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SPHARM-Reg: Unsupervised Cortical Surface
Registration using Spherical Harmonics

Seungeun Lee, Seunghwan Lee, Sunghwa Ryu and Ilwoo Lyu

Abstract— We present a novel learning-based spherical
registration method, called SPHARM-Reg, tailored for es-
tablishing cortical shape correspondence. SPHARM-Reg
aims to reduce warp distortion that can introduce biases in
downstream shape analyses. To achieve this, we tackle two
critical challenges: (1) joint rigid and non-rigid alignments
and (2) rotation-preserving smoothing. Conventional ap-
proaches perform rigid alignment only once before a non-
rigid alignment. The resulting rotation is potentially sub-
optimal, and the subsequent non-rigid alignment may intro-
duce unnecessary distortion. In addition, common velocity
encoding schemes on the unit sphere often fail to preserve
the rotation component after spatial smoothing of veloc-
ity. To address these issues, we propose a diffeomorphic
framework that integrates spherical harmonic decomposi-
tion of the velocity field with a novel velocity encoding
scheme. SPHARM-Reg optimizes harmonic components of
the velocity field, enabling joint adjustments for both rigid
and non-rigid alignments. Furthermore, the proposed en-
coding scheme using spherical functions encourages con-
sistent smoothing that preserves the rotation component.
In the experiments, we validate SPHARM-Reg on healthy
adult datasets. SPHARM-Reg achieves a substantial reduc-
tion in warp distortion while maintaining a high level of
registration accuracy compared to existing methods. In the
clinical analysis, we show that the extent of warp distortion
significantly impacts statistical significance.

Index Terms— Cortical surface, Spherical CNN, Spherical
registration, Spherical warp

I. INTRODUCTION

Neuroimaging data analysis is a challenging task in the field
due to the high structural variability across individuals. Neu-
roimaging data are often understood on 2-manifolds, which
requires non-rigid surface registration [1]. Since a bijective
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spherical mapping is readily available for cortical surfaces [1],
spherical registration is a popular choice to establish shape
correspondence. In general, the goals of spherical registration
can be summarized as follows: to align the input geometry
as closely as possible to the target geometry, to estimate dif-
feomorphic warp, and to reduce warp distortion. Nevertheless,
fewer studies focus on warp distortion to date [2]–[4].

Spherical registration formulates an energy function that
governs both geometry matching and warp field regularization.
Through direct optimization of this energy function, spherical
registration establishes shape correspondence by iteratively
refining a smooth warp field. Renowned for their high reg-
istration accuracy, these techniques are extensively utilized
in many structural data analyses [5]–[15]. Yet, in classical
approaches [2], [16]–[21], the resource-intensive optimization
process presents a common limitation, posing challenges for
large-scale data analyses. Although recent approaches use con-
volutional neural networks (CNNs) for scalability and further
employ a loss function related to distortion [3], [4], their
architecture design for handling distortion remains implicit.

Existing approaches typically perform a rigid alignment
only once before the subsequent non-rigid alignment. As
discussed in [2], a rigid alignment may not be optimal for the
following non-rigid alignment, which can potentially introduce
unnecessary distortion. On the other hand, if a rigid alignment
is optimized together with a non-rigid alignment, it becomes
possible to reduce the warp distortion without sacrificing
the registration accuracy. Consequently, in downstream tasks,
regardless of the tessellation resolution, the sampling density is
affected by warp distortion; greater distortion results in more
(or fewer) sampling points, which can potentially introduce
biases into shape analyses as shown in Fig. 1.

Velocity smoothing on the unit sphere is key to generating a
smooth warp field and should be performed in a way that pre-
serves the rotation component, which otherwise complicates
its joint optimization. Two popular velocity encoding schemes
are (a) polar displacements (i.e., angular changes in latitude
and longitude) and (b) tangent vectors in the tangent space
at spherical locations. In scheme (a), smoothing is applied
to each polar component. In scheme (b), parallel transport
transfers vectors onto the tangent space at the smoothing
center, followed by smoothing. Yet, neither scheme preserves
the original rotation after smoothing. In scheme (a), the signs
of latitudinal change vary with direction to the poles: positive
toward the north pole and negative toward the south. In scheme
(b), the original vector lengths are not preserved (see Fig. 2).
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Fig. 1. Warp distortion and its impact on sampling uniformity. In this ex-
ample, both conventional and our methods achieve comparable registra-
tion accuracy but differ in warp distortion. This leads to varying sampling
densities between the original and warped grids. In downstream shape
analyses, warp distortion causes over- (or under-) sampling in expanded
(or shrunk) regions after registration, potentially introducing biases. Joint
rigid alignment during optimization helps mitigate warp distortion.

In this paper, we propose a novel learning-based method
for cortical surface registration, called SPHARM-Reg. The
proposed method is designed to substantially reduce warp
distortion while maintaining high registration accuracy. In par-
ticular, we present spherical harmonic-based decomposition of
the velocity field, enabling joint rigid and non-rigid alignments
by simultaneously optimizing the harmonic coefficients. This
effectively reduces warp distortion that can arise from a sub-
optimal rigid alignment followed by a non-rigid alignment
as often caused in conventional approaches. Furthermore, we
design a novel velocity encoding scheme that decomposes the
velocity field into six independent spherical functions. This
addresses the issue of velocity smoothing on the unit sphere
in conventional encoding schemes that alter the underlying
rotation component after spatial smoothing of the velocity
field. The proposed method is built upon our preliminary
studies [2], [22] with the following key differences.

• We provide the thorough theoretical foundations of veloc-
ity encoding with spectral smoothing as well as harmonic
decomposition for joint rigid and non-rigid alignments
within a diffeomorphic registration framework.

• We propose an end-to-end compositional learning frame-
work for the warp field that enhances flexibility and
improves registration accuracy across different types of
geometry while accounting for their variability.

• We comprehensively validate SPHARM-Reg, including
ablation studies, region-wise comparisons, and explo-
ration of potential clinical applications.

II. RELATED WORK

A. Classical Spherical Registration

In an early attempt [16], planar projection of spherical
polar coordinates was employed to find a non-rigid alignment
between moving and fixed spherical data. This approach can
be considered as standard image registration, which simplifies
cortical surface registration on a regular grid. However, large
mapping distortion may occur around the pole, resulting
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Fig. 2. Velocity smoothing at the pole (z-axis, blue) with a disk kernel
(orange) in popular encoding schemes. Left : in this example, rotational
warp produces counterclockwise velocity (black ) with respect to the y-
axis (green) by a degree of δ ∈ [0, 2π]. Middle: the latitudinal changes
in polar displacements are symmetrically encoded in both hemispheres
with opposite signs (magenta and cyan); e.g., +δ and −δ for y = 0.
Hence, smoothing results in no latitudinal change at the pole due to the
equal balance of positive and negative changes in the kernel. Right :
at a spherical location (x, y, z), the magnitude of the tangent vector
is δ

√
1 − y2. For y = 0, the magnitudes of the tangent vectors are

maximal (magenta); elsewhere, they are smaller (cyan). In this scheme,
parallel transport transfers the vectors in the kernel onto the tangent
space at the pole before smoothing. As parallel transport preserves
vector length, smoothing inevitably reduces the original magnitude at
the pole due to the smaller magnitudes of vectors in the kernel. Neither
scheme preserves the original rotation after smoothing.

in over-sampled data points. In this approach, the mapping
distortion needs to be carefully addressed in the optimization.

Later, [18] extended the Demons algorithm [23] originally
defined on a regular grid to the spherical domain without
requiring the projection of spherical coordinates. One of the
strengths of this work lies in its ability to provide diffeomor-
phic trajectories, where both the warp field and its inverse
remain smooth and bijective. Compared to [16], this approach
offers much faster registration via second-order optimization.
However, potential inconsistency arises in the velocity smooth-
ing process, where a rigid alignment turns into non-rigid warp.

In [20], spherical warp was estimated by a composition of
rotation matrices. They simplified computing spherical warp as
a labeling problem (i.e., a discrete set of rotation candidates).
The regularization was enforced by ensuring consistency in
rotation labels throughout the optimization process. Their
energy function is flexible in choosing multiple features for the
registration metric as spherical registration becomes a labeling
problem. However, their method lacks a diffeomorphism and
instead limits the extent of the warp at each optimization step,
which may require post-processing to unroll self-intersection.

More recently, spherical warp was modeled as a set of local
rotations, in which each rotation smoothly changes over the
unit sphere via spherical harmonic decomposition [2]. They
pointed out that most spherical registration methods perform
a rigid alignment once before the non-rigid alignment, which
may be sub-optimal for the whole optimization. In this context,
simultaneous optimization of rigid and non-rigid alignments
can help reduce warp distortion. However, their approach
models the warp field as a set of displacements rather than
velocity vectors, which restricts the flexibility of the warp field.

Landmark-based spherical registration was also proposed
in [17], [21], [24]–[26]. Although landmarks effectively ad-
dress structural ambiguity, their acquisition requires additional
effort and can be error-prone. Overall, these non-learning-
based methods achieve high registration accuracy and are
widely used in structural data analysis. Nevertheless, they
often involve costly optimization processes.
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B. Learning-based Spherical Registration
Recent advances in CNNs have shown great success in

image analyses. Yet, only a few studies have explored CNN-
based spherical registration. In early work, [27] extended
the spherical registration framework proposed in [16]. They
projected spherical polar coordinates onto a plane and adapted
the learning-based image registration in Euclidean space [28].
Their approach achieves comparable performance to classical
methods, while significantly reducing processing time. Albeit
its promise, the approach inherits mapping distortion to Eu-
clidean space, yielding unbalanced sampling around the poles
as also noted in [16].

Similar to [27], [29] extended the idea of [28] by incorpo-
rating a spatial spherical CNN with the underlying registration
framework proposed in [18]. Their approach employs spherical
convolution, which avoids the spatial distortion present in [27].
However, the approach faces a singularity issue at the poles
due to the predefined order of neighborhoods along a reference
direction in the convolution filter. As the local coordinates
flip at the poles, the filter orientation also flips. This results
in discontinuity in the warp at the poles, yielding significant
distortion. Although they fused the warp fields along three
orthogonal axes, the pole issue was not fully addressed.

Recently, [3] extended the framework in [20]. With the
increase in computing power, their approach can support a
larger set of discrete rotations, resulting in more flexible warp
than [20]. They applied rotation-equivariant convolutional op-
erations on the unit sphere, which can address the singularity
issue at the poles unlike [27], [29]. However, a discrete set
of rotations inherently has a limited ability to generate a
smooth warp field, depending on the resolution of a spherical
tessellation. Later, [4] employed Euler angles for displacement
encoding, but this scheme inherits axis-wise interactions; axis-
wise angular interpolation leads to poor rotation interpolation
[30], posing challenges for neural networks to learn effectively
[31]. In [3], [4], warp distortion is mitigated by introducing
a distortion loss, but their architecture design for distortion
handling remains implicit. Due to the lack of a diffeomorphism
in both approaches, any potential self-intersections on the
registered sphere must be corrected through post-processing.
To date, learning-based methods offer fast processing with
high accuracy, but a systematic approach is still needed to
achieve diffeomorphic warp with reduced distortion.

III. METHODS

A. Problem Statement
Given K moving geometric features M : S2 → RK and

their corresponding target features F : S2 → RK on the unit
sphere, the goal is to seek a warp field Φ : S2 → S2 such
that F (x) = M(Φ(x)) for ∀x ∈ S2. Let ◦ denote a function
composition operator. Spherical registration minimizes the
following energy function:∫

S2
Lsim(F (x),M ◦ Φ(x)) dx+ α

∫
S2
Lreg(Φ(x)) dx, (1)

where Lsim(·, ·) ∈ R is a similarity term and Lreg(·) ∈ R is
a regularization term to control the smoothness of Φ for some
non-negative weighting factor α ∈ R+.

If both Φ and its inverse mapping are differentiable and
bijective, Φ is said to be diffeomorphic, in which the spherical
warp has no self-intersection. We denote the tangent space
of S2 at x by TxS2. A diffeomorphic mapping can then be
modeled by introducing a smooth velocity field on the tangent
space in a continuous time domain t = [0, 1] as an ordinary
differential equation (ODE):

dΦ(x, t)

dt
= v(Φ(x, t), t), (2)

where v ∈ TxS2 is a time-varying velocity with the initial
condition Φ(x, 0) = x. The theories of ODEs [32] state that
there exist unique trajectories over a velocity field v(x(t), t)
over time t under the Lipschitz continuity in both x and t.
In the case of a stationary ODE, the solution is given by
an exponential map, allowing the infinitesimal spherical warp
generated by the Lie algebra to be composed:

Φ(x) = lim
n→∞

Φv/n ◦ · · · ◦ Φv/n(x), (3)

where Φv(x) is the exponential map expx(v) at x ∈ S2, which
mimics the geodesic at x in the direction of v over unit time
when v is small. For computational simplicity and efficiency,
we assume that the velocity field is stationary in this work.

In the remainder of the paper, we describe the computation
of the velocity field and its incorporation into a spherical
CNN. We begin with the theoretical foundations of the pro-
posed framework in a continuous spherical domain (velocity
encoding, velocity field smoothing, and diffeomorphic warp),
followed by its discretization into SPHARM-Reg. Fig. 3
illustrates a schematic overview of the proposed method.

B. Velocity Encoding
As discussed, conventional encoding schemes for velocity

commonly use either polar displacements or tangent vectors.
In both schemes, however, spatial smoothing introduces in-
consistency in the sense that a rigid alignment becomes non-
rigid, which eventually complicates the joint optimization of
rigid and non-rigid alignments. To address this issue, we
propose a novel encoding scheme for the velocity field using
a rotational representation. Although there are multiple ways
to encode a rotation, we follow [31] because this encoding
scheme has no parameter-wise interaction and supports a
homeomorphic mapping to the 3D rotation group, suitable
for machine learning. More importantly, the proposed scheme
allows for the smoothing of velocity vectors without altering
the inherent rotation component. Specifically, we can recover
the rotation matrix Rx at x from six independent functions
r(i)(x) : S2 → R, i = 1, · · · , 6. We denote two col-
umn vectors by a1 = [r(1)(x), r(2)(x), r(3)(x)]T and a2 =
[r(4)(x), r(5)(x), r(6)(x)]T, respectively. Here, we compute
each column of Rx through the orthogonalization process [31]:

Rx =

[
b1 =

a1
||a1||

b2 = b3 × b1 b3 =
a1 × a2

||a1 × a2||

]
.

(4)
Once these parameters are determined, we have the encoded
warp at x given by

Φv(x) = Rx · x. (5)
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Fig. 3. Schematic overview. SPHARM-Reg executes T compositions of warp fields to perform multi-feature registration on N sampling points.
Each composite module consists of the rotation block, initial velocity estimation, and warp block. At the i-th module, the coupled input of the moving
geometry M(i) and the fixed target F is used to yield a warp field Φ(i). The rotation block introduces rotational perturbation on M(i) to improve
the initial velocity estimation. The velocity field is then encoded by six independent spherical functions. The warp block further refines the initial
velocity by ensuring smoothness via the spherical harmonic transform (SHT) and its inverse transform (ISHT) with harmonic bandwidth L.

The velocity at x is equivalent to the trajectory over unit time
along the great circle from x to Rx · x. Because the six pa-
rameters are functions of spherical locations, the velocity field
is viewed as a collection of independent spherical functions.

C. Velocity Field Smoothing

One desirable property of spherical warp is a smooth
velocity field for a diffeomorphism. In our encoding scheme,
this can be interpreted as smoothing over the six spherical
functions. Thanks to the order independence of these func-
tions, a smooth velocity field can be obtained by smoothing
over each function in its own spherical space. For the velocity
smoothing, one may apply a spatial smoothing filter to these
spherical functions. However, the complexity of the smoothing
process depends on the tessellation resolution and regularity
such as the number of vertices, edge lengths, connectivity,
etc. Also, the parametric smoothness is implicit rather than
explicitly guaranteed. To address these issues, we propose
spherical harmonic decomposition to encode our velocity
field and encourage its smoothness, inspired by [2]. Here,
computing a smooth velocity field can be considered as finding
an appropriate set of harmonic coefficients {c} ⊂ R. Once {c}
is determined, the i-th spherical function r(i)(x), i = 1, · · · , 6
can be reconstructed by a linear combination of the irreducible
real harmonic basis functions Y : S2 → R:

r(i)(x) = c
(i)
0,0Y0,0(x) +

L∑
l=1

l∑
m=−l

c
(i)
l,mYl,m(x), (6)

where r is truncated up to degree of L. The first term
governs a rigid alignment. Since the reconstruction is band-
limited, the spherical functions are inherently smooth. This
strategy offers three main advantages. First, the velocity field
becomes differentiable because the spherical harmonics consist
of trigonometric functions that guarantee C∞ continuity for
L > 0. As high-frequency components are truncated by L in
the spectral domain, the velocity field becomes smoother as L
decreases, in which the smoothness can be easily adjustable.

Second, both rigid (l = 0) and non-rigid (l > 0) alignments are
optimized simultaneously [2] (see Fig. 4). Third, the proposed
spectral smoothing is independent of a spherical tessellation
unlike conventional spatial smoothing. Any velocity field can
be represented by a fixed number of parameters, 6(L + 1)2,
allowing for consistent spectral smoothing. Also, our strategy
preserves the rotation component (l = 0) of the velocity field.

D. Diffeomorphic Warp
The warp field (or line integral) can be obtained over the

velocity field. As discussed, our encoding scheme holds C∞

continuity, and it is known that a warp field belongs to the
same differentiability class as its underlying velocity field [32].
Thus, the proposed warp holds a diffeomorphism, which is
smooth and invertible without self-intersection of the warp
trajectories. Since our vector field is a collection of rotation
matrices, the spherical warp can be computed as a composition
of matrix multiplications. For a stationary velocity field, the
warp field of Eq. (3) can be efficiently solved in a scaling and
squaring fashion on S2 as a recursive form [18]:

Φv/2(k−1)(x) = Φv/2k ◦ Φv/2k(x), (7)

where k is the number of recursion steps. Theoretically, the
solution becomes true for a sufficiently large number of k, but
we will show that a small number of k is sufficient to achieve
stable numerical integration in our work.

E. SPHARM-Reg
We focus on the discretization of the proposed spherical

registration framework for its realization as SPHARM-Reg.
In this section, we assume that the unit sphere is discretized
into a spherical mesh with a set of N vertices represented as
{x1, · · · ,xN} through a valid spherical tessellation.

1) Rotation block: In existing learning-based approaches,
M and F are rigidly aligned before their feature coupling.
The registration performance depends on the initial alignment
of the two input features that might not be optimal for the
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Fig. 4. Registration process and the need for joint optimization. The original equator and its updated position at each step are shown in green. The
varying extent of deviation from the reference equator (yellow) indicates the adjusted orientation after the initial alignment, suggesting that the initial
alignment may not be optimal. This ensures no warp distortion when combined with the non-rigid component since edge lengths are preserved.

velocity field estimation. Hence, we additionally introduce a
learnable rotational perturbation of M to find the optimal
feature orientation using six global parameters [31]. To this
end, M is converted into a single scalar by a point-wise
product with a learnable function h : S2 → R. The i-th global
parameter g(i) ∈ R, i = 1, · · · , 6 is computed via a linear
model:

g(i) =

N∑
j=1

K∑
n=1

Mn(xj) · hn(xj) · w(i) + b(i), (8)

where w(i), b(i) ∈ R are learnable parameters. The resulting
rotation may not align optimally with F as it depends only on
M . Again, the best alignment of M and F is not always ideal
for velocity estimation. This stage is used solely to improve
the velocity field estimation, independent of the learnable rigid
component that is optimized later in our framework.

2) Initial velocity estimation: We feed the rotated M and F
into a spherical CNN for the initial velocity estimation; i.e.,
an initial guess of six spherical functions r(i), i = 1, · · · , 6.
Although the proposed framework is flexible in choosing
spherical CNNs, we use SPHARM-Net [33] as our back-
bone architecture because SPHARM-Net is based on spectral
convolution independent of a spherical tessellation and some
resources (e.g., spherical harmonic basis functions) of the
architecture are reusable in our framework.

3) Warp block: The initial estimated velocity field is likely
neither smooth nor optimal. To refine these spherical func-
tions and control their smoothness, the spherical functions
are converted into the harmonic coefficients via the spherical
harmonic transform. We have the following decomposition of
the i-th spherical function through an inner product:

ĉ
(i)
l,m =

∫
S2
r(i)(x)Yl,m(x) dx. (9)

The above integral can be efficiently approximated by a
Riemann sum for a sufficiently fine spherical tessellation [33],
[34]. By letting ∆(·) be the area at a spherical location, we
have the following discretized form of Eq. (9):

ĉ
(i)
l,m ≈

N∑
j=1

r(i)(xj)Yl,m(xj)∆(xj). (10)

Each component is then refined by its own linear model:

c
(i)
l,m = ĉ

(i)
l,m · w(i)

l,m + b
(i)
l,m, (11)

where w
(i)
·,· , b

(i)
·,· ∈ R are learnable parameters. The refined

coefficients are recovered back to vertex-wise rotations using
Eqs. (6) and (4), and the vertex-wise warp trajectories are
computed by the scaling and squaring approach of Eq. (7).

4) Composite module: Surface registration typically aims to
align fine-grained geometry such as mean curvature. Direct
registration from fine-grained geometry often leads to im-
plausible alignments due to the local minima. Consequently,
cascading-registration from coarse- to fine-grained geometry
is necessary [2], [16], [18], [24], [35]. In our study, we
adopt this approach but focus on multi-feature alignments
together rather than individual feature alignments, while we
maintain the same spherical tessellation throughout the entire
process. This approach incorporates feature-wise interaction
and enables end-to-end learning. We propose compositional
learning that incorporates the residuals of the warp field. To
this end, we stack T +1 sets of the rotation and warp blocks.
At the i-th set, we estimate the warp field Φ(i) from Φ(i−1).
More formally, we have the following process:

Φ(x) = Φ(T ) ◦ Φ(T−1) ◦ · · · ◦ Φ(0)(x). (12)

5) Loss function: To optimize the energy function of Eq. (1),
we consider an L2 similarity metric as widely used in classical
methods [2], [16], [18]. For ∀x ∈ S2, we rewrite

Lsim(F (x),M ◦ Φ(x)) =
K∑

n=1

ωn (Fn(x)−Mn ◦ Φ(x))2 ,

(13)
where ωn ∈ R+ is a weighting factor for the n-th feature. In
our velocity encoding, the smoothness of the velocity field is
governed by the harmonic truncation. To further reduce warp
distortion, we evaluate the extent of warp after registration [2].
For ∀x ∈ S2 and its neighborhoods Nx ⊂ S2, their arc length
changes after spherical warp are measured by

Lreg(Φ(x)) =
1

2

∑
y∈Nx

(cos−1(xTy)− cos−1(Φ(x)TΦ(y)))2.

(14)
In this way, the velocity field stays as isometric as possible,
which can reduce warp distortion [2]. Finally, the energy
function in Eq. (1) is rewritten as the overall loss given by

N∑
i=1

Lsim(F (xi),M ◦ Φ(xi)) + α

N∑
i=1

Lreg(Φ(xi)). (15)
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IV. EXPERIMENTAL DESIGN

A. Imaging Data
We used the HCP dataset [36] (1,113 scans) for training

only and the Mindboggle dataset [37] (101 scans) for external
validation to assess generalizability. For the clinical study, we
used the OASIS dataset [38], of which 316 healthy adults
(18–60 years old) were chosen. The cortical surfaces were
reconstructed by a standard FreeSurfer pipeline [1] with 32
manually annotated regions of interest (ROIs), following the
DKT protocol [37] (see Table I). These labels were used
for ROI-wise performance evaluation of spherical registration
methods. For M , we extracted two popular geometric features
(K = 2) from the cortical surfaces: average convexity (sulc)
that quantifies surface inflation and reflects relatively coarse
geometry [1] and mean curvature (curv) that captures local
bending and reflects relatively fine geometry for optimization
and performance evaluation [2], [16], [18]. For F , we used
the official FreeSurfer template patterns called fsaverage [1].

B. Implementation and Training
Let ω = ω1/ω2, where ω1 and ω2 are the weighting factors

of Lsim for sulc and curv, respectively. We chose L = 40, k =
6, α = 0.1, ω = 1.4, T = 2, and C = 64 for the initial velocity
field estimation. We used the Adam optimizer [39] with an
initial learning rate of 0.001, decaying by a factor of 0.5 if
no improvement is made in four consecutive epochs. In the
test phase, we used the learned model parameters at the peak
performance on the validation set. We used an icosahedral
mesh with a subdivision level of 6 for training. For inference
on unseen data, the inferred spherical warp was applied to the
original mesh. We used PyTorch for the backend processing.
All experiments were conducted on an Intel Xeon 6248R CPU
and an NVIDIA GeForce RTX 3090 GPU.

C. Evaluation Metrics
For the similarity evaluation metric, we computed the mean

squared error (MSE) for each feature. Because MSE is a part
of the optimization in the proposed method, we computed the
normalized cross correlation (NCC) between the n-th features,
Fn and Mn:∑N

i=1(Fn(xi)− F̄n) · (Mn ◦ Φ(xi)− M̄n)√∑N
i=1(Fn(xi)− F̄n)2 ·

√∑N
i=1(Mn ◦ Φ(xi)− M̄n)2

,

(16)
where F̄n = 1

N

∑N
i=1 Fn(xi) and M̄n = 1

N

∑N
i=1 Mn◦Φ(xi).

NCC quantifies the geometric similarity between the warped
input and the target; a higher value indicates a closer match
in patterns. For the warp distortion metric, we measured the
absolute areal ratio for each spherical location:

exp (| log(∆(Φ(x))/∆(x))|). (17)

D. Baseline Methods
We used public spherical registration methods: FreeSurfer

[16], Spherical Demons (SD) [18], Hierarchical Spherical
Deformation (HSD) [2], Multimodal Surface Matching (MSM)

[20], and Deep Discrete Spherical Registration (DDR) [3].
For a fair comparison, we tuned the hyperparameters of the
baseline methods to match FreeSurfer’s MSE of curv, where
we adjusted their warp fields to be as smooth as possible.
In FreeSurfer, we used default parameter settings. In SD, we
set 3 iterations for the velocity field smoothing for all multi-
resolution stages (icosahedral subdivision: 4 (sulc), 5 (sulc), 6
(sulc), 7 (curv)). In HSD, we set the harmonic bandwidth to
0, 5, 10, 15 for the respective optimization stages (icosahedral
subdivision: 4 (sulc), 5 (sulc), 6 (sulc), 6 (curv)) by fixing
the regularization weight of 230. In MSM, we employed
default settings for sulc, while reducing the smoothing term
and increasing the regularization term for curv (icosahedral
subdivision: 4, 4, 5, 6 (sulc) and 4, 5, 5, 6 (curv)). We used
NCC as a similarity metric as suggested in MSM for the
best performance. In DDR, we followed their coarse-to-fine
registration approach for each feature (icosahedral subdivision:
6, 6). We used the HCP dataset for training, and both NCC
and MSE were employed for a similarity metric as suggested
in DDR for the best performance. In MSM and DDR, we
performed registration on sulc followed by curv. Default
settings for other parameters were used for all the baseline
methods unless specified otherwise.

V. RESULTS

A. Hyperparameter Choice

We justify our choice of the six hyperparameters: channel
size C, harmonic bandwidth L, numerical integration step k,
regularization weight α, multi-feature balance ω, and warp
field composition T . For each hyperparameter, the other com-
ponents were fixed to the default settings described in the
Section IV-B. We varied C, L, k, α, ω and T in {16, 32,
64, 128, 256}, {10, 20, 30, 40, 50}, {0, 2, 4, 6, 8, 10}, {1/25,
1/20, 1/15, 1/10, 1/5}, {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, and {0,
1, 2, 3, 4}, respectively. Fig. 5 illustrates their behaviors.

1) Channel size (C): We observed the performance improve-
ment in both registration accuracy and warp distortion as
C increases. Such a trend becomes plateau after C = 128.
This result suggests that expanding the entry channel size
can extract useful features up to C = 128 but additional
channels beyond 128 have a marginal impact on the overall
performance. In this study, we chose C = 64 to strike a
balance between performance and computational efficiency.

2) Harmonic bandwidth (L): A larger harmonic bandwidth
allows a more flexible velocity field. As L increases, there is
a tendency for registration accuracy to improve while areal
distortion increases. This indicates a performance trade-off
between the two metrics. It can be observed for L > 40
that the performance loss from warp distortion surpasses any
improvements in registration accuracy. Consequently, L = 40
was chosen to achieve registration performance with minimal
sacrifice of areal distortion. This hyperparameter does not
affect the number of learnable parameters.

3) Integration step (k): Increasing k improves the numerical
precision of the integration, reducing discretization errors
and yielding a solution that converges more closely to the
true diffeomorphic trajectories. Nevertheless, only marginal
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TABLE I
ROIS DEFINED BY THE DESIKAN–KILLIANY–TOURVILLE PROTOCOL [37]. NOTE THAT THE IDS ARE NOT COMPACT IN THE ORIGINAL PROTOCOL.

0. Unknown 2. Caudal Anterior Cingulate 3. Caudal Middle Frontal 5. Cuneus 6. Entorhinal
7. Fusiform 8. Inferior Parietal 9. Inferior Temporal 10. Isthmus Cingulate 11. Lateral Occipital
12. Lateral Orbitofrontal 13. Lingual 14. Medial Orbitofrontal 15. Middle Temporal 16. Parahippocampal
17. Paracentral 18. Pars Opercularis 19. Pars Orbitalis 20. Pars Triangularis 21. Pericalcarine
22. Postcentral 23. Posterior Cingulate 24. Precentral 25. Precuneus 26. Rostral Anterior Cingulate
27. Rostral Middle Frontal 28. Superior Frontal 29. Superior Parietal 30. Superior Temporal 31. Supramarginal
34. Transverse Temporal 35. Insula
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Fig. 5. Hyperparameter tuning. Channel size C: the registration accuracy and warp distortion are improved when C increases. Harmonic bandwidth
L: the warp distortion is reduced when L is decreased. Integration step k: the registration accuracy and warp distortion become stable after k = 6.
Regularization weight α: both registration accuracy and warp distortion decrease as α increases. Multi-feature balance ω: The alignment for sulc
is improved while warp distortion is reduced. Warp field composition T : registration accuracy and warp distortion reach their peak at T = 3.

TABLE II
ABLATION STUDY. THE INCLUSION OF THE PROPOSED BLOCK(S) IN THE

ABLATED SPHARM-REG ENHANCES REGISTRATION PERFORMANCE.

Method NCC (sulc) NCC (curv) Dice Distortion
Ablated SPHARM-Reg 0.876 0.585 0.871 1.275
+ Warp Block 0.882 0.586 0.877 1.244
+ Warp & Rotation Blocks 0.891 0.599 0.881 1.209

differences are observed in both registration accuracy and warp
distortion beyond k = 6; as k increases up to 6, warp distortion
decreases more rapidly than the drop in registration accuracy.
Therefore, we chose k = 6 (equivalent to 64 integration
steps) to strike a balance between computational efficiency
and registration performance. In our experiments, this step size
was sufficient to avoid self-intersection. This hyperparameter
does not affect the number of learnable parameters.

4) Regularization weight (α): A downward trend appears
in registration accuracy and warp distortion as α increases.
Similar to other registration methods, assigning a large weight
on the regularization term reduces registration accuracy as a
strong constraint limits the flexibility of the warp field. We set
α = 0.1 to match FreeSurfer’s MSE of curv. This hyperpa-
rameter does not affect the number of learnable parameters.

5) Multi-feature balance (ω): A balance between multiple
features impacts their own registration accuracy. We found that
adjusting ω to be more biased towards coarse-grained features
(i.e., sulc) tends to reduce warp distortion more effectively.
This is likely because coarse-grained features have simple

folding patterns, which does not require rigorous warp. We
set ω = 1.4 to match FreeSurfer’s MSE of curv. This hyper-
parameter does not affect the number of learnable parameters.

6) Warp field composition (T): Increasing the number of
compositions enhances registration accuracy and effectively
reduces warp distortion up to T = 3. Meanwhile, the perfor-
mance begins to decline after T = 3. This trend suggests that
multiple compositions (T > 3) of warp fields begin to overfit
to the training data rather than promoting generalization.
Despite the best performance at T = 3, we chose T = 2
to balance performance and inference time in this study.

B. Ablation Study
To validate our design choices, we conducted a quantitative

comparison by disabling individual components and evaluating
their impact. We ablated the proposed method to only contain
the velocity estimation and diffeomorphic warp. For all exper-
iments, we used the default parameter settings as described in
the implementation in Section IV-B.

1) Warp block: The warp block can fine-tune the six spher-
ical functions in the spectral domain, which is equivalent to
spatial smoothing over each spherical function. Consequently,
the warp block refines the initial velocity estimation following
its harmonic decomposition. As shown in Table II, refining the
harmonic coefficients improves registration accuracy as well
as warp distortion. We also emphasize that this enhancement
introduces only a modest increase in parameters, specifically
12 · (L+ 1)2 (i.e., 20,172 extra parameters at L = 40).
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TABLE III
PERFORMANCE BENCHMARK IN REGISTRATION ACCURACY, WARP DISTORTION, AND AVERAGE RUNTIME ON A SINGLE CPU CORE. THE RUNTIME

IS MEASURED ON THE ORIGINAL SPHERICAL TESSELLATION (MEAN: 141,217 VERTICES) FOR THE ENTIRE PROCESS, INCLUDING MODEL

INITIALIZATION, RIGID ALIGNMENT, SPHERICAL RE-TESSELLATION, AND SPHERICAL WARP. MODEL INFERENCE (SEC.): 24.02 (DDR) AND 14.78
(SPHARM-REG). BOLD: BEST PERFORMANCE. GRAY: MATCHED METRICS. BLUE: STATISTICAL SIGNIFICANCE (p < 0.005).

Areal Distortion Registration Accuracy
Method Mean Median P95.4 P99.7

MSE NCC NCC Dice Time Param.
(curv) (sulc) (curv) (sec.) (#)

FreeSurfer [16] 1.401 1.277 1.962 3.418 0.017 0.900 0.587 0.873 439.83 -
SD [18] 1.338 1.228 2.013 3.504 0.016 0.888 0.586 0.871 42.28 -
HSD [2] 1.337 1.228 1.960 3.810 0.016 0.887 0.586 0.871 206.82 -
MSM [20] 1.456 1.267 2.434 6.348 0.016 0.863 0.574 0.857 1006.46 -
DDR [3] 1.523 1.315 2.689 5.738 0.016 0.887 0.574 0.866 30.91 42.52M
SPHARM-Reg 1.209 1.139 1.557 3.248 0.016 0.891 0.599 0.881 21.67 3.59M

Moving M FreeSurfer SD HSD MSM DDR SPHARM-Reg Fixed F

Areal Distortion

1 2

NCC (sulc) 0.921 0.913 0.903 0.878 0.908 0.912
NCC (curv) 0.605 0.618 0.610 0.608 0.624 0.625
Areal Distortion 1.311 1.307 1.299 1.349 1.467 1.172

Fig. 6. Qualitative evaluation on an example subject: sulc (1st row), curv (2nd row), and mean areal distortion (3rd row). All the methods well-align
M to F . SPHARM-Reg largely reduces the warp distortion without sacrificing registration accuracy.

2) Rotation block: Although the proposed method optimizes
the global rotation component (l = 0), an explicit rotational
adjustment can further improve the overall performance. After
adding the warp block to the ablated SPHARM-Reg, introduc-
ing rotational perturbation to M by the rotation block adjusts
the initial feature alignment to improve the velocity estimation.
As summarized in Table II, the rotation block enhances overall
registration accuracy and reduces warp distortion. Such im-
provement suggests that the initial feature alignment between
M and F may not be optimal for the initial velocity estimation.
Given that the required number of parameters in the rotation
block is proportional to that of the spherical tessellation (i.e.,
40,962 vertices), such a slight increase of the parameters
significantly improves overall performance.

C. Comparison to Baseline Methods

We performed a two-sided paired t-test against each base-
line method conservatively at p = 0.005 to relieve a multi-
comparison issue. For warp distortion, we measured the mean,
median, and 95.4 and 99.73 percentiles of areal distortion.

1) Overall performance: Table III summarizes the overall
performance in registration accuracy and warp distortion.

SPHARM-Reg outperforms the baseline methods in both
registration accuracy and warp distortion (see Table III) except
that FreeSurfer outperforms other methods in sulc. However,
we were unable to match the MSE of sulc while fixing
that of curv. This would otherwise require sacrificing areal
distortion in other methods, resulting in a smaller MSE of
curv. SPHARM-Reg achieves a reduction in the mean areal
distortion of 0.128 (12.8%p reduced distortion) as compared
to the second best method (HSD). In comparison to DDR,
SPHARM-Reg utilizes only one-tenth of the parameters while
accelerating registration. Figs. 6 and 7 show the visual inspec-
tion for an example individual and group average, respectively.

2) ROI-wise analysis: We investigated ROI-wise warp dis-
tortion and Dice coefficient as proposed in [2]. We performed a
two-sided paired t-test against each baseline method. We then
adjusted p values after controlling multi-comparison correction
using the false discovery rate (FDR) at q = 0.05 [40]. In Fig. 8,
SPHARM-Reg significantly outperforms the baseline methods
and no worse distortion is found in all the ROIs. In most ROIs,
SPHARM-Reg significantly outperforms the baseline methods,
whereas worse performance is revealed in 3 and 2 ROIs than
FreeSurfer and SD, respectively (see Fig. 9) despite their subtle
absolute difference.
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FreeSurfer SD HSD MSM DDR SPHARM-Reg Fixed F

Areal Distortion

1 2

Fig. 7. Average feature and distortion maps: sulc (1st row), curv (2nd row), and areal distortion (3rd row). All the methods achieve comparable
registration accuracy, while SPHARM-Reg enables the lowest areal distortion. The inflated surface is used for better visualization.

D. Cortical Thickness Analysis
We investigate the association between warp distortion and

statistical significance in a clinical study. To this end, we
employed the OASIS dataset to investigate cortical thickness
changes along ages. We fitted a generalized linear model
implemented in a standard FreeSurfer package [1] using shape
correspondence established by FreeSurfer [16] and SPHARM-
Reg. Note that since no ground truth is available, our goal
is not to evaluate the superiority of the proposed method
but rather to investigate the differences between the methods.
The cortical surfaces were aligned to fsaverage [1]. Again,
we used only the HCP dataset to train SPHARM-Reg. We
matched the MSE of curv of 0.016 for both methods to
ensure fair comparison. FreeSurfer achieves the mean areal
distortion of 1.255, whereas SPHARM-Reg achieves that
of 1.131, which is 12.4%p reduction in distortion. Fig. 10
illustrates cortical thickness changes and their corresponding
areal distortion. With an equal extent of MSE, the regions
revealed by SPHARM-Reg fully contain those identified by
FreeSurfer at the same level of statistical significance.

VI. DISCUSSION

A. Warp Distortion
SPHARM-Reg offers reduced warp distortion while keeping

comparable registration accuracy to the baseline methods. This
was made possible because SPHARM-Reg explicitly controls
a rigid alignment throughout the whole registration process
unlike the baseline methods. As observed in our experiments
and HSD, the best alignment between moving and target
features is not necessarily optimal, which can rather produce
unnecessary warp distortion without any improvement in reg-
istration accuracy. Although the joint optimization of rigid
and non-rigid alignments was originally proposed in HSD,
we further enhanced that concept by introducing the rotation
and warp blocks. Indeed, there is only subtle improvement in
the ablated SPHARM-Reg over HSD in warp distortion (see
Tables II and III). Meanwhile, the performance is improved
through the specific handling of a rigid alignment in the
proposed blocks, which may not be fully addressed by HSD.

B. Registration Accuracy
HSD is limited in its ability to increase harmonic band-

width due to computational burden during the optimization
process. This ultimately leads to an overly smooth warp field,
potentially limiting registration accuracy. The issue has been
addressed in the proposed learning-based framework through
GPU acceleration. This further allows greater flexibility in
spherical warp with fast inference. Moreover, inspired by
the Spherical Demons framework, SPHARM-Reg computes
a velocity field rather than displacements unlike HSD. Since
SPHARM-Reg holds a diffeomorphism, no post-processing
check is needed for self-intersection. This enables more flex-
ible warp trajectories and accelerates the registration speed.
Furthermore, although our current approach utilizes pure corti-
cal geometry only, additional information such as myelination
[20] or parcellation maps [28], [29] may improve registration
accuracy, which we leave for future work.

Increasing the number of learnable parameters typically
improves registration accuracy and reduces warp distortion
unless the model becomes too large to fit, which could
otherwise lead to overfitting. In our ablation studies, increasing
C and T effectively raised the number of learnable parameters,
improving overall performance. On the other hand, there is a
trade-off between warp distortion and registration accuracy if
the number of learnable parameters is fixed. More intensive
non-rigid warp can achieve a better geometric alignment but
introduces greater warp distortion. As such, varying hyper-
parameters that do not increase the number of learnable
parameters consistently revealed this trade-off.

C. Clinical Applications
In the clinical data analysis, we observed the improved warp

distortion while keeping comparable registration accuracy to
FreeSurfer. Both approaches reveal a negative association be-
tween cortical thickness and ages due to the cerebral atrophy,
which is reported in several studies such as [5], [7], [8], [12].
Here, warp distortion can lead to under- or over-sampling in
group analyses, where statistical outcomes are potentially bi-
ased regarding the extent of warp distortion. Indeed, we found
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Fig. 8. ROI-wise mean areal distortion. The statistical significance is reported after FDR at q = 0.05. The proposed method achieves the lowest
areal distortion, while no performance degradation is found against the baseline methods. *: statistical significance with better performance.
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Fig. 9. ROI-wise Dice coefficient. The statistical significance is reported after FDR at q = 0.05. SPHARM-Reg significantly improves Dice
coefficient for 16, 14, 21, 27, and 28 regions against FreeSurfer, SD, HSD, MSM, and DDR, respectively. Meanwhile, worse performance is revealed
in 3 and 2 regions than FreeSurfer and SD. *: statistical significance with better performance. *: statistical significance with worse performance.

a wider area of regions that are associated with more reduced
warp distortion than FreeSurfer. Furthermore, we observed a
significant reduction in warp distortion such as the frontal lobe,
linked to neurodevelopment [8], [11], [12], [14] and functions
[9], [10], [15]. By reducing distortion in neurodevelopmental
studies, we anticipate that our approach could reveal cortical
regions previously obscured by conventional methods that may
have been prone to warp distortion causing sampling biases.

D. Potential Improvement
The current approach is designed for pair-wise registration

to a single target geometry. Although this is a popular approach
in many neuroimaging studies, SPHARM-Reg trained to a
specific target may not generalize well across a wide range
of ages. This suggests the necessity of additional training for
analyzing different age groups, as training biases toward a
specific target may occur, otherwise. The target selection issue
may be addressed by adopting earlier attempts of group-wise
registration for unbiased target estimation [2], [18], [35]. Here,
careful consideration will be needed in designing the iterative
update of the target during the learning process. It would be
feasible to fine-tune the trained SPHARM-Reg by substituting
the target geometry rather than starting the training process
from scratch. We will explore this avenue in future work.

FreeSurfer SPHARM-Reg
5

4

2

1

Fig. 10. Cortical thickness changes: revealed regions with the negative
logarithm (base 10) of p values (top) and areal distortion (bottom).
SPHARM-Reg reveals a wider area of regions with less warp distortion
than FreeSurfer. Statistical analyses can be affected by warp distortion.

VII. CONCLUSION

In this paper, we presented a novel spherical harmonics-
based cortical surface registration method. SPHARM-Reg gen-
erated a smooth velocity field via the harmonic decomposition
and enabled simultaneous rigid and non-rigid alignments by
optimizing the harmonic coefficients to minimize the unnec-
essary distortion. Additionally, we decomposed the velocity
field into six independent spherical functions for consistent
velocity smoothing. In the experiments, we demonstrated that
SPHARM-Reg significantly reduces the warp distortion while
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preserving the high-level of registration accuracy compared
to existing methods. In the clinical study, we showed that
warp distortion can affect outcomes of statistical analyses
even when registration accuracy remains comparable across
different spherical registration methods.
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