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Abstract. The subpopulation shifting challenge, known as some subpop-
ulations of a category that are not seen during training, severely limits the
classification performance of the state-of-the-art convolutional neural net-
works. Thus, to mitigate this practical issue, we explore incremental sub-
population learning (ISL) to adapt the original model via incrementally
learning the unseen subpopulations without retaining the seen population
data. However, striking a great balance between subpopulation learning
and seen population forgetting is the main challenge in ISL but is not well
studied by existing approaches. These incremental learners simply use a
pre-defined and fixed hyperparameter to balance the learning objective
and forgetting regularization, but their learning is usually biased towards
either side in the long run. In this paper, we propose a novel two-stage
learning scheme to explicitly disentangle the acquisition and forgetting for
achieving a better balance between subpopulation learning and seen pop-
ulation forgetting: in the first “gain-acquisition” stage, we progressively
learn a new classifier based on the margin-enforce loss, which enforces the
hard samples and population to have a larger weight for classifier updating
and avoid uniformly updating all the population; in the second “counter-
forgetting” stage, we search for the proper combination of the new and old
classifiers by optimizing a novel objective based onproxies of forgetting and
acquisition. We benchmark the representative and state-of-the-art non-
exemplar-based incremental learning methods on a large-scale subpopu-
lation shifting dataset for the first time. Under almost all the challenging
ISL protocols, we significantly outperform other methods by a large mar-
gin, demonstrating our superiority to alleviate the subpopulation shifting
problem (Code is released in https://github.com/wuyujack/ISL).

1 Introduction

For the classification task in computer vision, a category is always consisted of
many fine-grained sub-classes which can be called subpopulations. For exam-
ple, the category “dog” has subpopulations including “Dalmatians”, “Poodles”
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Fig. 1. Subpopulations [28] are widely existed in the real world. A visual category (col-
ored ellipse) contains a large number of subpopulations (denoted by each image) which
are semantically similar and share common visual characteristics [28] to be in the same
category, while they also have large differences in appearances, shape, context, etc.
Each subpopulation [28] is also a distribution with sufficient variations, e.g., cover
thousands of distinct objects belonging to this subpopulation in nature.

and “Terriers”, etc. (as shown in Fig. 1). However, such kinds of large-scale sub-
populations severely limit the discriminative ability of learned models. Recently,
Santurkar et al. [28] studied how well a model generalizes to subpopulations that
are unseen during training, i.e., whether the model can recognize “Dalmatians”
as “dogs” even their training data for “dogs” comprise only the dog’s breeds like
“Poodles” and “Terriers”. Their observations demonstrate that the classifica-
tion accuracy on those unseen subpopulations drops significantly (mostly more
than 30%) compared to the seen population. Such a critical issue is defined as
subpopulation shifting, caused by the large intra-class variations within a cate-
gory, or more specifically, the large inter-subclass variations between different
subpopulations of a common category in the natural world.

To tackle such a subpopulation shifting problem, a naive solution is to com-
prehensively collect sufficient data from all subpopulations for learning. However,
due to the visual complexity of a category in nature, it is hard to completely
cover all the subpopulations during data collection. Therefore, in recent years,
more efforts have been paid to leverage the incremental learning (IL) technique
to improve the generalization ability of an offline learned classification model
against the online unseen data. While existing incremental learning methods
mostly focus on the data from unseen categories but simply ignore the subpop-
ulation shifting problem within a seen category from the training phase.

Recently, a few works spotlight a scenario where the distributions of seen
categories are shifting while the label space is fixed, called incremental domain
learning (IDL) [12,32], which mostly targets on two specific cases. Firstly, chang-
ing visual domains (e.g., from photo-style to painting-style) of the seen category,
known as continual domain adaptation (CDA) [33]; Secondly, adding new poses
and environment conditions (e.g., illumination, background) to the seen cate-
gory, denoted as the new instance (NI) setting [18,20]. However, none of them
recognize the critical subpopulation shifting problem caused by the large inter-
subclass variations within every specific visual category. Therefore, it is worth-
while to provide a first and comprehensive study of tackling the subpopulation
shifting problem in an incremental learning manner, e.g., incrementally learning
to recognize the unseen subpopulations of “dog” as “dog”, without retaining the
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Fig. 2. (A) and (B) show the difference between the ISL and incremental domain learn-
ing (IDL): in IDL (includes NI and CDA), the new distribution is only the manipulation
of the existing subpopulations’ distributions (e.g., the same subpopulation in different
visual domains), but no new unseen subpopulations are introduced; Instead in ISL, the
new distribution is the totally new and unseen subpopulation [28] that is not existed
in the distribution of a category before. Concrete examples are in our supplementary.
(C) shows our method can gradually acquire the unseen subpopulations during ISL.

data of seen population. We call this incremental subpopulation learning (ISL)
and more discussions about the differences with the aforementioned incremental
learning settings can be found in Fig. 2 and Sect. 2.

However, as commonly observed in the incremental learning research, a model
may be quickly adapted to acquire the unseen task while forgetting the seen tasks
gradually, especially without retaining the previous learning data [6,42]. Such
a phenomenon significantly limits the final discriminative ability of the model.
Thus, balancing the forgetting and acquisition appropriately in incremental learn-
ing still remains a challenging problem and may be more critical in ISL. The rea-
son is that the unseen subpopulations share common visual characteristics to be
grouped in the same category [28]. Such a correlation makes the model being eas-
ily transferred to unseen subpopulations in finetuning [28] while forget the seen
subpopulations. Currently, general IL solutions design various forgetting regular-
izations to jointly optimize the acquisition and forgetting [8,11,14,15,17,36,42].
However, they heavily rely on a controller hyperparameter predetermined before
incremental learning starts and fixed afterward [6]. Since the relation between
forgetting and acquisition is not explicitly modeled, the hyperparameter needs
to be subtly tuned based on a held-out test set from each incremental learning
phase. This not only introduces large amounts of manual trials and errors, but
also has no guarantee to obtain a great balance in the long run, especially when
we can not access previous test sets [6].

Therefore, in this paper, we propose a novel two-stage learning scheme to
tackle the above forgetting issue from an adversarial perspective, also as a pre-
liminary baseline for ISL. In the first “gain-acquisition” stage, we progressively
learn a new classifier using only the learning data from unseen subpopulations
without explicitly regularizing the forgetting issue. To do so, we explore the pos-
sibility of the feature extractor sharing during incremental learning and achieve
a better stability-and-plasticity trade-off [6] by progressively reducing prediction
error on the hard samples and classes. To explicitly defy the forgetting issue, we
propose a second “counter-forgetting” stage to further achieve a better balance
between forgetting and acquisition by encouraging them to compete against each
other and linearly combining the old and new classifiers based on an additive
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parameter α. To achieve this, we leverage a novel objective function to model the
confrontation by two proxy estimations of forgetting and acquisition respectively,
then search for the proper α by optimizing this objective function.

Our proposed method disentangles the acquisition and forgetting in our two-
stage learning scheme to explicitly guarantee the acquisition of knowledge from
unseen subpopulations as well as mitigate the forgetting issue of seen subpopula-
tions. To verify this, for the first time, we elaborately design extensive experimen-
tal protocols to investigate ISL on the large-scale datasets, i.e., BREEDS [28],
which are recently proposed to precisely simulate the subpopulation shifting con-
dition. Extensive empirical results demonstrate that our proposed method out-
performs the existing incremental learning approaches by a significant margin
under almost all the protocols. Moreover, our further discussions and analyses
also show the effectiveness of leveraging incremental learning to alleviate the
subpopulation shifting problem. To sum up, our contributions are three-fold:
(1) We conduct a first extensive experimental study of representative incre-
mental learning methods on incremental subpopulation learning (ISL) based on
a recently proposed large-scale benchmark tailored to subpopulation shifting;
(2) We propose a novel two-stage non-exemplar-based (NEB) ISL method to
explicitly disentangle the acquisition and forgetting in ISL for achieving a better
balance, which outperforms the representative NEB methods by a large mar-
gin under different and challenging ISL protocols; (3) We empirically show that
incremental learning is promising for alleviating the challenging subpopulation
shifting problem, which is worthwhile for future study. Our empirical analyses
further enlighten the challenges and future research direction for ISL.

2 Related Works

To highlight the necessity of our proposed ISL, it is essential to compare
several related learning scenarios, including our Incremental Subpopulation
Learning (ISL), Incremental Domain Learning (IDL) [12,32] that includes New
Instance (NI) [18,20] and Continual Domain Adaptation (CDA) [33] settings,
Class-Incremental Learning (CIL) [6,21] and Incremental Implicitly-Refined Clas-
sification (IIRC) [1]. Please also refer to our supplementary for more discussions.

ISL v.s. IDL (includes NI and CDA): As mentioned in Sect. 1, the input
distribution or domain in IDL [12,32] is shifting while the label space is fixed.
However, IDL does not propose to introduce any new unseen subpopulations
to a category (see Fig. 2). The general IDL methods [12,32] can hardly model
the data variation caused by subpopulation shifting and can not balance the
forgetting and acquisition without retaining old data. More specifically, NI [18]
adds new patterns to the same object by changing the object’s poses and image
conditions (e.g., illumination). CDA [33] means continually adapting a model to
new visual domains (e.g., from photo style to other styles’ images). Thus, both
NI and CDA can be considered as specific cases of IDL. Although our ISL also
does not change the label space and can be generally viewed as a specific case of
IDL, ISL has its specific research targets and challenges that are different from
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the above-mentioned settings. Given that NI and CDA are explicitly framed to
specify their identity, it is also of great necessity to frame ISL explicitly.

From the data perspective, datasets [18,33] used in NI or CDA do not have
a large scale and precise label hierarchy to define the subpopulations within a
category, thus they can not precisely simulate the subpopulation shifting [28].
CORe50 [18] used in NI does have a hierarchy (10 categories, each one has 5
classes), but each class is only a distinct object. The objects are hand held in
different views and the environmental conditions are changed to get their new
instances. Such a dataset is insatiable to create the subpopulation given its lim-
ited diversity and scale (see Fig. 1), and can not simulate the subpopulation shift
as the new instances are still belonging to existing seen objects (see Fig. 2 (A)).
Recently, [28] proposed a large-scale BREEDS dataset to create the desired
hierarchy with large amounts of human efforts and identify for the first time
the subpopulation shifting problem to the community. Thus, existing studies in
IDL (NI or CDA) are not suitable for ISL. To the best of our knowledge, ISL has
rarely been mentioned or studied in the IL literature. The BREEDS benchmark
paves the way for our timely study of the subpopulation shifting problem.

ISL v.s. General IL (includes CIL [6] and IIRC [1]): ISL also differs from
CIL. In CIL, we continually learn new classes that are disjoint with previous
ones. Thus we have a clear boundary between new and old classes and can fix
the old classifiers to avoid detrimental updates [6]. In contrast, we only have a
fixed size, unified classifier in ISL, and it is unavoidable to update the whole
decision boundary. Recently, IIRC [1] is proposed to incrementally learn new
classes and also refine the label hierarchy between the seen subclasses and their
specific class: A model first learns several classes (e.g., “cat”), where the training
data for each class comprises several subclasses. Then the model encounters both
new class samples (e.g., “cow”) and the seen sample with its subclass label. The
model needs to learn the different granularity of labels of a class and the relation
between them. Differently, in ISL, we do not introduce new classes, and the new
subpopulation needs to be strictly unseen and disjoint to the old ones.

Incremental Learning Methods. Given whether the training images can be
retained, existing IL methods are divided into exemplar-based (EB) [5,11,13,24]
[3,16,31,36] and non-exemplar-based (NEB) methods. However, storing old
training data is not privacy-preserved in the real world [6]. NEB methods
mostly aim to design better forgetting regularization constraints on param-
eters [2,14,19,39,40] and model outputs [8,15,35,41]. However, the former
needs a well-defined metric to identify the important parameter, which is
hard to design [6]; the latter’s performance depends largely on the old and
new task correlation [6]. Other kinds of NEB methods learn a generative
model (GAN) [4,30,34,34] to generate the old images for retraining or dynami-
cally extend the models [5,22,23,37,38]. However, the former requires the GAN
to be capable of IL and generate high-quality images, which is still challenging;
the latter requires growing memory and is undesirable in the real world. More-
over, all the above NEB methods mostly couple the forgetting and acquisition
into a joint optimization problem, where their balance is controlled based on
finely-tuned hyperparameters.
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Differently, our proposed method disentangles the acquisition and forgetting
to explicitly and adaptively control them in a data-driven manner in ISL, which
significantly outperforms the representative NEB methods mentioned above.

3 Method

3.1 Terminology and Problem Formulation

Following the terminology in [28], the term “population” is concretely defined
as class or super-class, e.g., “cat” and “dog”, and the “subpopulation” is defined
as the subclass of a specific class, e.g., different “dog” breeds. All subclasses are
under the same visual domain (i.e., natural image). Before incremental learning,
we have a base step to train a model to learn many diverse classes with sufficient
data, where the model is called the base step’s model. Each class is learned
by a dataset comprised of different subclasses, e.g., subclasses of “dog” like
“Poodles” and “Terriers”. These subclasses are labeled as class “dog”. Then in
each incremental step, the model encounters unseen subclasses of existing classes,
and it incrementally learns to predict the class label of these unseen subclasses.

Formally, let t = 0 denote the base step, and let t = 1, 2, .., T denote
the incremental steps. The training dataset of the t-th incremental step is
Dtrain

t =
{
Xtrain

t , Strain
t , Y

}
=

{
xtrain

t,j , strain
t,j , yj

}Nt

j=1
, where x, s, y denote the

inputs, subclass labels and class labels, respectively. Note that the only super-
vision is the class label, while the subclass labels will not be used during
training but to ensure unseen subclasses differ from all seen subclasses, i.e.,
Strain

t ∩ (∪t−1
i=0S

train
i ) = ∅. The set of class labels is the same over all steps. At

each step we have a corresponding held-out test set Dtest
t = {Xtest

t , Stest
t , Y }

to evaluate the performance on the current step, and we also only use the class
label Y for evaluation. The model, e.g., CNN, comprises the feature extractor
fθ and classifier Gφ, parameterized by θ and φ respectively, where Gφ refers to
the last linear layer of the CNN. After T steps, the model is tested on all the
previous steps’ held out test sets Dtest

t , t = 0, ..., T to evaluate the performance
over all the learned subclasses.

3.2 A Novel Two-stage Learning Scheme

Here we introduce the proposed two-stage learning method. We argue that the
learned CNN feature extractor is capable of extracting discriminative features
for each class. Then the potential reason of misclassifying the unseen subclasses
is that the final classifier emphasizes the feature that is less discriminative for
the unseen subclasses because the classifier may have already biased to the seen
subclasses. Therefore, we conjecture that the subpopulation shifting may be
alleviated by appropriately updating the classifier to emphasize the proper fea-
ture for the unseen subpopulation. To explore this idea, we consider to share a
fixed feature extractor after the base step and only learn the new classifier as a
novel baseline tailored to ISL. Since feature extractor sharing may lead to con-
cerns of stability and plasticity trade-off, thus in our Stage-1 we introduce the
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Fig. 3. During the incremental subpopulation learning procedure, in each incremental
step t we obtain the classifier Gφt for the model Ft by two stages. In Stage-1, we learn
a new classifier Gφ′

t
via functional gradient descent (FGD) of Eq. 3. In Stage-2, we

obtain Gφt by combining the new and old classifiers linearly via a proper αt solved by
Eq. 10 to balance the acquisition and forgetting approximately.

gradient-based boosting [26] idea to alleviate the issue by progressively reduc-
ing the prediction error. In Stage-2 we design a specific objective function to
approximately model the balance of acquisition and forgetting and leverage it
to achieve our target. Figure 3 provides a systematic view of our design.

Stage-1: Gain-Acquisition. Suppose Y = {1, . . . , C} is the class label for each
incremental step in ISL, and yk ∈ R

C is the one-hot vector to represent the class
k. We define the margin [26,27] of a sample x to an arbitrary class k as:

M (
yk, F (x)

)
= min

l �=k

1
2

< yk − yl, F (x) > (1)

where F (x) = Gφ (fθ(x)) denotes the model prediction given a sample x and
F (x) ∈ R

C ; 〈., .〉 denotes the dot-product and 1
2

〈
yk − yl, F (x)

〉
is the l-th mar-

gin component of class k, where ykF (x) is the k-th element of the model’s pre-
diction vector. Now we define the margin of the model given the training data
D = {X,Y } (we omit t and the subclass label St as it is not used as supervision):

M(D,F ) = min
(xi,yci )∈D

M (yci , F (xi)) , (2)

where yci is the one-hot vector of the ground-truth class label ci given a sample
xi. M(D,F ) measures the distance between the closest sample to each ground-
truth class’s decision boundary given the model and training data, and we want
to encourage the model to have a large M(D,F ) such that given a sample, the
model prediction of its ground-truth class can be far away from other classes [26,
27]. Hence we define our margin-enforce objective function [27] as:

�m(F ) =
1

|D| ·
∑

(xi,yci )∈D

LM [yci , F (xi)] , (3)
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where |D| denotes the size of dataset and the LM [., .] should be a differentiable
and monotonically decreasing function such that by minimizing Eq. 3, it is equiv-
alent to maximize the margin defined by Eq. 2. This margin-enforce property
has a guarantee that the optimal model obtained by minimizing Eq. 3 may have
good generalization, as demonstrated in the boosting theory [26]. We consider
the default choice in the multi-class boosting theory [26,27] as:

LM [yc, F (x)] =
C∑

k=1,k �=c

e− 1
2 [<yc,F (x)>−<yk,F (x)>]. (4)

Then a new model is obtained by the largest decrease of Eq. 3. Such a decrease
can be determined by the directional derivative [9] of Eq. 3 along the functional
g : X → R

C , where X denotes the input space of the model F (x):

δ�m[F ; g] =
∂�m[F (x) + εg]

∂ε

∣
∣
∣
∣
ε=0

, (5)

called the functional gradient (FG) [9]. By first order Taylor expansion we have:

− δ�m[F ; g] =
1

2|D|
|D|∑

i=1

wi < g (xi) , yci −
∑

k �=ci

ykτk (xi, ci) >, (6)

where wi =
∑

k �=ci
e− 1

2<yci−yk,F (xi)> and τk (xi, ci) = e− 1
2<yci−yk,F(xi)

∑
k �=ci

e− 1
2<yci−yk,F(xi)>

.

Detailed derivation of Eq. 6 can be found in [26,27]. Finally, we achieve a new
model by maximizing the negative functional gradient, i.e., Eq. 6:

g(x) = arg max
g

|D|∑

i=1

wi < g (xi) , yci −
∑

k �=ci

ykτk (xi, ci) > . (7)

Such an update is known as functional gradient descent (FGD) [26] on Eq. 3. In
our work, we integrate the above learning mechanism into incremental subpop-
ulation learning (ISL): Assume we have a model Ft−1 after t − 1 incremental
steps. For the t-th step, we only use the current step’s training data to learn a
new model Ft by optimizing Eq. 3 via FGD, which is exactly to solve the Eq. 7
and then Ft = g. Since we want to explore the possibility of only updating the
classifier of CNN, thus for the model Ft, only the classifier is learnable and the
feature extractor fθ is frozen after the base step and shared over each incremen-
tal step, illustrated in Fig. 3. Thus by FGD, we actually obtain a new classifier
Gφ′

t
for Ft. To solve the Eq. 7, we initialize g as Ft−1 and minimize the negative

of Eq. 7 by stochastic gradient descent (SGD). We empirically observe that this
learning mechanism works smoothly and converges to high accuracy (>90%)
on the unseen subpopulation training data after several epochs, which essen-
tially relieves the stability-plasticity concern. This is due to the merit of margin-
enforce loss [26,29] that can progressively reduce the training error. Formally, it
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relates to the reweighting mechanism [26] presented in Eq. 7 and we show that
it is also beneficial to ISL: (1) The wi is a decreasing function of the margin
components of the ground-truth class ci given the sample xi. Then the wi is
close to 0 when the smallest margin component of class ci is large and positive,
where from Eq. 1 this means the sample xi is with a large margin and is easy
to be predicted since the model prediction of the class ci, i.e., yciF (xi), is much
larger than other classes. Thus, the classifier may receive small updates from
easy samples as wi are small, and large updates from hard samples (i.e., with
small margins). This reweighting mechanism may avoid uniformly updating the
decision boundary given every training sample. Meanwhile, it lets the model to
focus on hard samples to reduce error progressively. This is crucial for ISL since
it avoids unnecessary updates and lead to less forgetting. (2) The other reweight-
ing can be observed from < g (xi) , yci − ∑

k �=ci
ykτk (xi, ci) >. We change it to

∑
k �=c τk(xi, ci)

[
< g(xi), yci − yk >

]
by taking the τk (xi, ci) outside. τk (xi, ci) is

a weighted average over the margin components of the class ci, and it will weigh
a class k (hard class) more for updating the classifier if the model prediction of
it, i.e., ykF (xi), is close to the prediction of the class ci. Hence this reweighting
may also avoid uniformly updating the class decision boundaries.

Stage-2: Counter-Forgetting. Although we connect general boosting with
incremental learning and show that it is favorable for ISL due to its reweighting
mechanisms, the above learning mechanism can not entirely defy the forgetting.
The new classifier Gφ′

t
is only trained with the current step’s unseen subpopu-

lation data while we do not explicitly impose any forgetting control. Therefore,
we propose to obtain the final classifier Gφt

for model Ft by linear addition:

Gφt
= Gφt−1 + αt · Gφ′

t
. (8)

This is also inspired from boosting mechanism, but it is totally different from
boosting since the αt here is for controlling the learning and forgetting, while in
boosting we use it to progressively reduce the training error [29]. As the classifier
of CNN is a linear layer and in ISL, we do not introduce new classes and the size
of this layer is fixed. Thus the linear combination of two linear classifiers is equal
to linear combine the weight of them, i.e., φt = φt−1 +αt ·φ′

t. The key challenge
is to determine the proper αt without storing previous training images since it is
infeasible to measure the forgetting only by the current step’s training data. To
tackle this challenge, we consider obtaining the proxy of forgetting by measuring
the relative distance distortion of the class representative prototype between the
last step’s classifier Gφt−1 and new classifier Gφ′

t
under different αt. The insight

is: Since the feature extractor is shared, it can provide consistent transformation
for each class’s data in the feature space. Thus the class prototype is fixed and
consistent for each class during incremental learning. The forgetting can now be
disentangled and measured by the distance distortion between the prototype and
the changed decision boundary, since the class prediction error is directly related
to the change of decision boundary. This differs from the existing non-exemplar-
based method, e.g., PASS [42], leveraging the prototype (class mean feature) to
create a constraint to train on the new class data to maintain the old decision
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boundary which is changing dynamically in CIL. After each incremental step,
if a class is introduced with unseen subclasses, we obtain one prototype (class
mean feature) of that class and add it to the prototype bank, which is the same
as the PASS [42] storing one prototype of each new class in CIL. The prototype is
calculated by the feature extractor fθ and thus it has the same input dimension
as the classifier. At step t, we denote the relative distance distortion as:

ldist (αt) =
t−1∑

i=0

∑

j∈Ni
p

1
C

·
∣
∣
∣
∣
αt · Gφ′

t
(Ki,j)

Gφt−1 (Ki,j)

∣
∣
∣
∣
1

, (9)

where Gφ (Ki,j) ∈ R
C and | · |1 denotes the L1 norm, Ki,j denotes the prototype

of class j in step i and N i
p denotes the set of index of the stored prototype in

step i. We do element-wise division here to measure the relative distortion of
each class between old and new classifiers under different αt. The distance is
normalized by the size of the label space C. For the acquisition measurement,
before training on current step’s training data Dtrain

t , we randomly sample a
held-out validation set Dval

t from Dtrain
t to measure the relative improvement of

validation accuracy between Gφt−1 +αt ·Gφ′
t
and Gφt−1 , denoted as lval(αt). The

proper αt is obtained by optimizing an objective function modeling the balance:

αt = arg max
αt

lα = arg max
αt

lval (αt) − ldist (αt) , (10)

which means we want more acquisition while also less forgetting. Note that in
Stage-2 we do not update any classifier by backpropagation. Instead we fix both
the old and new classifiers, Gφt−1 and Gφ′

t
, and search for the proper αt by

solving Eq. 10, shown in Fig. 3. The αt can be readily searched by simple line
search. More details and discussions are included in our supplementary.

4 Experiments

Datasets. We leverage the latest BREEDS datasets [28] in our experiments.
BREEDS simulates the real-world subpopulation shifting based on the Ima-
geNet [7], and it comprises four different datasets: Entity-13, Entity-30, Living-
17, and Non-Living-26, with a total of 0.86 million (M) of images. The
dataset configurations and statistics are all included in supplementary. How-
ever, BREEDS is not proposed for incremental subpopulation learning (ISL),
so we need to further create the ISL-specific benchmark based on it. Since we
focus on the incremental learner’s performance in the sufficiently long run, hence
in present work, our main testbeds are based on Entity-13 and Entity-30 from
BREEDS as they have the most number of subclasses, i.e., totally 260 and 240
subclasses respectively, and more than 0.6M images. To the best of our knowl-
edge, this is the first time to leverage such large-scale datasets to investigate the
ISL.

Comparison Methods. A strict requirement of ISL is that no previous training
images can be retained, thus it is rarely studied before. Moreover, very few meth-
ods are proposed tailored to the related Incremental Domain Learning (IDL);
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Methods like BOCL [31] for IDL needs to store and use old images during train-
ing on new instances, which can not satisfy the ISL requirements. Thus following
the works benchmarked the IDL [12,31,32] and other settings, we choose sev-
eral general and representative non-exemplar-based (NEB) methods [21,42] and
benchmark them under BREEDS [28] for the first time. They include EWC [14],
LwF [15], LwF-MC [25], MUC [17], LwM [8] and PASS [42]. Among them, EWC
and LwF are widely used to benchmark various IL settings including IDL [12,31–
33] and achieve comparable results to the state-of-the-art (SOTA). Methods like
MUC and PASS were tested in CIL, but as stated in their papers [17,42], they
are also general for different IL settings including ISL. PASS is the SOTA NEB
method in CIL. We also compare the naive baselines, i.e., finetune the whole
model (“Finetune All”) and finetune only the last layer (“Finetune Last”). The
joint training of all the data is the “Oracle”.

Evaluation Metrics. We report the common metrics [42] in IL literature for
evaluation, i.e., the average top-1 accuracy (%) on all the seen and unseen sub-
classes we learned for each class (includes the base step), denoted as “All”, and
the average forgetting Fi to measure the forgetting in previous steps. At step i,
the forgetting score on step j is f j

i = maxt∈0,...,i−1 (at,j − ai,j) ,∀j < i, where
ai,j denotes the accuracy of step j after the training of step i. Then Fi is defined
as Fi = 1

i

∑i−1
j=0 f

j
i . We further define “Unseen” as the average test accuracy only

on all the unseen subclasses and report it in Tables 1 and 2 to show how well
each method acquires the unseen subpopulation after incremental learning.

Experimental Design. Entity-30 and Entity-13 have 30 and 13 classes where
each class has 8 and 20 subclasses respectively. We design 3 protocols for each
dataset. In the base step, the training set of each class comprises data from 4 and
10 subclasses for Entity-30 and Entity-13 respectively, the same as BREEDS to
simulate subpopulation shifting. Then we split the rest of 120 and 130 unseen
subclasses in each dataset respectively to create different protocols. For Entity-
30, we design protocols with 4, 8, 15 incremental steps: in each step, for 4 Steps
setup, each class is introduced with 1 unseen subclass; for 8 and 15 Steps setups,
we randomly choose 15 and 8 out of 30 classes respectively to introduce with 1
unseen subclass. For Entity-13, we design protocols with 5, 10, 13 incremental
steps: in each step, for 5 and 10 Steps setups, we introduce 2 and 1 unseen
subclasses for each class respectively; For 13 Steps setup, we randomly sample
10 out of 13 classes to introduce with 1 unseen subclass. These designs simulate
two scenarios: (1) all the classes are updated with at least 1 unseen subclass; (2)
only a part of classes are updated with unseen subclasses. We denote the former
as even update and the latter as uneven update.

Implementation Details. We use ResNet-18 [10] for all methods as [42]. For
a fair comparison, all methods are initialized with the same base step model and
then start incremental learning. As the first benchmark for ISL, it is essential to
compare different methods fairly. Therefore, we use the Continual Hyperparam-
eter Framework (CHF) proposed by [6] to find the hyperparameters for com-
parison methods, and also use the same data augmentation as in BREEDS [28]
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Table 1. Results on Entity-30 benchmark. Smaller Fi and larger Unseen/All is better.
Before incremental learning, “Unseen” is 50.18 for all the methods.

4 Steps (Even Update) 8 Steps (Uneven Update) 15 Steps (Uneven Update)

Method Unseen All F4 Unseen All F8 Unseen All F15

Oracle 88.03 87.63 – 88.03 87.63 – 88.03 87.63 –

Finetune All 53.72 48.08 47.75 26.45 23.08 73.86 14.68 13.77 84.49

Finetune Last 55.25 58.30 32.43 30.85 32.50 60.82 19.98 21.56 72.40

EWC [14] 56.17 54.10 40.69 30.50 29.00 66.94 22.20 23.68 74.03

LwF [15] 62.67 58.85 32.32 34.52 29.69 64.38 32.62 31.17 62.51

LwF-MC [25] 68.28 64.43 28.20 46.93 43.69 50.88 34.53 33.79 62.36

MUC [17] 62.98 59.59 29.45 36.17 31.83 61.49 34.15 32.54 60.65

LwM [8] 63.32 59.20 33.13 42.47 38.90 55.59 33.43 30.78 61.23

PASS [42] 64.50 69.37 21.79 48.85 54.99 40.50 32.13 39.75 58.27

Ours 64.73 72.88 4.16 58.63 72.14 2.30 56.87 71.69 3.48

Fig. 4. Average top-1 test accuracy in each step under 3 protocols of Entity-30.

to train both the base and incremental steps consistently for all methods. All
experimental details are in supplementary. The data augmentation comprises
random resize crop, random horizontal flip, lighting, color jitter, etc. Note that
such a heavy strategy is the same as the domain randomization (DR) method
used in continual domain adaptation (CDA) [33] to achieve SOTA results.

4.1 Comparison with the State-of-the-art

From Tables 1 and 2 we observe: when the incremental step is small and the
update is even (the 4 Steps Entity-30 and 5 Steps Entity-13), all the NEB meth-
ods can improve their accuracy on the unseen subclasses (“Unseen”) compared
to themselves before incremental learning, reported in the captions of Tables 1
and 2. However, when we compare the performance on all the subclasses (“All”),
our method exceeds all compared methods with a large margin since those meth-
ods forget the learned subpopulations during ISL and thus lead to poor “All”
performance when average on all the subclasses (as shown in Figs. 4 and 5).
This demonstrates that most NEB methods can learn to recognize the unseen
subpopulations in small steps but at the cost of forgetting the seen ones. When
the incremental steps become large and uneven update, e.g., 15 and 13 Steps
for Entity-30 and Entity-13, all the compared methods suffer from severe forget-
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Table 2. Results on Entity-13 benchmark. Smaller Fi and larger Unseen/All is better.
Before incremental learning, “Unseen” is 62.03 for all the methods.

5 Steps (Even Update) 10 Steps (Even Update) 13 Steps (Uneven Update)

Method Unseen All F5 Unseen All F10 Unseen All F13

Oracle 90.61 90.46 – 90.61 90.46 – 90.61 90.46 –

Finetune All 61.54 59.16 37.79 51.55 50.88 46.76 41.98 41.72 56.97

Finetune Last 65.52 71.15 18.89 61.52 67.37 25.47 49.89 55.23 40.31

EWC [14] 63.85 63.48 32.99 55.63 57.31 36.53 47.51 48.54 50.49

LwF [15] 66.91 64.82 31.47 59.97 59.17 36.26 51.14 51.05 46.31

LwF-MC [25] 67.57 65.96 30.64 59.58 59.22 38.42 59.45 59.70 37.02

MUC [17] 67.51 65.88 30.00 62.17 61.98 31.45 53.58 52.89 43.74

LwM [8] 69.69 67.61 28.22 63.49 62.25 31.72 51.05 50.80 46.31

PASS [42] 73.12 75.44 16.73 65.63 68.51 26.55 50.48 52.49 43.76

Ours 72.02 78.92 3.29 68.31 77.53 3.35 69.69 78.75 3.35

Fig. 5. Average top-1 test accuracy in each step under 3 protocols of Entity-13.

ting on the subpopulations learned in previous steps and perform significantly
poorly. The baseline “Finetune Last” almost fails in 15 Steps Entity-30, though
it may obtain comparable results to some NEB methods in small steps and even
update. This shows it is hard to only fix the feature extractor to achieve excel-
lent results in ISL in the long run. In contrast, our proposed method achieves
small average forgetting and great average accuracy even after 13 and 15 steps,
outperforming the best existing method by 19.05% and 31.94% on “All” respec-
tively. Interestingly, we also observe that our method can have smaller forgetting
in longer steps (8 and 15 Steps Entity-30). This is due to the positive transfer
in our method shown in Table 4, where the test accuracy of some steps can be
improved after ISL and have no forgetting. The reason is our method can grad-
ually learn unseen subpopulations and strike a much better balance between
acquisition and forgetting than existing methods. The acquired knowledge from
new unseen subpopulations sometimes could be helpful for better distinguishing
the old seen subpopulations, which is essential for countering forgetting in ISL.

Further Discussions and Analyses. We further analyze the performance
of existing methods in both ISL and other IL settings based on our empirical
observation. We highlight our analyses below, and more details are in our supple-
mentary: (1) ISL provides new challenges for the representative NEB methods.
For instance, EWC and LWF can achieve comparable, or even SOTA results in
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Table 3. Ablation study by Entity-13 13
Steps setup

Unseen All F13

Cross Entropy 49.89 55.23 40.31

�m 53.13 60.38 29.48

�m+ Random αt 62.60 71.59 5.93

�m+ Fixed αt = 1 63.83 75.24 4.23

�m+ Obtained αt (Ours) 69.69 78.75 3.35

Table 4. Positive transfer. f815 means the
forgetting score of 8-th step of overall 15
Step.

Positive transfer

15 Step Entity-30 f815=−0.5, f1115=−2.5

8 Step Entity-30 f28=−0.8, f48=−3.73, f68=−4.4

10 Step Entity-13 f610=−1.5

the benchmark of IDL [12,32], NI [31] and CDA [33], and the data augmentation
strategy is also the same as the DR method proposed in CDA [33] to achieve
SOTA results. However, they still suffer largely from forgetting in ISL, espe-
cially under uneven update. This is caused by the differences between ISL and
other settings since the unseen subpopulation may not be simulated by strong
augmentation as verified in [28] or only changing the seen subpopulation’s views
or environments. Thus it is hard to acquire the unseen subpopulations without
forgetting the seen ones. (2) All compared methods control the forgetting by one
or several hyperparameters. Although some of them may perform well in early
steps in Figs. 4 and 5, such a mechanism can not strike a balance in the long
run.

4.2 Ablation Study and Analysis

To further explore the proposed method, we investigate the contribution of each
model component. As our method is two-stage and also optimizes a new learn-
ing objective instead of cross entropy loss, thus we compared our method with:
(1) “Cross Entropy”: directly finetune the last layer by the cross entropy loss
known as the “Finetune Last” in Tables 1 and 2; (2) “�m”: only finetune the last
layer by our margin loss from Eq. 3 (only Stage-1); (3) “�m + Random αt”: use
both Stage-1 and 2 but update the model by a random αt without using Eq. 10;
(4) “�m + Fixed αt = 1”: the same as (3) except the αt is fixed as 1 to equally
weight the influence of acquisition and forgetting. We observe from Table 3: (1)
The margin loss performs better than the cross entropy, confirming the formal
discussion in Sect. 3.2. However, the margin loss can not completely defy the for-
getting in the long run and its performance is still far from satisfactory. (2) The
proposed Stage-2 further improves the performance of the margin loss, shown in
both “�m + Random αt” and “�m + Fixed αt = 1”. However, without explic-
itly optimizing Eq. 10 to obtain the proper αt, their performance are inferior
to “Ours” after the long run. This illustrates the importance of the proposed
objective function to search for the proper αt to achieve a remarkable balance
over the long run for ISL. Besides we also find that: (1) the proposed forgetting
proxy estimation has a strong statistical correlation with the actual performance
drop of the seen subpopulations; (2) our method can robustly perform well for
ISL under different sizes of the training dataset in the base step and different
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network structures, which relieves our concern of sharing the feature extractor
for ISL. All the details and discussions of limitations are in our supplementary.

5 Conclusion

To alleviate the challenging subpopulation shifting issue, we explore incremental
subpopulation learning (ISL) and propose a novel two-stage model to better
balance forgetting and acquisition. We provide the first extensive benchmark of
existing methods for ISL. Empirical results show that our method outperforms
existing ones significantly under different and challenging protocols, which could
be a promising baseline for ISL and enlighten future research.

Acknowledgement. This work was supported in part by National Science Founda-
tion grant IIS-1815561 and IIS-2007613.
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