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ABSTRACT

Large language models often encounter conflicts between in-context knowledge
retrieved at inference time and parametric knowledge acquired during pretrain-
ing. Models that accept external knowledge uncritically are vulnerable to misin-
formation, whereas models that adhere rigidly to parametric knowledge fail to
benefit from retrieval. Despite the widespread adoption of retrieval-augmented
generation, we still lack a systematic understanding of what shapes knowledge-
arbitration strategies during training. This gap risks producing pretrained mod-
els with undesirable arbitration behaviors and, consequently, wasting substantial
computational resources after the pretraining budget has already been spent. To
address this problem, we present the first controlled study of how training condi-
tions influence models’ use of in-context and parametric knowledge, and how they
arbitrate between them. We train transformer-based language models on a syn-
thetic biographies corpus while systematically controlling various conditions. Our
experiments reveal that intra-document repetition of facts fosters the development
of both parametric and in-context capabilities. Moreover, training on a corpus
that contains inconsistent information or distributional skew encourages models
to develop robust strategies for leveraging parametric and in-context knowledge.
Rather than viewing these non-ideal properties as artifacts to remove, our results
indicate that they are important for learning robust arbitration. These insights offer
concrete, empirical guidance for pretraining models that harmoniously integrate
parametric and in-context knowledge.

1 INTRODUCTION

Large language models (Touvron et al., 2023; Brown et al., 2020; Biderman et al., 2023) store and
use parametric knowledge (Geva et al., 2020; 2023; Meng et al., 2022) acquired during pretrain-
ing and increasingly leverage in-context knowledge through retrieval-augmented generation (Lewis
et al., 2021; Ram et al., 2023; Shi et al., 2023), which supplies external documents at inference
time. This allows models to incorporate up-to-date and domain-specific information beyond their
training data. A central challenge appears when external documents conflict with parametric knowl-
edge (Neeman et al., 2022), which forces the model to arbitrate between the two sources. The stakes
are high when the retrieved content contains misinformation, noisy passages, or adversarially crafted
text. Models that trust external sources uncritically become vulnerable to these risks, while models
that rigidly rely on their parametric knowledge fail to benefit from valuable external information.
Recent works (Xu et al., 2024) have studied how models behave under such knowledge conflicts,
but most analyses have focused on analyzing or controlling the behavior of already-pretrained mod-
els (Ortu et al., 2024; Yu et al., 2023; Li et al.), without examining how training conditions shape
arbitration. However, it is essential to understand during pretraining what factors determine how a
model uses and arbitrates between its two knowledge sources, so as to avoid discovering undesirable
arbitration behaviors only after pretraining has consumed substantial resources.

Determining the appropriate knowledge source for a model is often challenging, given the variable
provenance and reliability of in-context information. Our work therefore defines a robust arbitra-
tion strategy based solely on the internal signals of the model, without considering external factors.
We define this strategy by two principles: (1) for high-confidence, well-memorized knowledge, the
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Maddie Giovanna Desrevisseau was... Annika Klara Wickizer was brought into the 
world on August 5, 2025. Annika Klara Wickizer 
began their earthly life in Roseville, CA. Annika 
Klara Wickizer…

Annika Klara Wickizer’s story started on ____ 

Annika Klara Wickizer’s story started on ____

Nellie Sherie Sandeen was welcomed into 
life on March 3, 2024. Nellie Sherie Sandeen 
majored in Management Studies... 

Barry Troy Seek completed a program at... 

Nellie Sherie Sandeen was born on ____

March 3, 2024. 
November 10, 2079

November 10, 2079. 

Parametric Knowledge(PK) 
Utilization 

In-context Knowledge(ICK) 
Utilization 

Knowledge Conflict Resolution

In-context Knowledge

Conflicts with PK
derived from Training Data
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Language 
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Language 
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Language 
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Perturbed In-context Knowledge

Figure 1: Three knowledge utilization scenarios. Left: parametric knowledge utilization where the
model recalls knowledge encoded in its parameters and answers queries about entities seen during
training. Middle: in-context knowledge utilization where the model extracts and uses knowledge
provided only in the prompt and is evaluated on novel entities not seen during training. Right:
knowledge conflict resolution where the model is queried about trained entities while the context
provides conflicting information, and responses reveal the preference between parametric knowledge
and in-context knowledge.

model should follow its parametric knowledge, even when faced with conflicting in-context knowl-
edge; and (2) for novel or unfamiliar information, the model should follow the provided in-context
knowledge. This behavior, which mirrors patterns in human cognition (Koriat, 2011) and has been
observed in modern large language models (Wu et al., 2024), motivates our investigation of the
training factors that produce it. Consequently, our study is guided by two central research questions:
(RQ1) What training conditions enable a model to develop distinct capabilities for the use of para-
metric and in-context knowledge? (RQ2) What specific characteristics of the training corpus induce
the model to adopt a robust arbitration strategy between these two sources?

To answer these questions, we conduct controlled experiments, training transformer-based language
models from scratch on synthetic biographies (Allen-Zhu & Li, 2024a;b; Zucchet et al., 2025). This
framework enables precise manipulation of training conditions while isolating knowledge utilization
from other confounding factors. Prior work (Allen-Zhu & Li, 2024a) shows the insights from this
setup can transfer to real-world models (Touvron et al., 2023), which allows us to explore a wide
range of training configurations efficiently. Building on earlier studies (Zucchet et al., 2025) that
focused only on parametric knowledge, we systematically investigate the interaction between para-
metric and in-context knowledge. During training with varied conditions, we evaluate the model’s
performance across three key knowledge utilization scenarios. First, we measure parametric knowl-
edge utilization by the model’s ability to recall learned entity attributes from its parameters. Second,
we assess in-context knowledge utilization by its capacity to extract and use knowledge from the
context for novel entities that are not in the training data. Finally, we examine knowledge conflict
resolution by observing which source the model follows when known entities are paired with per-
turbed contexts, where the in-context knowledge conflicts with the model’s parametric knowledge
(Figure 1).

Our experiments led to the following findings: Intra-document repetition of facts is critical for
the simultaneous emergence of both parametric knowledge and in-context knowledge utilization
capabilities, and this in-context knowledge utilization ability emerges much earlier (Section 3.1).
In addition, a small degree of factual inconsistency within a document encourages the model to
favor its more confident parametric knowledge when conflicts arise, although during early training
it initially prefers in-context knowledge (Section 3.2). Moreover, a skewed frequency distribution
of knowledge, where long-tailed knowledge exists, preserves the model’s ability to use in-context
knowledge for unfamiliar entities. When these three conditions co-occur, they produce the desired
arbitration pattern: the model defaults to parametric knowledge for well-learned entities but readily
relies on in-context knowledge for rare or novel ones (Section 3.3). We validate these results on
open-source, confirming that our findings extend beyond the synthetic setting (Section 4.1) and also
post-training (Section 4.2).
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These results have critical implications for pretraining large language models for retrieval augmented
generation. We find that data characteristics often seen as defects, such as modest inconsistencies
and a skewed knowledge distribution, are actually beneficial features for developing models that
can intelligently arbitrate between learned knowledge and new, in-context information. A direct
implication of this finding is that preprocessing steps like aggressive cleaning, deduplication, and
data balancing may inadvertently impair a model’s robust knowledge arbitration strategy.

2 DATASET AND SETUP

In this section, we describe our experimental framework. We first introduce our synthetic biographies
dataset (Section 2.1), which enables precise control over knowledge distribution. We then detail
our training setup (Section 2.2), followed by our evaluation framework (Section 2.3) that measures
parametric knowledge utilization, in-context knowledge utilization, and conflict resolution behavior.

2.1 SYNTHETIC BIOGRAPHIES DATASET

We construct a synthetic biographies dataset following prior work (Allen-Zhu & Li, 2024a; Zuc-
chet et al., 2025) (See details in Appendix A). Specifically, we generate synthetic biographical pro-
files, where each profile contains four attributes: birth date, birth city, university, and
major. For each profile, we sample 7 distinct templates from a finite pool for each attribute. We use
6 templates to create training paragraphs with randomized attribute ordering, reserving 5 paragraphs
for training and 1 for evaluation context. The remaining template for each attribute serves as test
probes, which are cloze-style sentences designed to elicit the attribute values. Figure 9 illustrates the
dataset structure. This deliberate separation ensures that the sentences used for training, context, and
testing are never identical, compelling the model to utilize its parametric or in-context knowledge
rather than relying on simple sequence memorization or repetition.

2.2 TRAINING SETUP

We train an 8-layer decoder-only Transformer language model from scratch (Vaswani et al., 2017),
adopting the detailed hyperparameters(Table 5) from prior work (Zucchet et al., 2025). For the train-
ing entity set (Etrain), we use profiles of 50k entities, and for the unknown entity set (Eunknown), we use
other 50k entity profiles that are unseen during training. Using the training paragraphs of e ∈ Etrain
from Section 2.1, we assemble documents according to the variants described below and use the
resulting collection as the training corpus.

2.3 EVALUATION SETUP

During training, we periodically evaluate the model at each checkpoint under three knowledge uti-
lization scenarios: parametric knowledge utilization, in-context knowledge utilization, and knowl-
edge conflict resolution, to measure the model’s ability to utilize knowledge, as illustrated in Fig-
ure 1. We evaluate using the exact-match accuracy of the attributes generated by the model for the
given input in each scenario. For each scenario, we randomly sample a set of k entities for evaluation,
and in our experiments, we set k = 200.

Parametric Knowledge Utilization This scenario measures the model’s ability to utilize
knowledge stored in its parameters. We evaluated this on entities seen during training,
e ∼ Etrain. The accuracy of parametric knowledge utilization is defined as AccPKU =

Ee∼Etrain

[
1

|Ae|
∑

a∈Ae
1{M(pa) = va}

]
, where Ae is the set of attributes of entity e, pa is the test

probe for attribute a, va is the ground-truth value, and M(·) is the model output.

In-Context Knowledge Utilization This scenario evaluates whether the model can utilize the
knowledge provided only at inference time. We evaluated this on novel entities not seen during train-
ing, i.e., e ∼ Eunknown. For each unseen entity e, we construct a context C by concatenating Ce with
paragraphs from two other random unseen entities, followed by shuffling. The accuracy of in-context
knowledge utilization is defined as AccICKU = Ee∼Eunknown

[
1

|Ae|
∑

a∈Ae
1{M(C, pa) = va}

]
.
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Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.
…
…
Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika 
Klara Wickizer received their diploma from Drew University. Annika 
Klara Wickizer was welcomed into life on November 10, 2079. Annika 
Klara Wickizer was educated in the field of Information Systems.
…

Albert Einstein[a] (14 March 1879 – 18 April 1955) was a German-
born theoretical physicist who is best known for developing 
the theory of relativity. Einstein also made important contributions 
to quantum theory.[1][5] His mass–energy equivalence formula E =mc2, 
which arises from special relativity, has been called "the world's 
most famous equation".[6] He received the 1921 Nobel Prize in 
Physics for his services to theoretical physics, and especially for 
his discovery of the law of the photoelectric effect.[7]

Born in the German Empire, Einstein moved to Switzerland in 1895, 
forsaking his German citizenship (as a subject of the Kingdom of 
Württemberg)[note 1] the following year. In 1897, at the age of 
seventeen, he enrolled in the mathematics and physics …

Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.

Real World Documents Our Synthetic Documents

: Tokens can be predicted with PK

: Tokens can be predicted with PK or ICK

SINGLE

REPEATED

Figure 2: An example of intra-document repetition of key attributes (e.g., German, Physics) for
a single entity, alongside our synthetic training-corpus variants. SINGLE uses one paragraph per
entity and thus encourages reliance on parametric knowledge; REPEATED places two paraphrased
paragraphs about the same entity in one document, allowing later mentions to leverage in-context
knowledge or parametric knowledge.

Knowledge Conflict Resolution This scenario evaluates whether the model follows parametric
knowledge (i.e., outputs the original training values) or in-context knowledge (i.e., outputs the values
given in the perturbed context). For each training entity e ∼ Etrain, we construct a perturbed context
C ′

e by randomly altering two attributes (birth date, university). Preference for parametric
knowledge is defined as PrefPK = Ee∼Etrain

[
1

|A′
e|
∑

a∈A′
e
1{M(C ′

e, pa) = va}
]
, and preference for

in-context knowledge as PrefICK = Ee∼Etrain

[
1

|A′
e|
∑

a∈A′
e
1{M(C ′

e, pa) = v′a}
]
, where A′

e is the set
of perturbed attributes, va denotes the original parametric value from training, and v′a the conflicting
value specified in C ′

e.

3 EXPERIMENTS

In this section, we investigate the training conditions that enable models to develop distinct knowl-
edge utilization capabilities (RQ1) and adopt robust arbitration strategies (RQ2). We begin by ex-
amining how intra-document repetition enables the emergence of both parametric and in-context
knowledge utilization (Section 3.1). We then analyze how factual inconsistency noise influences the
model’s preference between conflicting knowledge sources (Section 3.2). Finally, we explore how
skewed knowledge distribution preserves in-context knowledge utilization for unfamiliar entities
while maintaining robust arbitration for well-learned ones (Section 3.3). Our findings reveal that
these three factors must co-occur to produce the desired arbitration behavior.

3.1 EFFECTS OF INTRA-DOCUMENT REPETITION

Our first experiment addresses what training conditions enable a model to develop distinct capa-
bilities for parametric and in-context knowledge utilization. We hypothesize that intra-document
repetition—a common feature of real-world text where key attributes are repeated within documents
(Figure 2)—is critical for simultaneously developing both capabilities. During next-token predic-
tion, the first mention of an attribute lacks in-document context, requiring parametric knowledge,
while later mentions allow the model to leverage earlier context.

Training corpus variants We construct two corpus variants to test this hypothesis:

• SINGLE: Each training document contains exactly one training paragraph about a single
entity. Attributes appear once per document, so the model cannot rely on in-context knowl-
edge; predictions must be supported by parametric knowledge.

4
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Figure 3: Accuracy of parametric knowledge utilization (AccPKU) and in-context knowledge utiliza-
tion (AccICKU) across training steps and knowledge conflict resolution results. (Left) The SINGLE
corpus shows delayed parametric knowledge utilization with no in-context knowledge activation.
(Middle) The REPEATED corpus induces early in-context knowledge utilization followed by para-
metric knowledge utilization. (Right) The REPEATED model consistently prefers in-context knowl-
edge under conflict.

Figure 4: (Left) Training dynamics of AccICKU, AccPKU, PrefICK, and PrefPK when trained on
the REPEATED corpus with 1% noise. Even a small amount of noise induces a phase shift toward
parametric knowledge preference as parametric knowledge utilization stabilizes. (Right) AccICKU

at the end of training across different noise levels.

• REPEATED: We construct documents in which each attribute of an entity appears twice,
such that the first mention necessarily relies on parametric knowledge while the second
mention provides an opportunity for the model to use either parametric knowledge or in-
context knowledge. To avoid trivial copying based solely on previously mentioned attribute
types regardless of the subject, we mix multiple entities within each document: specifically,
we sample two paraphrased paragraphs for each of three distinct entities and shuffle all six
paragraphs to form a single training document.

Results Figure 3 (left and middle) shows that the SINGLE corpus develops only parametric knowl-
edge utilization midway through training, with no in-context knowledge activation. In contrast, the
REPEATED corpus enables both capabilities, with in-context knowledge emerging earlier than para-
metric knowledge. This ordering aligns with prior work (Zucchet et al., 2025): parametric knowledge
requires complex attention circuits connecting subject tokens to attributes in key-value format (Meng
et al., 2022; Geva et al., 2023), learned gradually through backpropagation. In-context knowledge
relies on simpler induction heads (Olsson et al., 2022) that copy attribute tokens, reflecting general
patterns rather than entity-specific knowledge, thus emerging earlier.

These results confirm that parametric knowledge utilization does not automatically enable in-context
knowledge utilization. Rather, intra-document repetition creates a training environment where in-
context knowledge emerges first, followed by gradual parametric knowledge activation.

3.2 EFFECTS OF FACTUAL INCONSISTENCY NOISE WITHIN A DOCUMENT

Models trained without noise over-rely on in-context knowledge The model trained on the
REPEATED corpus successfully leverages both parametric and in-context knowledge. However,
when evaluating knowledge conflict resolution, we find that the model invariably follows in-context
knowledge, even after parametric knowledge utilization reaches nearly 100% accuracy (Figure 3
right). This preference persists despite the model being highly confident in its parametric knowledge
for training entities, as measured by entropy and target token probability (Table 1). This tendency
to over-rely on external context deviates from the robust arbitration strategy observed in real-world
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Figure 5: AccPKU, PrefICK, and PrefPK for the top 10% (high-frequency) and bottom 10% (low-
frequency) entities in the training corpus. For high-frequency entities, PrefICK is initially higher but
gradually yields to PrefPK; for low-frequency entities, PrefICK remains consistently higher.

large language models (Yu et al., 2023; Wu et al., 2024), which tend to prefer parametric knowledge
for frequently encountered or high-confidence information.

Table 1: Target token probability and
entropy measured at the last token of
the test probe for entities in Etrain and
Eunknown.

Etrain Eunknown

w/o noise
Target prob. 0.998 0.024
Entropy (nats) 0.011 0.955

w/ 1% noise
Target prob. 0.997 0.034
Entropy (nats) 0.016 1.236

Inconsistency noise induces robust parametric knowl-
edge preference We hypothesize that the inevitable
presence of noise in web corpora—such as typos, fac-
tual errors, or conflicting opinions—introduces small in-
consistencies that prevent models from blindly following
in-context knowledge. To test this, we train models on
the REPEATED corpus with factual inconsistency noise.
Specifically, for each entity mentioned in two paragraphs
within a document, we perturb the birth date and
major values only in the leading paragraph with prob-
ability p ∈ {1%, 5%, 10%}, leaving the later paragraph
unchanged (Figure 10).

As shown in Figure 4 (left), early in training, the model
prefers in-context knowledge in conflicts. However, as
parametric knowledge utilization stabilizes, the model
gradually shifts toward preferring parametric knowledge. Remarkably, even 1% noise is sufficient
to induce this phase shift. This demonstrates that a small degree of inconsistency enables the model
to robustly favor high-confidence parametric knowledge over conflicting in-context information.

Trade-off: degradation of in-context knowledge utilization However, this comes at a cost: in-
context knowledge utilization performance degrades, with the decline increasing at higher noise
levels (Figure 4 right). Importantly, this degradation is not due to the model hallucinating knowledge
for unfamiliar entities. As Table 1 shows, the model maintains high confidence for training entities
while showing low confidence for unknown entities, indicating it can still distinguish what it knows
from what it does not.

Despite recognizing its lack of knowledge about Eunknown entities (as evidenced by low target proba-
bility and high entropy in Table 1), the model fails to utilize available in-context knowledge. Detailed
attention pattern analysis (Appendix F) reveals the underlying mechanism: even for unknown enti-
ties about which the model is highly uncertain, attention circuits preferentially retrieve information
from subject name tokens rather than from target attribute tokens in the context. This suggests that
the model has shifted toward using parametric knowledge retrieval mechanisms even in situations
where parametric knowledge is unavailable, effectively forgetting how to leverage in-context knowl-
edge despite recognizing its own uncertainty.

In summary, while a small amount of inconsistency noise enables robust parametric knowledge
preference for high-confidence knowledge, it also leads to over-reliance on parametric knowledge
mechanisms, ultimately degrading in-context knowledge utilization capabilities.

3.3 EFFECTS OF SKEWED KNOWLEDGE DISTRIBUTION

Skewed Knowledge Distribution Preserves in-context knowledge Utilization on Unfamiliar
Knowledge We hypothesize that to prevent the degradation of in-context knowledge utilization
for unfamiliar knowledge, as observed in Section 3.2, the training data must continually expose the
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Figure 6: Correlation between parametric knowledge confidence and parametric knowledge prefer-
ence under conflict for two attributes (birth date and university). We bin entities into 10
groups based on their parametric knowledge probability p(va|pa) and measure PrefPK for each bin.
(Red) Model trained with 1% noise shows strong positive correlation (slope ≈ 0.33, R2 ≈ 0.45-
0.62), indicating that higher confidence leads to stronger parametric knowledge preference. (Blue)
Model trained without noise shows near-zero correlation (slope ≈ 0.02, R2 ≈ 0.29-0.31), failing to
follow parametric knowledge even when highly confident.

model to information that cannot be recalled purely from parametric knowledge. In other words,
knowledge from long-tailed knowledge should appear repeatedly so that in-context knowledge uti-
lization remains active and does not degenerate. To test this, we constructed a REPEATED corpus
where entities are sampled according to a Zipfian distribution(Zipf, 2012)1(with small inconsistency
noise as in Section 3.2). As shown in Table 2, training on this corpus yielded substantially less
degradation in in-context knowledge utilization compared to training on a corpus with a uniform
knowledge distribution.

We further evaluated preference measures across the top 10% and bottom 10% of entities by fre-
quency (Figure 5) to examine under knowledge conflicts which knowledge the model follows for
entities it saw frequently during training versus those it saw infrequently.

Table 2: AccICKU at the end of
training on uniform vs. Zipfian
(α = 1) corpora. The Zipfian col-
umn shows the change relative to
the corresponding uniform value in
parentheses.

Noise AccICKU (%)

Uniform Zipfian

1% 31.5 84.0 (+52.5)

5% 16.8 63.9 (+47.1)

10% 14.1 57.4 (+43.3)

For high-frequency entities, the model initially preferred in-
context knowledge but gradually shifted toward a robust re-
liance on parametric knowledge, as when trained under a uni-
form distribution. In contrast, for low-frequency entities, the
model continued to prefer in-context knowledge. Importantly,
this is not simply due to an inability to recall these entities from
parametric knowledge. Because AccPKU exceeds PrefPK, the
model retains parametric knowledge for some of these entities,
yet in conflict settings it still prefers in-context knowledge over
parametric knowledge. This tendency to rely on in-context
knowledge for low-frequency entities supports our hypothesis
that the model continues to use in-context knowledge when un-
familiar knowledge arises during training, thereby preventing
degradation of in-context knowledge utilization capability.

Skewness Alone Fails to Build Robust Parametric Knowledge Preference We investigate
whether internal confidence in parametric knowledge aligns with conflict resolution behavior in
models trained with different corpus characteristics. Specifically, we examine whether models pre-
fer parametric knowledge when they are confident about it, as measured by the probability of the
correct answer during parametric knowledge utilization, p(va|pa). For each model, we divide enti-
ties into 10 bins based on their parametric knowledge probability and compute PrefPK for each bin,
then analyze the correlation between confidence and preference.

Figure 6 shows the results for two attributes (birth date and university). For the model
trained with 1% inconsistency noise on a Zipfian corpus (red), we observe a strong positive corre-

1Zipfian distribution: P (r) = r−α/
∑N

k=1 k
−α, where r is the rank (1 = most frequent).
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Figure 7: Training dynamics of knowledge utilization and conflict resolution in Pythia models. (Left)
AccICKU, AccPKU, PrefICK, and PrefPK across training steps for Pythia-6.9B. (Right) Preference
gap (PrefICK−PrefPK) across different model sizes, showing a consistent pattern of initial increase
followed by decline as training progresses.

lation: as parametric knowledge confidence increases, so does the preference for parametric knowl-
edge under conflict . This demonstrates that the model has developed a confidence-calibrated arbi-
tration strategy, where it relies on parametric knowledge when confident and defers to in-context
knowledge when uncertain.

In contrast, the model trained without noise (blue) shows virtually no correlation. Even when the
model exhibits high confidence in its parametric knowledge (high p(va|pa)), it fails to prefer para-
metric knowledge under conflict, instead consistently following in-context knowledge regardless
of its internal confidence. This indicates that while a skewed knowledge distribution preserves in-
context knowledge utilization for unfamiliar entities, it is insufficient on its own to develop a robust,
confidence-aligned arbitration strategy. Only the combination of skewed distribution and modest
inconsistency noise produces models that intelligently arbitrate based on their internal confidence.

4 DISCUSSION

4.1 VALIDATION ON REAL-WORLD MODELS

We have shown through controlled experiments that (i) intra-document repetition enables the joint
emergence of parametric and in-context knowledge utilization, (ii) a small degree of factual incon-
sistency noise within a document biases conflict resolution toward confident parametric knowledge,
and (iii) distributional skew with long-tailed knowledge preserves in-context utilization for unfa-
miliar entities. Because these properties arise naturally in web corpora, we test whether the same
dynamics appear in real-world open-source LLMs.

Using the publicly released checkpoints of the PYTHIA model suite (Biderman et al., 2023), we
evaluate parametric utilization, in-context utilization, and preference under knowledge conflict at
each checkpoint (evaluation details in Figure 14 and Appendix E). As shown in Figure 7 (left),
PYTHIA-6.9B exhibits dynamics consistent with our synthetic experiments: in-context utilization
emerges earlier than parametric utilization, the model initially prefers in-context knowledge under
conflict but gradually shifts toward parametric knowledge, while maintaining high AccICKU for
novel entities throughout training.

To examine how this phase transition varies across model scales, we analyze the preference gap
(PrefICK − PrefPK) for models ranging from 70M to 6.9B parameters (Figure 7 right). All models
exhibit the consistent pattern of initial increase followed by decline. Notably, larger models show
stronger parametric knowledge preference at the end of training, with the preference gap approach-
ing −1 for the largest models, consistent with prior observations that larger models tend to rely more
heavily on their parametric knowledge (Yu et al., 2023). This trend can be attributed to larger models
developing parametric knowledge more rapidly and robustly, leading to higher confidence in their
internal knowledge and consequently stronger preference for it when conflicts arise.

These results indicate that repetition, small amounts of inconsistency noise, and skewed knowledge
distributions in web-scale data naturally reproduce the dynamics observed in our synthetic setting,
suggesting that our findings extend broadly to practical language model pretraining scenarios.
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Figure 8: Correlation between parametric knowledge confidence and preference under conflict be-
fore and after post-training. (Left) Scenario 1: A model pretrained with 1% noise shifts toward
near-zero correlation after clean post-training, mirroring the behavior of models pretrained without
noise. (Right) Scenario 2: A model pretrained without noise develops increasing positive correla-
tion as post-training noise increases, with higher noise levels producing stronger confidence-aligned
parametric knowledge preference.

4.2 OVERWRITING KNOWLEDGE ARBITRATION STRATEGY THROUGH POST-TRAINING

Our findings reveal how training corpus characteristics shape knowledge arbitration strategies during
pretraining. A natural question arises: can these strategies be modified after pretraining through post-
training procedures.

Table 3: Knowledge conflict resolution prefer-
ences before and after instruction tuning(IT) for
Pythia-6.9B and OLMo-7B. Both models show a
shift from parametric knowledge preference to in-
context knowledge preference after IT.

Pythia-6.9B OLMo-7B

PrefPK PrefICK PrefPK PrefICK

Base 0.8677 0.0525 0.5507 0.3894
IT 0.1829 0.7771 0.2137 0.7155

We first examine whether instruction tun-
ing affects arbitration behavior in real-world
models. We evaluate two pairs of base and
instruction-tuned models: Pythia-6.9B, and
OLMo-7B (Groeneveld et al., 2024). As shown
in Table 3, both base models exhibit strong
parametric knowledge preference, consistent
with our observations in Section 4.1. However,
after instruction tuning on Tulu dataset(Wang
et al., 2023), both models show a reversal: para-
metric knowledge preference drops while in-
context knowledge preference increases to over
70%. This suggests that instruction tuning, which typically involves relatively clean and well-
structured data, can significantly alter the arbitration strategy established during pretraining.

Controlled post-training validates the role of noise in arbitration To test whether our observa-
tions extend to post-training, we conduct controlled experiments on synthetic models using answer-
only loss with 1,000 entities trained for 500 steps. We examine two scenarios with Zipfian-pretrained
models (Figure 8): (1) a model pretrained with 1% noise is post-trained on clean data, and (2) a
model pretrained without noise is post-trained with varying noise levels (p ∈ {1%, 5%, 10%, 20%}).

We analyze the confidence-preference correlation by binning entities based on parametric knowl-
edge probability and measuring PrefPK for each bin. In Scenario 1 (left), the noised-pretrained
model’s positive correlation flattens to near-zero after clean post-training, indicating a shift toward
unconditional in-context knowledge preference regardless of confidence. In Scenario 2 (right), the
clean-pretrained model develops increasingly strong positive correlations as noise levels increase,
with 20% noise producing the steepest slope. These bidirectional shifts demonstrate that arbitration
strategies can be systematically modified through post-training data characteristics, validating that
our findings extend beyond pretraining.

Implications These results demonstrate that our findings on corpus characteristics extend beyond
pretraining to post-training scenarios. Simply adjusting the factual consistency of post-training data
is sufficient to systematically reshape arbitration strategies, whether toward trusting external context
or relying on internal knowledge.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORKS

Large language models rely on both parametric and in-context knowledge (Lewis et al., 2021; Mallen
et al., 2022; Ram et al., 2023; Shi et al., 2023). Recent studies show that model preferences in
conflicts depend on confidence and training frequency (Wu et al., 2024; Yu et al., 2023), and can
be steered through attention manipulation or contrastive decoding (Li et al.; Yu et al., 2023; Sun
et al., 2025; Jin et al., 2024). However, these works mainly focus on post-pretraining behavior and
provide limited insight into how the ability to handle the two sources develops during training. A
complementary line of research investigates training dynamics of language models using synthetic
datasets (Allen-Zhu & Li, 2024a;b; Zucchet et al., 2025), enabling controlled studies of how models
acquire and store knowledge. While these studies illuminate the formation of parametric knowledge,
they do not address the simultaneous development of in-context utilization (Olsson et al., 2022) or
the dynamics of conflict resolution. We bridge these directions by conducting the first systematic
analysis of how parametric and in-context knowledge utilization co-emerge and interact during pre-
training.

In parallel, some studies (Chan et al., 2022) that investigate in-context learning with transformer
classifiers on Omniglot datasets (Lake et al., 2019) report that a skewed data distribution is re-
quired for in-context and in-weight (parametric) learning to co-exist. In contrast, our results show
co-existence even under a uniform distribution. We attribute this difference to the task setup: those
classification tasks can be solved solely from exemplars provided in context, predicting only a class
token conditioned on a query, whereas a language model performs next-token prediction for every
data sequence and thus must rely on parametric knowledge for most initial content, which more
strongly incentivizes reliance on parametric knowledge than in exemplars-conditioned classifica-
tion. Building on this distinction, we study knowledge-conflict scenarios (Neeman et al., 2022) and
settings closer to how real-world language models are trained (Brown et al., 2020).

6 CONCLUSION

We present the first systematic analysis of how training corpus characteristics shape parametric and
in-context knowledge utilization in language models. Through controlled experiments on synthetic
biographies and validation on the Pythia model suite, we identify three critical factors that must co-
occur for robust arbitration: (1) intra-document repetition enables both knowledge utilization capa-
bilities to emerge, (2) small degrees of factual inconsistency induce preference for high-confidence
parametric knowledge, and (3) skewed knowledge distributions preserve in-context knowledge uti-
lization for unfamiliar entities. Furthermore, we demonstrate that these arbitration strategies can be
systematically modified through post-training by adjusting data consistency.

REPRODUCIBILITY STATEMENT

We describe the dataset construction process in detail in Section 2 and Appendix A. The hyperpa-
rameters and model configuration used in our experiments are provided in Appendix B. Further-
more, we will release code for experiments publicly. All experiments are implemented using the
HuggingFace TRL library2 and conducted on a single NVIDIA A100 GPU. Each training run
requires approximately 4–6 hours.
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A SYNTHETIC BIOGRAPHIES DATASET CONSTRUCTION

Following prior work (Allen-Zhu & Li, 2024a; Zucchet et al., 2025), we first construct N
synthetic person profiles. Each profile contains four attributes: birth date, birth city,
university, and major. Names (first/middle/last) are sampled by randomly composing entries
from a public name database.3 For birth date, we sample a date uniformly from 1900–2099. For
birth city and university, we sample from curated lists of 200 values each, and for major
from a list of 100 values, all derived from Wikipedia.4 For each attribute, we sample 7 distinct sur-
face templates from a finite template pool. An example of templates for birth date is shown
below.

An example of templates for birth date

1. person was born on birth date.

2. person came into the world on birth date.

3. person entered this world on birth date.

4. person was brought into the world on birth date.

5. person took their first breath on birth date.

6. person began their life journey on birth date.

7. person celebrates their birthday on birth date.

8. person first opened their eyes on birth date.

9. person was welcomed into life on birth date.

10. person arrived on birth date.

11. person’s story started on birth date.

12. person was born to the world on birth date.

13. person was delivered into the world on birth date.

14. person was given life on birth date.

15. person was welcomed into the world on birth date.

16. person began their journey on Earth on birth date.

17. person made their debut in the world on birth date.

18. person became a part of the world on birth date.

19. person was born into this life on birth date.

20. person came to life on birth date.

We then create paragraphs containing each person’s biography with a randomized attribute order
as follows: using 6 of the templates, we generate six paragraphs per entity; five are reserved for
training and one is used as the evaluation in-context paragraph. The remaining (seventh) template
is held out as a closed-style test probe designed to elicit the target attribute. An illustration of the
resulting dataset is shown in Figure 9.

B DETAILS ON TRAINING LANGUAGE MODELS

For our controlled experiments, we use a GPT-2–style decoder-only Transformer5. The model con-
figuration is summarized in Table 4. Following Hoffmann et al. (2022), we adopt the settings used
in Zucchet et al. (2025). The training hyperparameters are listed in Table 5.

3https://github.com/smashew/NameDatabases/tree/master/NamesDatabases
4https://en.wikipedia.org/wiki/
5https://huggingface.co/openai-community/gpt2
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Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika 
Klara Wickizer received their diploma from Drew University. Annika Klara 
Wickizer was welcomed into life on November 10, 2079. Annika Klara 
Wickizer was educated in the field of Information Systems.

Annika Klara Wickizer was welcomed into the world in Roseville, CA. 
Annika Klara Wickizer celebrates their birthday on November 10, 2079. 
Annika Klara Wickizer earned qualifications in Information Systems. 
Annika Klara Wickizer pursued higher education at Drew University.Annika Klara Wickizer completed their studies in Information Systems. 

Annika Klara Wickizer was born into the world in Roseville, CA. Annika 
Klara Wickizer was given life on November 10, 2079. Annika Klara 
Wickizer took courses at Drew University.

Annika Klara Wickizer was brought into the world on November 10, 2079. 
Annika Klara Wickizer began their earthly life in Roseville, CA. Annika 
Klara Wickizer was a student of Information Systems. Annika Klara 
Wickizer was enrolled at Drew University.

Annika Klara Wickizer’s story started on _____
Annika Klara Wickizer was given life in ____
Annika Klara Wickizer was educated at ____
Annika Klara Wickizer developed a foundation in ____

N Synthetic Profiles
5 paraphrased paragraphs for training 

A paragraph for in-context knowledge in evaluationTest Probe

Annika Klara Wickizer

Roseville, CAbirth_city

November 10, 2079birth_date

Information Systemsmajor

Drew Universityuniversity

Figure 9: An example of the synthetic dataset. Each profile consists of four attributes (birth date,
birth city, university, major), with paragraphs for training, a paragraph for in-context
knowledge in evaluation, and test probes for eliciting the model to generate the attributes of each
entity.

Table 4: Model architecture.

Component Value

Embedding dimension 512
Layers 8
Attention heads 8
FFN inner dimension 2048
Context length 512

C EXAMPLE OF FACTUAL INCONSISTENCY NOISE WITHIN A DOCUMENT

Figure 10 illustrates a document from the REPEATED+MIX corpus in which factual inconsistency
noise has been injected. The value highlighted in pink was injected as noise with some probability
and therefore does not match the latter original value, “November 10, 2079.”

D ADDITIONAL EXPERIMENTAL RESULTS

We further examine the training dynamics by systematically varying several factors. Unless other-
wise noted, all experiments are conducted on the REPEATED+MIX corpus.

D.1 EFFECT OF THE NUMBER OF TRAINING ENTITIES

Figure 11 compares REPEATED+MIX runs with 50k, 100k, and 200k training entities. With 50k
entities, both in-context knowledge utilization (AccICKU) and parametric knowledge utilization
(AccPKU) emerge, with AccICKU activating earlier and AccPKU following as training stabilizes.
In contrast, for 100k and 200k entities, AccPKU fails to rise: the model learns to use in-context
knowledge but does not develop robust parametric utilization.

D.2 EFFECT OF INTRA-DOCUMENT INCONSISTENCY NOISE

Figure 12 examines training dynamics under intra-document factual inconsistency levels of 1%,
5%, and 10%. Even 1% noise is sufficient to induce a phase shift in conflict-time preference: as
AccPKU stabilizes, the model transitions from preferring in-context knowledge (PrefICK) to pre-
ferring parametric knowledge (PrefPK). Increasing noise accelerates this shift but also degrades
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Table 5: Training hyperparameters.

Hyperparameter Value

Max training steps 16,000
Batch size 128
Learning rate 4× 10−4

Weight decay 0.10
LR scheduler Cosine
Sequence length 512
Numerical precision bfloat16

Annika Klara Wickizer was welcomed into the world in Roseville, CA. Annika Klara Wickizer 
celebrates their birthday on August 5, 1999   . Annika Klara Wickizer earned 
qualifications in Information Systems. Annika Klara Wickizer pursued higher education at 
Drew University.

Dara Angila Honey was given life on April 6, 1978. Dara Angila Honey focused their 
academic efforts on Industrial. Dara Angila Honey entered this world in Indianapolis, IN. 
Dara Angila Honey achieved academic success at Fisk University.

Dara Angila Honey chose Industrial as their field of study. Dara Angila Honey completed a 
program at Fisk University. Dara Angila Honey was welcomed into life on April 6, 1978. Dara 
Angila Honey became a part of the world in Indianapolis, IN.

Annika Klara Wickizer first opened their eyes in Roseville, CA. Annika Klara Wickizer received 
their diploma from Drew University. Annika Klara Wickizer was welcomed into life on 
November 10, 2079. Annika Klara Wickizer was educated in the field of Information 
Systems.

Roselee Justine Woolem gained academic grounding in Business Analytics. Roselee Justine 
Woolem first opened their eyes in Phoenix, AZ. Roselee Justine Woolem studied at Hamilton 
College. Roselee Justine Woolem was brought into the world on August 12, 2083.

Roselee Justine Woolem entered this world on August 12, 2083. Roselee Justine Woolem 
majored in Business Analytics. Roselee Justine Woolem began their life in Phoenix, AZ. 
Roselee Justine Woolem developed expertise at Hamilton College.

Figure 10: Example of the document injected inconsistency noise

AccICKU at convergence, indicating over-reliance on parametric knowledge and a reduced ability to
use in-context knowledge.

D.3 EFFECT OF DISTRIBUTIONAL SKEW

Figure 13 examines training dynamics under Zipfian sampling with α ∈ {0.5, 1.0, 2.0}. A near-
uniform regime (α=0.5) yields progressive degeneration of AccICKU over training, consistent with
the model drifting toward parametric recall even for unfamiliar entities. An overly skewed regime
(α=2.0) produces undesirable dynamics—parametric utilization fails to activate—suggesting that
extreme concentration of exposure undermines balanced capability growth. A moderate skew
(α=1.0) best preserves AccICKU for rare or novel entities while still supporting stable AccPKU

and a robust preference for parametric knowledge on frequently seen facts.
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Figure 11: Training dynamics of AccICKU and AccPKU under different numbers of training entities.
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Figure 12: Training dynamics of AccICKU and AccPKU under different levels of intra-document
inconsistency noise.

E EXPERIMENTAL DETAILS FOR REAL-WORLD LARGE LANGUAGE MODELS

We adapt the scenarios used in our controlled experiments so that they can be applied to models
trained on real web corpora. Since web corpora contain abundant information about countries and
their capitals, we designate the set of training entities Etrain as Real-World Countries and evaluate
whether the model can correctly predict their corresponding capital cities. To this end, we construct
a Real-World Country–Capital Set based on the country–capital data pairs used in Hernandez et al.
(2023). Using this dataset, we build question–answer style test probes as illustrated in Figure 14,
and define the Parametric Knowledge Utilization scenario. We then measure AccPKU by checking
whether the model’s generations within 64 tokens contain the correct answer.

For the In-Context Knowledge Utilization scenario, we need to evaluate knowledge unseen during
training. Therefore, we create 100 artificial country–capital pairs that do not exist in the real world,
forming a Synthetic Country–Capital Set. As described in Section 2.3, we embed these pairs into a
context and provide them to the model along with a test probe, measuring AccICKU by verifying
whether the correct answer appears within the first 64 generated tokens.

Finally, for Knowledge Conflict Resolution, we perturb the in-context knowledge by replacing the
true answers in the Real-World Country–Capital Set with incorrect ones. We then provide these per-
turbed contexts together with the test probes and evaluate whether the model follows the perturbed
in-context knowledge or the true answer. This allows us to measure PrefICK and PrefPK.

F ATTENTION PATTERN ANALYSIS

In this section, we provide additional analysis of attention patterns to understand the mechanisms
underlying the degradation of in-context knowledge utilization observed in Section 3.2. Specifically,
we investigate how the model trained on the REPEATED corpus with 1% inconsistency noise allo-
cates attention during the training process, which allows us to indirectly examine the circuits used
for parametric versus in-context knowledge utilization.

Attention Patterns During In-Context Knowledge Utilization To understand why in-context
knowledge utilization degrades when trained with inconsistency noise, we analyzed the attention
patterns at the last token position of the test probe during in-context knowledge utilization for
Eunknown entities. Figure 15 shows the layer-wise sum of attention mass over the course of train-
ing. We distinguish between two types of attention targets: (1) name tokens in the test probe (shown
in green), which are associated with parametric knowledge retrieval, and (2) target attribute tokens
in the context (shown in blue), which are necessary for in-context knowledge utilization.
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Figure 13: Training dynamics of AccICKU and AccPKU as a function of the Zipf exponent α.

Historically, Nenathu has been the capital… The capital of Argentina is Beijing.

Q: What is the capital of Argentina? A :____

Q: What is the capital of Argentina? A:____

The official capital of Pradapra is Nui.

The city recognized as Rinquo's capital is 
Shina.

Q: What is the capital of Rinquo? A :____

Shina. 
Buenos Aires

Buenos Aires

Parametric Knowledge(PK) 
Utilization 

In-context Knowledge(ICK) 
Utilization 

Knowledge Conflict Resolution

In-context Knowledge

Parametric Knowledge

Pythia

Pythia
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Perturbed In-context Knowledge

~Real-World Capital-Country
~Synthetic Capital-Country ~Real-World Capital-Country

Figure 14: Three knowledge utilization scenarios in real-world large language models. Left: Para-
metric knowledge utilization, where the model recalls country–capital facts from real-world data that
were encoded in its parameters during training. Middle: In-context knowledge utilization, where
the model relies on synthetic country–capital pairs provided only in the context. Right: Knowledge
conflict resolution, where the model is queried about real-world countries while the prompt supplies
perturbed (incorrect) capitals, allowing us to examine whether the model prefers parametric knowl-
edge or the perturbed in-context knowledge.

Our analysis reveals a clear temporal pattern: early in training, attention focuses heavily on target
tokens in the context, which is consistent with successful in-context knowledge utilization. However,
as training progresses and parametric knowledge utilization stabilizes, attention gradually shifts to-
ward name tokens in the test probe. This shift is particularly notable because it occurs even when
evaluating on Eunknown entities—entities for which the model has no parametric knowledge.

Interpretation Prior work (Meng et al., 2022) has established that recalling parametric knowledge
requires retrieving information from relevant subject tokens through specific attention circuits (Zuc-
chet et al., 2025; Geva et al., 2023). The observed shift in attention patterns suggests that, even for
unknown entities, the model attempts to recall information from name tokens to utilize parametric
knowledge, following the same mechanisms established for parametric knowledge utilization during
training.

This finding provides crucial insight into the degradation of in-context knowledge utilization ob-
served in Section 3.2. While the model can distinguish between entities it knows (high confidence,
low entropy) and entities it does not know (low confidence, high entropy), as shown in Table 1, it
appears to have forgotten how to leverage in-context knowledge. The attention patterns reveal that
the model has not lost the ability to recognize unfamiliar entities, but rather has shifted to preferen-
tially using parametric knowledge retrieval circuits even in situations where in-context knowledge
would be more appropriate.

In other words, the presence of inconsistency noise during training leads the model to develop
a strong bias toward parametric knowledge utilization mechanisms. This bias persists even when
parametric knowledge is unavailable, causing the model to attempt parametric retrieval for unknown
entities rather than falling back on available in-context information. This mechanistic understanding
helps explain why skewed knowledge distribution (Section 3.3) is necessary to preserve in-context
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Figure 15: Changes in the layer-wise sum of attention mass at the last token of the test probe when
the model trained with 1% noise performs in-context knowledge utilization for Eunknown entities.
Green indicates the attention allocated to name tokens in the test probe, while blue indicates the
attention allocated to target tokens in the context. As training progresses, attention gradually shifts
from context target tokens to name tokens, indicating a transition from in-context knowledge uti-
lization circuits to parametric knowledge retrieval circuits.

knowledge utilization: the continuous presence of unfamiliar entities in the training distribution pre-
vents the complete abandonment of in-context knowledge circuits.

G THE USE OF LARGE LANGUAGE MODELS

We used large language models solely to aid and polish the writing of this paper, including tasks
such as grammar correction, wording refinement, and minor stylistic edits.
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