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ABSTRACT

Large language models often encounter conflicts between in-context knowledge
retrieved at inference time and parametric knowledge acquired during pretrain-
ing. Models that accept external knowledge uncritically are vulnerable to misin-
formation, whereas models that adhere rigidly to parametric knowledge fail to
benefit from retrieval. Despite the widespread adoption of retrieval-augmented
generation, we still lack a systematic understanding of what shapes knowledge-
arbitration strategies during training. This gap risks producing pretrained mod-
els with undesirable arbitration behaviors and, consequently, wasting substantial
computational resources after the pretraining budget has already been spent. To
address this problem, we present the first controlled study of how training condi-
tions influence models’ use of in-context and parametric knowledge, and how they
arbitrate between them. We train transformer-based language models on a syn-
thetic biographies corpus while systematically controlling various conditions. Our
experiments reveal that intra-document repetition of facts fosters the development
of both parametric and in-context capabilities. Moreover, training on a corpus
that contains inconsistent information or distributional skew encourages models
to develop robust strategies for leveraging parametric and in-context knowledge.
Rather than viewing these non-ideal properties as artifacts to remove, our results
indicate that they are important for learning robust arbitration. These insights offer
concrete, empirical guidance for pretraining models that harmoniously integrate
parametric and in-context knowledge.

1 INTRODUCTION

Large language models (Touvron et al., 2023; Brown et al., 2020; Biderman et al., 2023) store and
use parametric knowledge (Geva et al., 2020; 2023; Meng et al., 2022) acquired during pretrain-
ing and increasingly leverage in-context knowledge through retrieval-augmented generation (Lewis
et al., 2021; Ram et al., 2023; Shi et al., 2023), which supplies external documents at inference
time. This allows models to incorporate up-to-date and domain-specific information beyond their
training data. A central challenge appears when external documents conflict with parametric knowl-
edge (Neeman et al., 2022), which forces the model to arbitrate between the two sources. The stakes
are high when the retrieved content contains misinformation, noisy passages, or adversarially crafted
text. Models that trust external sources uncritically become vulnerable to these risks, while models
that rigidly rely on their parametric knowledge fail to benefit from valuable external information.
Recent works (Xu et al., 2024) have studied how models behave under such knowledge conflicts,
but most analyses have focused on analyzing or controlling the behavior of already-pretrained mod-
els (Ortu et al., 2024; Yu et al., 2023; Li et al.), without examining how training conditions shape
arbitration. However, it is essential to understand during pretraining what factors determine how a
model uses and arbitrates between its two knowledge sources, so as to avoid discovering undesirable
arbitration behaviors only after pretraining has consumed substantial resources.

Determining the appropriate knowledge source for a model is often challenging, given the variable
provenance and reliability of in-context information. Our work therefore defines a robust arbitra-
tion strategy based solely on the internal signals of the model, without considering external factors.
We define this strategy by two principles: (1) for high-confidence, well-memorized knowledge, the
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Maddie Giovanna Desrevisseau was... Annika Klara Wickizer was brought into the 
world on August 5, 2025. Annika Klara Wickizer 
began their earthly life in Roseville, CA. Annika 
Klara Wickizer…

Annika Klara Wickizer’s story started on ____ 

Annika Klara Wickizer’s story started on ____

Nellie Sherie Sandeen was welcomed into 
life on March 3, 2024. Nellie Sherie Sandeen 
majored in Management Studies... 

Barry Troy Seek completed a program at... 

Nellie Sherie Sandeen was born on ____

March 3, 2024. 
November 10, 2079

November 10, 2079. 
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Perturbed In-context Knowledge

Figure 1: Three knowledge utilization scenarios. Left: parametric knowledge utilization where the
model recalls knowledge encoded in its parameters and answers queries about entities seen during
training. Middle: in-context knowledge utilization where the model extracts and uses knowledge
provided only in the prompt and is evaluated on novel entities not seen during training. Right:
knowledge conflict resolution where the model is queried about trained entities while the context
provides conflicting information, and responses reveal the preference between parametric knowledge
and in-context knowledge.

model should follow its parametric knowledge, even when faced with conflicting in-context knowl-
edge; and (2) for novel or unfamiliar information, the model should follow the provided in-context
knowledge. This behavior, which mirrors patterns in human cognition (Koriat, 2011) and has been
observed in modern large language models (Wu et al., 2024), motivates our investigation of the
training factors that produce it. Consequently, our study is guided by two central research questions:
(RQ1) What training conditions enable a model to develop distinct capabilities for the use of para-
metric and in-context knowledge? (RQ2) What specific characteristics of the training corpus induce
the model to adopt a robust arbitration strategy between these two sources?

To answer these questions, we conduct controlled experiments, training transformer-based language
models from scratch on synthetic biographies (Allen-Zhu & Li, 2024a;b; Zucchet et al., 2025). This
framework enables precise manipulation of training conditions while isolating knowledge utilization
from other confounding factors. Prior work (Allen-Zhu & Li, 2024a) shows the insights from this
setup can transfer to real-world models (Touvron et al., 2023), which allows us to explore a wide
range of training configurations efficiently. Building on earlier studies (Zucchet et al., 2025) that
focused only on parametric knowledge, we systematically investigate the interaction between para-
metric and in-context knowledge. During training with varied conditions, we evaluate the model’s
performance across three key knowledge utilization scenarios. First, we measure parametric knowl-
edge utilization by the model’s ability to recall learned entity attributes from its parameters. Second,
we assess in-context knowledge utilization by its capacity to extract and use knowledge from the
context for novel entities that are not in the training data. Finally, we examine knowledge conflict
resolution by observing which source the model follows when known entities are paired with per-
turbed contexts, where the in-context knowledge conflicts with the model’s parametric knowledge
(Figure 1).

Our experiments led to the following findings: Intra-document repetition of facts is critical for
the simultaneous emergence of both parametric knowledge and in-context knowledge utilization
capabilities, and this in-context knowledge utilization ability emerges much earlier (Section 3). In
addition, a small degree of factual inconsistency within a document encourages the model to fa-
vor its more confident parametric knowledge when conflicts arise, although during early training
it initially prefers in-context knowledge (Section 4). Moreover, a skewed frequency distribution
of knowledge, where long-tailed knowledge exists, preserves the model’s ability to use in-context
knowledge for unfamiliar entities. When these three conditions co-occur, they produce the desired
arbitration pattern: the model defaults to parametric knowledge for well-learned entities but read-
ily relies on in-context knowledge for rare or novel ones (Section 5). We validate these results on
open-source LLMs, confirming that our findings extend beyond the synthetic setting (Section 6).
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These results have critical implications for pretraining large language models for retrieval augmented
generation. We find that data characteristics often seen as defects, such as modest inconsistencies
and a skewed knowledge distribution, are actually beneficial features for developing models that
can intelligently arbitrate between learned knowledge and new, in-context information. A direct
implication of this finding is that preprocessing steps like aggressive cleaning, deduplication, and
data balancing may inadvertently impair a model’s robust knowledge arbitration strategy.

2 EXPERIMENTAL SETUP

2.1 SYNTHETIC BIOGRAPHIES DATASET

We construct a synthetic biographies dataset following prior work (Allen-Zhu & Li, 2024a; Zuc-
chet et al., 2025) (See details in Appendix A). Specifically, we generate synthetic biographical pro-
files, where each profile contains four attributes: birth date, birth city, university, and
major. For each profile, we sample 7 distinct templates from a finite pool for each attribute. We use
6 templates to create training paragraphs with randomized attribute ordering, reserving 5 paragraphs
for training and 1 for evaluation context. The remaining template for each attribute serves as test
probes, which are cloze-style sentences designed to elicit the attribute values. Figure 8 illustrates the
dataset structure. This deliberate separation ensures that the sentences used for training, context, and
testing are never identical, compelling the model to utilize its parametric or in-context knowledge
rather than relying on simple sequence memorization or repetition.

2.2 EVALUATION SETUP

During training, we periodically evaluate the model at each checkpoint under three knowledge uti-
lization scenarios: parametric knowledge utilization, in-context knowledge utilization, and knowl-
edge conflict resolution, to measure the model’s ability to utilize knowledge, as illustrated in Fig-
ure 1. We evaluate using the exact-match accuracy of the attributes generated by the model for the
given input in each scenario. For each scenario, we randomly sample a set of k entities for evaluation,
and in our experiments, we set k = 200.

Parametric Knowledge Utilization This scenario measures the model’s ability to utilize
knowledge stored in its parameters. We evaluated this on entities seen during training,
e ∼ Etrain. The accuracy of parametric knowledge utilization is defined as AccPKU =

Ee∼Etrain

[
1

|Ae|
∑

a∈Ae
1{M(pa) = va}

]
, where Ae is the set of attributes of entity e, pa is the test

probe for attribute a, va is the ground-truth value, and M(·) is the model output.

In-Context Knowledge Utilization This scenario evaluates whether the model can utilize the
knowledge provided only at inference time. We evaluated this on novel entities not seen during train-
ing, i.e., e ∼ Eunknown. For each unseen entity e, we construct a context C by concatenating Ce with
paragraphs from two other random unseen entities, followed by shuffling. The accuracy of in-context
knowledge utilization is defined as AccICKU = Ee∼Eunknown

[
1

|Ae|
∑

a∈Ae
1{M(C, pa) = va}

]
.

Knowledge Conflict Resolution This scenario evaluates whether the model follows parametric
knowledge (i.e., outputs the original training values) or in-context knowledge (i.e., outputs the val-
ues given in the perturbed context). For each training entity e ∼ Etrain, we construct a perturbed
context C ′

e by randomly altering two attributes (birth date, major). Preference for parametric
knowledge is defined as PrefPK = Ee∼Etrain

[
1

|A′
e|
∑

a∈A′
e
1{M(C ′

e, pa) = va}
]
, and preference for

in-context knowledge as PrefICK = Ee∼Etrain

[
1

|A′
e|
∑

a∈A′
e
1{M(C ′

e, pa) = v′a}
]
, where A′

e is the set
of perturbed attributes, va denotes the original parametric value from training, and v′a the conflicting
value specified in C ′

e.
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Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.

Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika 
Klara Wickizer received their diploma from Drew University. Annika 
Klara Wickizer was welcomed into life on November 10, 2079. Annika 
Klara Wickizer was educated in the field of Information Systems.

Albert Einstein[a] (14 March 1879 – 18 April 1955) was a German-
born theoretical physicist who is best known for developing 
the theory of relativity. Einstein also made important contributions 
to quantum theory.[1][5] His mass–energy equivalence formula E =mc2, 
which arises from special relativity, has been called "the world's 
most famous equation".[6] He received the 1921 Nobel Prize in 
Physics for his services to theoretical physics, and especially for 
his discovery of the law of the photoelectric effect.[7]

Born in the German Empire, Einstein moved to Switzerland in 1895, 
forsaking his German citizenship (as a subject of the Kingdom of 
Württemberg)[note 1] the following year. In 1897, at the age of 
seventeen, he enrolled in the mathematics and physics …

Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.

Real World Documents Our Synthetic Documents

: Tokens can be predicted with PK

: Tokens can be predicted with PK or ICK

SINGLE

REPEATED

Figure 2: An example of intra-document repetition of key attributes (e.g., German, Physics) for
a single entity, alongside our synthetic training-corpus variants. SINGLE uses one paragraph per
entity and thus encourages reliance on parametric knowledge; REPEATED places two paraphrased
paragraphs about the same entity in one document, allowing later mentions to leverage in-context
knowledge or parametric knowledge.

2.3 TRAINING SETUP

We train an 8-layer decoder-only Transformer language model from scratch (Vaswani et al., 2017),
adopting the detailed hyperparameters(Table 4) from prior work (Zucchet et al., 2025). For the train-
ing entity set (Etrain), we use profiles of 50k entities, and for the unknown entity set (Eunknown), we use
other 50k entity profiles that are unseen during training. Using the training paragraphs of e ∈ Etrain
from Section 2.1, we assemble documents according to the variants described below and use the
resulting collection as the training corpus.

Training corpus variants. Our aim is to examine how a model uses and arbitrates between para-
metric knowledge and in-context knowledge. We start by hypothesizing the conditions under which
a model acquires the ability to leverage both sources of knowledge. Our hypothesis is motivated by a
common feature of real-world text: key attributes of an entity are often repeated within a single doc-
ument (Figure 2). During next token prediction pretraining (Radford et al., 2019), the first mention
of an attribute appears without prior in-document context, pushing the model to rely on paramet-
ric knowledge, whereas later mentions allow the model to leverage earlier context for prediction.
We therefore hypothesize that intra-document repetition serves as a critical mechanism for the si-
multaneous development of both parametric and in-context knowledge utilization capabilities. To
empirically test this hypothesis, we construct and analyze three corpus variants that systematically
control for the presence of this repetition:

• SINGLE: Each training document contains exactly one training paragraph about a single
entity. Attributes appear once per document, so the model cannot rely on in-context knowl-
edge; predictions must be supported by parametric knowledge.

• REPEATED: Each training document concatenates two distinct paraphrased paragraphs
about the same entity. Every attribute is mentioned twice within the same document us-
ing different sentence templates and randomized attribute order. The first mention requires
parametric knowledge; the second can leverage in-document in-context knowledge from
the earlier paragraph.

• REPEATED + MIX: To simulate a more complex and realistic scenario, we sample two
paragraphs for each of 3 distinct entities and shuffle their order to form a single training
document with 6 paragraphs. As in the REPEATED variant, the model can use parametric
knowledge for the first mention of an attribute and either parametric or in-context knowl-
edge for the second; additionally, it must retrieve relevant evidence amid distractor para-
graphs about other entities.
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Figure 3: Accuracy of parametric knowledge utilization (AccPKU) and in-context knowledge utiliza-
tion (AccICKU) across training steps. Left: The model trained on the SINGLE corpus shows delayed
parametric knowledge utilization and no activation of in-context knowledge utilization. Right: In
contrast, the REPEATED+MIX corpus induces early in-context knowledge utilization followed by
parametric knowledge utilization. Middle: The REPEATED corpus remains near random-guess per-
formance on in-context knowledge utilization.

3 EMERGENCE OF PARAMETRIC AND IN-CONTEXT KNOWLEDGE
UTILIZATION CAPABILITIES

Figure 3 shows the results of parametric knowledge utilization (AccPKU) and in-context knowledge
utilization (AccICKU) across our training on various corpora we constructed. The model trained
on the SINGLE corpus developed parametric knowledge utilization midway through training, while
in-context knowledge utilization did not become activated. In contrast, the model trained on the
REPEATED+MIX corpus learned to utilize both forms of knowledge, with in-context knowledge
utilization emerging earlier than parametric knowledge utilization and the latter gradually becoming
activated afterward.

As revealed in previous work (Zucchet et al., 2025), parametric knowledge requires the formation
of an attention circuit that connects subject entity tokens with attributes in order to store information
about a particular subject in a key–value format (Meng et al., 2022; Geva et al., 2023; 2020). Once
such a circuit is established, attribute errors flow along this pathway and are learned through back-
propagation, which leads to a delayed rise in AccPKU during learning. By comparison, in-context
knowledge requires only the operation of induction heads (Olsson et al., 2022) in the attention mod-
ule, which copy and paste the attribute tokens necessary. This is a simpler mechanism that reflects
learning of general utilization patterns rather than knowledge of specific entities, and therefore it
is presumed to emerge earlier. Meanwhile, the model trained on the REPEATED corpus remains at
the level of random guessing (∼33%) on in-context knowledge utilization tasks. Here, the model is
required to locate entity-specific information in the context; however, it instead learns only a shallow
heuristic, randomly retrieving attributes of the correct type from the context without resolving entity
identity.

From these observations, we confirm that the ability to utilize parametric knowledge does not au-
tomatically entail the ability to utilize in-context knowledge. Rather, when the training corpus pro-
vides a sufficiently complex environment through intra-document repetition that enables the use of
in-context knowledge, the ability to utilize in-context knowledge tends to emerge first, followed by
the gradual activation of parametric knowledge utilization.

4 EFFECTS OF FACTUAL INCONSISTENCY NOISE WITHIN A DOCUMENT

4.1 MODELS TRAINED WITHOUT NOISE OVER-RELY ON IN-CONTEXT KNOWLEDGE

The model trained on the REPEATED+MIX corpus was shown to leverage both parametric knowl-
edge and in-context knowledge utilization. To investigate which type of knowledge the model prefers
when these two conflict, we evaluated it using the knowledge conflict resolution scenario introduced
in Section 2.2, measuring Pref ICK and PrefPK. The results (Figure 4(a) left) demonstrate that once
in-context knowledge utilization is activated, the model invariably follows in-context knowledge in
conflict situations and predicts attributes solely based on the perturbed context. In particular, this
preference persists even after AccPKU reaches nearly 100% and the use of parametric knowledge
has stabilized, showing that the model continues to rely on in-context knowledge whenever it is
available.
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(a)

(b) (c)

Figure 4: (a) Training dynamics of AccICKU, AccPKU, PrefICK, and PrefPK when trained on the
REPEATED+MIX corpus without noise (Left) and with 1% noise (Right). When the training corpus
contains no noise (i.e., no inconsistent knowledge within the same documents), the model consis-
tently prefers in-context knowledge in knowledge conflicts, whereas even a small amount of noise
induces a phase shift toward parametric knowledge preference as parametric knowledge utilization
stabilizes. (b) Changes in the layer-wise sum of attention mass at the last token of the test probe
when the model trained with 1% noise performs in-context knowledge utilization. Green indicates
the attention allocated to name tokens in the test probe, while blue indicates the attention allocated
to target tokens in the context. (c) AccICKU at the end of training across different noise levels.

Table 1: Target token probability and
entropy measured at the last token of
the test probe for entities in Etrain and
Eunknown.

Etrain Eunknown

w/o noise
Target prob. 0.998 0.024
Entropy (nats) 0.011 0.955

w/ 1% noise
Target prob. 0.997 0.034
Entropy (nats) 0.016 1.236

We examined entropy and target token probability when
predicting attributes using only parametric knowledge
(that is, without any context, using only test probes) for en-
tities in Etrain and Eunknown to measure the confidence of the
model in its parametric knowledge. As shown in Table 1,
the model is considerably more confident(low entropy
and high target probability) about the correct parametric
knowledge for training entities compared to unseen enti-
ties. Nevertheless, when presented with contradictory in-
context information, it still follows the in-context knowl-
edge. This tendency to over-rely on external context de-
viates from the robust arbitration strategy that we aim to
establish.

4.2 INCONSISTENCY NOISE MAKES MODELS USE PARAMETRIC KNOWLEDGE ROBUSTLY

However, in practice, large language models pretrained on real web corpus do not always follow
in-context knowledge in conflict situations. Instead, they tend to prefer parametric knowledge for
knowledge they have frequently encountered during training (Yu et al., 2023) or for information with
high internal confidence (Wu et al., 2024), even when conflicting in-context knowledge is present.
We hypothesize that the reason is the inevitable presence of noise in web corpora—such as typos,
factual errors, or conflicting opinions—which introduces small inconsistencies within a document.
Such noise likely prevented the model from always following only in-context knowledge when the
two sources of knowledge conflicted.

To test this hypothesis, we trained models on the REPEATED+MIX corpus with a small de-
gree of factual inconsistency noise within a document. In our setup, each entity is mentioned in
two paragraphs within a document (a leading paragraph and a later one). On a per-entity basis,
we perturb the birth date and major values only in the leading paragraph with probability

6
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Figure 5: AccPKU, PrefICK, and PrefPK for the top 10% (high-frequency) and bottom 10% (low-
frequency) entities in the training corpus. For high-frequency entities, PrefICK is initially higher but
gradually yields to PrefPK; for low-frequency entities, PrefICK remains consistently higher.

p ∈ {1%, 5%, 10%}, replacing them with randomly sampled alternatives, and leave the later para-
graph unchanged (Figure 9). The results are shown in Figure 4(a) right. Early in training, the model
first activates in-context knowledge utilization, leading it to prefer in-context knowledge in knowl-
edge conflicts. As parametric knowledge utilization stabilizes, however, the model gradually shifts
toward always preferring parametric knowledge when conflicts arise. Remarkably, even very small
amounts of noise (as little as 1%) were sufficient to induce this phase shift phenomenon.

However, in-context knowledge utilization performance gradually decreased, with the decline being
more pronounced at higher noise levels (Figure 4(c)). We initially suspected that the degradation
was caused by the model being overexposed to entities from Etrain, leading it to behave as if it
knows unseen entities from Eunknown. In other words, the model appears to overconfidently project
its parametric knowledge onto unfamiliar entities, hallucinating attributes it never learned. Yet, as
shown in Table 1, the model trained with 1% noise maintains very high confidence for the correct
attributes of training entities, while showing the opposite pattern for unknown entities. This indicates
that the model can, in fact, distinguish when it lacks parametric knowledge about new entities, as if
it were simply forgetting how to utilize in-context knowledge.

In fact, when investigating the attention patterns at the last position of the test probe during in-context
knowledge utilization for Eunknown entities, we observed that attention initially focuses heavily on
target tokens in context but gradually shifts toward name tokens (Figure 4(b)). Prior works (Meng
et al., 2022) have established that recalling parametric knowledge requires bringing information
from relevant subject tokens through attention circuits (Zucchet et al., 2025; Geva et al., 2023). Thus,
even for unknown entities, the model appears to attempt recalling information from name tokens
to utilize parametric knowledge, following the established mechanisms of parametric knowledge
utilization. In other words, while the model recognizes that it lacks information about the entity
from Eunknown, it seems to have forgotten how to use in-context knowledge.

In conclusion, while a very small amount of inconsistency noise enables the model to robustly use
parametric knowledge rather than uncritically following in-context knowledge when the two conflict,
it also leads to an over-reliance on parametric knowledge, ultimately resulting in the degradation of
in-context knowledge utilization.

5 EFFECTS OF SKEWED KNOWLEDGE DISTRIBUTION

5.1 SKEWED KNOWLEDGE DISTRIBUTION PRESERVES IN-CONTEXT KNOWLEDGE
UTILIZATION ON UNFAMILIAR KNOWLEDGE

We hypothesize that to prevent the degradation of in-context knowledge utilization for unfamiliar
knowledge, as observed in Section 4, the training data must continually expose the model to infor-
mation that cannot be recalled purely from parametric knowledge. In other words, knowledge from
long-tailed knowledge should appear repeatedly so that in-context knowledge utilization remains
active and does not degenerate. To test this, we constructed a REPEATED+MIX corpus where enti-
ties are sampled according to a Zipfian distribution(Zipf, 2012)1(with small inconsistency noise as
in Section 4). As shown in Table 2, training on this corpus yielded substantially less degradation
in in-context knowledge utilization compared to training on a corpus with a uniform knowledge
distribution.

1Zipfian distribution: P (r) = r−α/
∑N

k=1 k
−α, where r is the rank (1 = most frequent).
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Figure 6: Bar plots of PrefPK under knowledge conflict (red) and mean entropy in the parametric-
knowledge-utilization setting (blue) Bins are ordered by Zipfian rank, where lower rank denotes
higher frequency. Left: Results with zipfian training corpus without inconsistency noise. Right:
Results with zipfian training corpus with a small amount(1%) of inconsistency noise.

We further evaluated preference measures across the top 10% and bottom 10% of entities by fre-
quency (Figure 5) to examine under knowledge conflicts which knowledge the model follows for
entities it saw frequently during training versus those it saw infrequently.

Table 2: AccICKU at the end of
training on uniform vs. Zipfian
(α = 1) corpora. The Zipfian col-
umn shows the change relative to
the corresponding uniform value in
parentheses.

Noise AccICKU (%)

Uniform Zipfian

1% 31.5 84.0 (+52.5)

5% 16.8 63.9 (+47.1)

10% 14.1 57.4 (+43.3)

For high-frequency entities, the model initially preferred in-
context knowledge but gradually shifted toward a robust re-
liance on parametric knowledge, as when trained under a uni-
form distribution. In contrast, for low-frequency entities, the
model continued to prefer in-context knowledge. Importantly,
this is not simply due to an inability to recall these entities from
parametric knowledge. Because AccPKU exceeds PrefPK, the
model retains parametric knowledge for some of these entities,
yet in conflict settings it still prefers in-context knowledge over
parametric knowledge. This tendency to rely on in-context
knowledge for low-frequency entities supports our hypothesis
that the model continues to use in-context knowledge when un-
familiar knowledge arises during training, thereby preventing
degradation of in-context knowledge utilization capability.

5.2 SKEWNESS ALONE FAILS TO BUILD ROBUST PARAMETRIC KNOWLEDGE PREFERENCE

We investigate whether, for a model trained on a corpus with a Zipfian distribution and a small
amount of inconsistency noise, internal confidence in parametric knowledge calibrates to entity fre-
quency and whether preference under conflict aligns with this confidence. We quantify confidence
using the entropy of predictions during parametric knowledge utilization. As frequency increases,
equivalently as Zipfian rank decreases, entropy declines and the preference for parametric knowl-
edge in conflicts PrefPK rises, as shown in Figure 6 right. In other words, confidence grows with
training exposure, and the model correspondingly follows its parametric knowledge even when con-
flicting in-context knowledge is provided.

We then test whether the confidence-aligned robust knowledge arbitration strategy can emerge with
skewness alone, without inconsistency noise. In this setting, confidence still tracks frequency, as in
Figure 6 left. However, the model rarely follows parametric knowledge under conflict even when
its parametric knowledge has high confidence (low entropy). Thus, a skewed knowledge distribu-
tion helps preserve in-context knowledge utilization but is insufficient on its own to yield a robust
knowledge arbitration strategy.

6 VALIDATION ON REAL-WORLD MODELS

We showed that (i) intra-document repetition enables the joint emergence of parametric and in-
context knowledge utilization, (ii) a small degree of factual inconsistency noise within a document
biases conflict resolution toward confident parametric knowledge, and (iii) distributional skew with
long-tailed knowledge preserves in-context utilization for unfamiliar entities. Because these proper-
ties arise naturally in web corpora, we test whether the same dynamics appear in a real-world open-
source LLM. Using the publicly released checkpoints of PYTHIA-6.9B (Biderman et al., 2023), we
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evaluate parametric utilization, in-context utilization, and preference under knowledge conflict at
each checkpoint (details in Figure 13 and Appendix E).

0 50k 100k 150k
Training Steps

0

25

50

75

100
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cu
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)

Pythia-6.9B

AccPKU
AccICKU
PrefPK
PrefICK

Figure 7: AccICKU, AccPKU, PrefICK, and
PrefPK in Pythia checkpoints.

As shown in Figure 7, in-context utilization be-
comes effective earlier in training than paramet-
ric utilization. Under conflict, the model initially
prefers in-context knowledge and later shifts to-
ward preferring parametric knowledge as para-
metric utilization stabilizes. Meanwhile, the
model continues to leverage in-context knowl-
edge for novel entities, as reflected by high
AccICKU. These results indicate that repeti-
tion, small amounts of inconsistency noise, and
skewed knowledge distributions in web-scale
data naturally reproduce the dynamics observed
in our synthetic setting, suggesting that our con-
trolled findings extend to real-world scenarios.

7 RELATED WORKS

Large language models rely on both parametric and in-context knowledge (Lewis et al., 2021; Mallen
et al., 2022; Ram et al., 2023; Shi et al., 2023). Recent studies show that model preferences in
conflicts depend on confidence and training frequency (Wu et al., 2024; Yu et al., 2023), and can
be steered through attention manipulation or contrastive decoding (Li et al.; Yu et al., 2023; Sun
et al., 2025; Jin et al., 2024). However, these works mainly focus on post-pretraining behavior and
provide limited insight into how the ability to handle the two sources develops during training. A
complementary line of research investigates training dynamics of language models using synthetic
datasets (Allen-Zhu & Li, 2024a;b; Zucchet et al., 2025), enabling controlled studies of how models
acquire and store knowledge. While these studies illuminate the formation of parametric knowledge,
they do not address the simultaneous development of in-context utilization (Olsson et al., 2022) or
the dynamics of conflict resolution. We bridge these directions by conducting the first systematic
analysis of how parametric and in-context knowledge utilization co-emerge and interact during pre-
training.

In parallel, some studies (Chan et al., 2022) that investigate in-context learning with transformer
classifiers on Omniglot datasets (Lake et al., 2019) report that a skewed data distribution is re-
quired for in-context and in-weight (parametric) learning to co-exist. In contrast, our results show
co-existence even under a uniform distribution. We attribute this difference to the task setup: those
classification tasks can be solved solely from exemplars provided in context, predicting only a class
token conditioned on a query, whereas a language model performs next-token prediction for every
data sequence and thus must rely on parametric knowledge for most initial content, which more
strongly incentivizes reliance on parametric knowledge than in exemplars-conditioned classifica-
tion. Building on this distinction, we study knowledge-conflict scenarios (Neeman et al., 2022) and
settings closer to how real-world language models are trained (Brown et al., 2020).

8 CONCLUSION

We present the first systematic analysis of the training dynamics that govern parametric knowl-
edge and in-context knowledge in language models. Our study shows that properties of the train-
ing corpus strongly shape the emergence of both knowledge-utilization capabilities and their ef-
fective arbitration. Intra-document repetition of facts is crucial for developing both parametric and
in-context knowledge utilization. Moreover, small degrees of factual inconsistency together with
skewed knowledge distributions are key to fostering a robust arbitration strategy between parametric
and in-context knowledge. These findings challenge traditional data cleaning practices, highlighting
that modest noise and skewed distributions can enhance a model’s ability to intelligently utilize
both knowledge sources. Our results provide valuable guidelines for designing training corpora con-
sidering retrieval augmented generation settings, ensuring that models can effectively balance new
information and prior knowledge with robust knowledge arbitration strategies.
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REPRODUCIBILITY STATEMENT

We describe the dataset construction process in detail in Section 2 and Appendix A. The hyperpa-
rameters and model configuration used in our experiments are provided in Appendix B. Further-
more, we will release code for experiments publicly. All experiments are implemented using the
HuggingFace TRL library2 and conducted on a single NVIDIA A100 GPU. Each training run
requires approximately 4–6 hours.
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A SYNTHETIC BIOGRAPHIES DATASET CONSTRUCTION

Following prior work (Allen-Zhu & Li, 2024a; Zucchet et al., 2025), we first construct N
synthetic person profiles. Each profile contains four attributes: birth date, birth city,
university, and major. Names (first/middle/last) are sampled by randomly composing entries
from a public name database.3 For birth date, we sample a date uniformly from 1900–2099. For
birth city and university, we sample from curated lists of 200 values each, and for major
from a list of 100 values, all derived from Wikipedia.4 For each attribute, we sample 7 distinct sur-
face templates from a finite template pool. An example of templates for birth date is shown
below.

An example of templates for birth date

1. person was born on birth date.

2. person came into the world on birth date.

3. person entered this world on birth date.

4. person was brought into the world on birth date.

5. person took their first breath on birth date.

6. person began their life journey on birth date.

7. person celebrates their birthday on birth date.

8. person first opened their eyes on birth date.

9. person was welcomed into life on birth date.

10. person arrived on birth date.

11. person’s story started on birth date.

12. person was born to the world on birth date.

13. person was delivered into the world on birth date.

14. person was given life on birth date.

15. person was welcomed into the world on birth date.

16. person began their journey on Earth on birth date.

17. person made their debut in the world on birth date.

18. person became a part of the world on birth date.

19. person was born into this life on birth date.

20. person came to life on birth date.

We then create paragraphs containing each person’s biography with a randomized attribute order
as follows: using 6 of the templates, we generate six paragraphs per entity; five are reserved for

3https://github.com/smashew/NameDatabases/tree/master/NamesDatabases
4https://en.wikipedia.org/wiki/
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Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika 
Klara Wickizer received their diploma from Drew University. Annika Klara 
Wickizer was welcomed into life on November 10, 2079. Annika Klara 
Wickizer was educated in the field of Information Systems.

Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.Annika Klara Wickizer completed their studies in Information Systems. 

Annika Klara Wickizer was born into the world in Roseville, CA. Annika 
Klara Wickizer was given life on November 10, 2079. Annika Klara 
Wickizer took courses at Drew University.

Annika Klara Wickizer was brought into the world on November 10, 2079. 
Annika Klara Wickizer began their earthly life in Roseville, CA. Annika 
Klara Wickizer was a student of Information Systems. Annika Klara 
Wickizer was enrolled at Drew University.

Annika Klara Wickizer’s story started on _____
Annika Klara Wickizer was given life in ____
Annika Klara Wickizer was educated at ____
Annika Klara Wickizer developed a foundation in ____

N Synthetic Profiles
5 paraphrased paragraphs for training 

A paragraph for in-context knowledge in evaluationTest Probe

Annika Klara Wickizer

Roseville, CAbirth_city

November 10, 2079birth_date

Information Systemsmajor

Drew Universityuniversity

Figure 8: An example of the synthetic dataset. Each profile consists of four attributes (birth date,
birth city, university, major), with paragraphs for training, a paragraph for in-context
knowledge in evaluation, and test probes for eliciting the model to generate the attributes of each
entity.

training and one is used as the evaluation in-context paragraph. The remaining (seventh) template
is held out as a closed-style test probe designed to elicit the target attribute. An illustration of the
resulting dataset is shown in Figure 8.

B DETAILS ON TRAINING LANGUAGE MODELS

Table 3: Model architecture.

Component Value

Embedding dimension 512
Layers 8
Attention heads 8
FFN inner dimension 2048
Context length 512

Table 4: Training hyperparameters.

Hyperparameter Value

Max training steps 16,000
Batch size 128
Learning rate 4× 10−4

Weight decay 0.10
LR scheduler Cosine
Sequence length 512
Numerical precision bfloat16

For our controlled experiments, we use a GPT-2–style decoder-only Transformer5. The model con-
figuration is summarized in Table 3. Following Hoffmann et al. (2022), we adopt the settings used
in Zucchet et al. (2025). The training hyperparameters are listed in Table 4.

5https://huggingface.co/openai-community/gpt2
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C EXAMPLE OF FACTUAL INCONSISTENCY NOISE WITHIN A DOCUMENT

Figure 9 illustrates a document from the REPEATED+MIX corpus in which factual inconsistency
noise has been injected. The value highlighted in pink was injected as noise with some probability
and therefore does not match the latter original value, “November 10, 2079.”

Annika Klara Wickizer was welcomed into the world in Roseville, CA. Annika Klara Wickizer 
celebrates their birthday on August 5, 1999   . Annika Klara Wickizer earned 
qualifications in Information Systems. Annika Klara Wickizer pursued higher education at 
Drew University.

Dara Angila Honey was given life on April 6, 1978. Dara Angila Honey focused their 
academic efforts on Industrial. Dara Angila Honey entered this world in Indianapolis, IN. 
Dara Angila Honey achieved academic success at Fisk University.

Dara Angila Honey chose Industrial as their field of study. Dara Angila Honey completed a 
program at Fisk University. Dara Angila Honey was welcomed into life on April 6, 1978. Dara 
Angila Honey became a part of the world in Indianapolis, IN.

Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika Klara Wickizer received 
their diploma from Drew University. Annika Klara Wickizer was welcomed into life on 
November 10, 2079. Annika Klara Wickizer was educated in the field of Information 
Systems.

Roselee Justine Woolem gained academic grounding in Business Analytics. Roselee Justine 
Woolem first opened their eyes in Phoenix, AZ. Roselee Justine Woolem studied at Hamilton 
College. Roselee Justine Woolem was brought into the world on August 12, 2083.

Roselee Justine Woolem entered this world on August 12, 2083. Roselee Justine Woolem 
majored in Business Analytics. Roselee Justine Woolem began their life in Phoenix, AZ. 
Roselee Justine Woolem developed expertise at Hamilton College.

Figure 9: Example of the document injected inconsistency noise

D ADDITIONAL EXPERIMENTAL RESULTS

We further examine the training dynamics by systematically varying several factors. Unless other-
wise noted, all experiments are conducted on the REPEATED+MIX corpus.

D.1 EFFECT OF THE NUMBER OF TRAINING ENTITIES

0 5000 10000 15000
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Figure 10: Training dynamics of AccICKU and AccPKU under different numbers of training entities.

Figure 10 compares REPEATED+MIX runs with 50k, 100k, and 200k training entities. With 50k
entities, both in-context knowledge utilization (AccICKU) and parametric knowledge utilization
(AccPKU) emerge, with AccICKU activating earlier and AccPKU following as training stabilizes.
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In contrast, for 100k and 200k entities, AccPKU fails to rise: the model learns to use in-context
knowledge but does not develop robust parametric utilization.

D.2 EFFECT OF INTRA-DOCUMENT INCONSISTENCY NOISE
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Figure 11: Training dynamics of AccICKU and AccPKU under different levels of intra-document
inconsistency noise.

Figure 11 examines training dynamics under intra-document factual inconsistency levels of 1%,
5%, and 10%. Even 1% noise is sufficient to induce a phase shift in conflict-time preference: as
AccPKU stabilizes, the model transitions from preferring in-context knowledge (PrefICK) to pre-
ferring parametric knowledge (PrefPK). Increasing noise accelerates this shift but also degrades
AccICKU at convergence, indicating over-reliance on parametric knowledge and a reduced ability to
use in-context knowledge.

D.3 EFFECT OF DISTRIBUTIONAL SKEW
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Figure 12: Training dynamics of AccICKU and AccPKU as a function of the Zipf exponent α.

Figure 12 examines training dynamics under Zipfian sampling with α ∈ {0.5, 1.0, 2.0}. A near-
uniform regime (α=0.5) yields progressive degeneration of AccICKU over training, consistent with
the model drifting toward parametric recall even for unfamiliar entities. An overly skewed regime
(α=2.0) produces undesirable dynamics—parametric utilization fails to activate—suggesting that
extreme concentration of exposure undermines balanced capability growth. A moderate skew
(α=1.0) best preserves AccICKU for rare or novel entities while still supporting stable AccPKU

and a robust preference for parametric knowledge on frequently seen facts.

E EXPERIMENTAL DETAILS FOR REAL-WORLD LARGE LANGUAGE MODELS

We adapt the scenarios used in our controlled experiments so that they can be applied to models
trained on real web corpora. Since web corpora contain abundant information about countries and
their capitals, we designate the set of training entities Etrain as Real-World Countries and evaluate
whether the model can correctly predict their corresponding capital cities. To this end, we construct
a Real-World Country–Capital Set based on the country–capital data pairs used in Hernandez et al.
(2023). Using this dataset, we build question–answer style test probes as illustrated in Figure 13,
and define the Parametric Knowledge Utilization scenario. We then measure AccPKU by checking
whether the model’s generations within 64 tokens contain the correct answer.

For the In-Context Knowledge Utilization scenario, we need to evaluate knowledge unseen during
training. Therefore, we create 100 artificial country–capital pairs that do not exist in the real world,
forming a Synthetic Country–Capital Set. As described in Section 2.2, we embed these pairs into a
context and provide them to the model along with a test probe, measuring AccICKU by verifying
whether the correct answer appears within the first 64 generated tokens.
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Historically, Nenathu has been the capital… The capital of Argentina is Beijing.

Q: What is the capital of Argentina? A :____

Q: What is the capital of Argentina? A:____

The official capital of Pradapra is Nui.

The city recognized as Rinquo's capital is 
Shina.

Q: What is the capital of Rinquo? A :____

Shina. 
Buenos Aires

Buenos Aires

Parametric Knowledge(PK) 
Utilization 

In-context Knowledge(ICK) 
Utilization 

Knowledge Conflict Resolution

In-context Knowledge

Parametric Knowledge

Pythia

Pythia
Pythia

Beijing

prefer PK

prefer ICK

Perturbed In-context Knowledge

~Real-World Capital-Country
~Synthetic Capital-Country ~Real-World Capital-Country

Figure 13: Three knowledge utilization scenarios in real-world large language models. Left: Para-
metric knowledge utilization, where the model recalls country–capital facts from real-world data that
were encoded in its parameters during training. Middle: In-context knowledge utilization, where
the model relies on synthetic country–capital pairs provided only in the context. Right: Knowledge
conflict resolution, where the model is queried about real-world countries while the prompt supplies
perturbed (incorrect) capitals, allowing us to examine whether the model prefers parametric knowl-
edge or the perturbed in-context knowledge.

Finally, for Knowledge Conflict Resolution, we perturb the in-context knowledge by replacing the
true answers in the Real-World Country–Capital Set with incorrect ones. We then provide these per-
turbed contexts together with the test probes and evaluate whether the model follows the perturbed
in-context knowledge or the true answer. This allows us to measure PrefICK and PrefPK.

F THE USE OF LARGE LANGUAGE MODELS

We used large language models solely to aid and polish the writing of this paper, including tasks
such as grammar correction, wording refinement, and minor stylistic edits.
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