+
〈
∇f(xmd

l ),xag
l − xmd

l

〉
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L

2
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l )
∥∥2 − β

〈
∇f(xmd

l ), ξl
〉
+

L

2
β2
∥∥∇f(xmd

l ) + ξl
∥∥2 .

Note that (31), (58) and (59) still holds here as they are independent of the smoothness condition.
Thus,

f (xag
l )

≤Al−1

Al
f
(
xag
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)
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(
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(
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2
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〉
. (75)

By Assumption 4, we obtain that for all l ∈ [T ],

E
[
∥ξ

l
∥2
]
= E

[
El

[
∥ξl∥2

]]
≤ E

[
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l )
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]
. (76)

With multiplying Al and taking expectation on both sides of (75), we have
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where the second inequality follows from (76). Since λk = β
2(1+B) (Ak −Ak−1)

λk = 1
2β (Ak −Ak−1), we have

Al −Al−1

2λl
=

1 +B

β
,

and

λl (Al −Al−1)

2βAl
=

(Al −Al−1)
2

4Al (1 +B)
≤ 1

4 (1 +B)
,
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where the inequality follows from Lemma 4.1. Combining with (77), we have
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]
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,

where the last inequality follows from β ≤ 1
2L(1+B) . Re-arranging the above inequality and sum-

ming up over l ∈ [t], we obtain that
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where the last line holds since A0 = 1/β.

Similar to Lemma E.7, we will bound the function value gap in expectation by induction.
Lemma F.2. Under the condition of Theorem 3, we have

E
[
f
(
xmd
t

)
− f∗] ≤ F3, ∀t ∈ [T ],

where
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(
2 + 5

√
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)
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√
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with C3 defined in (74).

Proof. We will prove this lemma by induction. Obviously, we have E
[
f
(
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1

)
− f∗] = f (xag

0 )−
f∗ ≤ F3. Suppose that for some t ∈ [T ],
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− f∗]. Since (69) is independent of the smoothness condition, it
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where the second inequality holds since the constraint of λi in (44), the third inequality follows from
Lemma 4.1 and the last inequality holds since ∥a+ b∥2 ≤ 2

(
∥a∥2 + ∥b∥2

)
. Applying Lemma 4.1

again and using the fact that
√
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(79)

Taking expectation on both sides of the above inequality and combining with (76), we obtain that
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where the second inequality follows from Lemma F.1, the third inequality holds since Ai ≤
AT , ∀i ∈ [t] and the assumption that E

[
△md

i

]
≤ F3, ∀i ∈ [t], and the last inequality follows

from Lemma 4.1 with At = Bt + 1/β, ∀t ∈ [T ]. Since the constraints of β in (10), we have

E
[∥∥xmd

t+1 − xag
t

∥∥2] ≤5
√
2 (1 +B)√

L
C3 +

10
√
2√

L (1 +B)
.

Applying the descent lemma again, we obtain that
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∥∥2 ,
where we apply Cauchy-Schwarz inequality in the second inequality and apply Young’s inequality
in the third line. The last inequality follows from Lemma C.1. Subtracting f∗ from both sides and
taking expectation, we have

E
[
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With the assumption that f

(
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where the second inequality holds since At ≥ 1/β and Ai ≤ At, ∀ ∈ [t], and the last line follows
from the definition of β. Therefore, we have

E
[
△md
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]
≤
(
2 + 5

√
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)
C3 + 1 + 10

√
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Now we finish the induction and obtain the desired result.
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Based on Lemma F.1 and Lemma F.2, we could obtain the final convergence rate.

Proof of Theorem 3. By Lemma F.2, we have E
[
f
(
xmd
t

)
− f∗] ≤ F3, ∀t ∈ [T ]. Then, combining

Lemma F.1, Assumption 4 and the fact that At ≤ AT , ∀t ∈ [T ], we obtain that

E [f (xag
T )− f∗] ≤ 1
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T 2
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√
Q

2
√
T
, (80)

where the second inequality holds since Lemma 4.1 and the setting of β in (10).

G NON-CONVEX OPTIMIZATION

In this section, we present Stochastic Accelerated Gradient Descent (stochastic AGD) (Algorithm
3) and its convergence analysis. Algorithm 3 could reduce to some famous algorithms, such as
SGD, and was well studied in (Ghadimi & Lan, 2016; Kavis et al., 2022; Yu et al., 2025). SNAG
(Algorithm 2) can be viewed a special case of Algorithm 3. To apply our theoretical analysis from
the convex case to the non-convex case, we adopt a different step size setting.

Algorithm 3 Stochastic Accelerated Gradient Descent (stochastic AGD)

Require: Horizon T , xag
0 = x0 ∈ Rd, step sizes {βt}t∈[T ] , {λt}t∈[T ].

1: for t = 1, · · · , T do
2: xmd

t = (1− αt)x
ag
t−1 + αtxt−1;

3: Set gt = ∇fz
(
xmd
t ; zt

)
;

4: xt = xt−1 − λtgt;
5: xag

t = xmd
t − βtgt.

We have the following results for the above algorithm.
Theorem 4. Let T > 0 and f be an (L0, L1, L2)-smooth function. Under Assumptions 1-3, consider
Algorithm 3 with αt =

2
t+1 , λt = η and βt = ηαt + λt, ∀t ∈ [T ]. Let
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where

Y =

√
A log

T e

δ
F4 +

(√
B log

T e

δ
+ 1

)√
g (F4) +

√
C log

T e

δ
, (81)

Y1 = L0 + L1 (g (K))
p
2 + L2Kq,

Pc =
√

AF4 +Bg (F4) + C, (82)

K = F4 +
1

L1 + L2

√
g(F4) +

L0 + L1 (g(F4))
p
2 + L2Fq

4

2 (L1 + L2)
2 ,

F4 = △md
1 + 1 +

1

L1 + L2

√
g(1 +△md

1 ) +
L0 + L1

(
g(1 +△md

1 )
) p

2 + L2

(
1 +△md

1

)q
2 (L1 + L2)

2 ,

and g is the function given by (24). Then with probability at least 1− 2δ,

1

T

T∑
l=1

∥∥∇f(xmd
l )
∥∥2 ≤

2
(
1 +△md

1

)
T

(L1 + L2)Y +
16
(
1 +△md

1

)
T

Y1

(
B log

T e

δ
+ 1

)

+
8
(
1 +△md

1

)
√
T

(√
AF4 +

√
C
)√

Y1 log
T e

δ

+
12
(
1 +△md

1

)
T

P2
c log

T e

δ
. (83)
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The upper rate from (83) is of order Õ(1/T +
√
(A+ C)/T ), which matches that in (Ghadimi &

Lan, 2016) for stochastic AGD with bounded variances and also the lower rate in (Arjevani et al.,
2023) of finding stationary points in non-convex smooth stochastic optimizations with bounded
variances when C > 0.

Under the (L0, L1)-smoothness assumption, Yu et al. (2025) analyzed stochastic AGD for non-
convex objective functions and they proved that the average of the squared norm converges at the
rate of Õ

(
1/T +

√
(A+ C) /T

)
with high probability. Here, we follow the analytical approach

from (Yu et al., 2025) and make slight modifications to the proof methods to accommodate the
more general smooth assumptions. To prove the theorem, we first provide several useful lemmas
following from (Ghadimi & Lan, 2016; Kavis et al., 2022; Yu et al., 2025).

Proposition G.1 (Proposition 5.2 in (Kavis et al., 2022)). Denote αt =
2

t+1 and Γt = (1− αt)Γt−1

with Γ1 = 1, ∀t ∈ [T ]. We have that for all t ∈ [T ],

Γt

t∑
k=1

αk

Γk
= 1, (84)

and [
T∑

k=t

(1− αk)Γk

]
αt

Γt
≤ 2. (85)

Lemma G.1. Given T ≥ 1 and δ ∈ (0, 1), if Assumptions 2 and 3 hold, then with probability at
least 1− δ,

l∑
k=1

−
〈
∇f(xmd

k ), ξk
〉
≤ 1

4

l∑
k=1

P2
k

P2
c

∥∥∇f(xmd
k )
∥∥2 + 3P2

c log
T

δ
, ∀l ∈ [T ], (86)

where

Pk =
√

A△md
k +Bg

(
△md

k

)
+ C, (87)

and Pc is given by (82).

Proof. Let Zk = −
〈
∇f(xmd

k ), ξk
〉
. Note that ∇f(xmd

k ) is a random variable dependent on
z1, · · · , zk−1 and ξk is dependent on z1, · · · , zk. Therefore, it is apparent that Zk is a martingale
difference sequence since

E
[
−
〈
∇f(xmd

k ), ξt
〉
|z1, · · · , zk−1

]
= −

〈
∇f(xmd

k ),Ek[ξk]
〉
= 0.

Also by Assumption 3 and applying Cauchy-Schwarz inequality, we obtain that

Ek

exp
 Z2

k∥∥∇f(xmd
k )
∥∥2 (A△md

k +B
∥∥∇f(xmd

k )
∥∥2 + C

)


≤Ek

exp
 ∥∥∇f(xmd

k )
∥∥2 ∥ξk∥2∥∥∇f(xmd

k )
∥∥2 (A△md

k +B
∥∥∇f(xmd

k )
∥∥2 + C

)
 ≤ e.

Therefore, given any l ∈ [T ], applying Lemma C.4, we have that for any λ > 0, with probability at
least 1− δ,

l∑
k=1

Zt ≤
3λ

4

l∑
k=1

∥∥∇f(xmd
k )
∥∥2 (A△md

k +B
∥∥∇f(xmd

k )
∥∥2 + C

)
+

1

λ
log

1

δ

≤3λ

4

l∑
k=1

∥∥∇f(xmd
k )
∥∥2 P2

k +
1

λ
log

1

δ
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where Pk is defined in (87). For any fixed λ, we can re-scale over δ and have that with probability
at least 1− δ, for all l ∈ [T ],

l∑
k=1

−
〈
∇f(xmd

k ), ξk
〉
≤ 3λ

4

l∑
t=1

∥∥∇f(xmd
k )
∥∥2 P2

k +
1

λ
log

T

δ
. (88)

Let λ = 1
3P2

c
, and we obtain the desired result.

Proposition G.2. Let {xt}t∈[T ] and {xmd
t }t∈[T ] be generated by Algorithm 3. We have

xmd
t − xt−1 = (1− αt)Γt−1

t−1∑
k=1

αk

Γk

(λk − βk)

αk
gk, (89)

and ∥∥xmd
t − xt−1

∥∥2 ≤ (1− αt)Γt

t−1∑
k=1

αk

Γk

(λk − βk)
2

α2
k

∥gk∥2 . (90)

Proof. From Algorithm 3, we have

xag
k − xk = xmd

k − βkgk − xk−1 + λkgk = (1− αk)
(
xag
k−1 − xk−1

)
+ (λk − βk) gk.

Since xag
0 = x0, we obtain that

xag
k − xk =

k∑
i=1

 k∏
j=i+1

(1− αj)

 (λi − βi) gi = Γk

k∑
i=1

1

Γi
(λi − βi) gi.

Taking the norm function on both sides and applying the triangle inequality, we have

∥xag
k − xk∥ ≤Γk

k∑
i=1

1

Γi
|λi − βi| · ∥gi∥ = Γk

k∑
i=1

αi

Γi

|λi − βi|
αi

· ∥gi∥ . (91)

By the iteration step in Algorithm 3, we have

xmd
k − xk−1 = (1− αk)

(
xag
k−1 − xk−1

)
.

Combining with (91), we obtain that

∥∥xmd
k − xk−1

∥∥ =(1− αk)
∥∥xag

k−1 − xk−1

∥∥ ≤ (1− αk)Γk−1

k−1∑
i=1

αi

Γi

|λi − βi|
αi

· ∥gi∥ .

Similarly, by the convexity of norm square and (84),

∥∥xmd
k − xk−1

∥∥2 ≤ (1− αk)
2
Γk−1

k−1∑
i=1

αi

Γi

(λi − βi)
2

α2
k

∥gi∥2 = (1− αk)Γk

k−1∑
i=1

αi

Γi

(λi − βi)
2

α2
k

∥gi∥2 .

Lemma G.2. Let {at}t∈[n] be a sequence of non-negative real numbers. We have√√√√ n∑
i=1

ai ≤
n∑

i=1

√
ai.

In the following analysis, denote △t = f (xt)− f∗ for simplicity.

Proposition G.3. Under the conditions and notations of Theorem 4, △md
t ≤ F4, ∀t ∈ [T ], hold

with probability at least 1− δ.
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Proof. We assume that (47) and (86) always happen and then deduce △md
t ≤ F4 for all t ∈ [T ].

Since (47) and (86) happen with probability at least 1 − δ separately, △md
t ≤ F4, ∀t ∈ [T ], holds

with probability at least 1− 2δ. It is obvious that f(xmd
1 )− f∗ ≤ F4. Therefore, by Corollary 1 we

have P1 ≤ Pc. Suppose that for some t ∈ [T ],

f(xmd
l )− f∗ ≤ F4, ∀l ∈ [t].

By the triangle inequality of the norm function, we have that for all l ∈ [t],

∥gl∥ ≤
∥∥gl −∇f(xmd

l )
∥∥+ ∥∥∇f(xmd

l )
∥∥

≤
√(

A△md
l +B

∥∥∇f(xmd
l )
∥∥2 + C

)
log

T e

δ
+
∥∥∇f(xmd

l )
∥∥

≤
√

A log
T e

δ
△md

l +

(√
B log

T e

δ
+ 1

)∥∥∇f(xmd
l )
∥∥+√C log

T e

δ
, (92)

where the second inequality follows from Lemma E.1 and the last inequality follows from Lemma
G.2. Combining with Corollary 1 and the assumption that △md

l ≤ F4, ∀l ∈ [t], we have

∥gl∥ ≤ Y, ∀l ∈ [t]. (93)

By the iteration step of Algorithm 3, we have

∥xl − xl−1∥ = λl ∥gl∥ = η ∥gl∥ ≤ ηY ≤ min {1/L1, 1/L2} , ∀l ∈ [t],

where the last inequality follows from the restriction of η. Thus, we could apply Lemma C.2 and
obtain that

f(xl)− f(xl−1)

≤⟨∇f(xl−1),xl − xl−1⟩+
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

2
∥xl − xl−1∥2

=− η ⟨∇f(xl−1), gl⟩+
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

2
η2 ∥gl∥2

=− η
〈
∇f(xmd

l ) +∇f(xl−1)−∇f(xmd
l ),∇f(xmd

l ) + ξl
〉

+
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

2
η2 ∥gl∥2

=− η
∥∥∇f(xmd

l )
∥∥2 − η

〈
∇f(xmd

l ), ξl
〉
− η

〈
∇f(xl−1)−∇f(xmd

l ), gl
〉

+
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

2
η2 ∥gl∥2

≤− η
∥∥∇f(xmd

l )
∥∥2 − η

〈
∇f(xmd

l ), ξl
〉
+ η

∥∥∇f(xl−1)−∇f(xmd
l )
∥∥ ∥gl∥

+
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

2
η2 ∥gl∥2 ,

where the first equation follows from the update rule in Algorithm 3 and the last line follows from
Cauchy-Schwarz inequality. Applying Lemma G.2 with βt−λt

αt
= λt = η, we have

∥∥xmd
l − xl−1

∥∥ =(1− αl)Γl−1

∥∥∥∥∥
l−1∑
k=1

αk

Γk

(λk − βk)

αk
gk

∥∥∥∥∥ ≤ (1− αl)Γl−1

l−1∑
k=1

αk

Γk
η ∥gk∥

≤ηYΓt−1

l−1∑
k=1

αk

Γk
≤ min {1/L1, 1/L2} , (94)

where the first inequality follows from the triangle inequality and the second inequality holds since
(92). The last inequality follows from (84). Note that ∥gl∥ ≤ Y for all l ∈ [t] and

∥∥xmd
l − xl−1

∥∥
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depends on g1, · · · , gl−1. Thus, (94) holds for all l ∈ [t+ 1]. Applying Definition 1, we have that

f(xl)− f(xl−1)

≤− η
∥∥∇f(xmd

l )
∥∥2 − η

〈
∇f(xmd

l ), ξl
〉
+ η

(
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l−1

) ∥∥xl−1 − xmd
l

∥∥ ∥gl∥
+

L0 + L1 ∥∇f(xl−1)∥p + L2△q
l−1

2
η2 ∥gl∥2

≤− η
∥∥∇f(xmd

l )
∥∥2 − η

〈
∇f(xmd

l ), ξl
〉
+

L0 + L1 ∥∇f(xl−1)∥p + L2△q
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2

∥∥xl−1 − xmd
l

∥∥2
+
(
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

)
η2 ∥gl∥2

≤− η
∥∥∇f(xmd

l )
∥∥2 − η

〈
∇f(xmd

l ), ξl
〉

+
η2

2

(
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

)
(1− αl)Γl

l−1∑
k=1

αk

Γk
∥gk∥2

+ η2
(
L0 + L1 ∥∇f(xl−1)∥p + L2△q

l−1

)
∥gl∥2 , (95)

where the second inequality follows from the fact that ab ≤ a2+b2

2 and the last inequality follows
from (90). Summing up the above inequality over l ∈ [t], we obtain that

f(xt)− f(x0) ≤
η2

2

t∑
l=1

[(
L0 + L1 ∥∇f(xl−1)∥p + L2△q
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+ η2
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(
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)
∥gl∥2

− η
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〈
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≤η2
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l=1

[
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(
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)
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∥gl∥2

+ η2
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(
L0 + L1 ∥∇f(xl−1)∥p + L2△q
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)
∥gl∥2

− η

t∑
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∥∥∇f(xmd
l )
∥∥2 − η

t∑
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〈
∇f(xmd

l ), ξl
〉
. (96)

By (94), we have that
∥∥xmd

l − xl−1

∥∥ ≤ min {1/L1, 1/L2} for all l ∈ [t + 1]. Thus, applying
Lemma C.2 again, we obtain that

f(xl−1) ≤f(xmd
l ) +

〈
∇f(xmd

l ),xl−1 − xmd
l

〉
+

L0 + L1

∥∥∇f(xmd
l )
∥∥p + L2

(
△md

l

)q
2

∥∥xl−1 − xmd
l

∥∥2
≤f(xmd

l ) +
∥∥∇f(xmd

l )
∥∥ · ∥∥xl−1 − xmd

l

∥∥
+

L0 + L1

∥∥∇f(xmd
t )
∥∥p + L2

(
△md

l

)q
2

∥∥xl−1 − xmd
l

∥∥2 ,
where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f∗ from both
sides and applying the assumption that △md

l ≤ F4, ∀l ∈ [t], we have

f(xl−1)− f∗ ≤ F4 +
1

L1 + L2

√
g(F4) +

L0 + L1 (g(F4))
p
2 + L2Fq

4

2 (L1 + L2)
2 = K, ∀l ∈ [t].
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Thus, by Corollary 1, we have ∥∇f(xl)∥ ≤
√
g(K) for all l ∈ [t − 1]. Combining with (96), we

obtain that

f(xt)− f(x0) ≤
η2

2
Y1

t∑
l=1

[
t∑

k=l

(1− αk)Γk

]
αl

Γl
∥gl∥2 + η2Y1

t∑
l=1

∥gl∥2

− η

l∑
t=1

∥∥∇f(xmd
k )
∥∥2 − η
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t=1

〈
∇f(xmd

k ), ξt
〉

≤2η2Y1
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l=1

∥gl∥2 − η
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l=1

∥∥∇f(xmd
l )
∥∥2 − η

t∑
l=1

〈
∇f(xmd

l ), ξl
〉
, (97)

where the second inequality follows from (85). Using the fact that ∥a+ b∥2 ≤ 2 ∥a∥2+2 ∥b∥2 and
applying (47), we have that for all l ∈ [t],

∥gl∥2 ≤2 ∥ξl∥2 + 2
∥∥∇f(xmd

k )
∥∥2

≤2
(
A△md

l +B
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∥∥2 + C

)
log

T e

δ
+ 2
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δ
△md
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T e

δ
+ 1

)∥∥∇f(xmd
l )
∥∥2 + C log

T e

δ

)
.

Combining with (97) and applying Lemma G.1 to the summation of the martingale difference se-
quence, we obtain that

f(xt)− f(x0) ≤4η2Y1

(
B log

T e

δ
+ 1

) t∑
l=1

∥∥∇f(xmd
l )
∥∥2 + 4η2Y1A log
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δ
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△md
l
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4
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c
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4
+

1

4
+

1

2
. (98)

Since xmd
1 = (1− α1)x

ag
0 + α1x0 and xag

0 = x0, we have f(x0) = f(xmd
1 ). Thus,

△t ≤ △md
1 + 1. (99)

Since (94) holds for all l ∈ [t+ 1], we have that∥∥xmd
t+1 − xt

∥∥ ≤ min {1/L1, 1/L2} .

Therefore, applying Lemma C.2 again, we obtain that

f(xmd
t+1) ≤f(xt) +

〈
∇f(xt),x

md
t+1 − xt

〉
+

L0 + L1 ∥∇f(xt)∥p + L2△q
t

2

∥∥xmd
t+1 − xt

∥∥2
≤f(xt) + ∥∇f(xt)∥ ·

∥∥xmd
t+1 − xt

∥∥+ L0 + L1 ∥∇f(xt)∥p + L2△q
t

2

∥∥xmd
t+1 − xt

∥∥2 ,
where the second inequality follows from Cauchy-Schwarz inequality. Subtracting f∗ from both
sides and combining with (99), we have

△md
t+1

≤△md
1 + 1 +

1

L1 + L2

√
g(1 +△md

1 ) +
L0 + L1

(
g(1 +△md

1 )
) p

2 + L2

(
1 +△md

1

)q
2 (L1 + L2)

2 ≤ F4.

(100)

Now we finish the induction and obtain the desired result.
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Proof of Theorem 4. From Proposition G.3, we have that with probability at least 1−2δ, △md
t ≤ F4

for all t ∈ [T ]. Thus, (98) holds when t = T , i.e.,

η

2

T∑
l=1

∥∥∇f(xmd
l )
∥∥2 ≤ 1 +△md

1 . (101)

Dividing Tη/2 on both sides and combining with the constraints of η, we get the desired results.

H OMITTED PROOF

Proof of Lemma 4.1. To start with, we will prove the first line by induction. It is obvious that the
inequality holds for B0 = 0. Suppose that for some 0 ≤ t ≤ T , we have

1

4
k2 ≤ Bk ≤ k2, ∀k ∈ [t].

Then, we have

Bt+1 ≤ t2 +
1

2

(
1 +

√
4t2 + 1

)
≤ t2 +

1

2
(1 + 2t+ 1) ≤ (t+ 1)2,

and

Bt+1 ≥ 1

4
t2 +

1

2

(
1 +

√
t2 + 1

)
≥ 1

4
(t+ 1)

2
.

Therefore, we finish the proof for 1
4 t

2 ≤ Bt ≤ t2, ∀t ∈ [T ]. For the second conclusion in
Lemma 4.1,

(At −At−1)
2
= (Bt −Bt−1)

2
=
1

4

(
1 + 2

√
4Bt−1 + 1 + 4Bt−1 + 1

)
=Bt−1 +

1

2

(
1 +

√
4Bt−1 + 1

)
=Bt.

Since Bt ≥ 1
4 t

2, ∀t ∈ [T ], we have Bt ≥ 0,∀t ∈ [T ]. Therefore,

At −At−1 = Bt −Bt−1 =
1

2
+

1

2

√
4Bt−1 + 1 ≥ 1.

Now we finish the proof for all the inequalities.
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