Unpacking DPO and PPO: Disentangling
Best Practices for Learning from Preference Feedback

Hamish Ivison®® Yizhong Wang®*#® Jiacheng Liu®*
Zeqiu Wu® Valentina Pyatkin®*® Nathan Lambert®
Noah A. Smith®** Yejin Choi** Hannaneh Hajishirzi**

* Allen Institute for AI *University of Washington
hamishiv@cs.washington.edu

Abstract

Learning from preference feedback has emerged as an essential step for improving
the generation quality and performance of modern language models (LMs). Despite
its widespread use, the way preference-based learning is applied varies wildly, with
differing data, learning algorithms, and evaluations used, making disentangling
the impact of each aspect difficult. In this work, we identify four core aspects
of preference-based learning: preference data, learning algorithm, reward
model, and policy training prompts, systematically investigate the impact of
these components on downstream model performance, and suggest a recipe for
strong learning for preference feedback. Our findings indicate that all aspects
are important for performance, with better preference data leading to the largest
improvements, followed by the choice of learning algorithm, the use of improved
reward models, and finally the use of additional unlabeled prompts for policy
training. Notably, PPO outperforms DPO by up to 2.5% in math and 1.2% in
general domains. High-quality preference data leads to improvements of up to 8%
in instruction following and truthfulness. Despite significant gains of up to 5% in
mathematical evaluation when scaling up reward models, we surprisingly observe
marginal improvements in other categories.

We publicly release the code used for training' and evaluating? our models, along
with the models and datasets themselves®.

1 Introduction

Modern language models (LMs) commonly undergo a final stage of training, called learning from
preference feedback,* before deployment to end-users. This stage of training has been applied to many
prominent language models like ChatGPT [45], Llama 3 [35], and Claude [4], and has been shown
to improve performance across a wide number of capabilities, including instruction following [22],
code [28], math [54], and summarisation [67]. Despite the widespread use and potential of this
learning paradigm, applications of preference-based learning vary wildly, both in the data and learning
algorithm used. As such, it is unclear what aspects of learning from preferences matter most for

'https://github.com/hamishivi/EasyLM

*https://github.com/allenai/open-instruct

Shttps://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126618

“Sometimes this stage is called reinforcement learning from human feedback (RLHF). However, the human
and reinforcement learning aspects are not always present, while the learning from preferences aspect is always
present. We will use the terms ‘learning from preferences’ and ‘preference-based learning’ interchangeably.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/hamishivi/EasyLM
https://github.com/allenai/open-instruct
https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618

PPO w.
Domain- 70 PPO w.
65 PPO w. specific Bigger PPOw.
Bigger Prompts T‘v; DEO Reward Mixed
Reward = Model Prompt
&5} ode pts
760 DPO Model /\63,5 5 6 DPOw. ppg
<
3 58.0 g
8 55 pDPOw. FPPO S
z DPO w. _ Better 5 60
E Weak Pref. Data 53.0 %
O 50 Pref. Data 50.5 g
‘f.g 55
45 46.0 250 <
40 50
Initial SFT --DPO Runs-- ----- PPO Runs - - - - - Initial SFT --DPORuns-- ----- PPO Runs - - - - -

Figure 1: Performance improvements resulted by changing different components in the preference
training of TULU. Left: Accuracy on GSM [9], for testing math capabilities. Right: Overall
performance, aggregated over the 11 benchmarks described in §2.2.

downstream model performance, particularly in relation to the two most popular preference-based
learning algorithms, PPO and DPO, which take different approaches to preference-based learning.

As seen in Figure 2, both DPO and PPO rely on training on preference data—DPO for directly
training the model, and PPO for training a reward model. In PPO, this reward model is then used to
score generations from the main model generated using a set of policy training prompts (unlabelled
prompts used for eliciting generations). This provides us with four important aspects of learning from
preferences, including the choice of learning algorithm itself (PPO vs. DPO).

In this work, we aim to systematically investigate these key components of learning from preferences,
exploring the effect of varying each component on downstream model performance. Starting from an
initial strong open supervised finetuning (SFT) model, we investigate each aspect in turn. As seen
in Figure 1, we find that all aspects are important for performance, albeit to varying degrees. Our
findings are as follows:

* When comparing 14 popular existing preference datasets across a diverse set of evaluations, we
find that synthetic, diverse data annotated with per-aspect preferences works best for learning
from preferences (§3.1). We find that the quality of the preferences (choice of chosen/rejected
pairs) matters more than the quality of the actual generations being considered.

* PPO outperforms DPO across varied datasets in our evaluation suite, even when using exactly the
same models and initial training data (§3.2).

* Increasing reward model size or dataset size used to train the reward model results in improved
reward model performance on benchmarks directly testing reward model performance. Examining
their effect on policy model performance when used during PPO training, we find that these
improved reward models have a large effect on GSM performance, but give marginal to no
improvements across all other evaluations considered (§3.3).

 Using unlabelled prompts that better match the test setting during policy can further improve model
performance in domain-specific settings (e.g., when focusing on improving math performance),
but has limited to no effect when targeting overall performance (§3.4).

Overall, we suggest a recipe for learning from preference feedback (§4): using synthetic preference
datasets and training using PPO with a large reward model performs best overall. Additionally,
targeted prompts should be used if one only cares about a single particular downstream task.

2 Setup

We first describe the core aspects of PPO and DPO before moving into our experimental setup. We
summarise both approaches in Figure 2.

DPO Training

Preference Data: Dy

]
I

: Policy Training Data: D,
1

: (Prompt: x)

I

1

I

I

1

I

Policy Training Prompt: x)— & ~@~ -
Decodg

(Responses (offline): y,, ¥,)

(Ranking: y. >y, | x)

Response (online): y

Reward score: r) -4

Figure 2: The core aspects of learning from preference feedback. For DPO (solid line), preference
data is directly used to train a policy model. For PPO (dashed line), preference data is used to train a
reward model, which is then used to score model-generated responses during PPO training.

2.1 PPO and DPO

PPO. PPO-based approaches for learning from preference feedback involve first training a reward
model on preference data, and then training a policy model by scoring responses produced by the
policy model itself during training (“online” learning) as shown in Fig. 2. First, the policy model
is prompted to generate responses, which are then scored with the reward model. These scores
(i.e., scalar rewards) are then used to guide the optimization of the policy model, following the PPO
algorithm. Additionally, a KL penalty term is applied to avoid model degeneration.

* Preference data. A preference dataset Dp, is used for training a reward model, and it typically
consists of prompts, responses, and rankings. Each prompt = comes with a pair of responses
Ye, Yr, and a preference ranking between them (denoted as y. > y, | x, where y. is the chosen
response and y, is the rejected one). Both the responses and the rankings can be either human-
annotated, generated/evaluated by other language models, or derived from examining relative
votes on publicly posted online comments (e.g., comparing high and low-upvoted comments from
Reddit). While recent work has relied much on synthetic, model-generated data [53, 22], it is
unclear if high-quality human data can provide similar or better performance, or if the significantly
larger size of online-scraped datasets allows for improved performance.

* Reward model. The reward model Ry (x,y) is a scalar function, and can be parameterized with a
transformer where a regression head replaces the language modeling head. The reward model is
usually trained to minimize the following loss:

£R(¢) = _E(m,yc,yr)NDR [log O'(Rw (3?, yc) - Rw (CL‘? yr))} . (])
Policy training prompts. The policy training data D, has a set of policy training prompts. Instead
of the pre-generated responses, here for each prompt we sample a response ¥ from the policy model
being actively trained, y ~ 7y (y|x). It is then scored by the reward model to get a sequence-level
reward, r = Ry (x,y). Intuitively, this suggests that more accurate rewards should improve model
performance. Additionally, we note that most existing works typically use either the prompts used
during reward training [66] or a generic pool of anticipated user queries [37]. We investigate if
better targeting the prompts used during policy training can further improve performance.
* Policy training. The goal of policy training is to maximize the reward of policy-generated

responses, subject to a soft KL constraint that prevents degeneration:

H}%X EINDW Ly~ (ylz) [R’l/l (l‘, y)} - 6]D)KL (7T9| |7Tref) ; 2

where 7 is the reference policy (usually the same SFT policy that initializes policy training). We
find tuning the KL penalty coefficient 8 is important for performance and explore the effect of
varying it in App. I. Since directly optimizing Eq. 2 can be unstable, it is common to reformulate
language generation as a Markov decision process (MDP) and optimize using an RL algorithm.
PPO is one of the most widely adopted RL algorithms for this problem. See App. F.2 for additional
details about PPO.

DPO. DPO is an offline RL approach for performing learning from preference feedback. It allows
one to directly optimize the policy on preference data, without building reward models or needing
to sample online from the active policy. As such, DPO is an offline training algorithm. In simple
terms, DPO aims at increasing the margin between the log-likelihood of the chosen responses and the
log-likelihood of the rejected ones, while ensuring the model does not stray far from the initial policy.

* Preference data. The structure of preference data is identical to that of PPO.

* Policy training. By following a closed-form solution to Equation 2, DPO re-writes any reward
ot
Blog Z(x), where Z(x) is a partition function. Consequently, the policy model can be trained by
directly optimizing the reward objective in Eq. 1, and hence the DPO loss:

model Ry in terms of its corresponding optimal policy 7y« (4, Ry (2,y) = Blog

mo(ye | x) . o (yr |))} 3)

‘CDPO(Q) = _]E(ﬁ-,ycvy'r)’\"DR |:].Og0'(6].Og ﬂ'rer‘(yc | 1’) - Blo Wref(yr ‘ l')

Comparing DPO and PPO. Compared with PPO, DPO is more efficient in terms of compute,
speed, and engineering efforts. DPO does not need the extra stage of training a reward model, and
during policy training it does not need to decode online responses (which is usually slow) or train
an additional value model. Meanwhile, PPO trains on online data generated by the current policy,
while DPO trains on static, pre-generated offline data. This may limit exploration in DPO and thus
hurt the training quality. While concurrent work has compared DPO and PPO [60, 48], comparisons
are typically limited to constrained domains and evaluations, using ground-truth rewards [60] or
primarily examine smaller synthetic settings [48]. We complement such studies by comparing the
downstream performance of models trained with DPO and PPO across a wide variety of datasets and
evaluations and consider additional potential factors in PPO performance, such as improved reward
models and policy training prompts.

2.2 Experimental and Evaluation Setup

We base our exploration off TULU 2 13B [22], a popular openly released model. TULU 2 is a series of
Llama 2 [52] finetunes across all sizes with publicly released weights and data, the largest of which
achieved state-of-the-art performance on AlpacaEval and Chatbot Arena. As such, we are curious
how much further we can push the performance of TULU 2 models through exploring alternative
datasets, training algorithms, reward models, and policy training prompts. We use this model as
a base policy when training policy and reward models, following Ouyang et al. [38] for PPO and
Rafailov et al. [39] for DPO. We provide additional details for each in App. F.

Evaluation We extend the TULU [55] evaluation, aiming to cover a diverse range of skills and
behaviours. We evaluate models on 11 different benchmarks, covering skills such as factuality
(MMLU [20]), reasoning (GSM8k [9], Big Bench Hard [5, 47]), truthfulness (Truthful QA [29]),
coding (HumanEval+ [6, 32], MBPP+ [2, 32]), safety (ToxiGen [19], XSTest [42]), and instruction
following (AlpacaEval 1 and 2 [27, 13], IFEval [65]). We report the per-category average of
evaluations and the overall average across categories. We provide further details in App. D.

3 Exploring Learning from Preference Feedback

We now explore each aspect of learning from preferences: preference data, learning algorithm,
reward models, and finally policy training prompts.

3.1 Preference Data

We compare the performance of models trained with DPO across 14 different preference datasets
in Table 1. We choose datasets that represent various potential sources of data: human-annotation
(HH-RLHEF [4], HelpSteer [56], Chatbot Arena 2023 [64] and 2024 [7], AlpacaFarm Human [14],
PRMS800k [28]), web-scraping (SHP-2 [15], StackExchange [25]), and synthetic generation (Ultra-
Feedback [11], Nectar [66], Orca [34], Capybara [12], AlpacaFarm GPT-4 [14]). For UltraFeedback,
we consider both using the ‘overall’ score provided in the dataset and taking an average of the
per-aspect scores (‘fine-grained’). We provide further detail on each dataset in App. B. We find that:

Preference-based learning with existing datasets has the strongest effect on instruction following
and truthfulness performance. Our best models improve on the SFT model by over 8 points in
these categories. In contrast, preference-based learning does not aid factuality, with all models
remaining with 1 point of each other. This suggests that when using existing publically-available
datasets, preference-based learning is most useful for improving chat-related abilities (instruction
following, truthfulness) and learning stylistic features, but less strong at teaching new facts to a

Source # Samples Factuality Reasoning Coding Truthfulness Safety Inst. Following Average

- Llama 2 base - 52.0 37.0 30.7 32.7 32.7 - -
- TULU 2 (SFT) - 55.4 47.8 45.1 56.6 91.8 44.2 56.8
Web SHP-2 500,000 55.4 47.7 40.3 62.2 90.4 45.6 56.9
StackExchange 500,000 55.7 46.8 39.6 67.4 92.6 44.6 57.8
PRM800k 6,949 55.3 49.7 46.6 54.7 91.9 43.4 56.9
Chatbot Arena (2023) 20,465 55.4 50.2 459 58.5 50.8 54.7
Human Chatbot Arena (2024) 34,269 55.7 50.4 377 56.7 50.7 51.5
AlpacaF. Human Pref 9,686 55.3 47.6 433 56.1 90.7 44.5 56.2
HH-RLHF 158,530 54.7 46.0 43.6 65.6 93.1 45.4 58.1
HelpSteer 9,270 552 48.2 46.5 60.3 92.5 452 58.0
AlpacaF. GPT-4 Pref 19,465 55.3 49.1 434 577 89.5 46.3 56.9
Capybara 7k 7,563 55.2 46.4 46.4 57.5 91.5 46.1 572
Orca Pairs 12,859 55.5 46.8 46.0 57.9 90.5 46.2 57.2
Synthetic Nectar 180,099 55.3 47.8 432 68.2 93.1 47.8 59.2
UltraF. (overall) 60,908 55.6 48.8 46.5 67.6 92.1 51.1 60.3
UltraF. (fine-grained) 60,908 553 50.9 459 69.3 91.9 52.8 61.0

Table 1: Preference data: Performance of TULU 2 13B models trained on various preference
datasets using DPO. Blue indicates improvements over the SFT baseline, orange degradations.
Overall, synthetic data works best. DPO training improves truthfulness and instruction-following
most, with limited to no improvements in factuality and reasoning.

Data / Model Alg. Factuality Reasoning Coding Truthfulness Safety Inst. Foll. Average
Llama 2 base - 52.0 37.0 30.7 32.7 32.7 - -

TOLU 2 (SFT) . 55.4 478 45.1 56.6 91.8 442 56.8
StackExchan DPO 553 47.8 424 56.2 92.0 46.7 56.7
ackbxchange PPO 55.1 478 46.4 54.2 92.6 474 57.3
, , DPO 554 50.2 45.9 58.5 50.8 54.7
ChatArena (2023) ppy 552 19.2 46.4 55.8 - 19.7 55.9
DPO 552 476 442 60.0 93.4 46.6 57.8
HH-RLHF PPO 549 48.6 45.9 58.0 028 470 57.9
Nect DPO 556 45.8 39.0 68.1 933 48.4 58.4
ectar PPO 55.2 51.2 45.6 60.1 92.6 474 58.7
DPO 553 50.9 45.9 69.3 91.9 52.8 61.0
UltraFeedback (FG) - ppy 567 52.0 477 715 018 | 544 622
Avg. A b/w PPO & DPO 0.1 +13 +2.9 25 423 +0.1 +0.7

Table 2: DPO vs PPO: Average performance of 13B models trained using DPO and PPO across
different datasets, along with the performance difference between DPO and PPO (A). Blue indicates
improvements over the SFT baseline, orange degradations. All datasets are downsampled to 60,908
examples (except ChatArena, which is made up of 20,465 responses). PPO outperforms DPO by an
average of 0.7 points, where most improvements are in reasoning, coding, and chat capabilities.

model. Interestingly, we observe that training on the Chatbot Arena data performs poorly on safety,
suggesting Chatbot Arena volunteers generally prefer more toxic completions.

Synthetic data with per-aspect annotations performs best. Synthetic datasets generally outperform
human-annotated and web-scraped datasets, especially in truthfulness. Additionally, using datasets
collected by first getting per-aspect annotations (i.e., annotations from a human or model that score
the helpfulness, harmlessness, etc. of the response independently) and then averaging across these
scores tend to outperform datasets that rely only on overall judgements (i.e., just asking the annotator
for an overall score instead of a per-aspect score). The two datasets that use this method, HelpSteer
and UltraFeedback, display stronger or similar performance to datasets up to 15 times larger (e.g.
HelpSteer vs HH-RLHF). We investigate the performance of varied sub-splits of UltraFeedback in
App. E, which suggests that the use of per-aspect annotations is more important for performance than
the quality of the models used to generate completions for the dataset.

Direct Eval. PPO Training Perf. (w. UltraF. prompts)

Reward
Model RewardBench Best-of-N over SFT | GSM AlpacaEval2 Avg. on
Score Avg. Perf. (A) Acc. winrate All Evals.
13B UltraF. RM 61.0 56.9 (+5.8) 53.0 26.1 62.2
13B Mix RM 79.8 58.3 (+7.3) 51.0 25.7 61.6
70B UltraF. RM 73.6 61.1 (+10.3) 58.0 26.7 62.8
70B Mix RM 73.9 60.6 (+9.5) 51.5 31.6 61.8

Table 3: Reward model evaluation: (a) Direct evaluation: reward models when directly
evaluated using RewardBench [26] and Best-of-N (left two columns); for BoN, we report both
raw average performance, and the difference in performance over the base SFT model in brackets.
(b) Downstream evaluation: models trained using PPO and the given reward model (right three
columns). We report GSM and AlpacaEval 2 performance along with average performance across
the entire evaluation suite defined in §2.2. Directly comparing reward models indicate increasing
scale and data improves reward models, but these only minimally impact downstream performance.

3.2 Preference Learning Algorithm: DPO vs. PPO

We now compare algorithms for learning from preferences, comparing the performance of DPO
and PPO when the same base models and data are used (Table 2). We use exactly the same data
for training DPO and PPO models,” and subsample larger datasets to 60,908 examples due to
computational resources and only use these subsampled datasets during reward model and PPO
training. For dataset choice, we use the top-performing dataset from each source type in Table 1
(StackExchange from Web, HH-RLHF from human, Ultrafeedback from synthetic). We also include
the second-best performing dataset overall (Nectar) and an additional human-annotated dataset from
a popular evaluation platform (Chatbot Arena 2023). Results in Table 2 indicate that:

PPO outperforms DPO. Across all datasets, models trained with PPO outperform models trained
with DPO. In fact, PPO is able to provide improvements over the SFT model in cases where DPO
training did not, such as when using StackExchange. On average, PPO significantly® improves over
DPO performance.

PPO improves on DPO in reasoning, coding and safety capabilities most. PPO improves over
DPO by an average of 1.3, 2.9, and 2.3 points for reasoning, coding, and safety respectively, while
truthfulness tends to degrade by an average of 2.5 points. Instruction following and factuality remain
largely the same. Interestingly, we find that models trained with PPO are far more likely than
DPO-trained models to perform chain-of-thought reasoning when prompted with reasoning or math
problems, even when not given in-context examples using chain-of-thought. This suggests that
reasoning improvements from PPO may be due to increased chain-of-thought abilities. Additionally,
while overall instruction following ability remains similar, we find that PPO-trained models tend to
perform better at AlpacaEval 1 and 2, with PPO-trained models outperforming DPO-trained ones on
AlpacaEval 2 by an average of 3.4 points.

3.3 Reward Models

Next, we focus on PPO and study reward models both directly, and on downstream tasks with PPO
training (Table 3). We first consider two ways to improve a reward model:

1. Scaling up the training data for the reward model. We construct a data mixture of the top-
performing datasets in Table 1 from each section: UltraFeedback, HelpSteer, Nectar, StackEx-
change, HH-RLHF, and additionally add PRM800k for math data. We compare reward models
trained on this data mixture (called Mix RM) with reward models trained only on UltraFeedback
(UltraF. RM) — the top-performing dataset from prior sections.

2. Scaling up the reward model size. We train reward models at two scales of 13B and 70B starting
from TULU 2.

SThat is, we compare DPO models trained directly on each dataset with PPO models trained using reward
models trained directly on that dataset and using prompts from the same dataset. Note that PPO uses additional
generations from the model during training, but both approaches use the same amount of labelled data.

®p < 0.05 in a two-tailed paired t-test.

Direct evaluation of reward models. To isolate the performance of the differing reward models, we
first evaluate them with best-of-N (BoN): we sample 16 generations from TULU 2 13B SFT, score
them using the given reward model, and then use the top-scoring output as the model output. Notably,
we ensure model outputs are identical between runs, meaning that the only difference is the reward
model scores. We perform evaluation on the subset of evaluations in our suite that require long-form
generation,” and report overall average performance. We additionally evaluate our reward models on
RewardBench [26], a popular evaluation for reward models, which involves evaluating if the relative
scores given by reward models match a test set of chosen-rejected pairs from diverse sources. We
provide further details in Appendix H.

Results in Table 3 indicate that either increasing the reward model dataset (‘Mix’) or reward
model size (from 13B to 70B) improves direct RM performance. Surprisingly, we find that our
70B reward models perform best on BoN evaluation, while the 13B mixture model performs best on
RewardBench. Both evaluations show that increasing the dataset mixture and increasing the dataset
size can help, although increasing the dataset mixture is not as useful for further improving the 70B
reward model. Although scaling model size helps with best-of-N, it does not improve RewardBench
performance. Examining the per-split performance on RewardBench in App. H Table 13, the largest
gaps between the 13B Mix RM and the 70B Mix RM is in reasoning (mostly code), suggesting that
the larger model may not benefit much from the additional (somewhat noisy) data®.

Downstream evaluation of reward models. We then test if our improved reward models lead to
improved downstream policy models when used during PPO training. We perform PPO training using
the UltraFeedback prompts during training and report our results on the right side of Table 3. Surpris-
ingly, we find that improvements in reward models result in surprisingly small improvements
in overall downstream performance. We see the largest (and only) overall improvement when
using the 70B UltraFeedback RM, despite the fact that all improved RMs performed significantly
better than the 13B UltraFeedback RM in RewardBench and Best-of-N evaluations. Additionally, the
improvement from the 70B RM is largely driven by a large performance jump in GSM, as shown in
Table 3, while other metrics stay largely similar. This suggests that it is difficult to translate improve-
ments in reward models to the underlying policy. We note that most prior work examining reward
models tends to examine either direct reward model performance [26, 61] or proxy reward [17, 40],
rather than downstream performance. Our findings suggest that improving such evaluations may
not necessarily translate to improved downstream performance. Additionally, we find that using
the larger 70B UltraF. RM is less sensitive and performs well with lower KL penalty coefficient
values than using the 13B UltraF. RM, and further examine the effect of the KL penalty coefficient
on performance in App. .

While it may seem unintuitive that an extreme increase in reward model size does not lead to extreme
improvements in performance, we note that prior work has similarly noted that much larger reward
models do not necessarily lead to significant improvements in performance, and smaller reward
models can lead to similar performance (Ouyang et al. [37] §C.2, Wang et al. [56] §4.3), although we
are the first, to our knowledge, to ablate this and explicitly report results on downstream evaluations.

We additionally explore how further training and potentially overoptimizing against the reward
model affects performance across different evaluations in App. L. Importantly, we find that different
evaluations show different trends - while some evaluations such as AlpacaEval benefit from continued
training, other evaluations such as IFEval or GSM8k drop with continued training. This highlights
the importance of evaluating over a diverse set of test tasks, including both ‘traditional’ benchmarks
and LL.M-as-a-judge evaluations.

3.4 Policy Training Prompts

We finally examine the effect of using varied policy training prompts, first when targeting a particular
capability (math performance as evaluated by GSM), and then for improving overall performance.
This is in contrast to prior work that just re-use the prompts used for reward model training [66] or a
generic pool of anticipated user queries [37].

"This is because best-of-N with multiple-choice evaluations does not test the ability of the reward model to
pick model generations, but merely picks the correct multiple choice answer.

8As the RewardBench reasoning subset is made up mainly of coding tasks, we hypothesise the presence of
noisy StackExchange data may harm the 70B model, which has more capacity to fit to the larger mixture dataset
than the 13B RM.

- Tulu2 SFT Baseline Reward Model Prompts GSM % Coding Avg. Across
PPO w. 13B UltraF. RM All Evals
60.0 .
—@®— PPOw. 13B Mix RM
575 —e— PPO w. 70B UltraF. RM Tulu 2 SFT - 46.0 45.1 56.8
g | PPOw70BMixRM 13B UltraF. UF 53.0 477 62.2
5550 13B UltraF. Mixed 54.5 47.8 61.9
5]
S s2s 13B Mix UF 51.0 46.8 61.6
z 13B Mix Mixed 50.5 43.8 60.9
300 70B UltraF. UF 58.0 473 62.8
475 70B UltraF. Mixed 56.5 48.4 62.4
o o 70B Mix UF 515 46.1 61.8
45.0 70B Mix Mixed 52.0 44.9 61.1

UltraF. Prompts Mined Math GSM Train
PPO Training Prompts (— More Targeted for GSM)

Figure 3: Policy training prompt math evalu-
ation: Performance of models trained on 20K
prompts from varying sources using PPO and
evaluated on GSM. Training with larger RMs
trained on more data benefits more from in-
domain prompts (i.e., prompts directly from the
GSM train set), while weaker RMs struggle to
generalize beyond their training prompts.

Table 4: Policy training prompt overall eval-
uation: Performance of PPO policy models
trained with the given reward models on 60K
prompts from either UltraFeedback or the remixed
prompt set that adds additional unlabeled math
and coding-related prompts. Using the remixed
prompt set does not improve performance, either
on specific evaluations (math, code) or in terms
of overall performance.

3.4.1 The effect of targeted prompts.

We first examine the effect of using policy training prompts targeted towards a particular downstream
setting—specifically, math capabilities as evaluated by GSM. We construct three different prompt
sets: prompts sourced from the GSM train set, math-related prompts from varied datasets, and 20K
random prompts from UltraFeedback®. We further detail the approach used to identify math-related
prompts in Appendix J. We then train models using PPO with each reward model from the previous
section on each prompt set. Results in Fig. 3 demonstrate that:

Larger reward models perform better when closely matching train prompts to test settings.
When using prompts from the GSM train set, we find using either 70B reward models during training
leads to significant improvements in GSM, with our best performing model improving over the SFT
model by 16 points (46%—62%).

Weaker reward models struggle to make use of prompts differing from those they are trained on.
Surprisingly, we find that training with the 13B UltraFeedback reward model actually performs worse
when using prompts apart from UltraFeedback, potentially due to the reward model generalising
poorly to prompts not seen during training. Similarly, the 13B Mix and 70B UltraFeedback reward
models struggle to make use of math prompts, which are out-of-domain for the reward models, but
in-domain for the task.

Overall, these results suggest that targeted prompt distributions can improve performance when
coupled with powerful reward models (e.g., using prompts from the GSM train set and then
evaluating on GSM). This highlights a strength of PPO: it can make use of unlabelled prompts to
better target downstream tasks.

3.4.2 Altering prompts to improve overall performance.

Inspired by the success of the targeted prompts, we construct a new remixed prompt set by finding
20K math and 20K code-related prompts using the same method as in the previous subsection (see
App. J). We then combine the math, code, and UltraFeedback prompts to create a larger prompt pool
that we downsample randomly to 60,908 prompts. This rebalances the prompt pool to focus more on
coding and math tasks, which we hope yields improvements on math and code respectively while
maintaining overall performance. We present our results in Table 4.

Surprisingly, we observe that using mixed prompts does not seem to improve performance in
the generalist setting. When looking at code and math results specifically, we do not see consistent

Note that this is only a third of all UltraFeedback data. We reduce the size to fairly compare to the small
number of GSM8k prompts.

Model Factuality Reasoning Coding Truthfulness Safety Instr. Foll. Average

Llama 2 13B Base 52.0 37.0 30.7 32.7 32.7 - -

Llama 2 Chat 13B [52] 53.2 24.7 36.9 88.0 91.9 51.2 57.7
Nous Hermes 13B [51] 53.2 43.5 47.7 80.5 43.9 38.7 51.3
Vicuna 1.5 13B [64] 54.5 39.3 38.5 62.8 92.4 45.8 55.6
TOLU 2 13B SFT 55.4 47.8 45.1 56.6 91.8 44.2 56.8
TULU 2+DPO 13B 553 50.9 45.9 69.3 91.9 52.8 61.0
TULU 2+PPO 13B (13B UFRM) 56.0 52.0 47.7 71.5 91.8 54.4 62.2
TULU 2+PPO 13B (70B UFRM) 55.4 539 47.3 72.3 91.9 55.8 62.8
TULU 2+PPO 13B (70B UFRM+MP) 553 53.1 48.4 71.0 92.7 54.0 62.4
L3+TULU 2 8B SFT 58.0 58.6 56.4 59.2 92.8 42.6 61.3
L3+TULU 2+DPO 8B 59.4 56.2 55.6 71.4 91.7 50.4 64.1
L3+TULU 2+PPO 8B (8B UFRM) 59.5 57.0 55.9 69.6 91.4 56.0 64.9
L3+TULU 2+PPO 8B (70B UFRM) 58.5 60.8 55.0 72.8 91.8 55.8 65.8
L3+TULU 2+PPO 8B (70B UFRM+MP) 58.3 40.6 482 62.4 91.0 53.0 58.9

Table 5: Putting together a recipe for preference-based learning: Performance of our best-
performing models along with popular open models based on Llama 2 13B. ‘MP’ refers to using the
mixed prompt set described in §4. ‘L3’ stands for experiments using Llama 3 as a base model. Using
PPO with a large reward model performs best overall.

improvements using the altered prompt mixture, and our overall performance tends to drop. This is
likely due to the already diverse nature of UltraFeedback, such that when looking at the whole dataset
(i.e., not just the 20K subset in Figure 3), we are able to reach strong performance on math and coding
evaluations. Altering the distribution away from other tasks slightly hurts the overall performance.
We additionally found that training all the mined prompts in additional to all of UltraFeedback (i.e.,
not downsampling the combined prompt set) did not yield further improvements over the results
shown in Table 4.

4 A Recipe for Learning from Preferences

Putting together all our findings from previous sections, we suggest a recipe for training a strong
model using learning from preferences, as shown in Figure 1 and in Table 5. We take a high-
quality, synthetic preference dataset, a large reward model,' and train it using PPO. If we
additionally wish to focus on a specific domain, we can additionally collect domain-specific prompts
for policy training. We find that our best model (TULU 2+PPO 13B trained with the 70B UltraF. RM)
outperforms our best DPO model and other popular models based off Llama 2 13B, including Llama
2 Chat, which has also undergone SFT and PPO training. Additionally, incorporating task-specific
prompts into policy training may further improve performance when the prompts align closely with
downstream evaluations, as shown in Figure 3. Finally, we also experiment with Llama 3.0 8B [35],
finetuning on the TULU2 Mix, and then training it using DPO and PPO with the same hyperparameters.
We find that overall performance is significantly improved, and we observe similar trends as with
our other experiments (DPO performing better than PPO, using a larger reward model improving
performance, using mixed prompts not improving performance).

5 Related Work

Learning from Preferences for LMs.

Initial approaches to learning from preferences used reinforcement learning from human feedback
(RLHF) [8, 67], a method that first trains a reward model to capture human preferences and then
optimizes against it using reinforcement learning algorithms such as PPO [44]. Recent work has
additionally questioned the need for PPO, and has found that similar but simpler approaches such
as REINFORCE [46] with LM-specific adjustments work well [1, 50]. Unlike prior work, we
instead focus on examining the effect of varying the data and models used in PPO (i.e., the reward
model, preference data, initial policy model, and prompts used for sampling outputs). We believe
that our results should transfer to similar approaches such as REINFORCE, since they share many

""However, a smaller 13B RM performs almost as well if one is compute-constrained.

commonalities with PPO (e.g., reliance on a well-tuned reward model and an unlabelled prompt set
for eliciting generations during training).

Another line of recent work has also attempted to simplify the PPO algorithm and remove the online
generation component, with the most popular algorithm following this approach being DPO [39].
DPQO’s ease of implementation and use has made it widely popular among open-source community.
Notably, several high-performing models have been trained using DPO for learning from preferences,
including TULU 2 [22], Zephyr [53], and Mixtral-Instruct [24]. Much recent work [3, 21, 59, 16,
inter alia] has attempted to further improve the DPO algorithm. However, comparisons of these
approaches so far have found that they largely perform similarly [41, 43]. As such, in this work we
focus on the most popular variant, DPO, and examine what data works best for it and how it compares
to a popular online RL approach, PPO.

Comparing Approaches for Learning from Preferences. Recent concurrent work has compared
the properties and performance of DPO, PPO, and other approaches for learning from preference
feedback. Xu et al. [60] suggest DPO performs poorly when using data out-of-distribution from the
initial base model, while PPO (and a semi-online DPO variant) perform better both in such cases and
overall when evaluated on safety and code capabilities. However, they do not investigate the impact of
reward models and focus on core algorithmic details of PPO that lead to improvements. Tajwar et al.
[48] identify on-policy sampling and negative gradients as two important aspects of preference-based
learning when optimal reward values do not lie ‘close’ to the base model’s distribution and the
preference data is skewed. Tang et al. [49] study how the IPO [3] algorithm performs in the static
offline setting versus various ways of updating or ordering the data in an online manner. In this work,
we focus on empirically examining the impact of core aspects of learning from preference feedback,
including the effects of varied rewards and data.

6 Conclusion

In this work, we have systematically explored the core components of learning from preference
feedback and examined the relative impacts of each in turn on model performance across a wide range
of evaluations. Our results suggest the following ordering of importance: preference data quality,
algorithm choice, reward model quality, and finally targeted policy training prompts. Additionally, we
find that using larger reward models can significantly improve math capabilities, but have marginal
effects on other capabilities we evaluate in this work. Overall, we suggest a recipe for learning
from preference feedback with currently available resources: best performance can be achieved by
using a strong synthetic dataset (UltraFeedback), and using PPO training with a large reward model.
Our work suggests that further exploring how to make better use of improved reward models is an
important direction for further improving PPO-style approaches to learning from preference data. We
plan to release models and code related to this paper and hope that our settings provide a firm base
for future work further exploring learning from preferences for language models.

Acknowledgements

This research was funded in part with funding from the Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8650-23-C-7316, DARPA MCS program through NIWC Pacific
(N66001-19-2-4031), and NSF IIS-2044660. Research supported with Cloud TPUs from Google’s
TPU Research Cloud (TRC). We thank members of AI2 and UW NLP for useful feedback throughout
this project.

References

[1] A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Ustiin, and
S. Hooker. Back to Basics: Revisiting REINFORCE Style Optimization for Learning from
Human Feedback in LLMs, 2024.

[2] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, and C. Sutton. Program Synthesis with Large Language Models, 2021.

10

[3] M. G. Azar, M. Rowland, B. Piot, D. Guo, D. Calandriello, M. Valko, and R. Munos. A
general theoretical paradigm to understand learning from human preferences. arXiv preprint
arXiv:2310.12036, 2023.

[4] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

[5] B. bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvos]j.

[6] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[7] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li, H. Zhang, B. Zhu,
M. Jordan, J. E. Gonzalez, and I. Stoica. Chatbot Arena: An Open Platform for Evaluating
LLMs by Human Preference, 2024.

[8] P.F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. Advances in Neural Information Processing Systems, 30,
2017.

[9] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training Verifiers to Solve Math Word
Problems. arXiv preprint arXiv:2110.14168, 2021.

[10] T. Coste, U. Anwar, R. Kirk, and D. Krueger. Reward model ensembles help mitigate overopti-
mization. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=dcjtMYkpXx.

[11] G. Cui, L. Yuan, N. Ding, G. Yao, W. Zhu, Y. Ni, G. Xie, Z. Liu, and M. Sun. Ultrafeedback:
Boosting language models with high-quality feedback. arXiv preprint arXiv:2310.01377, 2023.

[12] L. Daniele and Suphavadeeprasit. Amplify-Instruct: Synthetically Generated Diverse Multi-turn
Conversations for Effecient LLM Training. arXiv preprint arXiv:(coming soon), 2023. URL
https://huggingface.co/datasets/LDJInr/Capybara.

[13] Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-Controlled AlpacaEval: A
Simple Way to Debias Automatic Evaluators. arXiv preprint arXiv:2404.04475, 2024.

[14] Y. Dubois, C. X. Li, R. Taori, T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. S. Liang, and T. B.
Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback.
Advances in Neural Information Processing Systems, 36, 2024.

[15] K. Ethayarajh, Y. Choi, and S. Swayamdipta. Understanding Dataset Difficulty with V-Usable
Information. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 5988—6008. PMLR, 17-23 Jul 2022.

[16] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Kto: Model alignment as
prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[17] L. Gao, J. Schulman, and J. Hilton. Scaling laws for reward model overoptimization. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR .org,
2023.

[18] X. Geng. EasyLM: A Simple And Scalable Training Framework for Large Language Models,
2023. URL https://github.com/young-geng/EasyLM.

[19] T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap, D. Ray, and E. Kamar. TOXIGEN: Controlling
Language Models to Generate Implied and Adversarial Toxicity. In ACL, 2022. URL https:
//arxiv.org/abs/2203.09509.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=dcjtMYkpXx
https://huggingface.co/datasets/LDJnr/Capybara
https://github.com/young-geng/EasyLM
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509

[20] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Mea-
suring Massive Multitask Language Understanding. In International Conference on Learning
Representations (ICLR), 2020.

[21] J. Hong, N. Lee, and J. Thorne. ORPO: Monolithic Preference Optimization without Reference
Model, 2024.

[22] H. Ivison, Y. Wang, V. Pyatkin, N. Lambert, M. Peters, P. Dasigi, J. Jang, D. Wadden, N. A.
Smith, I. Beltagy, and H. Hajishirzi. Camels in a Changing Climate: Enhancing LM Adaptation
with Tulu 2, 2023.

[23] H. Ivison, Y. Wang, V. Pyatkin, J. Liu, J. Lu, and Z. Wu. EasyLM-Fork: A Simple And
Scalable Training Framework for Large Language Models, 2023. URL https://github.
com/hamishivi/EasyLM.

[24] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot,
D. de las Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R. Lavaud,
L. Saulnier, M.-A. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao,
T. Gervet, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mixtral of Experts, 2024.

[25] N. Lambert, L. Tunstall, N. Rajani, and T. Thrush. HuggingFace H4 Stack Exchange
Preference Dataset, 2023. URL https://huggingface.co/datasets/HuggingFaceH4/
stack-exchange-preferences.

[26] N. Lambert, V. Pyatkin, J. Morrison, L. Miranda, B. Y. Lin, K. Chandu, N. Dziri, S. Kumar,
T. Zick, Y. Choi, N. A. Smith, and H. Hajishirzi. RewardBench: Evaluating Reward Models for
Language Modeling, 2024.

[27] X.Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin, P. Liang, and T. B. Hashimoto.
AlpacaEval: An Automatic Evaluator of Instruction-following Models. Github repository, 2023.
URL https://github.com/tatsu-lab/alpaca_eval.

[28] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s Verify Step by Step, 2023.

[29] S.Lin,J. Hilton, and O. Evans. TruthfulQA: Measuring How Models Mimic Human Falsehoods.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, 2022.

[30] J. Liu, S. Hallinan, X. Lu, P. He, S. Welleck, H. Hajishirzi, and Y. Choi. Rainier: Reinforced
knowledge introspector for commonsense question answering. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pages 8938—8958, Abu
Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.emnlp-main.611. URL https://aclanthology.org/2022.emnlp-main.
611.

[31] J. Liu, R. Pasunuru, H. Hajishirzi, Y. Choi, and A. Celikyilmaz. Crystal: Introspective Reasoners
Reinforced with Self-Feedback. In Conference on Empirical Methods in Natural Language
Processing, 2023. URL https://api.semanticscholar.org/CorpusID:263830316.

[32] J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is Your Code Generated by ChatGPT Really Correct?
Rigorous Evaluation of Large Language Models for Code Generation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=1qvx610Cu7.

[33] X. Lu, S. Welleck, L. Jiang, J. Hessel, L. Qin, P. West, P. Ammanabrolu, and Y. Choi. Quark:
Controllable Text Generation with Reinforced Unlearning. ArXiv, abs/2205.13636, 2022. URL
https://api.semanticscholar.org/CorpusID:249152301.

[34] K. Lv, W. Zhang, and H. Shen. Supervised Fine-Tuning and Direct Preference Optimiza-

tion on Intel Gaudi2, 2023. URL https://medium.com/intel-analytics-software/
a1197d8a3cd3.

12

https://github.com/hamishivi/EasyLM
https://github.com/hamishivi/EasyLM
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/2022.emnlp-main.611
https://aclanthology.org/2022.emnlp-main.611
https://api.semanticscholar.org/CorpusID:263830316
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:249152301
https://medium.com/intel-analytics-software/a1197d8a3cd3
https://medium.com/intel-analytics-software/a1197d8a3cd3

[35] Meta. Introducing Meta Llama 3: The most capable openly available LLM to date, May 2024.
URL https://ai.meta.com/blog/meta-1lama-3/.

[36] N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo, S. Singh, X. Tang, L. von
Werra, and S. Longpre. OctoPack: Instruction Tuning Code Large Language Models. arXiv
preprint arXiv:2308.07124, 2023.

[37] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. E. Miller, M. Simens, A. Askell,
P. Welinder, P. F. Christiano, J. Leike, and R. J. Lowe. Training language models to
follow instructions with human feedback. ArXiv, abs/2203.02155, 2022. URL https:
//api.semanticscholar.org/CorpusID:246426909.

[38] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training Language Models to Follow Instructions with Human
Feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[39] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290,
2023.

[40] A.Ramé, N. Vieillard, L. Hussenot, R. Dadashi, G. Cideron, O. Bachem, and J. Ferret. WARM:
On the Benefits of Weight Averaged Reward Models, 2024.

[41] K. Rasul, E. Beeching, L. Tunstall, L. von Werra, and O. Sanseviero. Preference Tuning
LLMs with Direct Preference Optimization Methods. https://huggingface.co/blog/
pref-tuning, 2024. Accessed: 2024-05-17.

[42] P. Rottger, H. R. Kirk, B. Vidgen, G. Attanasio, F. Bianchi, and D. Hovy. XSTest: A Test Suite
for Identifying Exaggerated Safety Behaviours in Large Language Models, 2024.

[43] A. Saeidi, S. Verma, and C. Baral. Insights into Alignment: Evaluating DPO and its Vari-
ants Across Multiple Tasks. 2024. URL https://api.semanticscholar.org/CorpusID:
269303161.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] J. Schulman, B. Zoph, C. Kim, and more. ChatGPT: Optimizing Language Models for Dialogue.
https://openai.com/blog/chatgpt/, 2022. Accessed: 2023-02-12.

[46] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. In S. Solla, T. Leen, and
K. Miiller, editors, Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/464d828b85b0bed98e80ade0abc43b0f -Paper . pdf.

[47] M. Suzgun, N. Scales, N. Schérli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V.
Le, E. H. Chi, D. Zhou, et al. Challenging BIG-Bench tasks and whether chain-of-thought can
solve them. arXiv preprint arXiv:2210.09261, 2022.

[48] F. Tajwar, A. Singh, A. Sharma, R. Rafailov, J. Schneider, T. Xie, S. Ermon, C. Finn, and
A. Kumar. Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data,
2024.

[49] Y. Tang, D. Z. Guo, Z. Zheng, D. Calandriello, Y. Cao, E. Tarassov, R. Munos, B. Avila Pires,
M. Valko, Y. Cheng, and W. Dabney. Understanding the performance gap between online and
offline alignment algorithms, 2024.

[50] G. Team. Gemma: Open Models Based on Gemini Research and Technology, 2024.

[51] "Teknium". Nous-hermes-llama2-13b. URL [https://huggingface.co/NousResearch/
Nous-Hermes-Llama2-13b] [NousResearch/Nous-Hermes-Llama2-13b] (https:
//huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)).

13

https://ai.meta.com/blog/meta-llama-3/
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://huggingface.co/blog/pref-tuning
https://huggingface.co/blog/pref-tuning
https://api.semanticscholar.org/CorpusID:269303161
https://api.semanticscholar.org/CorpusID:269303161
https://openai.com/blog/chatgpt/
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
[https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b][NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b))
[https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b][NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b))
[https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b][NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b))

[52] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[53] L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada, S. Huang, L. von Werra,
C. Fourrier, N. Habib, et al. Zephyr: Direct Distillation of LM Alignment. arXiv preprint
arXiv:2310.16944, 2023.

[54] P. Wang, L. Li, Z. Shao, R. X. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-Shepherd:
Verify and Reinforce LLMs Step-by-step without Human Annotations, 2024.

[55] Y. Wang, H. Ivison, P. Dasigi, J. Hessel, T. Khot, K. R. Chandu, D. Wadden, K. MacMillan,
N. A. Smith, I. Beltagy, et al. How Far Can Camels Go? Exploring the State of Instruction
Tuning on Open Resources. arXiv preprint arXiv:2306.04751, 2023.

[56] Z. Wang, Y. Dong, J. Zeng, V. Adams, M. N. Sreedhar, D. Egert, O. Delalleau, J. P. Scowcroft,
N. Kant, A. Swope, and O. Kuchaiev. HelpSteer: Multi-attribute Helpfulness Dataset for
SteerLM, 2023.

[57] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[58] Z. Wu, Y. Hu, W. Shi, N. Dziri, A. Suhr, P. Ammanabrolu, N. A. Smith, M. Ostendorf, and
H. Hajishirzi. Fine-Grained Human Feedback Gives Better Rewards for Language Model Train-
ing. ArXiv, abs/2306.01693, 2023. URL https://api.semanticscholar.org/CorpusID:
259064099.

[59] H. Xu, A. Sharaf, Y. Chen, W. Tan, L. Shen, B. Van Durme, K. Murray, and Y. J. Kim.
Contrastive preference optimization: Pushing the boundaries of 1lm performance in machine
translation. arXiv preprint arXiv:2401.08417, 2024.

[60] S.Xu, W. Fu, J. Gao, W. Ye, W. Liu, Z. Mei, G. Wang, C. Yu, and Y. Wu. Is DPO Superior to
PPO for LLM Alignment? A Comprehensive Study, 2024.

[61] L. Yuan, G. Cui, H. Wang, N. Ding, X. Wang, J. Deng, B. Shan, H. Chen, R. Xie, Y. Lin, Z. Liu,
B. Zhou, H. Peng, Z. Liu, and M. Sun. Advancing llm reasoning generalists with preference
trees, 2024.

[62] W. Zhao, X. Ren, J. Hessel, C. Cardie, Y. Choi, and Y. Deng. (InThe)WildChat: 570K
ChatGPT Interaction Logs In The Wild. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=B18u7ZR1bM.

[63] L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang, Z. Li, Z. Lin, E. P. Xing,
J. E. Gonzalez, 1. Stoica, and H. Zhang. LMSYS-Chat-1M: A Large-Scale Real-World LLM
Conversation Dataset, 2023.

[64] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P.
Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-judge with MT-Bench and
Chatbot Arena. In NeurlPS Datasets and Benchmarks Track, 2023.

[65] J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and L. Hou. Instruction-
Following Evaluation for Large Language Models, 2023.

[66] B. Zhu, E. Frick, T. Wu, H. Zhu, and J. Jiao. Starling-7B: Improving LLM Helpfulness &
Harmlessness with RLAIF, November 2023.

[67] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irv-
ing. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593,
2019.

14

https://api.semanticscholar.org/CorpusID:259064099
https://api.semanticscholar.org/CorpusID:259064099
https://openreview.net/forum?id=Bl8u7ZRlbM

A Limitations & Broader Impacts

Limitations. As an empirical study with limited compute, our results are largely based on an in-
depth examination over a single model suite (TULU 2), using two base models (Llama 2 and 3).
Additionally, our evaluation may not reflect all potential downstream use-cases - for example, we do
not test multilingual performance. As such, examining how our results carry to multilingual settings
or greatly differing base models is interesting future work. However, we have done our best to explore
a wide variety of evaluations and datasets, using publicly available resources to aid in reproducibility.
In terms of computational efficiency, we note that, while PPO does well, it comes with a significantly
increased computational cost compared to DPO. We only consider performance in this study and
don’t explicitly measure the relative computational cost of different methods (e.g., by measuring
FLOPs cost of training with DPO vs PPO). There are also other aspects to keep improving PPO (e.g.,
doing new rounds of preference annotations to update the reward model for the changing distributions
of the policy model), which we cannot exhaust in this paper, and we leave the exploration of them for
future work.

Broader Impacts. Language models have recently been deployed extensively, but there are few
public studies on the impact of different algorithms for learning from preference feedback and
datasets on these models. We hope to shed light on the impact of this stage of LM training and aid
in improving future LMs. We explicitly consider safety evaluations as part of our evaluation and
hope that our findings help inform how to improve the safety of future LMs, limiting potential harms
and enhancing potential benefits. However, we note that focussing too much on learning from single
preference datasets may result in LMs being aligned to only relatively small subsections of the global
population.

B Dataset Details

We examine the following datasets in this work. We provide details on where we source the data and
the license associated with each dataset.

* SHP-2 [15]: We use the publically available HuggingFace train split, and randomly down-
sample to 500,000 samples. The stackexchange portion of the dataset is licensed under the
CC BY-SA license, and the reddit portion made available in accordance with the Reddit API
terms of use. See the HuggingFace dataset card for more details.

» StackExchange [25]: We use the publically available HuggingFace train split, and randomly
downsample to 500,000 samples. The dataset is licensed under the CC by-SA license.

* PRMB800k [28]: We use the data from the second phase of collection. We consider prompts
where the model generations achieved the correct answer once and failed to find the right
answer once. We then randomly choose one correct and one incorrect generation as chosen
and rejected respectively. The dataset is licensed under the MIT license.

* Chatbot Arena Conversations (Chatbot Arena 2023) [64]: We use the publically avail-
able HuggingFace train split athttps://huggingface.co/datasets/lmsys/chatbot_
arena_conversations. We remove all multi-turn samples as these diverge after the first
turn (but users still rate the entire conversation), and filter out ties. The prompts are licensed
under CC-BY-4.0 and the outputs under CC-BY-NC-4.0.

e Chatbot Arena Preferences (Chatbot Arena 2024) [7]: We use the publically
available HuggingFace train split at https://huggingface.co/datasets/lmsys/
Imsys-arena-human-preference-55k. We remove all multi-turn samples as these
diverge after the first turn (but users still rate the entire conversation), and filter out ties. The
dataset is licensed under the Apache 2.0 license.

¢ AlpacaFarm Human and GPT-4 Preferences [14]: We use the publicly available hugging-
face ‘preference’ splits for each dataset. The dataset is licensed under CC-BY-NC-4.0.

* HH-RLHF [4]: We use the publically available HuggingFace train split. The dataset is
licensed under the MIT license.

* HelpSteer [56]: We use the publically available HuggingFace train split. We average the
fine-grained scores (except verbosity) for an overall score to decide chosen and rejected
pairs. The dataset is licensed under the CC-BY-4.0 license.

e Capybara 7k [12]: We use the publically available HuggingFace train split
released by Argilla available at https://huggingface.co/datasets/argilla/

15

https://huggingface.co/datasets/stanfordnlp/SHP-2
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized

Dataset # Samples
UltraFeedback (FG) 60,908

Stack Exchange 60,908
HH-RLHF 60,908
HelpSteer 9,270
PRMS&00k 6,949
Nectar 60,908
Total 259,851

Table 6: Size of the subsplits of our RM mixture data.

distilabel-capybara-dpo-7k-binarized. The dataset is licensed under the Apache
2.0 license.

* Orca Pairs [34]: We use the publically available HuggingFace train split cleaned by
Argilla'!, as we found it had better performance in initial experiments. The dataset is
licensed under the Apache 2.0 license.

* Nectar [66]: We use the publically available HuggingFace train split. The dataset is licensed
under the Apache 2.0 license.

« UltraFeedback [11]: We use the split released by Argilla'?, and consider two versions: one
where the chosen and rejected samples are chosen using the overall score (Overall/OV) and
one where they are chosen using an average of the fine-grained scores (Fine-grained/FG).
The dataset is licensed under the MIT license.

We additionally create splits of HH-RLHF, StackExchange, and Nectar downsampled to 60,908
(matching the size of our UltraFeedback split) examples for size-equal comparisons of algorithms
across different dataset types (i.e., Table 2). We also filter out any malformed examples we find'3.

We additionally construct our ‘mix’ used for expanding the reward model training by a number of
examples from each dataset as listed in Table 6. Overall, our ‘mix’ prefence set contains roughly
260k samples, over four times larger than just using UltraFeedback.

C Model and Code details

We primarily build off TOLU 2 13B and 70B [22], which themselves are based on Llama 2 [52]. TULU
2 models are licensed under the AI2 low-risk license and available at https://huggingface.co/
collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101. Llama 2 is licensed
under a custom license and available at https://huggingface.co/collections/meta-1lama/
llama-2-family-661dal1£90a9d678b6£55773b.

For code, we build off EasyLM [18], specifically the fork used to train TULU 2 [23], which is licensed
under Apache 2.

D Evaluation Details

We use the following evaluations. We provide the category we map each evaluation to in brackets.

« MMLU (factuality) [20]: We use the official MMLU evaluation script and prompts avail-
able at https://github.com/hendrycks/test, with modifications to allow for batch
processing. We evaluate using 0 few-shot examples, following the original setup of MMLU.
We report average accuracy across test examples.

* GSMBSKk (reasoning) [9]: We evaluate models on the test set of GSM. Following Wei et al.
[57], we evaluate with chain-of-thought. We use 8 few-shot in-context examples. Because
all answers in GSM are numbers, we extract the last number in the model response as the
final answer. We report average accuracy across test examples.

"https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
?Manually cleaned and TruthfulQA prompts removed.
For example, conversations with empty turns.

16

https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101
https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101
https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b
https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b
https://github.com/hendrycks/test
https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs

Big Bench Hard (BBH; reasoning) [5, 47]: We follow the setup described in the original
paper and evaluate with chain-of-thought. The officially provided prompts, which have 3
few-shot in-context examples are used. For the CoT setup, we extract the first word after the
phrase ‘So the answer is’, or the entire response if there is no such substring present. We
report average accuracy over sub-tasks (all of which use accuracy as the primary metric).
Truthful QA (truthfulness) [29]: Following Touvron et al. [52], we mainly use the gener-
ation setting. We follow the official script in their official implementation'* to do greedy
decoding and answer postprocessing. We also follow their instruction to train two GPT-based
classifiers to judge the truthfulness and informativeness of the model response. We report
the % Informative and Truthful.

AlpacaEval (instruction following) [27, 13]: We use the package provided by Li et al. [27],
following the default setup for both AlpacaEval 1 and length-controlled AlpacaEval 2 [13].
We allow the evaluated model to generate up to 8192 tokens, without specifying special stop
sequences.

IFEval (instruction following) [65]: IFEval benchmarks whether models can follow in-
structions that contain verifiable constraints, such as “write in more than 400 words”. We
use the official evaluation code released with the original paper'”, and report the “Loose
Accuracy” metric at the prompt level (i.e., a response is counted as correct only if all the
constraints in the prompt are detected to be satisfied after normalizing the response).
HumanEval+ (coding) [6, 32]: We use the augmented form of the HumanEval dataset
introduced by Liu et al. [32], which contains additional test cases. We additionally use the
instructions provided by HumanEvalPack [36] when prompting instruction-tuned models.
We report pass@10 and sample with a temperature of 0.8. We use v0.2.1 of the released
Eval+ package.

MBPP+ (coding) [2, 32]: For coding, we also evaluate using MBPP+, for which we prompt
models to complete a program program given a natural language description and function
signature. Similar to HumanEval+, We report pass@ 10, sampling with a temperature of 0.8.
We use the v0.2.1 of the released Eval+ package.

ToxiGen (safety) [19]: We follow the setup in Touvron et al. [52], but use the original set
of prompts from Hartvigsen et al. [19], which are designed to elicit toxic generations for
certain groups. We take only the prompts designed to produce toxic language (‘hateful’
prompts) and use 500 prompts per group to reduce evaluation costs. For base language
models, we pass in the original ToxiGen prompts unchanged and greedily decode up to the
first new line (or a maximum of 512 tokens). For instruction-tuned models, we place the
prompt in the corresponding template, and ask the model to complete the prompt, until the
model generates a stop token (or a maximum of 512 tokens). We pass the generated text
into a roberta-large model trained to detect toxic content finetuned as part of Hartvigsen
et al. [19] (available at https://huggingface.co/tomh/toxigen_roberta). We then
report the percentage of generations deemed toxic by the classifier.

XSTest (safety) [42]: XSTest evaluates whether a model can correctly refuse to follow
malicious instructions, while still being able to correctly identify similar but safe instructions
and follow those ones correctly. We use the same set of test prompts provided in their
official repository '¢, which includes a mixture of 200 unsafe prompts and 250 safe prompts.
Similar to the original paper, we tried using both GPT4 and heuristic rules to detect whether
the model responses are refusal. We found that GPT4 provides more reliable detection, as
modern models may respond in various ways that exceed the coverage of those pre-defined
rules. For GPT4-based detection, we found the originally provided prompt in the official
repository has a confusing definition of “full refusal” and “partial refusal”, so we removed
that distinction and rewrote the prompt. In this paper, we report the F1 metric, which
aggregates the precision and recall of model refusals. We will release all our evaluation
codes for reproduction.

17

https://huggingface.co/tomh/toxigen_roberta

Samples Factuality Reasoning Coding Truthfulness Safety Inst. Foll. Average

Llama 2 base - 52.0 37.0 30.7 32.7 32.7 - -

Tulu 2 (SFT) - 55.4 47.8 45.1 56.6 91.8 44.2 56.8
UltraFeedback (FG; All) 60.908 55.3 50.9 459 69.3 91.9 52.8 61.0
Strong Model Gen.s 10,000 55.3 46.5 45.6 58.9 90.1 47.6 57.3
Middle Model Gen.s 10,000 55.2 48.5 44.5 60.6 91.5 48.2 58.1
Weak Model Gen.s 10,000 55.2 47.3 45.4 60.5 90.4 46.2 57.5
FalseQA Prompts 2,339 55.2 49.2 44.0 60.8 92.2 45.5 57.8
Evol Instruct Prompts 10,000 55.5 47.8 47.5 58.4 90.6 48.7 58.1
Truthful QA Prompts 811 55.4 47.6 44.5 55.7 91.6 45.4 56.7
Flan V2 Prompts 2,0939 55.3 494 46.3 62.4 91.3 48.9 58.9
ShareGPT Prompts 19948 55.4 49.8 43.9 60.2 87.5 50.3 57.9
UltraChat Prompts 9929 55.4 50.6 47.5 59.9 89.9 48.1 58.6

Table 7: Performance of varied sub splits of UltraFeedback, considering both samples using genera-
tions from models of varying strength (weak, middle, strong model gen.) strong and only considering
samples using prompts from single datasets (e.g., FalseQA, Flan V2). Sampling from different-quality
models makes relatively little difference, while prompt choice matters. Additionally, different source
datasets provide improvements in different evaluations.

E UltraFeedback Subset Study

Intrigued by the strong performance of UltraFeedback, the overall best performing dataset, we
further compare the performance of differing subsets of UltraFeedback, and show our results in
Table 7. First, we compare using only generations from the highest-scoring, middle-scoring, and
lowest-scoring models (as judged by GPT-4). Surprisingly, we find that there is little difference in
overall performance between these splits. This suggests the preference annotations from GPT-4 (i.e.,
the decisions about chosen and rejected pairs) are more important than the strength of the underlying
models used to sample responses. Then, we compare models only trained on samples from the same
original dataset (as UltraFeedback was constructed by sampling prompts from various sources). We
find that each prompt source performs best in at least one category. This suggests that selecting
a diverse set of prompts when generating synthetic data is important, and UltraFeedback already
contains a diverse set of prompts covering various downstream applications.

Subset Construction Details. We construct the ‘top’, ‘middle’, and ‘bottom’ sets of UltraFeedback
by using the average score of responses from each model according to the average of fine-grained
scores. We then bucket the models into three groups accordingly. We provide the groups and average
scores in Table 8. For constructing the splits, we then filter UltraFeedback to only include responses
from the given models, pick the highest-scoring response per prompt as the chosen, and a random
lower-scoring prompt as rejected. We construct a subset of 10,000 prompts for each group of models.
For the prompt subsets, we simply use source dataset annotations provided in the UltraFeedback data
itself.

F Additional Details for PPO and DPO

We performed hyperparameter search for both DPO and PPO, sweeping across core hyperparameters
in pilot experiments on HH-RLHF and UltraFeedback. We provide further details for both algorithms
below.

F1 DPO

We testing multiple values for 5 (0.1, 0.01, 0.001) and for learning rate (5e-6, 5e-7, 5e-8) in pilot
experiments on HH-RLHF and UltraFeedback. Ultimately, we found that the hyperparameters
suggested by Tunstall et al. [53] and followed by Ivison et al. [22] worked best (learning rate of Se-7,
B of 0.01). This additionally involves 3 epochs of training with a learning rate of 5 x 10~7, with a

“https://github.com/sylinrl/Truthful QA/
Bhttps://github.com/google-research/google-research/tree/master/instruction_following_eval
"®https://github.com/paul-rottger/exaggerated-safety

18

Group Model Avg. Score

gpt-4 4.50
gpt-3.5-turbo 4.48
Top izardim-70b 414
bard 4.12
vicuna-33b 3.95
mpt-30b-chat 3.92
Ilama-2-70b-chat 391
Middle wizardlm-13b 3.91
llama-2-13b-chat 3.78
ultralm-65b 3.69
ultralm-13b 3.63
wizardlm-7b 3.44
Ilama-2-7b-chat 3.39
Bottom starchat 3.13
alpaca-7b 2.97
pythia-12b 2.60

falcon-40b-instruct 2.57

Table 8: Model splits and average UltraFeedback fine-grained score used for construct UltraFeedback
subsets used in Table 7.

linear warmup for 10% of training and linear cooldown for the duration. We use the open-sourced
codebase used for training TULU 2+DPO.!7

F.2 PPO

More on the algorithm. PPO formulates language generation as a Markov decision process (MDP),
where each response y is an episode, an action is a token ¥, and a state is the concatenation of a
prompt and a partial response (x oy~). To construct token-level rewards r; that guide the RL training,
the sequence-level reward r is applied only to the last token, and each token is penalized by a KL.
term 76(logmg(ys | x 0 y<r) — log mer(ye | 0 y<t)). Note that 7y is the model we are training
and 7 is a reference model (in our case, the initial SFT model we start training from). Formally, the
token-level reward r, for each response token y, is defined as

= {—5(10%“”6(% | 20 y<t) — log Ter(ys | © 0 y<i)) (where 1 <t < |yl))

. =
—B(logma(ys | © 0 y<i) —log meer(ye | T 0 y<i)) +1 (where t = [y])

In addition to the policy model, PPO also trains a value model V,,(z o y;) that estimates the expected
value function of incomplete responses under the active policy. The value model typically shares the
same architecture as the reward model, while the regression head can be applied on any response
token. The value model helps with estimating the advantage on each token, A; = —Vy(xoy«) + Gy,

where Gy = Z,lﬂ‘:t A ~tr, is the empirical return.'® PPO trains the policy model by minimizing
loss!?

mo(ye | @ 0 y<t)
L,(0)=—-E - [—~A], 5
(9) €D y~mo(y|z),t€(1,|yl] Teet (Yt | 2 0 Yt t ®)
and trains the value model by minimizing the MSE loss against the empirical return:
1 2
Ly (¢) =:Exezxny~ﬂguﬁmyteu4yu[g(V%($<>y<t)—-Ch) }- (6)

"https://github.com/hamishivi/EasyLM

"®In practice, a generalized advantage estimation is used.

“In practice, we clip the ratio v4(f) = % by 1 =+ ¢, and minimize £(0) = —E[min (v(0) -
Ay, clip(ve(0),1 —€,14¢€) - Ay)]

19

https://github.com/hamishivi/EasyLM

The models can be jointly optimized by linearly combining the two losses: Lppo (6, ¢) = L(0) +
a- Ly(o).

Implementation details. PPO comes with many implementation details. We made a simplistic
implementation that results in stable training. Notably:

¢ We initialize the value model from the reward model. This follows from InstructGPT [37].
Some other implementations initialize from the SFT model [33] or the base model [30, 58],
while replacing the LM head with a regression head.

* For truncated completions, we set the reward to a large negative number (e.g., -10.0), which
is referred to as the EOS trick.

* We do not perform normalization on the rewards. This follows from AlpacaFarm [14].
Although reward models trained under different settings can have very different output
ranges, we found our PPO experiments quite robust to such variation.

* We do not whiten the step-level rewards within each batch. We do whiten the step-level
advantages within each batch, following other implementations.

* We use a fixed KL penalty coefficient. The original PPO algorithm [44] has an adaptive KL
controller, but most recent implementations have moved away from this [37, 52].

See Table 10 for a comparison with other open-source implementations.

Hyperparameters. The prompt and continuation each has at most 1024 tokens. We use a batch
size of 64 and the same for minibatch size, and train for 1 epoch over the prompt dataset. On each
batch of prompts and rollouts, we train for 1 inner epoch. We use a sampling temperature 7 = 0.7
for rollout, and a fixed KL penalty coefficient 5 = 0.05. We optimize with AdamW with learning
rate 7 = 1 x 106 with a linear warmup for 10% of iterations. We provide additional details on the
hyperparameters used for PPO in Table 9. In experiments, we found that training with larger (70B)
reward models benefited from a reduced KL penalty coefficient 3, but using smaller reward models
did not benefit (see App I for further discussion). As such, for runs using larger reward models, we
use a KL penalty of S = 0.0325 instead of 8 = 0.05. This is in line with prior work suggesting that
improved reward models are more difficult to overoptimize against, and so can benefit from lower KL
penalties [17, 40]. We found these hyperparameters through experimenting in pilot experiments over
HH-RLHF and UltraFeedback. We experimented with KL penalty coefficients of 0.01, 0.025, 0.0325,
0.05, as well as varying the batch size (including taking more samples per gradient step, and taking
multiple steps over the same generations). We additionally explored training for up to 3 epochs and
found that training beyond 1 epoch did not yield improved performance and occasionally resulted in
the training collapsing entirely, and as such stuck to training for only 1 epoch.

We additionally provide a more detailed comparison of our PPO implementation to other work in
Table 10.

Reward model hyperparameters. For training the reward model, we follow prior work [11, 37] in
only training the reward model for one epoch, using a learning rate of 1 x 10~° that warms up for
the first 3% of training steps and linearly decays to 1 x 10~ by the end of training. We use a batch
size of 512.

G Additional Observations with PPO

Choice of hyperparameters. We found that training beyond one epoch did not yield improved
performance and occasionally resulted in the training collapsing entirely, and thus only trained for 1
epoch in our experiments (£ = 1 in Table 9). We also found that training multiple inner epochs on
each batch destabilizes PPO training, and thus we use 1 inner epoch (e = 1).

Accelerating training with larger prompt batch size. Rollout (i.e., generating online responses
from the policy) is the most time-consuming step in PPO, taking up more than 95% of the total
training time. We explored speeding up training by increasing the prompt batch size from 64 to 512,
such that we can obtain more responses with a small latency overhead. We kept the minibatch size at
64 due to memory constraint, and because we need about 900 gradient steps to make the training
converge.

This setup implies that rollouts in later minibatches become slightly off-policy when the model trains
on them. In most implementations of PPO, the forward passes are also done on the batch level and

20

Symbol Value Description

TRAINING
B 64 Prompt batch size (for rollout).
r 1 Number of rollouts for each prompt.
b 64 Minibatch size for forward-backward passes.
g 1 Gradient accumulation (in number of minibatches).
E 1 Training epochs.
e 1 Inner epochs trained for each batch.
L, 1024 Max number of tokens in the prompt.
L. 1024 Max number of tokens in the continuation.
RL
0.0 Dropout rate.
T 0.7 Temperature for sampling rollouts.
B 0.05,0.0325 KL penalty coefficient.
v 1.0 Discount factor for rewards.
A 0.95 Parameter for generalized advantage estimation.
€ 0.2 Clipping range for policy and value losses.
«@ 0.1 Value loss coefficient.
OPTIMIZATION (ADAMW)
n 1x107% Learning rate.
10% Percentage of iterations for warmup.
(B1,B2) (0.9,0.95) AdamW optimizer hyperparameters.
€ 1x107° AdamW optimizer hyperparameter.
0.0 Weight decay.
1.0 Max global norm for gradient clipping.

Table 9: PPO hyperparameters. We use values listed here unless otherwise noted.

Quark Rainier/Crystal FG-RLHF AlpacaFarm Ours

Init value from reward

EOS trick

Reward normalization
Reward whitening
Advantage whitening
Adaptive KL controller

KL clamping

Multiple rollouts per prompt

XX NSNS X X
XXX NN X X%
x> CNU % X
DR ANENE RN
XX X AX X NN

Table 10: Variations in implementation of the PPO algorithm. Compared with serveral open-source
PPO implementations: Quark [33], Rainier [30], Crystal [31], FG-RLHF [58], and AlpacaFarm [14].

thus the resulting logprobs and values are also obtained from a slightly stale version of the models. In
our experiments, this severely destabilized training, and a closer investigation shows that the value
model loss did not converge fast enough to supply policy training with reliable advantage signals. As
a remedy, we made the forward passes to be carried out on the minibatch level so that these logprobs
and values are obtained from the most current models. Note that this slightly deviates from most PPO
implementations.

In Table 11, we compare the training time and performance of our default PPO setup and the larger
prompt batch size setup. Increasing the prompt batch size by 8x reduces the training time by 5x (60
hours — 12 hours), while also decreasing the overall performance by 0.6% (61.7% — 61.1%). To
remedy the performance loss, we experimented with generating multiple (up to 4) rollouts for each
prompt, which increased the effective batch size for gradient updates while keeping the total number
of gradient steps fixed. When using a rollout multiplier of 4, most performance loss can be recovered,
while the training speedup is also less dramatic.

Our conclusion from this set of experiments is that, it is important for the forward passes to be
performed online, and to get the extra mile offered by PPO, the rollouts should also be generated
fully online. Deviating from this may speed up training, but at some performance cost. Since we

21

B b r g #trainingex. gradupdate bsz # grad updates Training Time Avg. Perf.
64 64 1 1 Ix Ix 1x 60 h 61.7
512 64 1 1 1x 1x 1x 12h 61.1
512 64 2 2 2x 2x 1x 16 h 61.1
256 64 4 4 4x 4x 1x 32h 61.4

Table 11: Performance of PPO under bigger prompt batch size. The first row uses the same experiment
setup as the PPO model trained on UltraFeedback (FG), as in Table 2. Hyperparameter notations
are same as Table 9: B = prompt batch size, b = minibatch size for forward-backward passes, r = #
rollouts per prompt, g = gradient accumulation. Number of training examples, gradient update batch
size, and total number of gradient updates are relative to the first row. We keep the total number of
gradient updates fixed, train all models for 1 epoch. Increasing the prompt batch size can speed up
PPO training at some performance cost, and most performance loss can be recovered by increasing r
and g (which effectively increases the gradient update batch size).

GSM BBH Codex-Eval+ MBPP+ AEvall AEval2 IFEval XSTest

Model

Tulu 2 13B (SFT) 46.0 49.5 19.3 38.1 78.9 5.0 434 85.3
13B UltraF. RM 60.5 50.0 29.3 39.9 91.6 20.5 47.1 84.6
13B Mix RM 60.5 54.3 29.3 39.9 92.7 22.3 50.3 86.2
70B UltraF. RM 67.0 59.9 37.2 414 92.6 22.4 51.0 86.3
70B Mix RM 67.5 59.8 354 38.5 90.9 19.0 46.6 85.6

Table 12: Full results from Best-of-N evaluation summarized in Table 3.

didn’t get better results with the large prompt batch size setting, we did all other experiments with the
default prompt batch size of 64.

H Reward Model Evaluation Details

Best-of-N Details For best-of-N, we sample 16 responses from TULU 2 13B with a temperature of
0.7 for each evaluation task we examine. We then pass these responses (along with the prompt used
for generation) into the given reward model, and use the top-scoring response as the final output.

Given a list of these top-scoring outputs, we then pass these to the rest of the given evaluation setup.
We examine only a subset of evaluations, focussing on the evaluations that rely on long-form model
generations (as we are most interested in the reward model’s ability to judge these outputs during
PPO training). In particular, we look at GSM8k, BBH, Codex-Eval+, MBPP+, AlpacaEval 1 and
2, IFEval, XStest. For Codex-Eval+ and MBPP+, we use Pass@1 instead and just evaluate the
top-scoring example (unlike other tables in which we use Pass@ 10). When reporting the average
score in Table 3, we first calculate an average score per evaluation task category (following the same
evaluation categories as in App. D), and then report the average over categories.

We report the full best-of-N results across each evaluation in Table 12.

Chat Chat Hard Safety Reasoning Prior Sets Score

13B UltraFeedback RM 74.3 493 52.2 65.0 67.9 61.0
13B Mix RM 97.2 61.2 85.9 78.1 73.7 79.8
70B UltraFeedback RM 96.4 60.5 63.7 74.8 71.4 73.6
70B Mix RM 94.4 522 83.3 65.9 73.5 73.9

Table 13: Full results from RewardBench evaluation for results shown in Table 3. Score is a weighted
average of subsets with prior sets given weight 0.5 and all other sets given weight 1, following
Lambert et al. [26].

22

63
0.575 1 —&— RM I13B
30 RM 70B
0.550 4 62 <3
28 .
0.525 a &
<
> 61
= 0.500 M 264 =
% s =
© 0.475 A 2 13}
241 C>> 604
0.450 <
22
0.425 1 —e— RM 3B 591 —e— RM 3B
RM 70B RM 70B
0.400 4 T T T T T T 20 T T T T T T T T T T T T
0.025 0030 0.035 0.040 0.045 0.050 0.025 0030 0.035 0.040 0.045 0.050 0.025 0030 0.035 0.040 0.045 0.050
KL Penalty Coefficient B KL Penalty Coefficient B KL Penalty Coefficient B

Figure 4: Performance of models trained with 13B and 70B UltraF. RMs with varying KL coefficient
values. (a) GSM Accuracy, (b) AlpacaEval 2 winrate, (c) Overall performance across entire evaluation
suite. Overall best performance occurs at different KL coefficient values for different reward models.
However, AlpacaEval 2 performance grows with reduced KL coefficient values.

RewardBench Details We report the subset scores of our reward models on RewardBench in
Table 13.

I KL Penalty Coefficient Exploration

As seen in Figure 4, we observe that the optimal KL penalty coefficient (3 in Eq. 2) value changes
with the reward model used. While using the smaller 13B reward model results in large drops in
overall performance as 3 shrinks, the larger 70B RM is more robust and actually achieves higher
performance at a smaller 8 than the 13B UltraF. RM. This is in line with prior work suggesting that
larger reward models are less prone to overoptimization [17, 10], and as such are more robust to lower
£ (which encourages more optimization against the RM). This highlights an additional potential
benefit of larger RMs: they may be easier to tune due to their increased robustness to choices of [.

We also note that some evaluations do not suffer as much from reduced . For example, AlpacaEval
2 performance (Fig. 4c) actually is highest at the lowest 5 shown. This is likely due to the match
between AlpacaEval and PPO training: as the reward models are trained on GPT-4 preferences, more
closely optimizing against them (via a lower /3) also improves the rate at which the model generations
are preferred by GPT-4. However, it also comes with significant reductions in other evaluations (as
seen in the drop in GSM performance in Fig 4), which is undesirable when training a generalist
multi-task model. This is in line with prior work observing that there appears to be an ‘alignment tax’
(i.e., reduced scores on various capabilities including reasoning and math) when performing learning
from preference feedback [37, 4], and that this tax can be partially controlled through tuning 5 (e.g.,
Fig. 34 in Ouyang et al. [37]).

J Prompt Domain Identification Details

In order to find additional unlabelled prompts, we mine prompts from UltraFeedback [11], Wild-
Chat [62], and LMSYS-1M [63]. We only consider the prompts and throw away the accompanying
model responses. We categorise unlabelled prompts by prompting TULU 2 70B. We first prompt
TULU 2 70B to tag the prompts with various categories using the prompt shown in Figure 5. We
then sample Code and Math prompts by picking prompts that include ‘Coding’ or ‘Math’ tags and
as few other tags as possible. We remove all prompts with ‘unclear’ and ‘multilingual’ tags as we
wish to focus on clear queries made in English. The authors examined a small portion of the mined
prompts by hand and found this resulted in a solid collection of high-quality prompts for math and
code respectively.

23

Instruction
Please label the task tags for the user query.
User Query

(3

{$instruction}

[1

Tagging the user input
Task Tags

all_task_tags = [

"Coding", # Users seek help with writing, reviewing, or fixing code in programming.
"Math", # Queries related to mathematical concepts, problems, and calculations.
"Asking for Advice", # Users seek recommendations, suggestions,

or advice on various topics.

"Brainstorming", # Involves generating ideas, creative thinking,

or exploring possibilities.

"Classification", # Queries require categorizing or organizing information into
groups or classes.

"Closed Question Answering", # Users ask questions that require a specific
answer or a short response.

"Creative Writing", # Users seek assistance with crafting stories, poems,

or other creative texts.

"Extraction", # Involves extracting specific information or details from

a larger body of text.

"Inhabiting a Character/Persona", # Users engage in scenarios requiring

the model to adopt a character or persona.

"Open Question Answering", # Users ask questions that require detailed

or elaborate responses.

"Rewriting", # Users ask for help in rephrasing, summarizing, or rewriting text.

"Summarization", # Involves condensing information, text, or content
into a shorter form.

"Multilingual", # Queries involving non-English natural languages.
"Unclear", # Queries that are ambiguous, vague, or unclear.

Output Format

Note that you can only select the most relevant task types.
Please use the multilingual tag if the query is in a language other than English.
Add the unclear tag if there is no obvious question to answer in the prompt.

Now, please output your tags below in a json format by filling in the placeholders in []:
(X3

{
"tags": ["[tag 11", "[tag 21", ...]

(3

Do not add any additional characters.

Figure 5: Prompt used for classifying unlabelled prompts.

24

801
e (| e T .| —— MMLU
GSM
—— BBH
i 601 —— HumanEval+
& y ——F% — e+ _%~~—2 | __ MBPP+
£ — et T \//N—\ —— TruthfulQA
§ AlpacaEval 1
@ 40 —— AlpacaEval 2
iz W\MM/ IFEval
—— XSTest
| \//\’/ —— ToxiGen
Cat. Avg.

20

0 500 1000 1500 2000 2500
Train Steps

Figure 6: Performance of all evaluations over PPO training steps when training using the 70B

UltraFeedback RM and UltraFeedback prompts for 3 epochs. Grey dashed lines indicate epoch
boundaries.

AlpacaEval 2 (LC) IFEval GSM

STNNA /J \y\\\/\/\

60

o
=3

5

Evaluation Perf.
w
S

N
S

B asar

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Train Steps Train Steps Train Steps

Figure 7: Performance on (left) AlpacaEval 2, (middle) IFEval, (right) GSM8k over PPO training
steps when training using the 70B UltraFeedback RM and UltraFeedback prompts for 3 epochs. Grey
dashed lines indicate epoch boundaries.

K Compute Details

We train all models on 256 or 128-size TPUV3 pods. PPO training with a 13B reward model and 13B
policy on the UltraFeedback set takes 3 days on a 256-size pod, with the reward model training taking
roughly 10 hours to train. DPO training on UltraFeedback (roughly 60,000 samples) for a 13B model
takes 9 hours. We note that we conducted additional smaller-size runs that we do not report results
from in this paper as part of our research to further explore dataset and hyperparameter choices.

L. Model Performance over Training

We investigate how the performance of our best model (PPO training TULU 2 13B with the 70B
UltraFeedback RM and UltraFeedback prompts), and continue training beyond the 1 epoch result
reported in the main text of the paper. We show these evaluations in Figure 6. We find that how
performance changes over training is quite distinct between each evaluation: while some evaluations

25

continuously improve (e.g., AlpacaEval 2), others improve and then degrade (IFEval, GSM8k),
or remain relatively unchanged over training (MMLU). We show the AlpacaEval 2, IFEval, and
GSMB&8k performances individually in Figure 7. This highlights the need to measure a broad variety
of benchmarks: while just examining AlpacaEval 2 would suggest that training for 3 epochs (or
longer) is best, examining IFEval we would find that the model after 500 steps (0.5 epochs) is best,
and GSMS8k peaks at the 1 epoch mark. As such, we also broadly caution against evaluating model
performance only on llm-as-judge benchmarks such as AlpacaEval, as we observe that improved
AlpacaEval performance may come at the cost of other desirable properties.

26

	Introduction
	Setup
	PPO and DPO
	Experimental and Evaluation Setup

	Exploring Learning from Preference Feedback
	Preference Data
	Preference Learning Algorithm: DPO vs. PPO
	Reward Models
	Policy Training Prompts
	The effect of targeted prompts.
	Altering prompts to improve overall performance.

	A Recipe for Learning from Preferences
	Related Work
	Conclusion
	Limitations & Broader Impacts
	Dataset Details
	Model and Code details
	Evaluation Details
	UltraFeedback Subset Study
	Additional Details for PPO and DPO
	DPO
	PPO

	Additional Observations with PPO
	Reward Model Evaluation Details
	KL Penalty Coefficient Exploration
	Prompt Domain Identification Details
	Compute Details
	Model Performance over Training

