
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WILT: A MULTI-TURN, MEMORIZATION-ROBUST
INDUCTIVE LOGIC BENCHMARK FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) have shown impressive capabilities across
a wide range of domains, they still encounter significant challenges in reason-
ing tasks that require gathering evidence over multiple turns and drawing logical
conclusions from this evidence. These challenges present significant obstacles
for LLM chat user interfaces, which rely on multi-turn interactions to facilitate
effective collaboration. This limitation leads to real-world issues; for example,
service chatbots must gather necessary information from customers over multiple
turns to diagnose and resolve problems effectively. Despite the multi-turn nature
of many real-world LLM use cases, most existing benchmarks rely on carefully
curated single-turn tests, which often blur the line between memorization and gen-
uine reasoning. To address this, we introduce the Wason Inductive Logic Test
(WILT), a simple yet challenging multi-turn reasoning benchmark designed to
resist memorization. WILT is inspired by the Wason 2-4-6 task (Wason, 1960),
where participants must infer a basic boolean function involving three variables
(e.g., x < y < z) by proposing test cases (such as (2, 4, 6)). In WILT, each test
starts from a clean slate, with only the initial instructions provided, preventing
models from relying on pre-learned responses. Over several turns, models must
interact with the environment by suggesting test cases to narrow the possible hy-
potheses and ultimately infer the hidden function based on the outcomes. Our
findings reveal that LLMs struggle with this task, exhibiting distinct strengths and
weaknesses: some are better at narrowing down the hypothesis space by propos-
ing valuable test cases, while others are more adept at deducing the hidden func-
tion from observed cases. Despite these variations, the best-performing model
achieves only 28% accuracy, highlighting a significant gap in LLM performance
on complex multi-turn reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) powered by the transformer architecture (Vaswani, 2017) have en-
abled a new computing paradigm driven by natural language. These models are increasingly in-
tegrated into day-to-day life beyond the machine learning research space, where they help many
people with common tasks. These models interact with users through multi-turn conversations, a
capability of next-token-prediction models bolstered via instruction-tuning (Mishra et al., 2021) and
alignment post-training phases (Ouyang et al., 2022). Despite their impressive single-turn perfor-
mance, LLMs often falter in scenarios requiring multi-turn reasoning and evidence gathering.

The reasoning capability of LLMs, particularly in multi-turn scenarios, is of substantial interest. A
commonly reported failure pattern for LLMs is the “doom loop”, where after an initially unsatis-
factory response, the model repeatedly responds with a near-identical message to one of its earlier
messages, providing minimal utility. For example, in code generation tasks like the example shown
in Figure 1, a model may repeatedly reply with code blocks identical to ones it has already seen or
produced, which impairs its subsequent usefulness. Strong multi-turn performance can be thought
of as collecting evidence over multiple steps to reduce the hypothesis space of the model’s possible
responses to only include useful ones: an important capability which remains critical beyond the
first turn even in everyday LLM use cases.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Measuring the performance of LLMs has been challenging for the research community. Existing
benchmarks overwhelmingly focus on single-turn interactions (Hendrycks et al., 2020; 2021), and
are often subject to memorization or overfitting (Goodhart, 1984; Recht et al., 2019). As a result, dif-
ficult benchmarks often keep a held-out, publicly unavailable test set to accurately evaluate models
(Chollet, 2019). While some multi-turn benchmarks have emerged to attempt to measure phenom-
ena like the “doom loop” (McLaughlin, 2024), none so far have done so for multi-turn, multi-step
inductive reasoning.

To bridge this gap, we introduce the Wason Inductive Logic Test (WILT), a multi-turn benchmark
designed to assess LLMs’ ability to gather evidence and reason across multiple turns. Inspired by the
Wason 2-4-6 task (Wason, 1960), WILT requires models to propose test cases (e.g. (2, 4, 6)), observe
the results (True or False), and iteratively narrow down the hypothesis space in order to deduce a
hidden rule (e.g. x < y < z). Since the task always begins from an identical starting state, it cannot
simply be solved by memorizing the answer to a prompt and forces the model to use multiple turns
to gather evidence. Therefore, WILT explicitly tests for two important capabilities in an LLM: (1)
whether the model can efficiently narrow down the hypothesis space of possible solutions by posing
the right test cases over multiple turns, and (2) whether the model can recommend a simple and
meaningful solution to the problem after accumulating evidence. While we find that LLMs struggle
on this task overall, we find that some of them are better on one of aforementioned sub-tasks than
the other. This knowledge can be useful for practitioners when choosing which models to deploy
for real world use cases.

In this work, we make the following contributions:

1. Introducing WILT - We introduce a multi-turn inductive logic benchmark that cannot be
solved in a single turn. This requires a model to gather information, reflect upon what it
observes, and make decisions when sufficient evidence is gathered, mirroring real-world
tasks like debugging code or reasoning over time.

2. Evaluating LLMs - We show that state-of-the-art LLMs struggle significantly on this task,
with the best model achieving only 28% accuracy. This highlights a significant deficiency
in multi-turn performance of top-performing LLMs, suggesting that strong single-turn per-
formance may not always transfer to multi-turn settings.

3. Further Analysis - We perform several experiments analyzing hypothesis space reduction,
response complexity, and the performance of models when provided test cases from a dif-
ferent model. We demonstrate that models have varied strengths and weaknesses on this
task, and that combining models together in a multi-turn setting may increase performance
compared to using a single strong model.

2 WILT

The Wason Inductive Logic Test (WILT) is a benchmark for LLM reasoning inspired by the Wason
2-4-6 task (Wason, 1960). Models begin with the instruction that they must uncover the hidden rule,
and may pose up to 30 test cases of that rule. For example, they can pose the tuple (2, 4, 6) and the
test will respond with “True, 29 Attempts Remaining.”

All hidden rules take three numbers and return a boolean. These rules are simple and non-stochastic,
so there is no additional value to posing the same test multiple times. Valid inputs include any float
or integer that can be typed in three or fewer characters, excluding signs and the decimal point (e.g.
-999, 1.23, 5). The hidden rules are written as Python lambda functions. After a maximum of thirty
tries (or any turn before then), the model may make one attempt to guess the function, after which
the test will terminate. The model must return a Python lambda function that is the same as or
equivalent1 to the hidden rule in order to receive full points.

WILT is conceptually simple, but very challenging. Humans are able to identify simple rules despite
the infinitely large hypothesis space, the unbounded difficulty of a hidden function, and the impos-
sibility of verifying the correctness of your response (Tweney et al., 1980; Tukey, 1986). Without
effective priors for what constitutes a “simple” or “reasonable” answer, it becomes trivial to con-
struct an arbitrary counterexample to a current hypothesis. For example, consider the canonical

1For example, x− y = z is equivalent to y + z = x

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Instructions
(Same always)

Test Harness
Initializes

Hidden Rule
(x < y < z)

Participant
proposes
test case

(e.g., (2, 4, 6))

System
responds

(e.g., True)

Repeat up
to 30 times

Participant
submits

final guess

Test Harness
Initializes

Hidden Rule
(x = y = z)

Participant
proposes
test case

(e.g., (1, 3, 5))

System
responds

(e.g., False)

Repeat up
to 30 times

Participant
submits

final guess

Figure 1: Left: Abbreviated example of the “doom loop” phenomenon observed in appendix C.1.
The model returns an unsatisfactory response on an early turn, and devolves into repeating the same
suggestions in subsequent turns. Right: Overview of the WILT task. For each test, the test harness
initializes a hidden rule, and participants propose up to 30 test cases for each hidden rule before
making a final guess.

Wason task rule of x < y < z. This rule has very high overlap with the much more arbitrary rule
(x < y < z) ∧ (x ̸= 12).

The WILT benchmark therefore tests a few high-value behaviors of interest:

1. Multi-Turn Capability: Participants that fall into doom loops are punished by virtue of
having less useful information with which to infer the hidden rule.

2. Hypothesis Space Reduction: Participants are rewarded for proposing test cases that ef-
fectively narrow down the possible rules, despite that hypothesis space being infinitely
large.

3. Susceptibility to Confirmation Bias: Participants who are more prone to “confirming
their hypothesis” rather than seeking falsification will perform poorly upon this task.

4. Inductive Reasoning: Proposing good test cases is a useful test of inductive reasoning and
the ability to generalize from a number of specific examples.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

5. Deductive Reasoning: Proposing sensible functions after observing many test cases is
a useful test of deductive reasoning. Success in this task involves identifying a specific
function that accurately fits a set of examples.

6. Occam’s Razor: Participants are rewarded for finding the simplest explanation fitting the
examples.

We release two test suites: a lite split, with 10 very easy tests and a canonical full split with 50
moderately difficult tests2. Future work will extend this to include a procedurally generated split for
additional robustness to overfitting. We find that the lite split quickly produces a roughly similar
ordering to the full split, but we report results upon the full split for the remainder of this work.
Please see Appendix A.4 for further details.

3 RELATED WORK

Compared to other reasoning benchmarks, WILT stands out as both highly multi-turn focused and
unusually robust to memorization. In contrast to other benchmarks, WILT requires models to in-
teract with an environment by proposing their own test cases to uncover a hidden function without
relying on pre-provided examples. This setup reduces the risk of overfitting, as each test begins with
the same initial instructions, and the model must generate and interpret its own data.

3.1 REASONING BENCHMARKS

There are a wide variety of reasoning benchmarks used to evaluate large language models. Some
very notable among these are MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), Com-
monsenseQA (Talmor et al., 2018), StrategyQA (Geva et al., 2021), BIG-BENCH (Srivastava et al.,
2022), SciBench (Wang et al., 2023b), SVAMP (Patel et al., 2021), ARC-AGI (Chollet, 2019),
MMLU (Hendrycks et al., 2020), GPQA (Rein et al., 2023), and HumanEval (Chen et al., 2021).
These benchmarks are the standard for measuring LLM reasoning capabilities, but are overwhelm-
ingly carefully chosen single-turn problems which aim to meaningfully separate the performance
of different models on reasoning-like outputs such as math, code, or logic puzzles. However, these
benchmarks are subject to train-on-test leakage, even if efforts are made to decontaminate the dataset
(Yang et al., 2023), and the majority are explicitly single-turn tests. Our benchmark directly mea-
sures the model’s ability to navigate multi-turn scenarios, and does not require careful hiding of a
test set to prevent misleading results.

With respect to reasoning about simple functions, a benchmark that stands out as similar to ours
is CRUXEval (Gu et al., 2024), which assembles a list of 800 simple Python functions and input-
output pairs, and evaluates language models on their ability to predict input from output and output
from input. Our work could be seen as a multi-turn, more difficult extension of this work – one
where the function is replaced with a black box, where helpful and informative input-output pairs
are not provided but instead need to be searched for by the language model, and where the objective
is to infer the hidden function rather than the input or output.

3.2 MULTI-TURN BENCHMARKS

There are a handful of multi-turn benchmarks used to evaluate LLMs. PlanBench (Valmeekam et al.,
2022) is one prominent benchmark which attempts to measure the ability of LLMs to navigate plan-
ning problems. This is a class of problems which are solved easily by classical planning algorithms
such as STRIPS (Fikes & Nilsson, 1971), and like our benchmark poses a significant challenge to
LLMs. PlanBench is a primarily multi-step, single-turn benchmark with a multi-turn component
(i.e. replanning based on unexpected events), which contrasts with our benchmark’s more direct
multi-turn focus. This can be observed in the o1 models performing comparatively well on Plan-
Bench (Valmeekam et al., 2024), since scaling inference time compute within a single turn would
be expected to improve performance substantially.

Closest to ours is Aidan-bench (McLaughlin, 2024), which directly measures the cosine similar-
ity between multi-turn responses. This represents a more pure measurement of the doom loop

2We will release the code for this benchmark with the final release of the full paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Model Accuracy Comparison

Model Accuracy Approx. Avg. Avg.
Correct Guesses Repeats

Claude 3.5 Sonnet (Anthropic, 2024a) 14/50 10/50 16.38 0.54
o1-mini 2024-09-12 (OpenAI, 2024c) 13/50 8/50 12.1 0.06
o1-preview 2024-09-12 (OpenAI, 2024c) 12/50 6/50 8.123 0.06
chatgpt-4o-latest (OpenAI, 2024a) 11/50 7/50 14.22 0.76
Mistral Large 2 (Mistral AI, 2024a) 11/50 5/50 26.56 2.84
GPT-4o 2024-08-06 (OpenAI, 2024a) 9/50 6/50 15.26 0.52
Llama 3.1 405B (Dubey et al., 2024) 8/50 9/50 12.21 0.60
Gemini 1.5 Flash 0827 (Google, 2024) 7/50 4/50 14.04 2.16
Llama 3.1 70B (Dubey et al., 2024) 7/50 2/50 15.18 1.48
Deepseek-v2.5-chat (Liu et al., 2024) 6/50 5/50 27.22 9.78
GPT-4o-mini (OpenAI, 2024b) 6/50 2/50 20.36 1.08
Gemini 1.5 Pro (Google, 2024) 5/50 6/50 16.78 0.82
Gemini 1.5 Flash (Google, 2024) 5/50 6/50 16.5 2.46
Deepseek-v2-coder (Zhu et al., 2024) 5/50 5/50 21.82 6.70
Deepseek-v2-chat (Liu et al., 2024) 3/50 3/50 25.32 6.68
Llama 3.1 8b (Dubey et al., 2024) 3/50 0/50 26.18 4.46
Open Mistral Nemo (Mistral AI, 2024b) 2/50 3/50 27.34 8.00
Claude 3 Haiku (Anthropic, 2024b) 1/50 1/50 6.76 0.22
Gemini 1.5 Flash 8b 0827 (Google, 2024) 0/50 2/50 26.76 7.72
Gemma 2 9B (Team et al., 2024) 0/50 2/50 8.82 1.40

phenomenon. In our benchmark, rather than directly measuring the doom loops, we are instead
measuring how often those doom loops lead to failures of reasoning. We see similar surprising per-
formances in our benchmark compared to Aidan-bench (e.g. Mistral Large’s noteworthy ability at
multi-turn), but with an ordering more tied to capabilities (e.g. Sonnet’s superior performance, see
Table 1).

3.3 HYPOTHESIS SPACE REDUCTION

Hypothesis space representation is a commonly used framing in inductive logic tasks for LLMs. In
Wang et al. (2023a), the authors show a technique called hypothesis search where the model will
propose hypotheses in natural language and then implement these hypotheses as Python programs.
This technique was shown to improve performance on ARC-AGI (Chollet, 2019), but a similar
approach could be used along with chain-of-thought (Wei et al., 2022) for WILT as well.

4 EXPERIMENTS

4.1 WILT FULL SPLIT RESULTS

We evaluated several state-of-the-art LLMs on the full split of the WILT task. Experimental details
can be found in Appendix A.1. Our results for this test can be found in Table 1. Claude 3.5 Sonnet
narrowly performs the best on this task, with OpenAI’s o1 models close behind despite using fewer
guesses.

In Table 1, we include a column approximately correct, measuring the number of rules in which the
model was able to correctly identify some critical behavior of the rule, but returned a rule with failing
edge cases3. For example, guessing (x < y < z) instead of (x ≤ y ≤ z) is approximately correct.
We include this column to highlight models that are more willing to guess immediately instead of
uncovering edge cases by default (e.g. Llama 3.1 405B). In these cases, we could see potentially

3We bold results for this column only if the models are also high performing. For example, Claude 3 Haiku
uses fewer guesses than o1-preview, but this is because it is failing to make use of its available turns to uncover
the behavior of the hidden rule, not because it efficiently solves the task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

improved performance through explicitly instructing the model to use more guesses. Examples of
common failure patterns can be found in Appendix B.

In addition, we find that LLMs (particularly smaller ones) will frequently repeat tests they have
already used, sometimes dozens of times, often with the same provided reasoning. We therefore
also provide a column average repeats which counts the average number of proposed tests which
were already tested for that rule. Further discussion on test novelty can be found in Appendix A.2.

In our experiments, we show that LLMs struggle substantially with this task. We show that despite
the test’s relative simplicity, most models struggle substantially both to propose good tests and to
infer a rule based on available evidence. Specifically, their propensity to repeat test cases, propose
useless test cases, and guess very unlikely rules harms their performance on this task substantially.
The varying performance in a multi-turn setting represents a previously unappreciated dimension of
measuring reasoning capability in LLMs. There is much work in language modeling for code-based
agents (Cognition AI, 2024; Yang et al., 2024a) and LLM-driven unit testing (Yang et al., 2024b),
and the difficulty of LLMs to explore edge cases effectively across multiple turns has substantial
implications on those applications.

As in the original Wason 2-4-6 task, we find a common failure mode to be confirmation bias – a
participant will identify a plausible hypothesis and continue to propose tests that attempt to confirm
it (see Appendix B.3). Stronger models will more explicitly attempt to falsify these hypotheses
instead. For example, a model that observes the rule is always true when the values are all equal
should attempt to test a rule like x ≤ y ≤ z, rather than submitting more cases where the three
values are equal.

We show some varying behavior among top performing models, which highlights the multifaceted
ways which a model can succeed on a multi-turn task. Claude 3.5 Sonnet performs quite well on
WILT, outperforming models like o1-mini and o1-preview which tend to win on adjacent single-
turn benchmarks. On most turns, WILT is a setting which removes many of the advantages of a
model which has scaled up inference-time compute; each turn requires only a moderate amount
of consideration, compared to other single-turn benchmarks which are multi-step, single turn and
thereby reward the model substantially for long and elaborate chains of thought. o1-mini and o1-
preview show astonishingly low test case reuse, and much lower than average guess count compared
to Sonnet 3.5 despite comparable performance, pointing to their strong deductive reasoning skills
and recollection of the previous steps in a conversation. However, they ultimately underperform
due to gathering less evidence compared to Sonnet 3.5, which is a multi-turn capabilities failure
despite not being a failure on any turn in particular. Put another way, Sonnet 3.5 seems better at
understanding that it will be able to leverage future tests, and that its multi-turn performance shines
“between” turns rather than during them.

In this vein, Mistral Large stands out as having surprisingly strong performance in multi-turn, despite
its novelty metrics being below average. That is, it tends to respond with many operators (see
Table 2), repeat many more tests than other similar-performing models, and responds with messages
with worse novelty metrics as reported in Table 3 and Figure 5. However, it tends to use most of
its available resources, accrue evidence with new tests deep into the conversation, and ultimately
deduce the rule very well for a model of its size. The strong result observed from Mistral Large
points towards a multi-turn capabilities success despite numerous single-turn failures, and reveals a
previously underappreciated ability of this model.

4.2 HYPOTHESIS SPACE REDUCTION

To compare the LLMs’ ability to efficiently reason about the task, we estimate how effectively each
model reduces the hypothesis space (Wang et al., 2023a). At best, an LLM should always propose
a triplet that eliminates as many untested hypotheses as possible. At worst, a model repeatedly
proposes a triplet confirming previously covered hypotheses. For example, an LLM that has al-
ready guessed (2, 4, 6) retreads much of the same hypothesis space by guessing (4, 6, 8) rather than
(0.01,−1, 100).

To represent that hypothesis space, we randomly generate 2000 lambda functions that encompass
a wide range of potential hypotheses. For example, we randomly generate lambdas having to do
with: ordering (x < y < z), equality (x = y ̸= z), arithmetic relations (x + y = z), parity

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Models can succeed upon this task by reducing the hypothesis space quickly or providing
useful tests for many turns. We show that models with strong reasoning capabilities can narrow the
space quickly, but weaker multi-turn capability harms their ability to get value out of later tests.

(x ≤ 10, y ≤ 5, z ≤ 100), etc. When an LLM proposes a triplet, we cross off any lambdas that do
not match the observed behavior of the hidden rule. Figure 2 illustrates the rate at which different
models reduce the hypothesis space over successive turns. Models with worse reasoning spend
more attempts to clear less of the hypothesis space, with some models using all of their attempts
and yet failing to propose useful tests once some visible behavior is latched onto. For a model with
strong reasoning capabilities, we would expect that they would not repeatedly propose test cases that
cover previously matched lambdas. Models like deepseek-v2-chat show strong hypothesis space
reduction within the first few turns, but struggle to cover the entire space even after 30 turns, leading
to suboptimal performance on the full split. In contrast, models like gpt-4o-mini show weaker
performance in the first few turns, but are able to cover a greater range of the hypothesis space by
better leveraging later turns. It’s important to remember that narrowing the hypothesis space is only
one aspect of the challenge; making an accurate final guess after proposing tests is equally crucial
for strong overall performance on WILT.

4.3 EVALUATING FUNCTION INVERSION CAPABILITY

To succeed at the WILT task, models must succeed at both gathering evidence (hypothesis reduction)
and drawing logical conclusions from evidence (function inversion). To distinguish a model’s ability
to do one or the other, we perform an experiment where models attempt to guess the rule using tests
from another model. Rather than asking the model to gather evidence, we directly provide it all the
reasoning-stripped4 input-output pairs generated by another model for the same rule, and ask the
model to guess the rule in a single turn. Without the original reasoning and subsequent observation
before and after each test case, we expect most models to underperform relative to the full test even
when provided their own cases. Likewise, we expect models stronger at single-turn to perform better
in this experiment relative to other models subject to the same evidence. Our results can be found in
Figure 3.

This reveals some notably varied capabilities among the top performing models. While Claude
Sonnet 3.5 was the narrowly highest performing model on the full test, this experiment reveals
important context for why that may be. We see that it performs better than most other models subject
to the same evidence, but proposes test cases that are generally slightly less useful for other models

4We strip reasoning to avoid conflating confirmation bias in the attached reasoning, rather than just the
accumulated evidence.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

without the attached justifications. Likewise, without its own reasoning for each case, Sonnet’s
performance degraded substantially more than other models in the same setting, suggesting a larger
component of its success was its reasoning, compared to the test cases alone.

o1-mini shows highly superior single-turn capability in this test, but notably performs relatively less
well when provided its own tests rather than the tests of another high-performing model. When
paired with cases from chatgpt-4o-latest, it successfully guessed 19 of the 50 rules, far surpassing
the best-performing single model in the full test.

Despite having many repeated tests and messages which were generally similar to each other (see
Tables 1 and 3), we see that Mistral Large performs well with other models’ tests and provides a
corpus of tests useful to other models. We note its comparable performance to chatgpt-4o-latest both
along the rows (model’s performance with other model’s test cases) and columns (performance of
other models with the model’s test cases), reinforcing its strong performance in the full test.

Critically, we show that models have non-identical strengths and weaknesses, and that success on
the full WILT task depends on strong performance on a few key metrics of interest. Even without the
attached reasoning for test cases, composing the test case generation of one model and the function
inversion of another model very often outperforms using a single strong model for both subtasks.
This has some notable implications for future LLM applications: in Wang et al. (2024) it was shown
that several language models coordinated by an aggregator LLM could outperform strong single
models. Future work could explore coordinating models for both single-turn and multi-turn oriented
tasks, potentially leading to improved performance.

Figure 3: Models have varying success when using test cases proposed by other models. o1-mini
stands out as having much stronger single-turn reasoning in this experiment, but it performs poorly
with its own tests.

4.4 RESPONSE COMPLEXITY

To determine how well the models employ Occam’s Razor, we explore different metrics to gauge
whether the models find the simplest rule that covers the examples. From existing Bayesian models
of cognition (Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), the size principle uses hypothesis
size as a measure of simplicity. In these Bayesian models, hypothesis size is calculated as the number

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of values that match the hypothesis. Calculating hypothesis size in this manner is only possible when
the test values are within a limited countable range. In our case, the possible test values are infinite,
requiring some alternative metrics to gauge hypothesis size. We use three metrics:

1. Number of Operators: We count the number of operators used in the rule expression.
2. Response Length: We calculate the string length of the rule expression. The longer the

length, the more complex it is likely to be. As longer outputs tend to be arbitrarily preferred
by automatic evaluators (Dubois et al., 2024), it is particularly important to measure the
brevity of the response for cases where simplicity is desired.

3. Set Inclusion: We generate a grid of integer-float tuples and apply them to guessed and
actual rules to generate sets of tuples returning “True”. If the set of the guessed rule is a
subset or superset of the actual rule, we then calculate their set size ratio. A ratio of 1 is
ideal, > 1 suggests a less complex guess, and < 1 a more complex one.

Table 2 shows the complexity metrics of the LLMs. Many LLMs with high accuracy such as Claude
3.5 Sonnet, chatgpt-4o-latest, and Mistral Large have long response lengths. However, o1-preview
has a short response length and few operators, despite its high performance on the task. The differ-
ences in response length and number of operators is most clearly seen in the incorrect answers. For
example, if the correct rule is lambda x, y, z: (x * y * z)% 2 == 1, Claude 3.5 Sonnet’s
guess is lambda x,y,z: all(n > 0 and int(n)== n and (n & (n-1)== 0)and (n %
3 == 0 or n == 1)for n in [x,y,z]), which is more convoluted than o1-preview’s guess
of lambda x, y, z: abs(x)== 1 and abs(y)== 1 and abs(z)== 1. Combined with its
low number of average guesses made before making the final guess, o1-preview appears to follow
Occam’s Razor very closely compared to most of the other high-performing models with longer
response lengths. For the set inclusion ratio, the best models tend to cluster around an intermediate
value of 2-4.

Table 2: Response Complexity (Median)

Model Num Operators Response Length Set Inclusion
Claude 3.5 Sonnet 3 34.5 0.08
o1-mini 2024-09-12 3 29.0 0.79
o1-preview-2024-09-12 2 25 0.01
chatgpt-4o-latest 5 39 1.0
Mistral Large 2 5 39 1.0
GPT-4o 2024-08-06 4.5 39 0.34
Llama 3.1 405B 2 30 0.52
Gemini 1.5 Flash 0827 4 35.5 0.00
Llama 3.1 70B 2 25 1.00
Deepseek-v2.5-chat 3 29 0.27
GPT-4o-mini 5 39.5 0.05
Gemini 1.5 Pro 3 38 0.27
Gemini 1.5 Flash 3 28 0.06
Deepseek-v2-coder 5 39 0.88
Deepseek-v2-chat 2 28 0.00
Llama 3.1 8b 2 23 0.05
Open Mistral Nemo 5 46 1.00
Claude 3 Haiku 5 31 0.49
Gemini 1.5 Flash 8b 0827 3 29 0.02
Gemma 2 9B 5 38 0.52

In addition, Figure 4 shows the median number of operators used by a model when given another
model’s test cases, as in Section 4.3. This can be used to estimate the model’s bias toward guess-
ing a simpler rule. o1-preview, for example, tends to use fewer operators than the other models
subject to the same evidence. This also highlights potential discrepancies in the complexity result-
ing from a model’s test cases and the complexity of its final guesses. When models use test cases
generated by DeepSeek Chat v2.5, they tend to use fewer operators, likely because the test cases

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

are fully encompassed by simple rules like lambda x,y,z: False. Conversely, when given
other models’ tests, DeepSeek Chat v2.5 responds with a high level of complexity compared to
other models. Its guesses often overfit a complicated rule to the test cases (e.g., it guesses a rule of
lambda x, y, z: y == x or y == z or y == (x + z) / 2 when given the fol-
lowing true test cases for even numbers: (2.0, 2.0, 2.0), (2.0, 2.0, 4.0), (-2.0,
4.0, 6.0), (0.0, 2.0, 4.0), (2.2, 4.0, 6.0), (2.0, 4.0, 6.0).)

Figure 4: The median number of operators provides a window into guessed rules being more or less
complicated compared to guesses provided by other models. More metrics for response complexity
in test-case swap scenarios can be found in Appendix A.3.

5 CONCLUSION

In this work, we highlight the importance of the multi-turn setting for understanding the performance
of large language models in everyday use cases. We introduced a new benchmark which attempts to
measure performance in this common setting, and show its difficulty even for state-of-the-art LLMs.
With the models exhibiting non-overlapping strengths, the resulting performance of these models
on the WILT task provides useful context for what types of tasks they would be useful for, beyond
simply suggesting the top-performing model is the best one to use for all applications.

Our benchmark identifies a critical way that typical benchmarks differ from day-to-day use of LLMs:
whereas effective multi-turn collaboration often requires asking clarifying questions, performing
experiments, and gathering new evidence, typical benchmarks are overwhelmingly designed to be
solved immediately. This may, in turn, create an implicit incentive for models to end conversations
as quickly as possible, even where that may be ineffective or inappropriate.

With this work, we aim to provide a benchmark that measures a model’s capacity for exploring an
environment and reasoning based on its own decisions across multiple turns. We believe that this
paradigm offers a more direct measurement of reasoning capability compared to other benchmarks.
Likewise, we believe an explicit focus on multi-turn reasoning capability more directly shines a light
upon the most common uses of LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dennis Abts, Garrin Kimmell, Andrew Ling, John Kim, Matt Boyd, Andrew Bitar, Sahil Parmar,
Ibrahim Ahmed, Roberto DiCecco, David Han, et al. A software-defined tensor streaming mul-
tiprocessor for large-scale machine learning. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pp. 567–580, 2022.

Anthropic. Introducing claude 3.5 sonnet, 2024a. URL https://www.anthropic.com/
news/claude-3-5-sonnet. Accessed: 2024-09-11.

Anthropic. Claude 3 haiku: Our fastest model yet, 2024b. URL https://www.anthropic.
com/news/claude-3-haiku. Accessed: 2024-09-11.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Cognition AI. Introducing devin: The first ai software engineer, 2024. URL https://www.
cognition.ai/blog/introducing-devin. Accessed: 2024-09-11.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Charles AE Goodhart. Problems of monetary management: the UK experience. Springer, 1984.

Google. Introducing gemini 1.5: Google’s next-generation ai
model, 2024. URL https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/. Accessed: 2024-
09-11.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Aidan McLaughlin. Aidan-bench. https://github.com/aidanmclaughlin/
Aidan-Bench, 2024.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-haiku
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://github.com/aidanmclaughlin/Aidan-Bench
https://github.com/aidanmclaughlin/Aidan-Bench

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773, 2021.

Mistral AI. Large enough: Mistral large 2 announcement, 2024a. URL https://mistral.ai/
news/mistral-large-2407/. Accessed: 2024-09-11.

Mistral AI. Mistral nemo: A state-of-the-art 12b model, 2024b. URL https://mistral.ai/
news/mistral-nemo/. Accessed: 2024-09-11.

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: 2024-09-11.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, 2024b. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/. Ac-
cessed: 2024-09-11.

OpenAI. O1 system card, 2024c. URL https://cdn.openai.com/o1-system-card.
pdf. Accessed: 2024-09-11.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Joshua Tenenbaum. Rules and similarity in concept learning. Advances in neural information
processing systems, 12, 1999.

Joshua B Tenenbaum and Thomas L Griffiths. Generalization, similarity, and bayesian inference.
Behavioral and brain sciences, 24(4):629–640, 2001.

David D Tukey. A philosophical and empirical analysis of subjects’ modes of inquiry in wason’s
2–4–6 task. The Quarterly Journal of Experimental Psychology Section A, 38(1):5–33, 1986.

Ryan D Tweney, Michael E Doherty, Winifred J Worner, Daniel B Pliske, Clifford R Mynatt, Kim-
berly A Gross, and Daniel L Arkkelin. Strategies of rule discovery in an inference task. Quarterly
Journal of Experimental Psychology, 32(1):109–123, 1980.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

12

https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench, 2024. URL https://arxiv.org/abs/
2409.13373.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
Hypothesis search: Inductive reasoning with language models. arXiv preprint arXiv:2309.05660,
2023a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
entific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023b.

Peter C Wason. On the failure to eliminate hypotheses in a conceptual task. Quarterly journal of
experimental psychology, 12(3):129–140, 1960.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024a.

Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou,
Guangtai Liang, Qianxiang Wang, et al. An empirical study of unit test generation with large
language models. arXiv preprint arXiv:2406.18181, 2024b.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples. arXiv preprint
arXiv:2311.04850, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EXPERIMENTAL DETAILS

A.1.1 MODEL CONFIGURATIONS

Models are accessed when possible with default configurations and settings provided by their re-
spective proprietary APIs (i.e. Anthropic, OpenAI, Mistral, DeepSeek, and Vertex APIs). Llama 3.1
models are run via the Amazon Bedrock API. Gemma 2 9b and llama 3 70B are run via the Groq
API Abts et al. (2022).

A.1.2 PROMPTS

All models begin from the same initial prompt.

You are an AI tasked with discovering a hidden rule that takes three numbers
as input and returns a boolean. These numbers can be any float or integer number
that can be typed in 3 or fewer digits, not including signs and decimal characters
(e.g. -11.3 is a valid value). In each response, you will provide your step-by-step
reasoning for your future plans on this task, and then you will take one of two
actions:

13

https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1. Provide a single test case to observe the output of a rule (e.g.
“Test Case: ```(1, 2, 3)```” which corresponds to x=1, y=2,
z=3. You may only propose one test case at a time.

2. Provide a final “guess” in the form of a python lambda function (e.g.
“Final Guess: ```lambda x,y,z: x < y < z```”). You only
get to select this action one time, so don’t use it unless you are confident or
are forced to.

You will have up to 30 attempts at test cases, and you will have exactly one
attempt at guessing the final function. Make sure all of the tests you provide are
unique from other ones you have already tried – the functions are all deterministic,
and will be the same every time. You should prioritize getting the rule as correct
as possible, since an incorrect answer will get no points. You should therefore
not guess the function unless you are quite confident, or if you are very close to
running out of attempts.

You must return your responses in the format laid out above at the very bot-
tom of your message. For example, if you want to submit a test case, you must
conclude with the string “Test Case: ```(x,y,z)```”, where x,y,z are re-
placed with your guesses. If you want to submit a final guess, you must conclude
with the string “Final Guess: ```<function>```” where <function>
is replaced with a python lambda function. Do not include any comments or addi-
tional text on the same lines as these two things.

Make sure to include your reasoning for your tests – what you are testing for,
why you selected that test, etc.

Responses by the models are pulled out via regular expressions matching the formatting in the
prompt. We find that after controlling for various formatting eccentricities (python blocks, mark-
down, bold characters, etc) that all listed models are capable of providing test cases in this format.

A.1.3 VERIFYING EQUIVALENT FUNCTIONS

To verify two provided lambda functions are equivalent, we generate a large number of test cases
and ensure the provided rules match on all outputs. Specifically, we create three sets of cases:

1. Integer Grid Cases - We construct a 40x40x40 grid of integer triplets from -20 to 20,
inclusive, leading to 64,000 triplet cases.

2. Random Uniform Cases - We construct a list of 10,000 uniformly random float triplets
from -200 to 200, inclusive.

3. Special Cases - We hand-design a small set of test cases to ensure all hidden rules in the
full split are adequately tested.

We mark a rule as incorrect if any test cases generated above show different behavior between the
hidden rule and the guessed rule, and mark it correct otherwise.

A.2 TEST CASE NOVELTY

Test case novelty is an interesting second order metric for success upon the WILT task. Broadly
speaking, models that reuse fewer tests are rewarded with more information for which to solve the
task. Models that very rarely re-propose a test tend to perform very well upon WILT, but the inverse
is not necessarily true – models that loop tests often still arrive at the right answer.

Repeated tests are useful for bifurcating the types of failures on WILT – one being the doom loop
phenomenon, and the other being reasoning capability conditioned upon some available evidence.
One hypothesis for the observed behavior is that certain models are primarily oriented towards
single-turn scenarios, and that one type of failure need not imply the other. DeepSeek Chat v2.5, for
example, demonstrates strong initial hypothesis space reduction compared to other models, which
allows it notably better performance on WILT compared to other models with similar repeat counts
(e.g. open-mistral-nemo). Strong single-turn performance and deductive reasoning capabilities can
help salvage performance from a model that demonstrates difficulty with multi-turn inductive logic.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Model Novelty Metrics

Model Repeats Avg. Novelty Avg. Min. Novelty
claude-3.5-sonnet-20240620 27 0.22 0.08
o1-mini-2024-09-12 3 0.24 0.09
o1-preview-2024-09-12 3 0.28 0.11
chatgpt-4o-latest 38 0.21 0.10
mistral-large-2407 142 0.13 0.04
gpt-4o-2024-08-06 26 0.22 0.11
llama3.1 405B 30 0.20 0.06
gemini-1.5-flash-exp-0827 108 0.19 0.08
llama3-70b 74 0.19 0.06
deepseek-chat-v2.5 489 0.09 0.02
gpt-4o-mini 54 0.19 0.10
gemini-1.5-pro 41 0.26 0.13
gemini-1.5-flash 123 0.19 0.08
deepseek-coder 334 0.11 0.03
deepseek-chat-v2 335 0.10 0.03
llama-3.1-8b 223 0.13 0.01
open-mistral-nemo 400 0.12 0.02
claude-3-haiku-20240307 11 0.29 0.11
gemini-1.5-flash-8b-exp-0827 386 0.14 0.05
gemma2-9b-it 70 0.34 0.18

Following Aidan-bench (McLaughlin, 2024), we provide Table 3, containing additional novelty
metrics. These include:

1. Average novelty - which reports the average cosine similarity between each message’s gpt-3
embeddings and the closest previous message within the same test.

2. Average minimum novelty - which reports the average minimum cosine similarity between
each message’s gpt-3 embeddings and the closest previous message within the same test.

These capture an additional dimension of “test novelty” and “message novelty”, where models may
propose the same tests for different reasons, or repeat previously generated messages verbatim. We
bold results which are best within the class of high performing models. We note that models that
propose fewer tests before guessing (e.g. o1-preview, o1-mini) should see lower values for all of
these compared to models that tend to use many tests before guessing (e.g. mistral-large) even for
otherwise equally performing models. We also show the average novelty by turn in Figure 5, which
captures the model’s novelty scores across turns.

A.3 RESPONSE COMPLEXITY IN TEST SWAP EXPERIMENTS

In figure 6 we show the set inclusion ratios in the case where a model is provided another model’s
test cases. That is, we show whether an error in the final guess of a model is likely to be smaller /
less than one (e.g. x < y < z instead of x ≤ y ≤ z), or larger / greater than one (e.g. x > 0 instead
of x > 0 ∧ x < 5). This seems more test-case dependent than other complexity benchmarks, where
tests provided by certain models seem to lead to smaller hypotheses.

Figure 7 shows the length of the string used to guess the rule by each model, which is comparatively
more consistent for a model. We find this to be fairly consistent across settings, with most models
hovering near 45.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Cosine similarity by turn for selected models. Models have a higher novelty score near the
end, since the final guess is often much different from previous messages, which are all proposed
test cases.

Figure 6: Set inclusion ratios will differ in the same model when provided another model’s tests,
and models provided the same tests have different set inclusion behaviors.

A.4 SELECTED LITE SPLIT RESULTS

Table 4 contains selected results for the lite split. We show this much easier split produces a similar
ordering, suggesting that the bulk of the separation in our benchmark lies in the easier tests.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Models tend to have fairly consistent guess string lengths, with some exceptions.

Table 4: Lite Split Metrics

Model Accuracy Avg. Guesses
Claude-3.5-Sonnet 8/10 13.68
GPT-4-Turbo 7/10 12.47
GPT-4o 6/10 13.86
DeepSeek-V2-Coder 6/10 23.46
Llama 3 70B 4/10 15.64
DeepSeek-V2-Chat 2/10 24.82
Llama 3 8B 1/10 24.0
GPT-3.5-Turbo 1/10 2.9

A.5 TEST DESCRIPTIONS

Table 5 contains the functions found in the lite split of WILT. Table 6 contains the functions found
in the full split of WILT. These are implemented as Python lambda functions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Lite Split: Complete Set of Tests

Test ID Description
1 x > y > z
2 x < y < z
3 x ≥ y ≥ z
4 x ≤ y ≤ z
5 x = y = z
6 x ̸= y ∧ y ̸= z ∧ x ̸= z
7 x < 0 ∧ y < 0 ∧ z < 0
8 x+ y = z
9 x · y = z

10 x < y ∧ y > z

B FAILURE CASE EXAMPLES

B.1 DOOM LOOP WITHOUT REASONING FAILURE

Table 7 shows an example of a model (Deepseek-Chat-v2.5) entering a doom loop during the test
proposal phase, but where that doom loop does not constitute a reasoning failure. Reasoning has
been removed for brevity.

B.2 APPROXIMATELY CORRECT

Table 8 shows an example of o1-mini getting a very difficult test case (co-primality) approximately
correct, failing only because it adds an additional arbitrary constraint upon the magnitude of the
values despite no such constraint existing. Reasoning has been removed for brevity.

B.3 CONFIRMATION BIAS

Table 9 shows an example of o1-preview failing a relatively easy test case (x ≥ y ≥ z) due to a
confirmation bias error. The model uses only 9 test cases and correctly identifies that the rule returns
true when all three are equal, but submits five test cases confirming that and none exploring other
rules which are true when three items are equal. Reasoning has been removed for brevity.

B.4 SAME TEST FOR NEW REASON

Table 10 shows an example of Claude Sonnet 3.5 repeating a test, where it will mistakenly generate
the same test for a different stated reason. We see the model notice it has repeated a test only after it
has already submitted the test. Other tests have been removed for brevity.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Full Split: Complete Set of Tests

Test ID Description
Easy Tests

1 x > y > z
2 x < y < z
3 x ≥ y ≥ z
4 x ≤ y ≤ z
5 x < z < y
6 x ≤ z ≤ y
7 z < x < y
8 z ≤ x ≤ y
9 x = y = z
10 x ̸= y ∧ y ̸= z ∧ x ̸= z
11 x < 0 ∧ y < 0 ∧ z < 0
12 x > 0 ∧ y > 0 ∧ z > 0
13 x mod 2 = 0 ∧ y mod 2 = 0 ∧ z mod 2 = 0
14 x mod 2 ̸= 0 ∧ y mod 2 ̸= 0 ∧ z mod 2 ̸= 0

Medium Tests
15 x+ y = z
16 x · y = z
17 x+ z = y
18 x · z = y
19 y + z = x
20 y · z = x
21 max(x, y, z) = x
22 max(x, y, z) = y
23 max(x, y, z) = z
24 min(x, y, z) = x
25 min(x, y, z) = y
26 min(x, y, z) = z
27 x+ y + z = 0
28 x · y · z = 0
29 (x+ y + z) mod 2 = 0
30 (x+ y + z) mod 2 = 1
31 (x · y · z) mod 2 = 0
32 (x · y · z) mod 2 = 1
33 (x+ y)/2 = z
34 −5 ≤ x, y, z ≤ 5
35 −10 ≤ x, y, z ≤ 10
36 −5 ≤ x, y, z ≤ 0
37 0 ≤ x, y, z ≤ 5
38 −2 ≤ x, y, z ≤ 2
39 −20 ≤ x, y, z ≤ 20

Very Hard Tests
40 x2 + y2 = z2

41 x2 + z2 = y2

42 y2 + z2 = x2

43 ⌊x⌋&⌊y⌋ = ⌊z⌋ (bitwise AND)
44 ⌊x⌋|⌊y⌋ = ⌊z⌋ (bitwise OR)
45 ⌊x⌋ ⊕ ⌊y⌋ = ⌊z⌋ (bitwise XOR)
46 x, y, z ∈ Z ∧ gcd(x, y) = gcd(y, z) = gcd(z, x) = 1

47
√
⌊|x|⌋

2
= ⌊|x|⌋ ∧

√
⌊|y|⌋

2
= ⌊|y|⌋ ∧

√
⌊|z|⌋

2
= ⌊|z|⌋

48 0 < x mod 1 ∧ 0 < y mod 1 ∧ 0 < z mod 1
49 0 < x mod 1 < y mod 1 < z mod 1 < 1
50 x < y < z ∧ 0 < z − x ≤ 1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: DeepSeek-v2.5 Enters a doom loop but still arrives at the correct answer

Turn Assistant Harness
1 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

2 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): True.

3 Test Case: (3, 2, 1) (3.0, 2.0, 1.0): True.

4 Test Case: (2, 1, 3) (2.0, 1.0, 3.0): True.

5 Test Case: (-1, -2, -3) (-1.0, -2.0, -3.0): False.

6 Test Case: (-1, 2, -3) (-1.0, 2.0, -3.0): False.

7 Test Case: (0, 1, 2) (0.0, 1.0, 2.0): False.

8 Test Case: (2, 3, 1) (2.0, 3.0, 1.0): True.

9 Test Case: (0, 1, 1) (0.0, 1.0, 1.0): False.

10 Test Case: (0.001, 1, 1) (0.001, 1.0, 1.0): True.

11 Test Case: (-0.001, 1, 1) (-0.001, 1.0, 1.0): False.

12 Test Case: (999, 1, 1) (999.0, 1.0, 1.0): True.

13 Test Case: (-999, 1, 1) (-999.0, 1.0, 1.0): False.

14 Test Case: (0.0001, 1, 1) (0.0001, 1.0, 1.0): True.

15 Test Case: (-0.0001, 1, 1) (-0.0001, 1.0, 1.0): False.

16 Test Case: (999.999, 1, 1) (999.999, 1.0, 1.0): True.

17 Test Case: (-999.999, 1, 1) (-999.999, 1.0, 1.0): False.

18 Test Case: (0.0001, 999.999, 1) (0.0001, 999.999, 1.0): True.

19 Test Case: (-0.0001, 999.999, 1) (-0.0001, 999.999, 1.0): False.

20 Test Case: (0.0001, -999.999, 1) (0.0001, -999.999, 1.0): False.

21 Test Case: (0.0001, 999.999, -0.0001) (0.0001, 999.999, -0.0001): False.

22 Test Case: (0.0001, 999.999, -999.999) (0.0001, 999.999, -999.999): False.

23 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

24 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

25 Test Case: (999.999, 0.0001, 0.0001) (999.999, 0.0001, 0.0001): True.

26 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

27 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

28 Test Case: (999.999, 0.0001, 0.0001) (999.999, 0.0001, 0.0001): True.

29 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

30 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

31 Final Guess: lambda x, y, z: x > 0 and
y > 0 and z > 0

Congratulations! Your guess is cor-
rect.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: o1-mini nearly gets the coprimality case correct, but adds bounds for no concrete reason.

Turn Assistant Harness
1 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): True.

2 Test Case: (3, 2, 1) (3.0, 2.0, 1.0): True.

3 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

4 Test Case: (-1, 2, 3) (-1.0, 2.0, 3.0): True.

5 Test Case: (-1, -2, -3) (-1.0, -2.0, -3.0): True.

6 Test Case: (0, 0, 0) (0.0, 0.0, 0.0): False.

7 Test Case: (0, 1, 2) (0.0, 1.0, 2.0): False.

8 Test Case: (1.5, 2.5, 3.5) (1.5, 2.5, 3.5): False.

9 Test Case: (1, 2, 3.0) (1.0, 2.0, 3.0): True.

10 Test Case: (1, 2, 3.1) (1.0, 2.0, 3.1): False.

11 Test Case: (1, 2, -3) (1.0, 2.0, -3.0): True.

12 Test Case: (10, -20, 30) (10.0, -20.0, 30.0): False.

13 Test Case: (4, 5, 6) (4.0, 5.0, 6.0): False.

14 Test Case: (-2, -1, 3) (-2.0, -1.0, 3.0): True.

15 Test Case: (3, 3, 4) (3.0, 3.0, 4.0): False.

16 Test Case: (1, -1, 2) (1.0, -1.0, 2.0): True.

17 Test Case: (-3, 3, -2) (-3.0, 3.0, -2.0): False.

18 Test Case: (2, -2, 2) (2.0, -2.0, 2.0): False.

19 Test Case: (-1, 2, -2) (-1.0, 2.0, -2.0): False.

20 Test Case: (1, 3, 2) (1.0, 3.0, 2.0): True.

21 Test Case: (1, 2, 2) (1.0, 2.0, 2.0): False.

22 Test Case: (-1, -2, 3) (-1.0, -2.0, 3.0): True.

23 Test Case: (2, 3, -1) (2.0, 3.0, -1.0): True.

24 Final Guess: lambda x, y, z:
all(isinstance(n, int) and n ̸= 0 and
−3 ≤ n ≤ 3 for n in [x, y, z]) and
math.gcd(x, y) == 1 and math.gcd(x, z) ==
1 and math.gcd(y, z) == 1

Sorry, that’s not the correct rule.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: o1-preview fails early on an easy test case despite having a wealth of remaining tests,
because it latched on to an early behavior and sought to confirm it rather than falsify it.

Turn Assistant Harness
1 Test Case: (2, 3, 6) (2.0, 3.0, 6.0): False.

2 Test Case: (2, 3, 5) (2.0, 3.0, 5.0): False.

3 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

4 Test Case: (2, 2, 2) (2.0, 2.0, 2.0): True.

5 Test Case: (1, 1, 2) (1.0, 1.0, 2.0): False.

6 Test Case: (-1, -1, -1) (-1.0, -1.0, -1.0): True.

7 Test Case: (1.5, 1.5, 1.5) (1.5, 1.5, 1.5): True.

8 Test Case: (0, 0, 0) (0.0, 0.0, 0.0): True.

9 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): False.

10 Final Guess: lambda x, y, z: x == y == z Sorry, that’s not the correct rule.

Table 10: Claude Sonnet 3.5 double submits (2, 3, 5) to test x+ y = z and all(isprime(n))

Turn Assistant Harness
1-5

6 Still False. Let’s try a different approach
and consider some mathematical relation-
ships. Reasoning for the next test: 1. Let’s
test if the rule involves a simple arithmetic
relationship. 2. We’ll use numbers where
the third is the sum of the first two. 3. We’ll
use small integers for clarity. Test Case: (2,
3, 5)

(2.0, 3.0, 5.0): False.

7-8

9 We’re still not getting a True result. Let’s
try a different approach and consider some
number theory concepts. Reasoning for the
next test: 1. Let’s test if the rule involves
prime numbers. 2. We’ll use three consec-
utive prime numbers. 3. This will also test
if there’s a special relationship with con-
secutive numbers that are not simply as-
cending. Test Case: (2, 3, 5)

(2.0, 3.0, 5.0): False.

10 We’ve already tested (2, 3, 5) before, and
it’s still False. Let’s try a different number
theory concept...

...

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C FULL CONVERSATION EXAMPLES

C.1 DOOM LOOP ON CODING TASK

Below we provide a full example of a ”doom loop” interacting with an LLM in a multi-turn con-
versation in a real world coding task. We use llama 3 8b to generate code for a pytorch variational
autoencoder, and after 2 turns of debugging it repeats an already mentioned suggestion.

User:
Can you write me some code which trains a VAE on cifar10 using pytorch?

Llama3-8b-8192:
Here’s a basic example of how you can train a Variational Autoencoder (VAE) on
CIFAR-10 using PyTorch:

```Python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np

# Define the VAE model
class VAE(nn.Module):

def __init__(self):
super(VAE, self).__init__()
self.encoder = nn.Sequential(

nn.Conv2d(3, 32, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Flatten()

)
self.fc1 = nn.Linear(64*4*4, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, 64*4*4)
self.fc4 = nn.Linear(64*4*4, 3*32*32)

def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std

def encode(self, x):
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
return mu, logvar

def decode(self, z):
h1 = torch.relu(self.fc4(z))
h2 = torch.relu(self.fc3(h1))
h3 = torch.relu(self.fc2(h2))
h4 = torch.relu(self.fc1(h3))

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

return torch.sigmoid(self.fc4(h4))

def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar

# Define the loss function
def loss_function(recon_x, x, mu, logvar):

BCE = nn.functional.binary_cross_entropy(recon_x,
x.view(-1, 3*32*32), reduction='sum')↪→

KLD = 0.5 * torch.sum(1 + logvar - mu.pow(2) -
logvar.exp())↪→

return BCE + KLD

# Load the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor()])
trainset = datasets.CIFAR10(root='./data', train=True,

download=True, transform=transform)↪→

trainloader = DataLoader(trainset, batch_size=64,
shuffle=True)↪→

testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)↪→

testloader = DataLoader(testset, batch_size=64,
shuffle=False)↪→

# Initialize the VAE model and the optimizer
vae = VAE()
optimizer = optim.Adam(vae.parameters(), lr=0.001)

# Train the VAE
for epoch in range(100):

for i, (x, _) in enumerate(trainloader):
x = x.to(device)
optimizer.zero_grad()
recon_x, mu, logvar = vae(x)
loss = loss_function(recon_x, x, mu, logvar)
loss.backward()
optimizer.step()
if i % 100 == 0:

print('Epoch: %d, Batch: %d, Loss: %.3f' %
(epoch+1, i+1, loss.item()))↪→

# Test the VAE
test_loss = 0
with torch.no_grad():

for x, _ in testloader:
x = x.to(device)
recon_x, mu, logvar = vae(x)
loss = loss_function(recon_x, x, mu, logvar)
test_loss += loss.item()

test_loss /= len(testloader)
print('Test Loss: %.3f' % test_loss)

```

This code defines a VAE model, loads the CIFAR-10 dataset, and trains the model
using the Adam optimizer. The loss function is the sum of the binary cross-entropy

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

loss and the Kullback-Leibler divergence. The model is trained for 100 epochs,
and the test loss is printed after each epoch.
Note that you need to install the ‘torchvision‘ package to use the CIFAR-10
dataset. You can install it using ‘pip install torchvision‘. Also, you need
to specify the device (GPU or CPU) where you want to run the model.
You can do this by adding `device = torch.device('cuda' if
torch.cuda.is_available() else 'cpu')` before the training loop.

User:
I’m getting the following error trying to run this code:

RuntimeError Traceback (most recent call last)
<ipython-input-3-471d3f454439> in <cell line: 70>()

72 x = x.to(device)
73 optimizer.zero_grad()

---> 74 recon_x, mu, logvar = vae(x)
75 loss = loss_function(recon_x, x,

mu, logvar)
76 loss.backward()

6 frames
in forward(self, input)

115
116 def forward(self, input: Tensor) -> Tensor:

--> 117 return F.linear(input, self.weight,
self.bias)↪→

118
119 def extra_repr(self) -> str:

RuntimeError: mat1 and mat2 shapes cannot be multiplied
(64x2304 and 1024x128)↪→

llama3-8b-8192:
The error message indicates that there is a mismatch between the shapes of the
input and the weights in one of the fully connected layers in your VAE model.
The error message specifically says that the shapes are 64x2304 and 1024x128,
which means that the input has a shape of (64, 2304) and the weights have a shape
of (1024, 128).
The issue is likely due to the fact that the input to the fully connected layer is
not what you expect. In the ‘encode‘ method of your VAE model, you have the
following lines:

```
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
```

The ‘h3‘ tensor has a shape of (64, 128) because ‘self.fc2‘ is a fully con-
nected layer with 128 output units. However, ‘self.fc3‘ and ‘self.fc4‘ are
also fully connected layers, and they are expecting an input with a shape of
(batch_size, 128) where batch_size is the number of samples in the
batch.
In your case, the batch size is 64, so the input to ‘self.fc3‘ and ‘self.fc4‘ should be
(64, 128), not (64, 128) as it is now.
To fix this issue, you can try to flatten the output of ‘self.encoder‘ before passing
it to the fully connected layers. You can do this by adding the following line after
‘h1 = self.encoder(x)‘:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

```
h1 = h1.view(-1, 64*4*4)
```

This will flatten the output of ‘self.encoder‘ into a tensor with a shape of
(batch_size, 64*4*4), which should be compatible with the weights of
‘self.fc1‘, ‘self.fc2‘, ‘self.fc3‘, and ‘self.fc4‘.

User:
Okay, I added that line. Now I’m getting a similar error with different values:
RuntimeError: mat1 and mat2 shapes cannot be
multiplied (144x128 and 1024x3072)

llama3-8b-8192:
The error message indicates that there is a mismatch between the shapes of the
input and the weights in one of the fully connected layers in your VAE model.
The error message specifically says that the shapes are 144x128 and 1024x3072,
which means that the input has a shape of (144, 128) and the weights have a shape
of (1024, 3072).
The issue is likely due to the fact that the input to the fully connected layer is
not what you expect. In the ‘encode‘ method of your VAE model, you have the
following lines:

```
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
```

The ‘h3‘ tensor has a shape of (64, 128) because ‘self.fc2‘ is a fully con-
nected layer with 128 output units. However, ‘self.fc3‘ and ‘self.fc4‘ are
also fully connected layers, and they are expecting an input with a shape of
(batch_size, 128) where batch_size is the number of samples in the
batch.
In your case, the batch size is 64, so the input to ‘self.fc3‘ and ‘self.fc4‘ should be
(64, 128), not (64, 128) as it is now.
To fix this issue, you can try to flatten the output of ‘self.encoder‘ before passing
it to the fully connected layers. You can do this by adding the following line after
‘h1 = self.encoder(x)‘:

```
h1 = h1.view(-1, 128)
```

This will flatten the output of ‘self.encoder‘ into a tensor with a shape of
(batch_size, 128), which should be compatible with the weights of
‘self.fc1‘, ‘self.fc2‘, ‘self.fc3‘, and ‘self.fc4‘.
However, the error message also mentions that the input has a shape of 144x128,
which is not compatible with the weights of the fully connected layer. This sug-
gests that there may be an issue with the architecture of your VAE model.
To fix this issue, you can try to adjust the architecture of your VAE model to ensure
that the input to the fully connected layers is compatible with the weights.

26

	Introduction
	WILT
	Related Work
	Reasoning Benchmarks
	Multi-Turn Benchmarks
	Hypothesis Space Reduction

	Experiments
	WILT Full split Results
	Hypothesis Space Reduction
	Evaluating Function Inversion Capability
	Response Complexity

	Conclusion
	Appendix / Supplemental Material
	Experimental Details
	Model Configurations
	Prompts
	Verifying Equivalent Functions

	Test Case Novelty
	Response Complexity in Test Swap Experiments
	Selected Lite Split Results
	Test Descriptions

	Failure Case Examples
	Doom Loop Without Reasoning Failure
	Approximately Correct
	Confirmation Bias
	Same Test For New Reason

	Full Conversation Examples
	Doom Loop on Coding Task

