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Abstract

This paper deals with stochastic optimization problems involving Markovian1

noise with a zero-order oracle. We present and analyze a novel derivative-2

free method for solving such problems in strongly convex smooth and3

non-smooth settings with both one-point and two-point feedback oracles.4

Using a randomized batching scheme, we show that when mixing time τ of5

the underlying noise sequence is less than the dimension of the problem d, the6

convergence estimates of our method do not depend on τ . This observation7

provides an efficient way to interact with Markovian stochasticity: instead8

of invoking the expensive first-order oracle, one should use the zero-order9

oracle. Finally, we complement our upper bounds with the corresponding10

lower bounds. This confirms the optimality of our results.11

1 Introduction12

Stochasticity is a fundamental aspect of many optimization problems, naturally arising13

in the field of machine learning [48, 28]. Stochastic gradient descent (SGD) [45] and its14

accelerated variants [39, 25] have become a de facto optimizers for modern large models15

training. Theoretical properties of SGD have been extensively studied under various statistical16

frameworks [36, 24, 10, 56], often relying on the assumption that noise is independent17

and identically distributed (i.i.d.). However, in many real-world applications — including18

reinforcement learning (RL) [6, 16], distributed optimization [35, 31], and bandit problems19

[3] — noise is not i.i.d., instead exhibiting correlations or Markovian structure.20

For instance, in the mentioned growing field of RL, sequential interactions with the environ-21

ment induce state-dependent structure of the noise, creating a need for non-i.i.d. noise aware22

algorithms. Although several gradient-based methods for Markovian stochastic oracles have23

been studied in the past decade [14, 18], policy optimization in RL is based solely on reward24

feedback, making traditional methods inapplicable, since there is no access to first-order25

information [46, 9, 19]. Zero-order optimization (ZOO) methods are specifically developed26

to address such problems, and are used in scenarios where gradients are unavailable or27

prohibitively expensive to compute. Apart from RL, ZOO techniques are widely employed in28

adversarial attack generation [8], hyperparameter tuning [47, 57], continuous bandits [7, 49]29

and other applications [54, 33]. While the literature on ZOO is extensive, this work is, to30

our knowledge, the first study of optimization problem with both zero-order information and31

Markovian noise, aimed at developing an optimal algorithm for a large family of problems32

from the intersection of these two areas.33
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1.1 Related works34

⋄ Zero-order methods is one of the key and oldest areas of optimization. There are various35

zero-order approaches, here we can briefly highlight, e.g., one-dimensional methods [32, 42]36

or their high-dimensional analogues [41], ellipsoid algorithms [58] and searches along random37

directions [4]. Currently, the most popular and most studied mechanism behind ZOO38

methods is the finite-difference approximation of the gradient described in [43, 20, 40]. The39

idea is simple: querying two sufficiently close points is essentially equivalent to finding a40

value of the directional derivative of the function:41

⟨∇f(x), e⟩ ≈ f(x + te) − f(x)
t

≈ f(x + te) − f(x − te)
2t

, (1)

where e is a random direction. It can be a random coordinate, a vector from the Euclidean42

sphere or a sample of the Gaussian distribution. The approximation (1) in turn leads back to43

the gradient methods or coordinate algorithms of Nesterov [38]. There are, however, several44

differences:45

• First, to get full gradient information, the algorithm would need d queries instead of one46

gradient oracle call (here d is the dimension of x).47

• Second, if the ZO oracle is inexact, i.e. only noisy values of function are available, then48

finite difference schemes can fail if noise components do not cancel out.49

The setting of the second point, when function evaluations experience zero-mean additive50

perturbations, is called Stochastic ZOO. The stochasticity, as noted before, is abundant in51

the modern optimization world. To tackle this issue, additional assumptions about the noise52

structure are required. Here we briefly discuss two main ideas adopted in the literature, and53

refer the reader to Section 2 for precise definitions.54

In the case of two-point feedback, we assume that for a fixed value of the noise variable one55

can call the stochastic zero-order oracle at least twice. It means that we can compute the56

finite difference approximation of the following form:57

p(x, ξ, e) = f(x + te, ξ) − f(x − te, ξ)
2t

≈ ⟨∇xf(x, ξ), e⟩ (2)

Such approximation produces an estimate for the directional derivative of a noisy realization58

f(·, ξ) of the function f . As mentioned before, the approximation (2) can be used instead of59

the (stochastic) gradient in first-order methods. In the case of independent randomness, a60

large number of works are based on this idea. There are results for both non-smooth and61

smooth convex problems built on classical and accelerated gradient methods of Nesterov and62

Spokoiny [40]. In the scope of our paper, we are interested in the results for smooth strongly63

convex problems from [17], namely estimates on zero-order oracle calls to achieve ε-solution64

in terms of ∥x − x∗∥: O( dσ2
2

µ2ε ). Here σ2 is introduced as the variance of the gradient, i.e. it is65

assumed that Eξ∇f(x, ξ) = ∇f(x) and Eξ∥∇f(x, ξ) − ∇f(x)∥2 ≤ σ2
2 . The main limitation66

of two-point approach is that several evaluations with the same noise variable are required,67

which is well suited for problems like empirical risk optimization [34], but can be a major68

barrier for RL or online optimization.69

In the one-point feedback setting, a more general stochasticity is assumed. In this case, each70

call to the zero-order oracle generates a new randomness. Now the approximation (1) looks71

as follows72

p(x, ξ±, e) = f(x + te, ξ+) − f(x − te, ξ−)
2t

(3)

Using different ξ+ and ξ− in (3) renders any conditions on the properties of ∇f(·, ξ) useless.73

Instead, it is assumed that Eξf(x, ξ) = f(x) and Eξ|f(x, ξ) − f(x)|2 ≤ σ2
1 . With one-point74

feedback, the major problem is choosing the right shift t for the finite difference scheme.75

Picking it too small results in an amplification of the additive noise, and taking t too big76

leads to a poor gradient estimate. Because of this variance trade-off, the optimal rate for77

methods with one-point approximation is worse than for two-point feedback. In particular,78

for smooth strongly convex problems we have the following estimate on zero-order oracle79

calls [23]: O( d2σ2
1

µ3ε2 ).80
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Although zero-order gradient approximation schemes suffer from high variance, there is a81

surprising property that makes them superior in non-smooth optimization [22, 44, 49]. The82

idea goes back to the 70s and utilizes the fact that83

E[e · p(x, ξ(±), e)] = 1
d ∇ft(x), where ft is a smoothed function, defined as

ft(x) = Er [f(x + tr)] with r ∼ RBd
2

In fact, it can be shown that ft is
√

dG
t -smooth if f is G-Lipschitz. This makes zero-order84

approximation a suitable candidate for a stochastic gradient of ft. Optimizing this function85

with a first-order method produces some solution, but it may not be the optima of f [22].86

From this point, there is a game – for small t the functions f and ft are closer and for big t87

the function ft is easier to optimize as it gets smoother.88

In more recent works, there have been many improvements in theoretical understanding of89

ZO methods. The authors consider higher-order smoothness of the underlying function [2],90

tackle non-convex non-smooth problems [44], take arbitrary Bregman geometry to benefit91

in terms of oracle complexity [49, 29], and come up with sharp information-theoretic lower92

bounds to understand computational limits [15, 1]. But none of them consider Markovian93

stochasticity.94

⋄ Markovian first-order methods. While the literature on stochastic optimization with95

i.i.d. noise is extensive, research addressing the Markovian setting remains relatively sparse.96

In our paper, we focus on the most "friendly" type of uniformly geometrically ergodic Markov97

chains (see Section 2 for precise definitions).98

Duchi et al. [14] conducted pioneering work on non-i.i.d. noise, investigating the Ergodic99

Mirror Descent algorithm and establishing optimal convergence rates for non-smooth convex100

problems. For smooth problems there were different attempts to get record-breaking estimates101

on the first-order oracle [12, 11, 59, 18]. Finally, the optimal results were obtained for both102

convex and non-convex problems in the works of Beznosikov et al. [5], Solodkin et al. [52]. In103

particular, for smooth strongly convex objectives under Markovian noise the authors give the104

complexity of the form: O( τσ2
2

µ2ε ), where τ is defined as the mixing time of the corresponding105

Markov chain (see Section 2). Note that these works utilize Multilevel Monte Carlo (MLMC)106

batching technique, which helps to effectively interact with Markovian noise. We will need107

this approach as well. Note that it was first considered in Markovian gradient optimization108

by Dorfman and Levy [13] for automatic adaptation to unknown τ .109

⋄ Hypothesis. The complexity estimate for strongly convex first-order stochastic meth-110

ods is O( σ2
2

µ2ε ) [36, 37]. Lower bounds for the same class of problems and methods111

show that the result is unimprovable [58]. As mentioned before, the transition from112

i.i.d. stochasticity to Markovian stochasticity increases the estimate by τ times. This113

result is also optimal as shown by Beznosikov et al. [5]. At the same time, going114

from gradient oracle to zero-order methods adds a multiplier d in the two-point feed-115

back and d2
/ε in the one-point case. And this estimate is unimprovable as well [1, 15].116

FO

d

ZO 2P
IID σ2

2
µ2ε d · σ2

2
µ2ε

τ ? ?

Mark. τ · σ2
2

µ2ε ? dτ · σ2
2

µ2ε

The hypothesis arises that the transition to zero-117

order Markov optimization adds two multipliers118

at once: dτ and d2τ/ε for two- and one-point. It is119

illustrated in the following diagram for two-point120

feedback:121

1.2 Our contribution122

Our main contribution is the answer to the hy-123

pothesis above: surprisingly, it is not true. In more detail:124

⋄ Accelerated SGD. We present the first analysis of Zero-Order Accelerated SGD under125

Markovian noise, considering both two-point and one-point feedback. Contrary to the126

expected multiplicative scaling of convergence rates with both dimensionality and mixing127

time, our analysis reveals a significant acceleration, as presented in Figure 1. It turns out128

that if τ is smaller than d, our results do not differ at all from the gradient-free methods129
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with independent stochasticity. The key technique behind this acceleration is described in130

Section 2.1. The theory is also numerically validated in Section 3.131
Figure 1: Summary of upper bounds. For notation, see Table 1

Smooth Non-smooth
IID Markov. IID Markov.

FO
σ2

2
µ2ε

[45] τ
σ2

2
µ2ε

[5] G2
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[50] τ G2
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[14]1

ZO
2P d

σ2
2

µ2ε
[30] (d + τ)

σ2
2

µ2ε
d G2

µ2ε
[22] (d + τ) G2
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ZO
1P d2 σ2

1
µ3ε2 [2]2 d(d + τ)

Lσ2
1

µ3ε2 d2 σ2
1G2

µ4ε3 [23] d(d + τ)
σ2

1G2

µ4ε3

⋄ Non-smooth problems. We132

also consider non-smooth problems133

with Markovian noise. Using the134

smoothing technique we come up135

with a corresponding upper bounds136

in this case, as shown in Figure 1.137

The details of these bounds are pre-138

sented in Appendix A.139

⋄ Computational efficiency. First, as noted above, our method gives the same oracle140

complexity for any τ ≤ d. Moreover, if we assume that calling a zero-order oracle is d times141

cheaper than computing the corresponding gradient, then the gradient method with Markov142

noise will require resources proportionally to d · τ — the cost of one oracle call is d and143

the complexity scales as τ for the first-order method from Figure 1. At the same time, the144

resource complexity of our zero-order method is proportional to d + τ .145

⋄ Lower bounds. In Section 2.3 we establish the first information-theoretic lower bounds146

for solving Markovian optimization problems with one-point and two-point feedback. Our147

results match the convergence guarantee of our algorithm up to logarithmic factors, showing148

that the analysis is accurate and no further improvement is possible.149

Table 1: Notations & Definitions
Sym. Definition Sym. Definition

∥·∥, ⟨·, ·⟩ Norm, dot product, assumed Euclidean by default ε ∥x − x∗∥2

Z, Z Complete separable metric space, its Borel σ-algebra d Problem dimension
Q Markov kernel on Z × Z L Gradient’s Lipshitz constant
Pξ, Eξ Probability, Expectation under initial distribution ξ3 µ Strong convexity constant
{Zk} Canonical process with kernel Q G Function’s Lipshitz constant
RBd

2 , RSd
2 Uniform distribution on unit a ℓ2-ball, -sphere σ2

1 |F (x, Z) − f(x)|2 ≤ σ2
1

e Random direction, e ∼ RSd
2 σ2

2 ∥∇F (x, Z) − ∇f(x)∥2 ≤ σ2
2

an ≲ bn ∃c ∈ R (problem-independent): an ≤ cbn for all n τ Mixing time of Z

an ≃ bn an ≲ bn and bn ≲ an g, ĝ Gradient estimators
T = Õ(S) T ≤ poly(log S) · S as ε → 0 ft(x) Er [f(x + tr)] , r ∼ RBd

2

2 Main results150

We are now ready for a more formal presentation. In this paper, we study the minimization151

problem152

min
x∈Rd

f(x) := EZ∼π [F (x, Z)] , (4)

where π is an unknown distribution and access to the function f (not to its gradient ∇f) is153

available through a stochastic one-point or two-point oracle F (x, Z).154

In our analysis, we will use a set of assumptions on the underlying function f and its oracle,155

starting with smoothness and convexity:156

Assumption 1. The function f is L-smooth on Rd with L > 0, i.e., it is differentiable and157

there is a constant L > 0 such that the following inequality holds for all x, y ∈ Rd:158

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥.

In the two-point feedback setting, we require the following generalization:159

Assumption 1′. For all Z ∈ Z the function F (·, Z) is L-smooth on Rd.160

Note that the uniform 1′ implies 1.161

1The authors consider general convex case. Using standard restart technique, we get the
corresponding bound in the strongly convex case.

2The noise is assumed to be point-independent.
3By construction, for any A ∈ Z, we have Pξ(Zk ∈ A | Zk−1) = Q(Zk−1, A), Pξ-a.s.
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Assumption 2. The function f is µ-strongly convex on Rd, i.e., it is continuously dif-162

ferentiable and there is a constant µ > 0 such that the following inequality holds for all163

x, y ∈ Rd:164
µ

2 ∥x − y∥2 ≤ f(x) − f(y) − ⟨∇f(y), x − y⟩. (5)

We now turn to assumptions on the sequence of noise states {Zi}∞
i=0. Specifically, we165

consider the case where {Zi}∞
i=0 forms a time-homogeneous Markov chain. Let Q denote the166

corresponding Markov kernel. We impose the following assumption on Q to characterize its167

mixing properties:168

Assumption 3. {Zi}∞
i=0 is a stationary Markov chain on (Z, Z) with Markov kernel Q and169

unique invariant distribution π. Moreover, Q is uniformly geometrically ergodic with mixing170

time τ ∈ N, i.e., for every k ∈ N,171

∆(Qk) = sup
z,z′∈Z

(1/2)
∥∥Qk(z, ·) − Qk(z′, ·)

∥∥
TV ≤ (1/4)⌊k/τ⌋. (6)

Assumption 3 is common in the literature on Markovian stochasticity [14, 12, 13, 5, 52]. It172

includes, for instance, irreducible aperiodic finite Markov chains [18]. The mixing time τ173

reflects how quickly the distribution of the chain approaches stationarity, providing a natural174

measure of the temporal dependence in the data.175

Next, we specify our assumptions on the oracle. As discussed in Section 1.1, these assumptions176

differ based on the type of feedback.177

Assumption 4 (for one-point). For all x ∈ Rd it holds that Eπ[F (x, Z)] = f(x). Moreover,178

for all Z ∈ Z and x ∈ Rd it holds that179

|F (x, Z) − f(x)|2 ≤ σ2
1 ,

Assumption 4′ (for two-point). For all x ∈ Rd it holds that Eπ[∇F (x, Z)] = ∇f(x).180

Moreover, for all Z ∈ Z and x ∈ Rd it holds that181

∥∇F (x, Z) − ∇f(x)∥2 ≤ σ2
2 .

Recent works on stochastic ZOO methods have considered milder assumptions, such as182

bounded variance (see Section 1.1). However, the uniform boundedness assumed in Assump-183

tions 4 and 4′, is standard in analyses under Markovian noise [14, 12, 13, 5, 52]. These184

assumptions can be relaxed under stronger conditions, e.g., uniform convexity and smoothness185

of F (·, Z) [18].186

Assumptions 3 and 4 allow us to reduce the variance of the noise via batching, similarly the187

to i.i.d. setting. This is captured in the following technical lemma:188

Lemma 1. Let Assumptions 3 and 4(4′) hold. Then for any n ≥ 1 and x ∈ Rd and any189

initial distribution ξ on (Z, Z), we have190

Eξ

[
1
n

n∑
i=1

F (x, Zi) − f(x)
]2

≲
τ

n
σ2

1, Eξ

∥∥∥∥∥ 1
n

n∑
i=1

∇F (x, Zi) − ∇f(x)
∥∥∥∥∥

2

≲
τ

n
σ2

2 .

2.1 Batching technique191

In this section, we describe the main tools used to establish the (d + τ)-type scaling of the192

error rate. We will focus on reducing the variance and bias of gradient estimators using a193

specialized batching approach.194

We begin by fixing a common building block of our gradient estimators at a point x for both195

one-point and two-point feedback, as introduced in Section 1.1:196

ĝ(x, Z(±), e) = d · p(x, Z(±), e) · e = e ·


d

F (x + te, Z+) − F (x − te, Z−)
2t

(one-point),

d
F (x + te, Z) − F (x − te, Z)

2t
(two-point).

These estimators exhibit a twofold randomness that affects how rapidly they concentrate197

around the true gradient, as we will discuss below.198
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For clarity, we focus our discussion on the one-point case, although our conclusions extend199

to the two-point case as well.200

A widely used variance reduction technique is mini-batching, where one computes F (x, Zi)201

over a batch of noise variables {Zi}n
i=1. The mini-batch gradient estimator is given by:202

ĝmb(x) = 1
n

n∑
i=1

ĝ(x, Z±
i , e) = e · d

pmb︷ ︸︸ ︷(
1
n

n∑
i=1

p(x, Z±
i , e)

)
.

Let us estimate the scaling of its variance EeEZ∥ĝmb − ∇f∥2 with the noise level σ2
1 . As203

EZ ĝmb ≈ d f(x+te)−f(x−te)
2t ≈ d⟨∇f, e⟩ we would like to estimate the following for any fixed204

direction e:205

EZ

[
d · pmb(x) − d⟨∇f, e⟩

]2≈ d2

t2 EZ

[ 1
n

n∑
i=1

F (x + te, Z+
i ) − f(x + te)

]2 (1)
≈ d2τ

n

σ2
1

t2 . (7)

With that, we bound the variance:206

EeEZ∥ĝmb − ∇f∥2 ≳ EeEZ∥ĝmb − EZ ĝmb∥2 ≈ EeEZ∥ĝmb − d⟨∇f, e⟩∥2 (7)
≈ d2τσ2

1
nt2 . (8)

Can the mini-batching scheme be improved?207

This subsection explores an unexpected source of improvement that contradicts our initial208

hypothesis. Specifically, we identify an inefficiency in the current use of samples Zi, which209

becomes evident from two perspectives. Equation (8) shows the variance scales as τ
n . If210

we could reduce τ by a factor of k, we would need k-times fewer samples to maintain211

the same variance. This leads us to the idea of sparsified sampling. We partition the212

Markov noise chain {Zi} into k subchains {Zk·i+r} for r = 0 . . . k − 1. This corresponds to a213

mixing time of ⌈ τ
k ⌉ for each subchain (see (3)), effectively reducing temporal correlation - a214

natural consequence of sampling every k-th element of the original chain. Thus, sampling215

from any single subchain could yield a min(k, τ)-fold reduction in the number of samples216

needed (although such procedure would still require all intermediate oracle calls, yielding no217

computational speedup).218

For a concrete illustration of that inefficiency, consider a lazy Markov chain that remains219

in the same state for (an average of) τ steps before transitioning uniformly at random. In220

such a case, all oracle queries F (x, Z) for a fixed x return the same value for τ consecutive221

steps. Therefore, retaining only every τ -th estimate ĝ would yield a mini-batch of equivalent222

quality.223

In summary, we observe that the mini-batching scheme could, in principle, operate just as224

effectively by retaining only every k-th sample and discarding the rest. This might suggest225

that better utilization of the samples is possible. First order methods, nevertheless, are226

unable to exploit this redundancy (as shown by [5]’s lower bound) and are effectively forced227

to wait out the τ -step mixing window. In contrast, we can exploit this structure by querying228

finite differences along different directions to estimate the gradient better. Specifically, we229

construct d subchains, and use the sample from the r-th subchain Zd·i+r to estimate r-th230

partial derivative F (x+ter,Z)−F (x−ter,Z)
2t , effectively restoring the full gradient coordinate-wise.231

Let us estimate the resulting variance reduction. First, we achieve a d-fold reduction by232

reconstructing all d gradient coordinates. Second, each coordinate now operates on a chain233

with mixing time ⌈ τ
d ⌉, yielding an additional factor of min(d, τ). However, because batches234

are now split across d coordinates, each batch is d times smaller than before, introducing235

a factor of d loss. The net variance reduction is therefore min(d, τ), and the final scaling236

becomes d · dτ
min(d,τ) = d · max(d, τ) ≃ d(d + τ).237

Random directions238

This insight can be extended to a simpler yet equally effective method. Instead of assigning239

directions deterministically, we associate each sample with a random direction e ∈ RSd
2 ,240

forming the estimator:241

ĝrd[n](x, Z, e) = 1
n

n∑
i=1

ĝ(x, Zi, ei).
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While the above discussion was intuitive, we now outline a more formal approach (see242

Lemma 5 for details). As lazy Markov chain is effectively equivalent to stochastic i.i.d.243

τ -point feedback setting, we follow Corollary 2 of [15], who decompose the total variance244

into two terms:245

E∥ĝrd − ∇f(x)∥2 ≤ 2E∥ĝrd − Eeĝrd∥2 + 2E∥Eeĝrd − ∇f(x)∥2
.

Each of the two terms individually eliminates one factor from the d2τ dependence.246

The first term:247

E∥ĝrd − Eeĝrd∥2 = EZEe

∥∥∥∥∥∥∥
1
n

n∑
i=1

[ĝ(x, Zi, ei) − Eei
ĝ(x, Zi, ei)]︸ ︷︷ ︸

Ee[·]=0, independent w.r.t. e

∥∥∥∥∥∥∥
2

= 1
n2

n∑
i=1

E∥ĝ(x, Zi, ei) − Eei
ĝ(x, Zi, ei)∥2

is independent of τ since Assumption 4 bounds each term directly.248

For the second term, we observe that Eeĝrd = Eeĝmb, and thus the bound involves249

E
∥∥Eeĝmb − ∇f(x)2

∥∥. This is crucially different from the d2τ dependence that appeared in250

the mini-batch case, when we considered E
∥∥ĝmb − ∇f(x)2

∥∥. Intuitively, the expectation251

over directions helps recover the full gradient rather than a directional component, thereby252

reducing variance with respect to d.253

Multilevel Monte Carlo254

The estimator ĝrd is not our final construction. While it controls variance, the temporal255

correlation in noise may introduce significant bias. A well-established approach to mitigating256

this is MLMC, widely used in the statistical literature [27, 26], and more recently in gradient257

optimization [13, 5]. Here is our interpretation.258

With parameters J, l, M, B from Table 2, {Zi} - 2J l samples from Z and {ei} - random259

directions we introduce MLMC estimator:260

ĝml(x) = ĝrd[l](x) +
{

2J
[
ĝrd

[
2J l
]

(x) − ĝrd

[
2J−1l

]
(x)
]
, if 2J ≤ M

0, otherwise
ĝml is our final gradient estimator, with the following guarantees:261

Lemma 2 (for one-point). Let Assumptions 1, 3 and 4 hold. For any initial distribution1 ξ262

on (Z, Z) the gradient estimates ĝml satisfy E[ĝml] = E
[
ĝrd

[
2⌊log2 M⌋l

]]
. Moreover,263

E∥∇ft(x) − ĝml(x)∥2 ≲
d∥∇f(x)∥2

B
+ d2L2t2

B
+ d (d + τ) σ2

1
Bt2 ,

∥∇ft(x) − E[ĝml(x)]∥2 ≲
dτσ2

1
t2BM

.

One can note that although ĝml requires, on average, E
[
2J lB

]
= log2

2 M · B oracle calls, the264

variance is only reduced by a factor of B. In contrast, the bias is reduced significantly - by a265

factor of BM .266

2.2 Algorithm267

We now present the full version of Algorithm 1, which incorporates the gradient estimators268

discussed in the previous section and uses a slightly modified variant of Nesterov’s Accelerated269

Gradient Descent at its core.270

While technically we prove four separate upper bounds covering both one- and two-point271

feedback under smooth and non-smooth assumptions, they follow the same scheme which we272

will illustrate in the one-point smooth case.273

1Note that ĝml (specifically Z1) indirectly depends on the chain’s initial distribution. As our
algorithm is going to repeatedly call ĝml, next iteration’s initial distribution is current iteration’s
final distribution. This fact makes the estimates correlated. We sidestep this problem by assuming
any initial distribution.
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Table 2: Parameters of Algorithm 1
Hyperparameters Momentums Batch hidden parameters

γ Stepsize, ∈ (0; 3
4L

] β

√
4p2µγ

3 2J l Batch size. If 2J l > M , then 0

t Approximation step η 3β
2pµγ

=
√

3
µγ

J Random, J ∼ Geom(1/2)

B Batch size multiplier θ pη−1−1
βpη−1−1 M Batch size limit, M = 1

p
+ 2

β

N Number of iterations p See Appendix l (⌊log2 M⌋ + 1) · B

Algorithm 1 Randomized Accelerated ZO GD

1: Initialization: x0
f = x0; see Table 2.

2: for k = 0, 1, 2, . . . , N − 1 do
3: xk

g = θxk
f + (1 − θ)xk

4: Sample Jk, {ei},
{

F (xk
g ± tei, Z

(±)
i )

}
5: Calculate ĝk = ĝml(x)
6: xk+1

f = xk
g − pγĝk

7: xk+1 = ηxk+1
f + (p − η)xk

f +
+(1 − p)(1 − β)xk + (1 − p)βxk

g
8: end for

Lemma 4 establishes key properties274

of the smoothed objective function.275

Lemma 5 provides bounds on the bias276

and variance of the baseline estima-277

tor ĝrd. Lemma 2 then quantifies how278

the MLMC scheme amplifies or reduces279

these statistics. Finally, in Section C.4,280

we combine the results of these lemmas281

to prove the first part of Theorem 1,282

bounding Algorithm 1’s error. By tun-283

ing the parameters appropriately, we284

obtain the following iteration complex-285

ity bound:286

Theorem 1. Let Assumptions 1 to 4 hold, and consider problem (4) solved by Algorithm 1.287

Then, for any target accuracy ε and batch size multiplier B (see Tables 1 and 2 for notation),288

and for a suitable choice of γ, t, p, the number of oracle calls required to ensure E∥xN −x∗∥2 ≤289

ε is bounded by290

B · Õ

[
max

(
1,

d

B

)√L

µ
log 1

ε
+ Ld (d + τ) σ2

1
Bµ3ε2

]
one-point oracle calls .

Theorem 1′. Let Assumptions 1′ to 4′ hold, and consider problem (4) solved by Algorithm 1.291

Then, for any target accuracy ε and batch size multiplier B (see Tables 1 and 2 for notation),292

and for a suitable choice of γ, t, p, the number of oracle calls required to ensure E∥xN −x∗∥2 ≤293

ε is bounded by294

B · Õ

[
max

(
1,

d

B

)√L

µ
log 1

ε
+ (d + τ)σ2

2
Bµ2ε

]
two-point oracle calls .

Remark. The iteration complexity of the algorithm, i.e., the number of iterates xk generated295

(equal to the oracle complexity divided by B), is bound by Õ
(√

L
µ log 1

ε

)
as the batch size296

multiplier B goes to infinity. This matches the optimal convergence rates for optimization297

with exact gradients [39].298

2.3 Lower bounds299

Here we present theorems demonstrating that no algorithm can asymptotically outperform300

Algorithm 1 in the smooth, strongly convex setting with either one- or two-point feedback.301

Theorem 2. (Lower bounds) For any (possibly randomized) algorithm that solves the problem302

(4), there exists a function f that satisfies Assumptions 1 to 4 (1′ to 4′), s.t. in order to303

achieve ε-approximate solution in expectation E∥xN − x∗∥2 ≤ ε, the algorithm needs at least304

Ω
(

d(d + τ)σ2
1

µ2ε2

)
one-point or Ω

(
(d + τ)σ2

2
µ2ε

)
two-point oracle calls.

Remark. These results assume bounded second moments rather than uniform noise bounds.305

We explain how to adapt them to our setting, incurring only logarithmic overheads, in306

Section E.2.307

Discussion. We now compare our results to existing work. Akhavan et al. [2] analyze a308

special case of the one-point setting where the noise is independent of the query points. This309

8



aligns with our one-point oracle model and allows i.i.d. sampling as a Markov chain with310

fixed mixing time τ = 1. The only factor they do not consider is σ2
1 , which, however, appears311

in their proof with additional µ2 factor if used with scaled Gaussian noise. We discuss this312

further in Appendix E.313

In the work of Beznosikov et al. [5], a first-order Markovian oracle is considered, but the314

hard instance problem is a one-dimensional quadratic function, which makes first-order and315

zero-order information equivalent. Their result therefore corresponds to the d = 1 case in the316

two-point regime. Duchi et al. [15] provide tight lower bounds for general convex functions317

under two-point feedback. Their techniques can be extended to the strongly convex case318

by incorporating a shared quadratic component across the hard instances, as detailed in319

Appendix E, Theorem 10, yielding the bound we state for the two-point oracle with τ = 1.320

Our novel contribution lies in establishing a lower bound that scales as dτ in the one-321

point regime for large τ ; see Theorem 9. While our analysis relies on classical tools such322

as multidimensional hypothesis testing, the Markovian structure requires new bound on323

distances between joint distributions and the use of clipping. Detailed proofs, discussions,324

and further remarks on clipping appear in Appendix E.325

3 Experiments326

This section empirically supports our theoretical convergence rates and lower bounds, with327

particular focus on the stochastic component where we claim linear scaling in d + τ instead328

of dτ .329

Setup. Our setup repeats the problem we used to prove the lower bounds (see Appendix E330

and [51]). We consider a quadratic objective f(x) = 1
2 ∥x∥2 and a two-point Markovian oracle331

F (x, Z) = f(x) + ⟨x, Z⟩. The noise sequence {Zi} is a lazily updated standard Gaussian332

vector with variance σ2
2 . Figure 2 illustrates how the optimization error of Algorithm 1 scales333

with mixing time, problem dimension, and different values of σ2
2 .334
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3.2

×10 5
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Figure 2: Optimization error ε = ∥xN − x∗∥2 after N = 103 iterations. Starting point error
∥x0 − x∗∥2 = 10−2. Stepsize γ = 10−3, t = 10−5. The results are averaged over 104 runs.
Discussion. The results confirm the linear dependence of the error on both the problem335

dimension d and the mixing time τ . The noise parameter σ2 controls the influence of the336

stochastic part. In Fig. (a), where σ2
2 = 10−3, the stochastic component dominates, while337

in Fig. (c), with σ2
2 = 10−5, it is negligible. Fig. (b) shows an intermediate regime that338

smoothly interpolates between the two, yet maintains the linear scaling. The deterministic339

part (c) shows no dependence on mixing time, but grows linearly with d, which aligns with340

our theory (Theorem 1′). The stochastic part (a) scales as (d + τ), also matching the bound341

from the Theorem 1′.342
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tions and a complete (and correct) proof?982

Answer: [Yes]983

Justification: all assumptions and definitions are carefully stated. The complete984

proofs appear in the supplemental material and are properly referenced in the main985

part.986

Guidelines:987

• The answer NA means that the paper does not include theoretical results.988

• All the theorems, formulas, and proofs in the paper should be numbered and989

cross-referenced.990

• All assumptions should be clearly stated or referenced in the statement of any991

theorems.992

• The proofs can either appear in the main paper or the supplemental material,993

but if they appear in the supplemental material, the authors are encouraged to994

provide a short proof sketch to provide intuition.995

• Inversely, any informal proof provided in the core of the paper should be996

complemented by formal proofs provided in appendix or supplemental material.997

• Theorems and Lemmas that the proof relies upon should be properly referenced.998

4. Experimental result reproducibility999

Question: Does the paper fully disclose all the information needed to reproduce1000

the main experimental results of the paper to the extent that it affects the main1001

claims and/or conclusions of the paper (regardless of whether the code and data are1002

provided or not)?1003

Answer: [Yes]1004

Justification: see Section 3. The setup is fully disclosed.1005

Guidelines:1006

• The answer NA means that the paper does not include experiments.1007

• If the paper includes experiments, a No answer to this question will not be1008

perceived well by the reviewers: Making the paper reproducible is important,1009

regardless of whether the code and data are provided or not.1010

• If the contribution is a dataset and/or model, the authors should describe the1011

steps taken to make their results reproducible or verifiable.1012

• Depending on the contribution, reproducibility can be accomplished in various1013

ways. For example, if the contribution is a novel architecture, describing the1014

architecture fully might suffice, or if the contribution is a specific model and1015

empirical evaluation, it may be necessary to either make it possible for others1016

to replicate the model with the same dataset, or provide access to the model. In1017

general. releasing code and data is often one good way to accomplish this, but1018

reproducibility can also be provided via detailed instructions for how to replicate1019

the results, access to a hosted model (e.g., in the case of a large language model),1020

releasing of a model checkpoint, or other means that are appropriate to the1021

research performed.1022

• While NeurIPS does not require releasing code, the conference does require all1023

submissions to provide some reasonable avenue for reproducibility, which may1024

depend on the nature of the contribution. For example1025

(a) If the contribution is primarily a new algorithm, the paper should make it1026

clear how to reproduce that algorithm.1027

(b) If the contribution is primarily a new model architecture, the paper should1028

describe the architecture clearly and fully.1029

(c) If the contribution is a new model (e.g., a large language model), then there1030

should either be a way to access this model for reproducing the results or a1031

way to reproduce the model (e.g., with an open-source dataset or instructions1032

for how to construct the dataset).1033
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(d) We recognize that reproducibility may be tricky in some cases, in which1034

case authors are welcome to describe the particular way they provide for1035

reproducibility. In the case of closed-source models, it may be that access to1036

the model is limited in some way (e.g., to registered users), but it should be1037

possible for other researchers to have some path to reproducing or verifying1038

the results.1039

5. Open access to data and code1040

Question: Does the paper provide open access to the data and code, with sufficient1041

instructions to faithfully reproduce the main experimental results, as described in1042

supplemental material?1043

Answer: [No]1044

Justification: our experiments are rather a practical confirmation of theoretical1045

results, and these experiments can be easily reproduced.1046

Guidelines:1047

• The answer NA means that paper does not include experiments requiring code.1048

• Please see the NeurIPS code and data submission guidelines (https://nips.1049

cc/public/guides/CodeSubmissionPolicy) for more details.1050

• While we encourage the release of code and data, we understand that this might1051

not be possible, so “No” is an acceptable answer. Papers cannot be rejected1052

simply for not including code, unless this is central to the contribution (e.g., for1053

a new open-source benchmark).1054

• The instructions should contain the exact command and environment needed1055

to run to reproduce the results. See the NeurIPS code and data submis-1056

sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)1057

for more details.1058

• The authors should provide instructions on data access and preparation, in-1059

cluding how to access the raw data, preprocessed data, intermediate data, and1060

generated data, etc.1061

• The authors should provide scripts to reproduce all experimental results for1062

the new proposed method and baselines. If only a subset of experiments are1063

reproducible, they should state which ones are omitted from the script and why.1064

• At submission time, to preserve anonymity, the authors should release1065

anonymized versions (if applicable).1066

• Providing as much information as possible in supplemental material (appended1067

to the paper) is recommended, but including URLs to data and code is permitted.1068

6. Experimental setting/details1069

Question: Does the paper specify all the training and test details (e.g., data splits,1070

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to1071

understand the results?1072

Answer: [Yes]1073

Justification: see Section 3, all parameters are described there.1074

Guidelines:1075

• The answer NA means that the paper does not include experiments.1076

• The experimental setting should be presented in the core of the paper to a level1077

of detail that is necessary to appreciate the results and make sense of them.1078

• The full details can be provided either with the code, in appendix, or as1079

supplemental material.1080

7. Experiment statistical significance1081

Question: Does the paper report error bars suitably and correctly defined or other1082

appropriate information about the statistical significance of the experiments?1083

Answer: [No]1084
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Justification: we use experiments to verify the theoretical rates and have no statistical1085

effects associated with running the experiments.1086

Guidelines:1087

• The answer NA means that the paper does not include experiments.1088

• The authors should answer "Yes" if the results are accompanied by error bars,1089

confidence intervals, or statistical significance tests, at least for the experiments1090

that support the main claims of the paper.1091

• The factors of variability that the error bars are capturing should be clearly1092

stated (for example, train/test split, initialization, random drawing of some1093

parameter, or overall run with given experimental conditions).1094

• The method for calculating the error bars should be explained (closed form1095

formula, call to a library function, bootstrap, etc.)1096

• The assumptions made should be given (e.g., Normally distributed errors).1097

• It should be clear whether the error bar is the standard deviation or the standard1098

error of the mean.1099

• It is OK to report 1-sigma error bars, but one should state it. The authors1100

should preferably report a 2-sigma error bar than state that they have a 96%1101

CI, if the hypothesis of Normality of errors is not verified.1102

• For asymmetric distributions, the authors should be careful not to show in1103

tables or figures symmetric error bars that would yield results that are out of1104

range (e.g. negative error rates).1105

• If error bars are reported in tables or plots, The authors should explain in the1106

text how they were calculated and reference the corresponding figures or tables1107

in the text.1108

8. Experiments compute resources1109

Question: For each experiment, does the paper provide sufficient information on the1110

computer resources (type of compute workers, memory, time of execution) needed1111

to reproduce the experiments?1112

Answer: [No]1113

Justification: the experiments performed are not computationally heavy and can be1114

reproduced on an average machine in a fairly reasonable amount of time.1115

Guidelines:1116

• The answer NA means that the paper does not include experiments.1117

• The paper should indicate the type of compute workers CPU or GPU, internal1118

cluster, or cloud provider, including relevant memory and storage.1119

• The paper should provide the amount of compute required for each of the1120

individual experimental runs as well as estimate the total compute.1121

• The paper should disclose whether the full research project required more1122

compute than the experiments reported in the paper (e.g., preliminary or failed1123

experiments that didn’t make it into the paper).1124

9. Code of ethics1125

Question: Does the research conducted in the paper conform, in every respect, with1126

the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1127

Answer: [Yes]1128

Justification: the research follows the NeurIPS Code of Ethics.1129

Guidelines:1130

• The answer NA means that the authors have not reviewed the NeurIPS Code1131

of Ethics.1132

• If the authors answer No, they should explain the special circumstances that1133

require a deviation from the Code of Ethics.1134

• The authors should make sure to preserve anonymity (e.g., if there is a special1135

consideration due to laws or regulations in their jurisdiction).1136
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10. Broader impacts1137

Question: Does the paper discuss both potential positive societal impacts and1138

negative societal impacts of the work performed?1139

Answer: [NA]1140

Justification: there is no societal impact of the work performed – we only develop1141

the theoretical understanding of Optimization.1142

Guidelines:1143

• The answer NA means that there is no societal impact of the work performed.1144

• If the authors answer NA or No, they should explain why their work has no1145

societal impact or why the paper does not address societal impact.1146

• Examples of negative societal impacts include potential malicious or unintended1147

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-1148

erations (e.g., deployment of technologies that could make decisions that unfairly1149

impact specific groups), privacy considerations, and security considerations.1150

• The conference expects that many papers will be foundational research and1151

not tied to particular applications, let alone deployments. However, if there1152

is a direct path to any negative applications, the authors should point it out.1153

For example, it is legitimate to point out that an improvement in the quality1154

of generative models could be used to generate deepfakes for disinformation.1155

On the other hand, it is not needed to point out that a generic algorithm for1156

optimizing neural networks could enable people to train models that generate1157

Deepfakes faster.1158

• The authors should consider possible harms that could arise when the technology1159

is being used as intended and functioning correctly, harms that could arise when1160

the technology is being used as intended but gives incorrect results, and harms1161

following from (intentional or unintentional) misuse of the technology.1162

• If there are negative societal impacts, the authors could also discuss possible1163

mitigation strategies (e.g., gated release of models, providing defenses in addition1164

to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a1165

system learns from feedback over time, improving the efficiency and accessibility1166

of ML).1167

11. Safeguards1168

Question: Does the paper describe safeguards that have been put in place for1169

responsible release of data or models that have a high risk for misuse (e.g., pretrained1170

language models, image generators, or scraped datasets)?1171

Answer: [NA]1172

Justification: the paper poses no such risks.1173

Guidelines:1174

• The answer NA means that the paper poses no such risks.1175

• Released models that have a high risk for misuse or dual-use should be released1176

with necessary safeguards to allow for controlled use of the model, for example1177

by requiring that users adhere to usage guidelines or restrictions to access the1178

model or implementing safety filters.1179

• Datasets that have been scraped from the Internet could pose safety risks. The1180

authors should describe how they avoided releasing unsafe images.1181

• We recognize that providing effective safeguards is challenging, and many papers1182

do not require this, but we encourage authors to take this into account and1183

make a best faith effort.1184

12. Licenses for existing assets1185

Question: Are the creators or original owners of assets (e.g., code, data, models),1186

used in the paper, properly credited and are the license and terms of use explicitly1187

mentioned and properly respected?1188

Answer: [NA]1189
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Justification: the paper does not use existing assets.1190

Guidelines:1191

• The answer NA means that the paper does not use existing assets.1192

• The authors should cite the original paper that produced the code package or1193

dataset.1194

• The authors should state which version of the asset is used and, if possible,1195

include a URL.1196

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1197

• For scraped data from a particular source (e.g., website), the copyright and1198

terms of service of that source should be provided.1199

• If assets are released, the license, copyright information, and terms of use in1200

the package should be provided. For popular datasets, paperswithcode.com/1201

datasets has curated licenses for some datasets. Their licensing guide can help1202

determine the license of a dataset.1203

• For existing datasets that are re-packaged, both the original license and the1204

license of the derived asset (if it has changed) should be provided.1205

• If this information is not available online, the authors are encouraged to reach1206

out to the asset’s creators.1207

13. New assets1208

Question: Are new assets introduced in the paper well documented and is the1209

documentation provided alongside the assets?1210

Answer: [NA]1211

Justification: the paper does not propose new assets.1212

Guidelines:1213

• The answer NA means that the paper does not release new assets.1214

• Researchers should communicate the details of the dataset/code/model as part1215

of their submissions via structured templates. This includes details about1216

training, license, limitations, etc.1217

• The paper should discuss whether and how consent was obtained from people1218

whose asset is used.1219

• At submission time, remember to anonymize your assets (if applicable). You1220

can either create an anonymized URL or include an anonymized zip file.1221

14. Crowdsourcing and research with human subjects1222

Question: For crowdsourcing experiments and research with human subjects, does1223

the paper include the full text of instructions given to participants and screenshots,1224

if applicable, as well as details about compensation (if any)?1225

Answer: [NA]1226

Justification: the paper does not involve crowdsourcing nor research with human1227

subjects.1228

Guidelines:1229

• The answer NA means that the paper does not involve crowdsourcing nor1230

research with human subjects.1231

• Including this information in the supplemental material is fine, but if the main1232

contribution of the paper involves human subjects, then as much detail as1233

possible should be included in the main paper.1234

• According to the NeurIPS Code of Ethics, workers involved in data collection,1235

curation, or other labor should be paid at least the minimum wage in the1236

country of the data collector.1237

15. Institutional review board (IRB) approvals or equivalent for research1238

with human subjects1239
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Question: Does the paper describe potential risks incurred by study participants,1240

whether such risks were disclosed to the subjects, and whether Institutional Review1241

Board (IRB) approvals (or an equivalent approval/review based on the requirements1242

of your country or institution) were obtained?1243

Answer: [NA]1244

Justification: the paper does not involve crowdsourcing nor research with human1245

subjects.1246

Guidelines:1247

• The answer NA means that the paper does not involve crowdsourcing nor1248

research with human subjects.1249

• Depending on the country in which research is conducted, IRB approval (or1250

equivalent) may be required for any human subjects research. If you obtained1251

IRB approval, you should clearly state this in the paper.1252

• We recognize that the procedures for this may vary significantly between insti-1253

tutions and locations, and we expect authors to adhere to the NeurIPS Code of1254

Ethics and the guidelines for their institution.1255

• For initial submissions, do not include any information that would break1256

anonymity (if applicable), such as the institution conducting the review.1257

16. Declaration of LLM usage1258

Question: Does the paper describe the usage of LLMs if it is an important, original,1259

or non-standard component of the core methods in this research? Note that if1260

the LLM is used only for writing, editing, or formatting purposes and does not1261

impact the core methodology, scientific rigorousness, or originality of the research,1262

declaration is not required.1263

Answer: [NA]1264

Justification: LLMs were used only for editing.1265

Guidelines:1266

• The answer NA means that the core method development in this research does1267

not involve LLMs as any important, original, or non-standard components.1268

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1269

for what should or should not be described.1270
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