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ABSTRACT

While large language models (LLMs) have shown impressive capabilities across
a wide range of domains, they still encounter significant challenges in reason-
ing tasks that require gathering evidence over multiple turns and drawing logical
conclusions from this evidence. These challenges present significant obstacles
for LLM chat user interfaces, which rely on multi-turn interactions to facilitate
effective collaboration. This limitation leads to real-world issues; for example,
service chatbots must gather necessary information from customers over multiple
turns to diagnose and resolve problems effectively. Despite the multi-turn nature
of many real-world LLM use cases, most existing benchmarks rely on carefully
curated single-turn tests, which often blur the line between memorization and gen-
uine reasoning. To address this, we introduce the Wason Inductive Logic Test
(WILT), a simple yet challenging multi-turn reasoning benchmark designed to
resist memorization. WILT is inspired by the Wason 2-4-6 task (Wason, 1960),
where participants must infer a basic boolean function involving three variables
(e.g., x < y < z) by proposing test cases (such as (2, 4, 6)). In WILT, each test
starts from a clean slate, with only the initial instructions provided, preventing
models from relying on pre-learned responses. Over several turns, models must
interact with the environment by suggesting test cases to narrow the possible hy-
potheses and ultimately infer the hidden function based on the outcomes. Our
findings reveal that LLMs struggle with this task, exhibiting distinct strengths and
weaknesses: some are better at narrowing down the hypothesis space by propos-
ing valuable test cases, while others are more adept at deducing the hidden func-
tion from observed cases. Despite these variations, the best-performing model
achieves only 28% accuracy, highlighting a significant gap in LLM performance
on complex multi-turn reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) powered by the transformer architecture (Vaswani, 2017) have en-
abled a new computing paradigm driven by natural language. These models are increasingly in-
tegrated into day-to-day life beyond the machine learning research space, where they help many
people with common tasks. These models interact with users through multi-turn conversations, a
capability of next-token-prediction models bolstered via instruction-tuning (Mishra et al., 2021) and
alignment post-training phases (Ouyang et al., 2022). Despite their impressive single-turn perfor-
mance, LLMs often falter in scenarios requiring multi-turn reasoning and evidence gathering.

The reasoning capability of LLMs, particularly in multi-turn scenarios, is of substantial interest. A
commonly reported failure pattern for LLMs is the “doom loop”, where after an initially unsatis-
factory response, the model repeatedly responds with a near-identical message to one of its earlier
messages, providing minimal utility. For example, in code generation tasks like the example shown
in Figure 1, a model may repeatedly reply with code blocks identical to ones it has already seen or
produced, which impairs its subsequent usefulness. Strong multi-turn performance can be thought
of as collecting evidence over multiple steps to reduce the hypothesis space of the model’s possible
responses to only include useful ones: an important capability which remains critical beyond the
first turn even in everyday LLM use cases.
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Measuring the performance of LLMs has been challenging for the research community. Existing
benchmarks overwhelmingly focus on single-turn interactions (Hendrycks et al., 2020; 2021), and
are often subject to memorization or overfitting (Goodhart, 1984; Recht et al., 2019). As a result, dif-
ficult benchmarks often keep a held-out, publicly unavailable test set to accurately evaluate models
(Chollet, 2019). While some multi-turn benchmarks have emerged to attempt to measure phenom-
ena like the “doom loop” (McLaughlin, 2024), none so far have done so for multi-turn, multi-step
inductive reasoning.

To bridge this gap, we introduce the Wason Inductive Logic Test (WILT), a multi-turn benchmark
designed to assess LLMs’ ability to gather evidence and reason across multiple turns. Inspired by the
Wason 2-4-6 task (Wason, 1960), WILT requires models to propose test cases (e.g. (2, 4, 6)), observe
the results (True or False), and iteratively narrow down the hypothesis space in order to deduce a
hidden rule (e.g. x < y < z). Since the task always begins from an identical starting state, it cannot
simply be solved by memorizing the answer to a prompt and forces the model to use multiple turns
to gather evidence. Therefore, WILT explicitly tests for two important capabilities in an LLM: (1)
whether the model can efficiently narrow down the hypothesis space of possible solutions by posing
the right test cases over multiple turns, and (2) whether the model can recommend a simple and
meaningful solution to the problem after accumulating evidence. While we find that LLMs struggle
on this task overall, we find that some of them are better on one of aforementioned sub-tasks than
the other. This knowledge can be useful for practitioners when choosing which models to deploy
for real world use cases.

In this work, we make the following contributions:

1. Introducing WILT - We introduce a multi-turn inductive logic benchmark that cannot be
solved in a single turn. This requires a model to gather information, reflect upon what it
observes, and make decisions when sufficient evidence is gathered, mirroring real-world
tasks like debugging code or reasoning over time.

2. Evaluating LLMs - We show that state-of-the-art LLMs struggle significantly on this task,
with the best model achieving only 28% accuracy. This highlights a significant deficiency
in multi-turn performance of top-performing LLMs, suggesting that strong single-turn per-
formance may not always transfer to multi-turn settings.

3. Further Analysis - We perform several experiments analyzing hypothesis space reduction,
response complexity, and the performance of models when provided test cases from a dif-
ferent model. We demonstrate that models have varied strengths and weaknesses on this
task, and that combining models together in a multi-turn setting may increase performance
compared to using a single strong model.

2 WILT

The Wason Inductive Logic Test (WILT) is a benchmark for LLM reasoning inspired by the Wason
2-4-6 task (Wason, 1960). Models begin with the instruction that they must uncover the hidden rule,
and may pose up to 30 test cases of that rule. For example, they can pose the tuple (2, 4, 6) and the
test will respond with “True, 29 Attempts Remaining.”

All hidden rules take three numbers and return a boolean. These rules are simple and non-stochastic,
so there is no additional value to posing the same test multiple times. Valid inputs include any float
or integer that can be typed in three or fewer characters, excluding signs and the decimal point (e.g.
-999, 1.23, 5). The hidden rules are written as Python lambda functions. After a maximum of thirty
tries (or any turn before then), the model may make one attempt to guess the function, after which
the test will terminate. The model must return a Python lambda function that is the same as or
equivalent1 to the hidden rule in order to receive full points.

WILT is conceptually simple, but very challenging. Humans are able to identify simple rules despite
the infinitely large hypothesis space, the unbounded difficulty of a hidden function, and the impos-
sibility of verifying the correctness of your response (Tweney et al., 1980; Tukey, 1986). Without
effective priors for what constitutes a “simple” or “reasonable” answer, it becomes trivial to con-
struct an arbitrary counterexample to a current hypothesis. For example, consider the canonical

1For example, x− y = z is equivalent to y + z = x
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Figure 1: Left: Abbreviated example of the “doom loop” phenomenon observed in appendix C.1.
The model returns an unsatisfactory response on an early turn, and devolves into repeating the same
suggestions in subsequent turns. Right: Overview of the WILT task. For each test, the test harness
initializes a hidden rule, and participants propose up to 30 test cases for each hidden rule before
making a final guess.

Wason task rule of x < y < z. This rule has very high overlap with the much more arbitrary rule
(x < y < z) ∧ (x ̸= 12).

The WILT benchmark therefore tests a few high-value behaviors of interest:

1. Multi-Turn Capability: Participants that fall into doom loops are punished by virtue of
having less useful information with which to infer the hidden rule.

2. Hypothesis Space Reduction: Participants are rewarded for proposing test cases that ef-
fectively narrow down the possible rules, despite that hypothesis space being infinitely
large.

3. Susceptibility to Confirmation Bias: Participants who are more prone to “confirming
their hypothesis” rather than seeking falsification will perform poorly upon this task.

4. Inductive Reasoning: Proposing good test cases is a useful test of inductive reasoning and
the ability to generalize from a number of specific examples.
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5. Deductive Reasoning: Proposing sensible functions after observing many test cases is
a useful test of deductive reasoning. Success in this task involves identifying a specific
function that accurately fits a set of examples.

6. Occam’s Razor: Participants are rewarded for finding the simplest explanation fitting the
examples.

We release two test suites: a lite split, with 10 very easy tests and a canonical full split with 50
moderately difficult tests2. Future work will extend this to include a procedurally generated split for
additional robustness to overfitting. We find that the lite split quickly produces a roughly similar
ordering to the full split, but we report results upon the full split for the remainder of this work.
Please see Appendix A.4 for further details.

3 RELATED WORK

Compared to other reasoning benchmarks, WILT stands out as both highly multi-turn focused and
unusually robust to memorization. In contrast to other benchmarks, WILT requires models to in-
teract with an environment by proposing their own test cases to uncover a hidden function without
relying on pre-provided examples. This setup reduces the risk of overfitting, as each test begins with
the same initial instructions, and the model must generate and interpret its own data.

3.1 REASONING BENCHMARKS

There are a wide variety of reasoning benchmarks used to evaluate large language models. Some
very notable among these are MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), Com-
monsenseQA (Talmor et al., 2018), StrategyQA (Geva et al., 2021), BIG-BENCH (Srivastava et al.,
2022), SciBench (Wang et al., 2023b), SVAMP (Patel et al., 2021), ARC-AGI (Chollet, 2019),
MMLU (Hendrycks et al., 2020), GPQA (Rein et al., 2023), and HumanEval (Chen et al., 2021).
These benchmarks are the standard for measuring LLM reasoning capabilities, but are overwhelm-
ingly carefully chosen single-turn problems which aim to meaningfully separate the performance
of different models on reasoning-like outputs such as math, code, or logic puzzles. However, these
benchmarks are subject to train-on-test leakage, even if efforts are made to decontaminate the dataset
(Yang et al., 2023), and the majority are explicitly single-turn tests. Our benchmark directly mea-
sures the model’s ability to navigate multi-turn scenarios, and does not require careful hiding of a
test set to prevent misleading results.

With respect to reasoning about simple functions, a benchmark that stands out as similar to ours
is CRUXEval (Gu et al., 2024), which assembles a list of 800 simple Python functions and input-
output pairs, and evaluates language models on their ability to predict input from output and output
from input. Our work could be seen as a multi-turn, more difficult extension of this work – one
where the function is replaced with a black box, where helpful and informative input-output pairs
are not provided but instead need to be searched for by the language model, and where the objective
is to infer the hidden function rather than the input or output.

3.2 MULTI-TURN BENCHMARKS

There are a handful of multi-turn benchmarks used to evaluate LLMs. PlanBench (Valmeekam et al.,
2022) is one prominent benchmark which attempts to measure the ability of LLMs to navigate plan-
ning problems. This is a class of problems which are solved easily by classical planning algorithms
such as STRIPS (Fikes & Nilsson, 1971), and like our benchmark poses a significant challenge to
LLMs. PlanBench is a primarily multi-step, single-turn benchmark with a multi-turn component
(i.e. replanning based on unexpected events), which contrasts with our benchmark’s more direct
multi-turn focus. This can be observed in the o1 models performing comparatively well on Plan-
Bench (Valmeekam et al., 2024), since scaling inference time compute within a single turn would
be expected to improve performance substantially.

Closest to ours is Aidan-bench (McLaughlin, 2024), which directly measures the cosine similar-
ity between multi-turn responses. This represents a more pure measurement of the doom loop

2We will release the code for this benchmark with the final release of the full paper.
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Table 1: Model Accuracy Comparison

Model Accuracy Approx. Avg. Avg.
Correct Guesses Repeats

Claude 3.5 Sonnet (Anthropic, 2024a) 14/50 10/50 16.38 0.54
o1-mini 2024-09-12 (OpenAI, 2024c) 13/50 8/50 12.1 0.06
o1-preview 2024-09-12 (OpenAI, 2024c) 12/50 6/50 8.123 0.06
chatgpt-4o-latest (OpenAI, 2024a) 11/50 7/50 14.22 0.76
Mistral Large 2 (Mistral AI, 2024a) 11/50 5/50 26.56 2.84
GPT-4o 2024-08-06 (OpenAI, 2024a) 9/50 6/50 15.26 0.52
Llama 3.1 405B (Dubey et al., 2024) 8/50 9/50 12.21 0.60
Gemini 1.5 Flash 0827 (Google, 2024) 7/50 4/50 14.04 2.16
Llama 3.1 70B (Dubey et al., 2024) 7/50 2/50 15.18 1.48
Deepseek-v2.5-chat (Liu et al., 2024) 6/50 5/50 27.22 9.78
GPT-4o-mini (OpenAI, 2024b) 6/50 2/50 20.36 1.08
Gemini 1.5 Pro (Google, 2024) 5/50 6/50 16.78 0.82
Gemini 1.5 Flash (Google, 2024) 5/50 6/50 16.5 2.46
Deepseek-v2-coder (Zhu et al., 2024) 5/50 5/50 21.82 6.70
Deepseek-v2-chat (Liu et al., 2024) 3/50 3/50 25.32 6.68
Llama 3.1 8b (Dubey et al., 2024) 3/50 0/50 26.18 4.46
Open Mistral Nemo (Mistral AI, 2024b) 2/50 3/50 27.34 8.00
Claude 3 Haiku (Anthropic, 2024b) 1/50 1/50 6.76 0.22
Gemini 1.5 Flash 8b 0827 (Google, 2024) 0/50 2/50 26.76 7.72
Gemma 2 9B (Team et al., 2024) 0/50 2/50 8.82 1.40

phenomenon. In our benchmark, rather than directly measuring the doom loops, we are instead
measuring how often those doom loops lead to failures of reasoning. We see similar surprising per-
formances in our benchmark compared to Aidan-bench (e.g. Mistral Large’s noteworthy ability at
multi-turn), but with an ordering more tied to capabilities (e.g. Sonnet’s superior performance, see
Table 1).

3.3 HYPOTHESIS SPACE REDUCTION

Hypothesis space representation is a commonly used framing in inductive logic tasks for LLMs. In
Wang et al. (2023a), the authors show a technique called hypothesis search where the model will
propose hypotheses in natural language and then implement these hypotheses as Python programs.
This technique was shown to improve performance on ARC-AGI (Chollet, 2019), but a similar
approach could be used along with chain-of-thought (Wei et al., 2022) for WILT as well.

4 EXPERIMENTS

4.1 WILT FULL SPLIT RESULTS

We evaluated several state-of-the-art LLMs on the full split of the WILT task. Experimental details
can be found in Appendix A.1. Our results for this test can be found in Table 1. Claude 3.5 Sonnet
narrowly performs the best on this task, with OpenAI’s o1 models close behind despite using fewer
guesses.

In Table 1, we include a column approximately correct, measuring the number of rules in which the
model was able to correctly identify some critical behavior of the rule, but returned a rule with failing
edge cases3. For example, guessing (x < y < z) instead of (x ≤ y ≤ z) is approximately correct.
We include this column to highlight models that are more willing to guess immediately instead of
uncovering edge cases by default (e.g. Llama 3.1 405B). In these cases, we could see potentially

3We bold results for this column only if the models are also high performing. For example, Claude 3 Haiku
uses fewer guesses than o1-preview, but this is because it is failing to make use of its available turns to uncover
the behavior of the hidden rule, not because it efficiently solves the task.
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improved performance through explicitly instructing the model to use more guesses. Examples of
common failure patterns can be found in Appendix B.

In addition, we find that LLMs (particularly smaller ones) will frequently repeat tests they have
already used, sometimes dozens of times, often with the same provided reasoning. We therefore
also provide a column average repeats which counts the average number of proposed tests which
were already tested for that rule. Further discussion on test novelty can be found in Appendix A.2.

In our experiments, we show that LLMs struggle substantially with this task. We show that despite
the test’s relative simplicity, most models struggle substantially both to propose good tests and to
infer a rule based on available evidence. Specifically, their propensity to repeat test cases, propose
useless test cases, and guess very unlikely rules harms their performance on this task substantially.
The varying performance in a multi-turn setting represents a previously unappreciated dimension of
measuring reasoning capability in LLMs. There is much work in language modeling for code-based
agents (Cognition AI, 2024; Yang et al., 2024a) and LLM-driven unit testing (Yang et al., 2024b),
and the difficulty of LLMs to explore edge cases effectively across multiple turns has substantial
implications on those applications.

As in the original Wason 2-4-6 task, we find a common failure mode to be confirmation bias – a
participant will identify a plausible hypothesis and continue to propose tests that attempt to confirm
it (see Appendix B.3). Stronger models will more explicitly attempt to falsify these hypotheses
instead. For example, a model that observes the rule is always true when the values are all equal
should attempt to test a rule like x ≤ y ≤ z, rather than submitting more cases where the three
values are equal.

We show some varying behavior among top performing models, which highlights the multifaceted
ways which a model can succeed on a multi-turn task. Claude 3.5 Sonnet performs quite well on
WILT, outperforming models like o1-mini and o1-preview which tend to win on adjacent single-
turn benchmarks. On most turns, WILT is a setting which removes many of the advantages of a
model which has scaled up inference-time compute; each turn requires only a moderate amount
of consideration, compared to other single-turn benchmarks which are multi-step, single turn and
thereby reward the model substantially for long and elaborate chains of thought. o1-mini and o1-
preview show astonishingly low test case reuse, and much lower than average guess count compared
to Sonnet 3.5 despite comparable performance, pointing to their strong deductive reasoning skills
and recollection of the previous steps in a conversation. However, they ultimately underperform
due to gathering less evidence compared to Sonnet 3.5, which is a multi-turn capabilities failure
despite not being a failure on any turn in particular. Put another way, Sonnet 3.5 seems better at
understanding that it will be able to leverage future tests, and that its multi-turn performance shines
“between” turns rather than during them.

In this vein, Mistral Large stands out as having surprisingly strong performance in multi-turn, despite
its novelty metrics being below average. That is, it tends to respond with many operators (see
Table 2), repeat many more tests than other similar-performing models, and responds with messages
with worse novelty metrics as reported in Table 3 and Figure 5. However, it tends to use most of
its available resources, accrue evidence with new tests deep into the conversation, and ultimately
deduce the rule very well for a model of its size. The strong result observed from Mistral Large
points towards a multi-turn capabilities success despite numerous single-turn failures, and reveals a
previously underappreciated ability of this model.

4.2 HYPOTHESIS SPACE REDUCTION

To compare the LLMs’ ability to efficiently reason about the task, we estimate how effectively each
model reduces the hypothesis space (Wang et al., 2023a). At best, an LLM should always propose
a triplet that eliminates as many untested hypotheses as possible. At worst, a model repeatedly
proposes a triplet confirming previously covered hypotheses. For example, an LLM that has al-
ready guessed (2, 4, 6) retreads much of the same hypothesis space by guessing (4, 6, 8) rather than
(0.01,−1, 100).

To represent that hypothesis space, we randomly generate 2000 lambda functions that encompass
a wide range of potential hypotheses. For example, we randomly generate lambdas having to do
with: ordering (x < y < z), equality (x = y ̸= z), arithmetic relations (x + y = z), parity
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Figure 2: Models can succeed upon this task by reducing the hypothesis space quickly or providing
useful tests for many turns. We show that models with strong reasoning capabilities can narrow the
space quickly, but weaker multi-turn capability harms their ability to get value out of later tests.

(x ≤ 10, y ≤ 5, z ≤ 100), etc. When an LLM proposes a triplet, we cross off any lambdas that do
not match the observed behavior of the hidden rule. Figure 2 illustrates the rate at which different
models reduce the hypothesis space over successive turns. Models with worse reasoning spend
more attempts to clear less of the hypothesis space, with some models using all of their attempts
and yet failing to propose useful tests once some visible behavior is latched onto. For a model with
strong reasoning capabilities, we would expect that they would not repeatedly propose test cases that
cover previously matched lambdas. Models like deepseek-v2-chat show strong hypothesis space
reduction within the first few turns, but struggle to cover the entire space even after 30 turns, leading
to suboptimal performance on the full split. In contrast, models like gpt-4o-mini show weaker
performance in the first few turns, but are able to cover a greater range of the hypothesis space by
better leveraging later turns. It’s important to remember that narrowing the hypothesis space is only
one aspect of the challenge; making an accurate final guess after proposing tests is equally crucial
for strong overall performance on WILT.

4.3 EVALUATING FUNCTION INVERSION CAPABILITY

To succeed at the WILT task, models must succeed at both gathering evidence (hypothesis reduction)
and drawing logical conclusions from evidence (function inversion). To distinguish a model’s ability
to do one or the other, we perform an experiment where models attempt to guess the rule using tests
from another model. Rather than asking the model to gather evidence, we directly provide it all the
reasoning-stripped4 input-output pairs generated by another model for the same rule, and ask the
model to guess the rule in a single turn. Without the original reasoning and subsequent observation
before and after each test case, we expect most models to underperform relative to the full test even
when provided their own cases. Likewise, we expect models stronger at single-turn to perform better
in this experiment relative to other models subject to the same evidence. Our results can be found in
Figure 3.

This reveals some notably varied capabilities among the top performing models. While Claude
Sonnet 3.5 was the narrowly highest performing model on the full test, this experiment reveals
important context for why that may be. We see that it performs better than most other models subject
to the same evidence, but proposes test cases that are generally slightly less useful for other models

4We strip reasoning to avoid conflating confirmation bias in the attached reasoning, rather than just the
accumulated evidence.
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without the attached justifications. Likewise, without its own reasoning for each case, Sonnet’s
performance degraded substantially more than other models in the same setting, suggesting a larger
component of its success was its reasoning, compared to the test cases alone.

o1-mini shows highly superior single-turn capability in this test, but notably performs relatively less
well when provided its own tests rather than the tests of another high-performing model. When
paired with cases from chatgpt-4o-latest, it successfully guessed 19 of the 50 rules, far surpassing
the best-performing single model in the full test.

Despite having many repeated tests and messages which were generally similar to each other (see
Tables 1 and 3), we see that Mistral Large performs well with other models’ tests and provides a
corpus of tests useful to other models. We note its comparable performance to chatgpt-4o-latest both
along the rows (model’s performance with other model’s test cases) and columns (performance of
other models with the model’s test cases), reinforcing its strong performance in the full test.

Critically, we show that models have non-identical strengths and weaknesses, and that success on
the full WILT task depends on strong performance on a few key metrics of interest. Even without the
attached reasoning for test cases, composing the test case generation of one model and the function
inversion of another model very often outperforms using a single strong model for both subtasks.
This has some notable implications for future LLM applications: in Wang et al. (2024) it was shown
that several language models coordinated by an aggregator LLM could outperform strong single
models. Future work could explore coordinating models for both single-turn and multi-turn oriented
tasks, potentially leading to improved performance.

Figure 3: Models have varying success when using test cases proposed by other models. o1-mini
stands out as having much stronger single-turn reasoning in this experiment, but it performs poorly
with its own tests.

4.4 RESPONSE COMPLEXITY

To determine how well the models employ Occam’s Razor, we explore different metrics to gauge
whether the models find the simplest rule that covers the examples. From existing Bayesian models
of cognition (Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), the size principle uses hypothesis
size as a measure of simplicity. In these Bayesian models, hypothesis size is calculated as the number
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of values that match the hypothesis. Calculating hypothesis size in this manner is only possible when
the test values are within a limited countable range. In our case, the possible test values are infinite,
requiring some alternative metrics to gauge hypothesis size. We use three metrics:

1. Number of Operators: We count the number of operators used in the rule expression.
2. Response Length: We calculate the string length of the rule expression. The longer the

length, the more complex it is likely to be. As longer outputs tend to be arbitrarily preferred
by automatic evaluators (Dubois et al., 2024), it is particularly important to measure the
brevity of the response for cases where simplicity is desired.

3. Set Inclusion: We generate a grid of integer-float tuples and apply them to guessed and
actual rules to generate sets of tuples returning “True”. If the set of the guessed rule is a
subset or superset of the actual rule, we then calculate their set size ratio. A ratio of 1 is
ideal, > 1 suggests a less complex guess, and < 1 a more complex one.

Table 2 shows the complexity metrics of the LLMs. Many LLMs with high accuracy such as Claude
3.5 Sonnet, chatgpt-4o-latest, and Mistral Large have long response lengths. However, o1-preview
has a short response length and few operators, despite its high performance on the task. The differ-
ences in response length and number of operators is most clearly seen in the incorrect answers. For
example, if the correct rule is lambda x, y, z: (x * y * z)% 2 == 1, Claude 3.5 Sonnet’s
guess is lambda x,y,z: all(n > 0 and int(n)== n and (n & (n-1)== 0)and (n %
3 == 0 or n == 1)for n in [x,y,z]), which is more convoluted than o1-preview’s guess
of lambda x, y, z: abs(x)== 1 and abs(y)== 1 and abs(z)== 1. Combined with its
low number of average guesses made before making the final guess, o1-preview appears to follow
Occam’s Razor very closely compared to most of the other high-performing models with longer
response lengths. For the set inclusion ratio, the best models tend to cluster around an intermediate
value of 2-4.

Table 2: Response Complexity (Median)

Model Num Operators Response Length Set Inclusion
Claude 3.5 Sonnet 3 34.5 0.08
o1-mini 2024-09-12 3 29.0 0.79
o1-preview-2024-09-12 2 25 0.01
chatgpt-4o-latest 5 39 1.0
Mistral Large 2 5 39 1.0
GPT-4o 2024-08-06 4.5 39 0.34
Llama 3.1 405B 2 30 0.52
Gemini 1.5 Flash 0827 4 35.5 0.00
Llama 3.1 70B 2 25 1.00
Deepseek-v2.5-chat 3 29 0.27
GPT-4o-mini 5 39.5 0.05
Gemini 1.5 Pro 3 38 0.27
Gemini 1.5 Flash 3 28 0.06
Deepseek-v2-coder 5 39 0.88
Deepseek-v2-chat 2 28 0.00
Llama 3.1 8b 2 23 0.05
Open Mistral Nemo 5 46 1.00
Claude 3 Haiku 5 31 0.49
Gemini 1.5 Flash 8b 0827 3 29 0.02
Gemma 2 9B 5 38 0.52

In addition, Figure 4 shows the median number of operators used by a model when given another
model’s test cases, as in Section 4.3. This can be used to estimate the model’s bias toward guess-
ing a simpler rule. o1-preview, for example, tends to use fewer operators than the other models
subject to the same evidence. This also highlights potential discrepancies in the complexity result-
ing from a model’s test cases and the complexity of its final guesses. When models use test cases
generated by DeepSeek Chat v2.5, they tend to use fewer operators, likely because the test cases

9
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are fully encompassed by simple rules like lambda x,y,z: False. Conversely, when given
other models’ tests, DeepSeek Chat v2.5 responds with a high level of complexity compared to
other models. Its guesses often overfit a complicated rule to the test cases (e.g., it guesses a rule of
lambda x, y, z: y == x or y == z or y == (x + z) / 2 when given the fol-
lowing true test cases for even numbers: (2.0, 2.0, 2.0), (2.0, 2.0, 4.0), (-2.0,
4.0, 6.0), (0.0, 2.0, 4.0), (2.2, 4.0, 6.0), (2.0, 4.0, 6.0).)

Figure 4: The median number of operators provides a window into guessed rules being more or less
complicated compared to guesses provided by other models. More metrics for response complexity
in test-case swap scenarios can be found in Appendix A.3.

5 CONCLUSION

In this work, we highlight the importance of the multi-turn setting for understanding the performance
of large language models in everyday use cases. We introduced a new benchmark which attempts to
measure performance in this common setting, and show its difficulty even for state-of-the-art LLMs.
With the models exhibiting non-overlapping strengths, the resulting performance of these models
on the WILT task provides useful context for what types of tasks they would be useful for, beyond
simply suggesting the top-performing model is the best one to use for all applications.

Our benchmark identifies a critical way that typical benchmarks differ from day-to-day use of LLMs:
whereas effective multi-turn collaboration often requires asking clarifying questions, performing
experiments, and gathering new evidence, typical benchmarks are overwhelmingly designed to be
solved immediately. This may, in turn, create an implicit incentive for models to end conversations
as quickly as possible, even where that may be ineffective or inappropriate.

With this work, we aim to provide a benchmark that measures a model’s capacity for exploring an
environment and reasoning based on its own decisions across multiple turns. We believe that this
paradigm offers a more direct measurement of reasoning capability compared to other benchmarks.
Likewise, we believe an explicit focus on multi-turn reasoning capability more directly shines a light
upon the most common uses of LLMs.

10
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EXPERIMENTAL DETAILS

A.1.1 MODEL CONFIGURATIONS

Models are accessed when possible with default configurations and settings provided by their re-
spective proprietary APIs (i.e. Anthropic, OpenAI, Mistral, DeepSeek, and Vertex APIs). Llama 3.1
models are run via the Amazon Bedrock API. Gemma 2 9b and llama 3 70B are run via the Groq
API Abts et al. (2022).

A.1.2 PROMPTS

All models begin from the same initial prompt.

You are an AI tasked with discovering a hidden rule that takes three numbers
as input and returns a boolean. These numbers can be any float or integer number
that can be typed in 3 or fewer digits, not including signs and decimal characters
(e.g. -11.3 is a valid value). In each response, you will provide your step-by-step
reasoning for your future plans on this task, and then you will take one of two
actions:
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1. Provide a single test case to observe the output of a rule (e.g.
“Test Case: ```(1, 2, 3)```” which corresponds to x=1, y=2,
z=3. You may only propose one test case at a time.

2. Provide a final “guess” in the form of a python lambda function (e.g.
“Final Guess: ```lambda x,y,z: x < y < z```”). You only
get to select this action one time, so don’t use it unless you are confident or
are forced to.

You will have up to 30 attempts at test cases, and you will have exactly one
attempt at guessing the final function. Make sure all of the tests you provide are
unique from other ones you have already tried – the functions are all deterministic,
and will be the same every time. You should prioritize getting the rule as correct
as possible, since an incorrect answer will get no points. You should therefore
not guess the function unless you are quite confident, or if you are very close to
running out of attempts.

You must return your responses in the format laid out above at the very bot-
tom of your message. For example, if you want to submit a test case, you must
conclude with the string “Test Case: ```(x,y,z)```”, where x,y,z are re-
placed with your guesses. If you want to submit a final guess, you must conclude
with the string “Final Guess: ```<function>```” where <function>
is replaced with a python lambda function. Do not include any comments or addi-
tional text on the same lines as these two things.

Make sure to include your reasoning for your tests – what you are testing for,
why you selected that test, etc.

Responses by the models are pulled out via regular expressions matching the formatting in the
prompt. We find that after controlling for various formatting eccentricities (python blocks, mark-
down, bold characters, etc) that all listed models are capable of providing test cases in this format.

A.1.3 VERIFYING EQUIVALENT FUNCTIONS

To verify two provided lambda functions are equivalent, we generate a large number of test cases
and ensure the provided rules match on all outputs. Specifically, we create three sets of cases:

1. Integer Grid Cases - We construct a 40x40x40 grid of integer triplets from -20 to 20,
inclusive, leading to 64,000 triplet cases.

2. Random Uniform Cases - We construct a list of 10,000 uniformly random float triplets
from -200 to 200, inclusive.

3. Special Cases - We hand-design a small set of test cases to ensure all hidden rules in the
full split are adequately tested.

We mark a rule as incorrect if any test cases generated above show different behavior between the
hidden rule and the guessed rule, and mark it correct otherwise.

A.2 TEST CASE NOVELTY

Test case novelty is an interesting second order metric for success upon the WILT task. Broadly
speaking, models that reuse fewer tests are rewarded with more information for which to solve the
task. Models that very rarely re-propose a test tend to perform very well upon WILT, but the inverse
is not necessarily true – models that loop tests often still arrive at the right answer.

Repeated tests are useful for bifurcating the types of failures on WILT – one being the doom loop
phenomenon, and the other being reasoning capability conditioned upon some available evidence.
One hypothesis for the observed behavior is that certain models are primarily oriented towards
single-turn scenarios, and that one type of failure need not imply the other. DeepSeek Chat v2.5, for
example, demonstrates strong initial hypothesis space reduction compared to other models, which
allows it notably better performance on WILT compared to other models with similar repeat counts
(e.g. open-mistral-nemo). Strong single-turn performance and deductive reasoning capabilities can
help salvage performance from a model that demonstrates difficulty with multi-turn inductive logic.
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Table 3: Model Novelty Metrics

Model Repeats Avg. Novelty Avg. Min. Novelty
claude-3.5-sonnet-20240620 27 0.22 0.08
o1-mini-2024-09-12 3 0.24 0.09
o1-preview-2024-09-12 3 0.28 0.11
chatgpt-4o-latest 38 0.21 0.10
mistral-large-2407 142 0.13 0.04
gpt-4o-2024-08-06 26 0.22 0.11
llama3.1 405B 30 0.20 0.06
gemini-1.5-flash-exp-0827 108 0.19 0.08
llama3-70b 74 0.19 0.06
deepseek-chat-v2.5 489 0.09 0.02
gpt-4o-mini 54 0.19 0.10
gemini-1.5-pro 41 0.26 0.13
gemini-1.5-flash 123 0.19 0.08
deepseek-coder 334 0.11 0.03
deepseek-chat-v2 335 0.10 0.03
llama-3.1-8b 223 0.13 0.01
open-mistral-nemo 400 0.12 0.02
claude-3-haiku-20240307 11 0.29 0.11
gemini-1.5-flash-8b-exp-0827 386 0.14 0.05
gemma2-9b-it 70 0.34 0.18

Following Aidan-bench (McLaughlin, 2024), we provide Table 3, containing additional novelty
metrics. These include:

1. Average novelty - which reports the average cosine similarity between each message’s gpt-3
embeddings and the closest previous message within the same test.

2. Average minimum novelty - which reports the average minimum cosine similarity between
each message’s gpt-3 embeddings and the closest previous message within the same test.

These capture an additional dimension of “test novelty” and “message novelty”, where models may
propose the same tests for different reasons, or repeat previously generated messages verbatim. We
bold results which are best within the class of high performing models. We note that models that
propose fewer tests before guessing (e.g. o1-preview, o1-mini) should see lower values for all of
these compared to models that tend to use many tests before guessing (e.g. mistral-large) even for
otherwise equally performing models. We also show the average novelty by turn in Figure 5, which
captures the model’s novelty scores across turns.

A.3 RESPONSE COMPLEXITY IN TEST SWAP EXPERIMENTS

In figure 6 we show the set inclusion ratios in the case where a model is provided another model’s
test cases. That is, we show whether an error in the final guess of a model is likely to be smaller /
less than one (e.g. x < y < z instead of x ≤ y ≤ z), or larger / greater than one (e.g. x > 0 instead
of x > 0 ∧ x < 5). This seems more test-case dependent than other complexity benchmarks, where
tests provided by certain models seem to lead to smaller hypotheses.

Figure 7 shows the length of the string used to guess the rule by each model, which is comparatively
more consistent for a model. We find this to be fairly consistent across settings, with most models
hovering near 45.
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Figure 5: Cosine similarity by turn for selected models. Models have a higher novelty score near the
end, since the final guess is often much different from previous messages, which are all proposed
test cases.

Figure 6: Set inclusion ratios will differ in the same model when provided another model’s tests,
and models provided the same tests have different set inclusion behaviors.

A.4 SELECTED LITE SPLIT RESULTS

Table 4 contains selected results for the lite split. We show this much easier split produces a similar
ordering, suggesting that the bulk of the separation in our benchmark lies in the easier tests.
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Figure 7: Models tend to have fairly consistent guess string lengths, with some exceptions.

Table 4: Lite Split Metrics

Model Accuracy Avg. Guesses
Claude-3.5-Sonnet 8/10 13.68
GPT-4-Turbo 7/10 12.47
GPT-4o 6/10 13.86
DeepSeek-V2-Coder 6/10 23.46
Llama 3 70B 4/10 15.64
DeepSeek-V2-Chat 2/10 24.82
Llama 3 8B 1/10 24.0
GPT-3.5-Turbo 1/10 2.9

A.5 TEST DESCRIPTIONS

Table 5 contains the functions found in the lite split of WILT. Table 6 contains the functions found
in the full split of WILT. These are implemented as Python lambda functions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Lite Split: Complete Set of Tests

Test ID Description
1 x > y > z
2 x < y < z
3 x ≥ y ≥ z
4 x ≤ y ≤ z
5 x = y = z
6 x ̸= y ∧ y ̸= z ∧ x ̸= z
7 x < 0 ∧ y < 0 ∧ z < 0
8 x+ y = z
9 x · y = z

10 x < y ∧ y > z

B FAILURE CASE EXAMPLES

B.1 DOOM LOOP WITHOUT REASONING FAILURE

Table 7 shows an example of a model (Deepseek-Chat-v2.5) entering a doom loop during the test
proposal phase, but where that doom loop does not constitute a reasoning failure. Reasoning has
been removed for brevity.

B.2 APPROXIMATELY CORRECT

Table 8 shows an example of o1-mini getting a very difficult test case (co-primality) approximately
correct, failing only because it adds an additional arbitrary constraint upon the magnitude of the
values despite no such constraint existing. Reasoning has been removed for brevity.

B.3 CONFIRMATION BIAS

Table 9 shows an example of o1-preview failing a relatively easy test case (x ≥ y ≥ z) due to a
confirmation bias error. The model uses only 9 test cases and correctly identifies that the rule returns
true when all three are equal, but submits five test cases confirming that and none exploring other
rules which are true when three items are equal. Reasoning has been removed for brevity.

B.4 SAME TEST FOR NEW REASON

Table 10 shows an example of Claude Sonnet 3.5 repeating a test, where it will mistakenly generate
the same test for a different stated reason. We see the model notice it has repeated a test only after it
has already submitted the test. Other tests have been removed for brevity.
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Table 6: Full Split: Complete Set of Tests

Test ID Description
Easy Tests

1 x > y > z
2 x < y < z
3 x ≥ y ≥ z
4 x ≤ y ≤ z
5 x < z < y
6 x ≤ z ≤ y
7 z < x < y
8 z ≤ x ≤ y
9 x = y = z
10 x ̸= y ∧ y ̸= z ∧ x ̸= z
11 x < 0 ∧ y < 0 ∧ z < 0
12 x > 0 ∧ y > 0 ∧ z > 0
13 x mod 2 = 0 ∧ y mod 2 = 0 ∧ z mod 2 = 0
14 x mod 2 ̸= 0 ∧ y mod 2 ̸= 0 ∧ z mod 2 ̸= 0

Medium Tests
15 x+ y = z
16 x · y = z
17 x+ z = y
18 x · z = y
19 y + z = x
20 y · z = x
21 max(x, y, z) = x
22 max(x, y, z) = y
23 max(x, y, z) = z
24 min(x, y, z) = x
25 min(x, y, z) = y
26 min(x, y, z) = z
27 x+ y + z = 0
28 x · y · z = 0
29 (x+ y + z) mod 2 = 0
30 (x+ y + z) mod 2 = 1
31 (x · y · z) mod 2 = 0
32 (x · y · z) mod 2 = 1
33 (x+ y)/2 = z
34 −5 ≤ x, y, z ≤ 5
35 −10 ≤ x, y, z ≤ 10
36 −5 ≤ x, y, z ≤ 0
37 0 ≤ x, y, z ≤ 5
38 −2 ≤ x, y, z ≤ 2
39 −20 ≤ x, y, z ≤ 20

Very Hard Tests
40 x2 + y2 = z2

41 x2 + z2 = y2

42 y2 + z2 = x2

43 ⌊x⌋&⌊y⌋ = ⌊z⌋ (bitwise AND)
44 ⌊x⌋|⌊y⌋ = ⌊z⌋ (bitwise OR)
45 ⌊x⌋ ⊕ ⌊y⌋ = ⌊z⌋ (bitwise XOR)
46 x, y, z ∈ Z ∧ gcd(x, y) = gcd(y, z) = gcd(z, x) = 1

47
√
⌊|x|⌋

2
= ⌊|x|⌋ ∧

√
⌊|y|⌋

2
= ⌊|y|⌋ ∧

√
⌊|z|⌋

2
= ⌊|z|⌋

48 0 < x mod 1 ∧ 0 < y mod 1 ∧ 0 < z mod 1
49 0 < x mod 1 < y mod 1 < z mod 1 < 1
50 x < y < z ∧ 0 < z − x ≤ 1
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Table 7: DeepSeek-v2.5 Enters a doom loop but still arrives at the correct answer

Turn Assistant Harness
1 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

2 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): True.

3 Test Case: (3, 2, 1) (3.0, 2.0, 1.0): True.

4 Test Case: (2, 1, 3) (2.0, 1.0, 3.0): True.

5 Test Case: (-1, -2, -3) (-1.0, -2.0, -3.0): False.

6 Test Case: (-1, 2, -3) (-1.0, 2.0, -3.0): False.

7 Test Case: (0, 1, 2) (0.0, 1.0, 2.0): False.

8 Test Case: (2, 3, 1) (2.0, 3.0, 1.0): True.

9 Test Case: (0, 1, 1) (0.0, 1.0, 1.0): False.

10 Test Case: (0.001, 1, 1) (0.001, 1.0, 1.0): True.

11 Test Case: (-0.001, 1, 1) (-0.001, 1.0, 1.0): False.

12 Test Case: (999, 1, 1) (999.0, 1.0, 1.0): True.

13 Test Case: (-999, 1, 1) (-999.0, 1.0, 1.0): False.

14 Test Case: (0.0001, 1, 1) (0.0001, 1.0, 1.0): True.

15 Test Case: (-0.0001, 1, 1) (-0.0001, 1.0, 1.0): False.

16 Test Case: (999.999, 1, 1) (999.999, 1.0, 1.0): True.

17 Test Case: (-999.999, 1, 1) (-999.999, 1.0, 1.0): False.

18 Test Case: (0.0001, 999.999, 1) (0.0001, 999.999, 1.0): True.

19 Test Case: (-0.0001, 999.999, 1) (-0.0001, 999.999, 1.0): False.

20 Test Case: (0.0001, -999.999, 1) (0.0001, -999.999, 1.0): False.

21 Test Case: (0.0001, 999.999, -0.0001) (0.0001, 999.999, -0.0001): False.

22 Test Case: (0.0001, 999.999, -999.999) (0.0001, 999.999, -999.999): False.

23 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

24 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

25 Test Case: (999.999, 0.0001, 0.0001) (999.999, 0.0001, 0.0001): True.

26 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

27 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

28 Test Case: (999.999, 0.0001, 0.0001) (999.999, 0.0001, 0.0001): True.

29 Test Case: (0.0001, 999.999, 0.0001) (0.0001, 999.999, 0.0001): True.

30 Test Case: (0.0001, 0.0001, 999.999) (0.0001, 0.0001, 999.999): True.

31 Final Guess: lambda x, y, z: x > 0 and
y > 0 and z > 0

Congratulations! Your guess is cor-
rect.
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Table 8: o1-mini nearly gets the coprimality case correct, but adds bounds for no concrete reason.

Turn Assistant Harness
1 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): True.

2 Test Case: (3, 2, 1) (3.0, 2.0, 1.0): True.

3 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

4 Test Case: (-1, 2, 3) (-1.0, 2.0, 3.0): True.

5 Test Case: (-1, -2, -3) (-1.0, -2.0, -3.0): True.

6 Test Case: (0, 0, 0) (0.0, 0.0, 0.0): False.

7 Test Case: (0, 1, 2) (0.0, 1.0, 2.0): False.

8 Test Case: (1.5, 2.5, 3.5) (1.5, 2.5, 3.5): False.

9 Test Case: (1, 2, 3.0) (1.0, 2.0, 3.0): True.

10 Test Case: (1, 2, 3.1) (1.0, 2.0, 3.1): False.

11 Test Case: (1, 2, -3) (1.0, 2.0, -3.0): True.

12 Test Case: (10, -20, 30) (10.0, -20.0, 30.0): False.

13 Test Case: (4, 5, 6) (4.0, 5.0, 6.0): False.

14 Test Case: (-2, -1, 3) (-2.0, -1.0, 3.0): True.

15 Test Case: (3, 3, 4) (3.0, 3.0, 4.0): False.

16 Test Case: (1, -1, 2) (1.0, -1.0, 2.0): True.

17 Test Case: (-3, 3, -2) (-3.0, 3.0, -2.0): False.

18 Test Case: (2, -2, 2) (2.0, -2.0, 2.0): False.

19 Test Case: (-1, 2, -2) (-1.0, 2.0, -2.0): False.

20 Test Case: (1, 3, 2) (1.0, 3.0, 2.0): True.

21 Test Case: (1, 2, 2) (1.0, 2.0, 2.0): False.

22 Test Case: (-1, -2, 3) (-1.0, -2.0, 3.0): True.

23 Test Case: (2, 3, -1) (2.0, 3.0, -1.0): True.

24 Final Guess: lambda x, y, z:
all(isinstance(n, int) and n ̸= 0 and
−3 ≤ n ≤ 3 for n in [x, y, z]) and
math.gcd(x, y) == 1 and math.gcd(x, z) ==
1 and math.gcd(y, z) == 1

Sorry, that’s not the correct rule.
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Table 9: o1-preview fails early on an easy test case despite having a wealth of remaining tests,
because it latched on to an early behavior and sought to confirm it rather than falsify it.

Turn Assistant Harness
1 Test Case: (2, 3, 6) (2.0, 3.0, 6.0): False.

2 Test Case: (2, 3, 5) (2.0, 3.0, 5.0): False.

3 Test Case: (1, 1, 1) (1.0, 1.0, 1.0): True.

4 Test Case: (2, 2, 2) (2.0, 2.0, 2.0): True.

5 Test Case: (1, 1, 2) (1.0, 1.0, 2.0): False.

6 Test Case: (-1, -1, -1) (-1.0, -1.0, -1.0): True.

7 Test Case: (1.5, 1.5, 1.5) (1.5, 1.5, 1.5): True.

8 Test Case: (0, 0, 0) (0.0, 0.0, 0.0): True.

9 Test Case: (1, 2, 3) (1.0, 2.0, 3.0): False.

10 Final Guess: lambda x, y, z: x == y == z Sorry, that’s not the correct rule.

Table 10: Claude Sonnet 3.5 double submits (2, 3, 5) to test x+ y = z and all(isprime(n))

Turn Assistant Harness
1-5 ... ...

6 Still False. Let’s try a different approach
and consider some mathematical relation-
ships. Reasoning for the next test: 1. Let’s
test if the rule involves a simple arithmetic
relationship. 2. We’ll use numbers where
the third is the sum of the first two. 3. We’ll
use small integers for clarity. Test Case: (2,
3, 5)

(2.0, 3.0, 5.0): False.

7-8 ... ...

9 We’re still not getting a True result. Let’s
try a different approach and consider some
number theory concepts. Reasoning for the
next test: 1. Let’s test if the rule involves
prime numbers. 2. We’ll use three consec-
utive prime numbers. 3. This will also test
if there’s a special relationship with con-
secutive numbers that are not simply as-
cending. Test Case: (2, 3, 5)

(2.0, 3.0, 5.0): False.

10 We’ve already tested (2, 3, 5) before, and
it’s still False. Let’s try a different number
theory concept...

...
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C FULL CONVERSATION EXAMPLES

C.1 DOOM LOOP ON CODING TASK

Below we provide a full example of a ”doom loop” interacting with an LLM in a multi-turn con-
versation in a real world coding task. We use llama 3 8b to generate code for a pytorch variational
autoencoder, and after 2 turns of debugging it repeats an already mentioned suggestion.

### User:
Can you write me some code which trains a VAE on cifar10 using pytorch?

### Llama3-8b-8192:
Here’s a basic example of how you can train a Variational Autoencoder (VAE) on
CIFAR-10 using PyTorch:

```Python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np

# Define the VAE model
class VAE(nn.Module):

def __init__(self):
super(VAE, self).__init__()
self.encoder = nn.Sequential(

nn.Conv2d(3, 32, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Flatten()

)
self.fc1 = nn.Linear(64*4*4, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, 64*4*4)
self.fc4 = nn.Linear(64*4*4, 3*32*32)

def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std

def encode(self, x):
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
return mu, logvar

def decode(self, z):
h1 = torch.relu(self.fc4(z))
h2 = torch.relu(self.fc3(h1))
h3 = torch.relu(self.fc2(h2))
h4 = torch.relu(self.fc1(h3))
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return torch.sigmoid(self.fc4(h4))

def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar

# Define the loss function
def loss_function(recon_x, x, mu, logvar):

BCE = nn.functional.binary_cross_entropy(recon_x,
x.view(-1, 3*32*32), reduction='sum')↪→

KLD = 0.5 * torch.sum(1 + logvar - mu.pow(2) -
logvar.exp())↪→

return BCE + KLD

# Load the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor()])
trainset = datasets.CIFAR10(root='./data', train=True,

download=True, transform=transform)↪→

trainloader = DataLoader(trainset, batch_size=64,
shuffle=True)↪→

testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)↪→

testloader = DataLoader(testset, batch_size=64,
shuffle=False)↪→

# Initialize the VAE model and the optimizer
vae = VAE()
optimizer = optim.Adam(vae.parameters(), lr=0.001)

# Train the VAE
for epoch in range(100):

for i, (x, _) in enumerate(trainloader):
x = x.to(device)
optimizer.zero_grad()
recon_x, mu, logvar = vae(x)
loss = loss_function(recon_x, x, mu, logvar)
loss.backward()
optimizer.step()
if i % 100 == 0:

print('Epoch: %d, Batch: %d, Loss: %.3f' %
(epoch+1, i+1, loss.item()))↪→

# Test the VAE
test_loss = 0
with torch.no_grad():

for x, _ in testloader:
x = x.to(device)
recon_x, mu, logvar = vae(x)
loss = loss_function(recon_x, x, mu, logvar)
test_loss += loss.item()

test_loss /= len(testloader)
print('Test Loss: %.3f' % test_loss)

```

This code defines a VAE model, loads the CIFAR-10 dataset, and trains the model
using the Adam optimizer. The loss function is the sum of the binary cross-entropy
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loss and the Kullback-Leibler divergence. The model is trained for 100 epochs,
and the test loss is printed after each epoch.
Note that you need to install the ‘torchvision‘ package to use the CIFAR-10
dataset. You can install it using ‘pip install torchvision‘. Also, you need
to specify the device (GPU or CPU) where you want to run the model.
You can do this by adding `device = torch.device('cuda' if
torch.cuda.is_available() else 'cpu')` before the training loop.

### User:
I’m getting the following error trying to run this code:

RuntimeError Traceback (most recent call last)
<ipython-input-3-471d3f454439> in <cell line: 70>()

72 x = x.to(device)
73 optimizer.zero_grad()

---> 74 recon_x, mu, logvar = vae(x)
75 loss = loss_function(recon_x, x,

mu, logvar)
76 loss.backward()

6 frames
in forward(self, input)

115
116 def forward(self, input: Tensor) -> Tensor:

--> 117 return F.linear(input, self.weight,
self.bias)↪→

118
119 def extra_repr(self) -> str:

RuntimeError: mat1 and mat2 shapes cannot be multiplied
(64x2304 and 1024x128)↪→

### llama3-8b-8192:
The error message indicates that there is a mismatch between the shapes of the
input and the weights in one of the fully connected layers in your VAE model.
The error message specifically says that the shapes are 64x2304 and 1024x128,
which means that the input has a shape of (64, 2304) and the weights have a shape
of (1024, 128).
The issue is likely due to the fact that the input to the fully connected layer is
not what you expect. In the ‘encode‘ method of your VAE model, you have the
following lines:

```
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
```

The ‘h3‘ tensor has a shape of (64, 128) because ‘self.fc2‘ is a fully con-
nected layer with 128 output units. However, ‘self.fc3‘ and ‘self.fc4‘ are
also fully connected layers, and they are expecting an input with a shape of
(batch_size, 128) where batch_size is the number of samples in the
batch.
In your case, the batch size is 64, so the input to ‘self.fc3‘ and ‘self.fc4‘ should be
(64, 128), not (64, 128) as it is now.
To fix this issue, you can try to flatten the output of ‘self.encoder‘ before passing
it to the fully connected layers. You can do this by adding the following line after
‘h1 = self.encoder(x)‘:
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```
h1 = h1.view(-1, 64*4*4)
```

This will flatten the output of ‘self.encoder‘ into a tensor with a shape of
(batch_size, 64*4*4), which should be compatible with the weights of
‘self.fc1‘, ‘self.fc2‘, ‘self.fc3‘, and ‘self.fc4‘.

### User:
Okay, I added that line. Now I’m getting a similar error with different values:
RuntimeError: mat1 and mat2 shapes cannot be
multiplied (144x128 and 1024x3072)

### llama3-8b-8192:
The error message indicates that there is a mismatch between the shapes of the
input and the weights in one of the fully connected layers in your VAE model.
The error message specifically says that the shapes are 144x128 and 1024x3072,
which means that the input has a shape of (144, 128) and the weights have a shape
of (1024, 3072).
The issue is likely due to the fact that the input to the fully connected layer is
not what you expect. In the ‘encode‘ method of your VAE model, you have the
following lines:

```
h1 = self.encoder(x)
h2 = torch.relu(self.fc1(h1))
h3 = torch.relu(self.fc2(h2))
mu = self.fc3(h3)
logvar = self.fc4(h3)
```

The ‘h3‘ tensor has a shape of (64, 128) because ‘self.fc2‘ is a fully con-
nected layer with 128 output units. However, ‘self.fc3‘ and ‘self.fc4‘ are
also fully connected layers, and they are expecting an input with a shape of
(batch_size, 128) where batch_size is the number of samples in the
batch.
In your case, the batch size is 64, so the input to ‘self.fc3‘ and ‘self.fc4‘ should be
(64, 128), not (64, 128) as it is now.
To fix this issue, you can try to flatten the output of ‘self.encoder‘ before passing
it to the fully connected layers. You can do this by adding the following line after
‘h1 = self.encoder(x)‘:

```
h1 = h1.view(-1, 128)
```

This will flatten the output of ‘self.encoder‘ into a tensor with a shape of
(batch_size, 128), which should be compatible with the weights of
‘self.fc1‘, ‘self.fc2‘, ‘self.fc3‘, and ‘self.fc4‘.
However, the error message also mentions that the input has a shape of 144x128,
which is not compatible with the weights of the fully connected layer. This sug-
gests that there may be an issue with the architecture of your VAE model.
To fix this issue, you can try to adjust the architecture of your VAE model to ensure
that the input to the fully connected layers is compatible with the weights.
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