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Abstract

This paper deals with stochastic optimization problems involving Markovian
noise with a zero-order oracle. We present and analyze a novel derivative-
free method for solving such problems in strongly convex smooth and
non-smooth settings with both one-point and two-point feedback oracles.
Using a randomized batching scheme, we show that when mixing time 7 of
the underlying noise sequence is less than the dimension of the problem d, the
convergence estimates of our method do not depend on 7. This observation
provides an efficient way to interact with Markovian stochasticity: instead
of invoking the expensive first-order oracle, one should use the zero-order
oracle. Finally, we complement our upper bounds with the corresponding
lower bounds. This confirms the optimality of our results.

1 Introduction

Stochasticity is a fundamental aspect of many optimization problems, naturally arising
in the field of machine learning [48, 28]. Stochastic gradient descent (SGD) [45] and its
accelerated variants [39, 25] have become a de facto optimizers for modern large models
training. Theoretical properties of SGD have been extensively studied under various statistical
frameworks [36, 24, 10, 56|, often relying on the assumption that noise is independent
and identically distributed (i.i.d.). However, in many real-world applications — including
reinforcement learning (RL) [6, 16], distributed optimization [35, 31], and bandit problems
[3] — noise is not i.i.d., instead exhibiting correlations or Markovian structure.

For instance, in the mentioned growing field of RL, sequential interactions with the environ-
ment induce state-dependent structure of the noise, creating a need for non-i.i.d. noise aware
algorithms. Although several gradient-based methods for Markovian stochastic oracles have
been studied in the past decade [14, 18], policy optimization in RL is based solely on reward
feedback, making traditional methods inapplicable, since there is no access to first-order
information [46, 9, 19]. Zero-order optimization (ZOO) methods are specifically developed
to address such problems, and are used in scenarios where gradients are unavailable or
prohibitively expensive to compute. Apart from RL, ZOO techniques are widely employed in
adversarial attack generation [8], hyperparameter tuning [47, 57], continuous bandits [7, 49]
and other applications [54, 33]. While the literature on ZOO is extensive, this work is, to
our knowledge, the first study of optimization problem with both zero-order information and
Markovian noise, aimed at developing an optimal algorithm for a large family of problems
from the intersection of these two areas.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not
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1.1 Related works

¢ Zero-order methods is one of the key and oldest areas of optimization. There are various
zero-order approaches, here we can briefly highlight, e.g., one-dimensional methods [32, 42]
or their high-dimensional analogues [41], ellipsoid algorithms [58] and searches along random
directions [4]. Currently, the most popular and most studied mechanism behind ZOO
methods is the finite-difference approximation of the gradient described in [43, 20, 40]. The
idea is simple: querying two sufficiently close points is essentially equivalent to finding a
value of the directional derivative of the function:

(Vf(z),e) ~ f(w+tet) —f@) _ f(x+te)2—tf(a;—te), "

where e is a random direction. It can be a random coordinate, a vector from the Euclidean
sphere or a sample of the Gaussian distribution. The approximation (1) in turn leads back to
the gradient methods or coordinate algorithms of Nesterov [38]. There are, however, several
differences:

e First, to get full gradient information, the algorithm would need d queries instead of one
gradient oracle call (here d is the dimension of x).

e Second, if the ZO oracle is inexact, i.e. only noisy values of function are available, then
finite difference schemes can fail if noise components do not cancel out.

The setting of the second point, when function evaluations experience zero-mean additive
perturbations, is called Stochastic ZOO. The stochasticity, as noted before, is abundant in
the modern optimization world. To tackle this issue, additional assumptions about the noise
structure are required. Here we briefly discuss two main ideas adopted in the literature, and
refer the reader to Section 2 for precise definitions.

In the case of two-point feedback, we assume that for a fixed value of the noise variable one
can call the stochastic zero-order oracle at least twice. It means that we can compute the
finite difference approximation of the following form:

f(z +te, &) ;tf(z —108) (VL f@6)e) @)

Such approximation produces an estimate for the directional derivative of a noisy realization
f (-, &) of the function f. As mentioned before, the approximation (2) can be used instead of
the (stochastic) gradient in first-order methods. In the case of independent randomness, a
large number of works are based on this idea. There are results for both non-smooth and
smooth convex problems built on classical and accelerated gradient methods of Nesterov and
Spokoiny [40]. In the scope of our paper, we are interested in the results for smooth strongly
convex problems from [17], namely estimates on zero-order oracle calls to achieve e-solution

p(z, € e) =

2
in terms of ||z — z*||: O(%). Here o5 is introduced as the variance of the gradient, i.e. it is
assumed that E¢V f(x, &) = Vf(z) and E¢||V f(z,£) — Vf(z)|? < 03. The main limitation
of two-point approach is that several evaluations with the same noise variable are required,
which is well suited for problems like empirical risk optimization [34], but can be a major

barrier for RL or online optimization.

In the one-point feedback setting, a more general stochasticity is assumed. In this case, each
call to the zero-order oracle generates a new randomness. Now the approximation (1) looks

as follows N B
p(x,{i,e):f(x—i—te’f )Z_tf(x_tevg ) (3)

Using different £+ and ¢~ in (3) renders any conditions on the properties of V f(, &) useless.
Instead, it is assumed that E¢ f(z,£) = f(x) and E¢|f(x, &) — f(2)|*> < 0}. With one-point
feedback, the major problem is choosing the right shift ¢ for the finite difference scheme.
Picking it too small results in an amplification of the additive noise, and taking ¢ too big
leads to a poor gradient estimate. Because of this variance trade-off, the optimal rate for
methods with one-point approximation is worse than for two-point feedback. In particular,
for smooth strongly convex problems we have the following estimate on zero-order oracle

calls [23]: O(LZ).
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Although zero-order gradient approximation schemes suffer from high variance, there is a
surprising property that makes them superior in non-smooth optimization [22, 44, 49]. The
idea goes back to the 70s and utilizes the fact that

Ele - p(z, ™), e)] = 1V fi(x), where f; is a smoothed function, defined as
fie(x) =B, [f(z + tr)] with 7 ~ RBS

In fact, it can be shown that f; is @—smooth if f is G-Lipschitz. This makes zero-order
approximation a suitable candidate for a stochastic gradient of f;. Optimizing this function
with a first-order method produces some solution, but it may not be the optima of f [22].
From this point, there is a game — for small ¢ the functions f and f; are closer and for big ¢

the function f; is easier to optimize as it gets smoother.

In more recent works, there have been many improvements in theoretical understanding of
Z0 methods. The authors consider higher-order smoothness of the underlying function [2],
tackle non-convex non-smooth problems [44], take arbitrary Bregman geometry to benefit
in terms of oracle complexity [49, 29], and come up with sharp information-theoretic lower
bounds to understand computational limits [15, 1]. But none of them consider Markovian
stochasticity.

o Markovian first-order methods. While the literature on stochastic optimization with
i.i.d. noise is extensive, research addressing the Markovian setting remains relatively sparse.
In our paper, we focus on the most "friendly" type of uniformly geometrically ergodic Markov
chains (see Section 2 for precise definitions).

Duchi et al. [14] conducted pioneering work on non-i.i.d. noise, investigating the Ergodic
Mirror Descent algorithm and establishing optimal convergence rates for non-smooth convex
problems. For smooth problems there were different attempts to get record-breaking estimates
on the first-order oracle [12, 11, 59, 18]. Finally, the optimal results were obtained for both
convex and non-convex problems in the works of Beznosikov et al. [5], Solodkin et al. [52]. In
particular, for smooth strongl;; convex objectives under Markovian noise the authors give the
complexity of the form: O(%), where 7 is defined as the mixing time of the corresponding
Markov chain (see Section 2). Note that these works utilize Multilevel Monte Carlo (MLMC)
batching technique, which helps to effectively interact with Markovian noise. We will need
this approach as well. Note that it was first considered in Markovian gradient optimization
by Dorfman and Levy [13] for automatic adaptation to unknown 7.

o Hypothesis. The complexity estimate for strongly convex first-order stochastic meth-
2
ods is (’)(%) [36, 37]. Lower bounds for the same class of problems and methods

show that the result is unimprovable [58]. As mentioned before, the transition from
i.i.d. stochasticity to Markovian stochasticity increases the estimate by 7 times. This
result is also optimal as shown by Beznosikov et al. [5]. At the same time, going
from gradient oracle to zero-order methods adds a multiplier d in the two-point feed-
back and 9°/e in the one-point case. And this estimate is unimprovable as well [1, 15].

The hypothesis arises that the transition to zero-

order Markov optimization adds two multipliers F(Z) Z0 22P

at once: dr and 4°7/e for two- and one-point. Itis  TID T2 d d- 2z

illustrated in the following diagram for two-point nee nee

feedback: . 2 ?

1.2 Ouwur contribution 2 2
Mark. 7- % ? dr - %

Our main contribution is the answer to the hy-
pothesis above: surprisingly, it is not true. In more detail:

o Accelerated SGD. We present the first analysis of Zero-Order Accelerated SGD under
Markovian noise, considering both two-point and one-point feedback. Contrary to the
expected multiplicative scaling of convergence rates with both dimensionality and mixing
time, our analysis reveals a significant acceleration, as presented in Figure 1. It turns out
that if 7 is smaller than d, our results do not differ at all from the gradient-free methods
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with independent stochasticity. The key technique behind this acceleration is described in
Section 2.1. The theory is also numerically validated in Section 3.

Figure 1: Summary of upper bounds. For notation, see Table 1

¢ Non-smooth problems. We

. Smooth Non- th
also consider non-smooth problems o e Markow. oo e ov.
with Markovian noise. Using the = 2 ) )

. . G G 1
smoothing technique we come up  FO 3 [45] T3 18] % 150] TG [14]
with a corresponding upper bounds 4 = . o2 P o . o2
in this case, as shown in Figure 1. 2P e B0 (d+7)2e, 2o (22 (d+7)5;
The details of these bounds are pre- 2o o2 Lo? o2G2 02G2

. . d> =15 (22 d(d+ 7) X d? =L [23]  d(d+ T)=L
sented in Appendix A. 1P nie? nie? nted nies

o Computational efficiency. First, as noted above, our method gives the same oracle
complexity for any 7 < d. Moreover, if we assume that calling a zero-order oracle is d times
cheaper than computing the corresponding gradient, then the gradient method with Markov
noise will require resources proportionally to d - 7 — the cost of one oracle call is d and
the complexity scales as 7 for the first-order method from Figure 1. At the same time, the
resource complexity of our zero-order method is proportional to d + 7.

¢ Lower bounds. In Section 2.3 we establish the first information-theoretic lower bounds
for solving Markovian optimization problems with one-point and two-point feedback. Our
results match the convergence guarantee of our algorithm up to logarithmic factors, showing
that the analysis is accurate and no further improvement is possible.

Table 1: Notations & Definitions

Sym. Definition Sym. Definition

-1 ¢ ) Norm, dot product, assumed Euclidean by default € |z — z*|2

Z Z Complete separable metric space, its Borel o-algebra d Problem dimension

Q Markov kernel on Z X Z L Gradient’s Lipshitz constant
Pe, Ee Probability, Expectation under initial distribution §3 w Strong convexity constant
{Zi} Canonical process with kernel Q G Function’s Lipshitz constant
RBZ, RS  Uniform distribution on unit a £3-ball, -sphere ol |F(x, Z) — f(2)]*> < 02

e Random direction, e ~ RSzd o§ |VF(x,Z) — Vf(x)H2 < a'g
an S by Jc € R (problem-independent): a, < cb, for all n T Mixing time of Z

an ™~ by an < by and by, < ap g, § Gradient estimators

T =0O(S) T < poly(log S) - S ase = 0 fi(x) E, [f(x+tr)],r ~ RBg

2 Main results

We are now ready for a more formal presentation. In this paper, we study the minimization
problem

;IGI%R% f({L‘) =Ezen [F(xv Z)] ) (4)

where 7 is an unknown distribution and access to the function f (not to its gradient Vf) is
available through a stochastic one-point or two-point oracle F'(z, Z).

In our analysis, we will use a set of assumptions on the underlying function f and its oracle,
starting with smoothness and convexity:

Assumption 1. The function f is L-smooth on R? with L > 0, i.e., it is differentiable and
there is a constant L > 0 such that the following inequality holds for all x,y € R:

IVf(z) = VIl < Lz -yl
In the two-point feedback setting, we require the following generalization:
Assumption 1'. For all Z € Z the function F(-,Z) is L-smooth on R?.

Note that the uniform 1’ implies 1.

!The authors consider general convex case. Using standard restart technique, we get the
corresponding bound in the strongly convex case.

2The noise is assumed to be point-independent.

3By construction, for any A € Z, we have P¢(Zy € A | Zy—1) = Q(Zk-1,4), Pe-as.
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Assumption 2. The function f is u-strongly convex on R?, i.e., it is continuously dif-
ferentiable and there is a constant p > 0 such that the following inequality holds for all
z,y € R%:

Sl =yl < £@) = F) = (V). x =), (5)

We now turn to assumptions on the sequence of noise states {Z;}°,. Specifically, we
consider the case where {Z;}32, forms a time-homogeneous Markov chain. Let Q denote the
corresponding Markov kernel. We impose the following assumption on Q to characterize its
mixing properties:

Assumption 3. {Z,;}°, is a stationary Markov chain on (Z, Z) with Markov kernel Q and
unique invariant distribution w. Moreover, Q is uniformly geometrically ergodic with mizing
time 7 € N, i.e., for every k € N,

AQ) = sup (1/2)][Q4z,) = Q4 )y < 1/ ©)

Assumption 3 is common in the literature on Markovian stochasticity [14, 12, 13, 5, 52]. It
includes, for instance, irreducible aperiodic finite Markov chains [18]. The mixing time 7
reflects how quickly the distribution of the chain approaches stationarity, providing a natural
measure of the temporal dependence in the data.

Next, we specify our assumptions on the oracle. As discussed in Section 1.1, these assumptions
differ based on the type of feedback.
Assumption 4 (for one-point). For all x € R? it holds that E,[F(x, Z)] = f(x). Moreover,
for all Z € Z and x € R? it holds that

|F(I7Z) - f(x)‘z < O—%a

Assumption 4’ (for two-point). For all x € R? it holds that E;[VF(z,Z)] = Vf(x).
Moreover, for all Z € Z and x € R? it holds that

IVF(z,2) - Vf(z)|* < o3.

Recent works on stochastic ZOO methods have considered milder assumptions, such as
bounded variance (see Section 1.1). However, the uniform boundedness assumed in Assump-
tions 4 and 4', is standard in analyses under Markovian noise [14, 12, 13, 5, 52]. These
assumptions can be relaxed under stronger conditions, e.g., uniform convexity and smoothness
of F(-,Z) [18].

Assumptions 3 and 4 allow us to reduce the variance of the noise via batching, similarly the
to i.i.d. setting. This is captured in the following technical lemma:

Lemma 1. Let Assumptions 3 and 4(4') hold. Then for any n > 1 and x € R? and any
initial distribution & on (Z, Z), we have

Eq iZF<m,zi>—f<x>] S

2.1 Batching technique

In this section, we describe the main tools used to establish the (d + 7)-type scaling of the
error rate. We will focus on reducing the variance and bias of gradient estimators using a
specialized batching approach.

We begin by fixing a common building block of our gradient estimators at a point x for both
one-point and two-point feedback, as introduced in Section 1.1:

dF(:c +te,Z1) — Flx —te, Z7)

i(z, ZF) e) =d- Z@E e).e=e- 2t
9, e) p(@, e)e=e dF(x—Fte, Z)—F(x —te,7)
2t

These estimators exhibit a twofold randomness that affects how rapidly they concentrate
around the true gradient, as we will discuss below.

(one-point),

(two-point).
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For clarity, we focus our discussion on the one-point case, although our conclusions extend
to the two-point case as well.

A widely used variance reduction technique is mini-batching, where one computes F(x, Z;)
over a batch of noise variables {Z;}?_;. The mini-batch gradient estimator is given by:

Pmb

Jmp (T ngZ —e-d( z:pri >

Let us estimate the scaling of its variance E.Ez||gmy — V.f]|> with the noise level 02. As

EzGmp =~ d% ~ d(V f,e) we would like to estimate the following for any fixed
direction e:

2 d? 1 & 4 2 (1) d*r o}
Ez[d- pms(z) — d{V f,e)] "~ t—QEZ [ni_le(x—i—taZi )—f(:z:—&—te)} N (7)
With that, we bound the variance:
N . . . (1) d*t0?
BBz llgmo = VII* 2 BBz llgmb — Ezgms |* ~ BBz lgms =V F )P = —7F. (8)

Can the mini-batching scheme be improved?

This subsection explores an unexpected source of improvement that contradicts our initial
hypothesis. Specifically, we identify an inefficiency in the current use of samples Z;, which
becomes evident from two perspectives. Equation (8) shows the variance scales as T. If
we could reduce 7 by a factor of k, we would need k-times fewer samples to maintain
the same variance. This leads us to the idea of sparsified sampling. We partition the
Markov noise chain {Z;} into k subchains {Zj.;4,} for r = 0...k — 1. This corresponds to a
mixing time of [ 7] for each subchain (see (3)), effectively reducing temporal correlation - a
natural consequence of sampling every k-th element of the original chain. Thus, sampling
from any single subchain could yield a min(k, 7)-fold reduction in the number of samples
needed (although such procedure would still require all intermediate oracle calls, yielding no
computational speedup).

For a concrete illustration of that inefficiency, consider a lazy Markov chain that remains
in the same state for (an average of) 7 steps before transitioning uniformly at random. In
such a case, all oracle queries F'(z, Z) for a fixed x return the same value for 7 consecutive
steps. Therefore, retaining only every 7-th estimate § would yield a mini-batch of equivalent
quality.

In summary, we observe that the mini-batching scheme could, in principle, operate just as
effectively by retaining only every k-th sample and discarding the rest. This might suggest
that better utilization of the samples is possible. First order methods, nevertheless, are
unable to exploit this redundancy (as shown by [5]’s lower bound) and are effectively forced
to wait out the 7-step mixing window. In contrast, we can exploit this structure by querying
finite differences along different directions to estimate the gradient better. Specifically, we
construct d subchains, and use the sample from the r-th subchain Z;.;, to estimate r-th

F(x+te,,Z)—F(x—te,,Z)
2t

partial derivative , effectively restoring the full gradient coordinate-wise.

Let us estimate the resulting variance reduction. First, we achieve a d-fold reduction by
reconstructing all d gradient coordinates. Second, each coordinate now operates on a chain
with mixing time [7], yielding an additional factor of min(d, 7). However, because batches
are now split across d coordinates, each batch is d times smaller than before, introducing
a factor of d loss. The net variance reduction is therefore min(d, 7), and the final scaling
becomes d - —9T— = d - max(d, ) ~ d(d + 7).

min(d,T)

Random directions
This insight can be extended to a simpler yet equally effective method. Instead of assigning
directions deterministically, we associate each sample with a random direction e € RSY,
forming the estimator:

3\)—‘

grd[]-TZe

n
§ (z, Zi, €;).

=}
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While the above discussion was intuitive, we now outline a more formal approach (see
Lemma 5 for details). As lazy Markov chain is effectively equivalent to stochastic i.i.d.
7-point feedback setting, we follow Corollary 2 of [15], who decompose the total variance
into two terms:

Ellgra = VS (@)|* < 2Egra — Ecfrall® + 2EI[Ecgra — V£ ()]
Each of the two terms individually eliminates one factor from the d>7 dependence.
The first term:

n

]E”L(A]rd*Eegrd”Q = Z €, Zuez 7E€i§(x7zi7ei)]
=1

Ec[]=0, independent w.r.t. e

RN, R
ﬁ ZEHQ(JI,ZZ,GJ - Eeig(x’ Zivei)”Q
=1

is independent of 7 since Assumption 4 bounds each term directly.

For the second term we observe that E.g,q = E.gmnmp, and thus the bound involves
IEHEegmb —Vf(x || Thlb is crucially different from the d27' dependence that appeared in

the mini-batch case, when we considered EH Gmp — Vf(x || Intuitively, the expectation
over directions helps recover the full gradient rather than a directional component, thereby
reducing variance with respect to d.

Multilevel Monte Carlo

The estimator §,q is not our final construction. While it controls variance, the temporal
correlation in noise may introduce significant bias. A well-established approach to mitigating
this is MLMC, widely used in the statistical literature [27, 26], and more recently in gradient
optimization [13, 5]. Here is our interpretation.

With parameters J,1, M, B from Table 2, {Z,;} - 271 samples from Z and {e;} - random
directions we introduce MLMC estimator:

ﬁmﬂx)::@ﬂuxx)+_{QJ[QNJ2JH(I)@d[zJU}(Iﬂ, 27 < M

0, otherwise

Jmy s our final gradient estimator, with the following guarantees:
Lemma 2 (for one-point). Let Assumptions 1, 3 and 4 hold. For any initial distribution' &
on (Z, Z) the gradient estimates gy satisfy E[Gmi] = E[Gra [2U°g2 M| 1]]. Moreover,
ﬂWﬂmW+¥Bﬁ+dm+ﬂﬁ

B B Bt? ’
dro?
t2BM

E|IVfo(z) — o ()] S

IV fu(x) = Elgm(@)]II* S

One can note that although §,,; requires, on average, E[Q‘] lB] = logg M - B oracle calls, the
variance is only reduced by a factor of B. In contrast, the bias is reduced significantly - by a
factor of BM.

2.2 Algorithm

We now present the full version of Algorithm 1, which incorporates the gradient estimators
discussed in the previous section and uses a slightly modified variant of Nesterov’s Accelerated
Gradient Descent at its core.

While technically we prove four separate upper bounds covering both one- and two-point
feedback under smooth and non-smooth assumptions, they follow the same scheme which we
will illustrate in the one-point smooth case.

Note that §m: (specifically Z1) indirectly depends on the chain’s initial distribution. As our
algorithm is going to repeatedly call §,,;, next iteration’s initial distribution is current iteration’s
final distribution. This fact makes the estimates correlated. We sidestep this problem by assuming
any initial distribution.
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Table 2: Parameters of Algorithm 1

Hyperparameters Momentums Batch hidden parameters

v Stepsize, € (0; 7] B/ W% 271 Batch size. If 271 > M, then 0
t Approximation step n 225 == % J Random, J ~ Geom(1/2)

B Batch size multiplier 0 Bpp"n__llill M  Batch size limit, M = % + %
N Number of iterations p See Appendix l ([logy M) +1)-B

Lemma 4 establishes key properties
of the smoothed objective function.
Lemma 5 provides bounds on the bias 1: Initialization: xg)c = 170; see Table 2.
and variance of the baseline estima- 2: for k=0,1,2,...,N —1do

tor grq. Lemma 2 then quantifies how 3.  ab = 93:’; + (1 —0)z*

the MLMC scheme amplifies or reduces

Algorithm 1 Randomized Accelerated Z0 GD

. , k ()
these statistics. Finally, in Section C.4, ¥ Sample Ji, {ei}, {F(xg +te;, Z; )}
we combine the results of these lemmas  5:  Calculate §* = g, ()
to prove the first part of Theorem 1, g ghtl = 2k _ pgk
bounding Algorithm 1’ By t T
bounding Algorithm 1's error. By tun- . hr ki1 o (p— )k
ing the parameters appropriately, we f f . .
obtain the following iteration complex- +(1—=p)(1-B)z" + (1 - p)ﬂ%
ity bound: 8: end for

Theorem 1. Let Assumptions 1 to 4 hold, and consider problem (4) solved by Algorithm 1.
Then, for any target accuracy € and batch size multiplier B (see Tables 1 and 2 for notation),
and for a suitable choice of v,t,p, the number of oracle calls required to ensure E||z?Y —x*||? <

€ s bounded by
dy\ |L 1  Ld(d 2
max(l, E) ; log — + HT)Ul] one-point oracle calls.

B-O
€ Bu3e?

Theorem 1'. Let Assumptions 1’ to 4’ hold, and consider problem (4) solved by Algorithm 1.
Then, for any target accuracy € and batch size multiplier B (see Tables 1 and 2 for notation),
and for a suitable choice of v,t,p, the number of oracle calls required to ensure E|z™N —x*||? <

€ is bounded by
dy [L. 1 (d 2
max(l, —) —log — + m two-point oracle calls.
B/\lu "¢ Bu?e

Remark. The iteration complezity of the algorithm, i.e., the number of iterates 2* generated

B-O

(equal to the oracle complexity divided by B), is bound by @) (\/% log %) as the batch size

multiplier B goes to infinity. This matches the optimal convergence rates for optimization
with ezact gradients [39].

2.3 Lower bounds

Here we present theorems demonstrating that no algorithm can asymptotically outperform
Algorithm 1 in the smooth, strongly convex setting with either one- or two-point feedback.

Theorem 2. (Lower bounds) For any (possibly randomized) algorithm that solves the problem
(4), there exists a function f that satisfies Assumptions 1 to 4 (1' to 4'), s.t. in order to
achieve e-approzimate solution in expectation E||z™ — x*||?2 < ¢, the algorithm needs at least

d(d+T1)o? . d+T)o3 )
Q ((22)1 one-point or ) % two-point oracle calls.
u2e ue
Remark. These results assume bounded second moments rather than uniform noise bounds.
We explain how to adapt them to our setting, incurring only logarithmic overheads, in
Section E.2.

Discussion. We now compare our results to existing work. Akhavan et al. [2] analyze a
special case of the one-point setting where the noise is independent of the query points. This
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aligns with our one-point oracle model and allows i.i.d. sampling as a Markov chain with
fixed mixing time 7 = 1. The only factor they do not consider is 0%, which, however, appears
in their proof with additional u? factor if used with scaled Gaussian noise. We discuss this
further in Appendix E.

In the work of Beznosikov et al. [5], a first-order Markovian oracle is considered, but the
hard instance problem is a one-dimensional quadratic function, which makes first-order and
zero-order information equivalent. Their result therefore corresponds to the d = 1 case in the
two-point regime. Duchi et al. [15] provide tight lower bounds for general convex functions
under two-point feedback. Their techniques can be extended to the strongly convex case
by incorporating a shared quadratic component across the hard instances, as detailed in
Appendix E, Theorem 10, yielding the bound we state for the two-point oracle with 7 = 1.

Our novel contribution lies in establishing a lower bound that scales as d7 in the one-
point regime for large 7; see Theorem 9. While our analysis relies on classical tools such
as multidimensional hypothesis testing, the Markovian structure requires new bound on
distances between joint distributions and the use of clipping. Detailed proofs, discussions,
and further remarks on clipping appear in Appendix E.

3 Experiments

This section empirically supports our theoretical convergence rates and lower bounds, with
particular focus on the stochastic component where we claim linear scaling in d 4+ 7 instead
of dr.

Setup. Our setup repeats the problem we used to prove the lower bounds (see Appendix E
and [51]). We consider a quadratic objective f(z) = %||J:||2 and a two-point Markovian oracle
F(z,Z) = f(z) 4+ (x,Z). The noise sequence {Z;} is a lazily updated standard Gaussian
vector with variance 3. Figure 2 illustrates how the optimization error of Algorithm 1 scales
with mixing time, problem dimension, and different values of o3.

03 =10"3 o3 =10"1* 03 =10"°

Figure 2: Optimization error € = ||z — 2*||? after N = 10% iterations. Starting point error
|zo — x*||* = 1072. Stepsize v = 1073, t = 10~°. The results are averaged over 10* runs.

Discussion. The results confirm the linear dependence of the error on both the problem
dimension d and the mixing time 7. The noise parameter o2 controls the influence of the
stochastic part. In Fig. (a), where 03 = 1073, the stochastic component dominates, while
in Fig. (c), with 02 = 107, it is negligible. Fig. (b) shows an intermediate regime that
smoothly interpolates between the two, yet maintains the linear scaling. The deterministic
part (c) shows no dependence on mixing time, but grows linearly with d, which aligns with
our theory (Theorem 1’). The stochastic part (a) scales as (d + 7), also matching the bound
from the Theorem 1.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: [Yes]

Justification: main contributions of this paper are described accurately in a dedicated
subsection (Section 1.2) of the introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes]

Justification: assumptions we use to prove the main results are presented in Section 2.
The motivation for these assumptions as well their limitations are also described
there.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

o While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.
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980 3. Theory assumptions and proofs

981 Question: For each theoretical result, does the paper provide the full set of assump-
982 tions and a complete (and correct) proof?

983 Answer: [Yes]

984 Justification: all assumptions and definitions are carefully stated. The complete
985 proofs appear in the supplemental material and are properly referenced in the main
986 part.

087 Guidelines:

988 e The answer NA means that the paper does not include theoretical results.

989 o All the theorems, formulas, and proofs in the paper should be numbered and
990 cross-referenced.

991 e All assumptions should be clearly stated or referenced in the statement of any
992 theorems.

993 e The proofs can either appear in the main paper or the supplemental material,
994 but if they appear in the supplemental material, the authors are encouraged to
995 provide a short proof sketch to provide intuition.

996 e Inversely, any informal proof provided in the core of the paper should be
997 complemented by formal proofs provided in appendix or supplemental material.
998 e Theorems and Lemmas that the proof relies upon should be properly referenced.
999 4. Experimental result reproducibility

1000 Question: Does the paper fully disclose all the information needed to reproduce
1001 the main experimental results of the paper to the extent that it affects the main
1002 claims and/or conclusions of the paper (regardless of whether the code and data are
1003 provided or not)?

1004 Answer: [Yes]

1005 Justification: see Section 3. The setup is fully disclosed.

1006 Guidelines:

1007 o The answer NA means that the paper does not include experiments.

1008 o If the paper includes experiments, a No answer to this question will not be
1009 perceived well by the reviewers: Making the paper reproducible is important,
1010 regardless of whether the code and data are provided or not.

1011 o If the contribution is a dataset and/or model, the authors should describe the
1012 steps taken to make their results reproducible or verifiable.

1013 e Depending on the contribution, reproducibility can be accomplished in various
1014 ways. For example, if the contribution is a novel architecture, describing the
1015 architecture fully might suffice, or if the contribution is a specific model and
1016 empirical evaluation, it may be necessary to either make it possible for others
1017 to replicate the model with the same dataset, or provide access to the model. In
1018 general. releasing code and data is often one good way to accomplish this, but
1019 reproducibility can also be provided via detailed instructions for how to replicate
1020 the results, access to a hosted model (e.g., in the case of a large language model),
1021 releasing of a model checkpoint, or other means that are appropriate to the
1022 research performed.

1023 e While NeurIPS does not require releasing code, the conference does require all
1024 submissions to provide some reasonable avenue for reproducibility, which may
1025 depend on the nature of the contribution. For example

1026 (a) If the contribution is primarily a new algorithm, the paper should make it
1027 clear how to reproduce that algorithm.

1028 (b) If the contribution is primarily a new model architecture, the paper should
1029 describe the architecture clearly and fully.

1030 (c) If the contribution is a new model (e.g., a large language model), then there
1031 should either be a way to access this model for reproducing the results or a
1032 way to reproduce the model (e.g., with an open-source dataset or instructions
1033 for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer:

Justification: our experiments are rather a practical confirmation of theoretical
results, and these experiments can be easily reproduced.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

o Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

o While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

e The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

e The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

e The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

o Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [Yes|
Justification: see Section 3, all parameters are described there.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as
supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer:
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Justification: we use experiments to verify the theoretical rates and have no statistical
effects associated with running the experiments.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
CI, if the hypothesis of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer:

Justification: the experiments performed are not computationally heavy and can be
reproduced on an average machine in a fairly reasonable amount of time.
Guidelines:
e The answer NA means that the paper does not include experiments.
e The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.
e The paper should provide the amount of compute required for each of the
individual experimental runs as well as estimate the total compute.
e The paper should disclose whether the full research project required more
compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: the research follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

e If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?

Answer: [NA]

Justification: there is no societal impact of the work performed — we only develop
the theoretical understanding of Optimization.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a

system learns from feedback over time, improving the efficiency and accessibility
of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:
e The answer NA means that the paper poses no such risks.

o Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

o We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?

Answer: [NA]
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13.

14.

15.

Justification: the paper does not use existing assets.
Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

o For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]
Justification: the paper does not propose new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

o Researchers should communicate the details of the dataset/code/model as part
of their submissions via structured templates. This includes details about
training, license, limitations, etc.

e The paper should discuss whether and how consent was obtained from people
whose asset is used.

o At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

e Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

Institutional review board (IRB) approvals or equivalent for research
with human subjects
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16.

Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

o Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

o We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

e For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original,
or non-standard component of the core methods in this research? Note that if
the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.

Answer: [NA]
Justification: LLMs were used only for editing.
Guidelines:

e The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

o Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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