

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REFERRING LAYER DECOMPOSITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Precise, object-aware control over visual content is essential for advanced image editing and compositional generation. Yet, most existing approaches operate on entire images holistically, limiting the ability to isolate and manipulate individual scene elements. In contrast, layered representations, where scenes are explicitly separated into objects, environmental context, and visual effects, provide a more intuitive and structured framework for interpreting and editing visual content. To bridge this gap and enable both compositional understanding and controllable editing, we introduce the Referring Layer Decomposition (RLD) task, which predicts complete RGBA layers from a single RGB image, conditioned on flexible user prompts, such as spatial inputs (*e.g.*, points, boxes, masks), natural language descriptions, or combinations thereof. At the core is the RefLade, a large-scale dataset comprising 1.11M image–layer–prompt triplets produced by our scalable data engine, along with 100K manually curated, high-fidelity layers. Coupled with a perceptually grounded, human-preference-aligned automatic evaluation protocol, RefLade establishes RLD as a well-defined and benchmarkable research task. Building on this foundation, we present RefLayer, a simple baseline designed for prompt-conditioned layer decomposition, achieving high visual fidelity and semantic alignment. Extensive experiments show our approach enables effective training, reliable evaluation, and high-quality image decomposition, while exhibiting strong zero-shot generalization capabilities. We will release our dataset, evaluation tools, and model for future research.

1 INTRODUCTION

While modern generative models (Sheynin et al., 2023; Huang et al., 2024b; Chang et al., 2023; Mu et al., 2025; Zhou et al., 2025; Wei et al., 2024; Rombach et al., 2022; Podell et al., 2023; Brooks et al., 2023; Qin et al., 2023) excel at synthesizing realistic images, they typically operate on the image as a whole—without explicit representations of objects, structure, or scene components. This makes it difficult to selectively manipulate individual elements, enforce consistency across edits, or maintain semantic alignment with user intent. To compensate, region-based editing techniques (Zhao et al., 2024; Zhang et al., 2023b) are often used, where a localized mask, box, or prompt guides modifications. However, these approaches are inherently limited: they only affect visible pixels, lack awareness of occlusion and object-level semantics. These limitations highlight the need to move beyond flat pixel arrays toward structured, object-centric scene representations where elements can be individually understood, edited, and composed.

Rather than treating an image as a monolithic canvas, *image layer*, a transparent visual unit (typically encoded in RGBA format) that encapsulates an entire object or scene element, is inclusive of both visible (unoccluded) and hidden (occluded) regions. This abstraction parallels layer-based workflows in tools like Photoshop (Adobe Inc., 2023), where users manipulate visual elements as discrete, stackable units. Layered image representation provides a foundation for fine-grained editing, intuitive composition, modular reuse, and enables deeper semantic understanding of complex scenes.

Recent efforts have begun exploring decomposing images into layers, such as MuLAn (Tudoraru et al., 2024), which decomposes images into layered composites of objects and backgrounds, Text2Layer (Zhang et al., 2023c), which separates an image into two layers (foreground and background), and LayerDecomp (Yang et al., 2024a), which generates RGBA layers from object masks. However, these approaches are constrained by limited data scale and diversity, reliance on synthetic supervision, or coarse compositional definitions. In contrast, real-world applications often require

Figure 1: **The RefLayer model trained on RefLade demonstrating the RLD task.** Each row presents two different prompts and their corresponding layer outputs for the same input image. Given an image and diverse user prompts, RLD requires the model to generate targeted and *complete* RGBA layers. The figure showcases examples across prompting modes: **Spatial Prompting** (e.g., points, boxes, masks) and **Linguistic Prompting** (e.g., text descriptions like “the brown and white horse” or “background”). Coarse prompts such as a single point may lead to coarse-grained outputs (e.g., a combination of a walker and a dog), while more precise prompts yield accurate, object-specific layers, highlighting **multi-granularity** capabilities of RefLayer and its strong controllability and generalization.

user-controllable access to specific elements, calling for object-centric, prompt-driven layer prediction. We address these needs through scalable data construction, automatic evaluation protocols, and the development of a purpose-built baseline.

We introduce **Referring Layer Decomposition (RLD)**, a novel task that extracts a targeted RGBA layer based on a user-provided prompt (Figure. 1). Prompts can take various forms, including spatial inputs (e.g., points, boxes, masks), linguistic descriptions, or a combination of both. By leveraging this flexibility, RLD allows users to directly specify their object of interest, making it well-suited for applications such as targeted editing, interactive compositing, and object-centric understanding. A central challenge in this task is the lack of large-scale, high-quality training data. To address this, we present **RefLade**, a dataset of 1.11M image-layer-prompt triplets, including 1M auto-generated training examples, 100K manually cleaned layers, and a 10K curated test set—forming the first benchmark for prompt-driven layer decomposition. RefLade is constructed using a scalable data engine that integrates prompt interpretation, RGBA synthesis, and automated filtering, which ensures both quality and extensibility for future data expansion. Building on RefLade, we define an evaluation protocol along three key axes: preservation, completion, and faithfulness, and show that it correlates

108 strongly with human judgments. Together, the RefLade dataset, data engine, and automatic evaluation
 109 protocol establish RLD as a trainable, benchmarkable, and researchable task for image decomposition.
 110

111 Moreover, we propose **RefLayer** to serve as a baseline for the new task. RefLayer is a simple yet
 112 effective diffusion-based model that performs prompt-conditioned layer decomposition. It encodes
 113 spatial prompts via color-coded maps fused into the latent space, and employs a parallel alpha
 114 decoder to predict complete object RGBA layers. We present extensive experiments and ablations on
 115 RefLade to validate the evaluation protocol, benchmark the dataset, and assess the baseline model’s
 116 performance, offering valuable insights for future research.
 117

Our key contributions are as follows:

- 118 • We formalize Referring Layer Decomposition (RLD), the first task to explore layer decomposition
 119 guided by multi-modal referring inputs.
- 120 • We develop a scalable data engine and use it to establish RefLade, a dataset of 1.11M image-
 121 layer-prompt triplets with human-curated splits for quality tuning and testing. Along with our
 122 designed evaluation protocol, RefLade paves the way for future RLD studies.
- 123 • We conduct extensive experiments based on RefLade and benchmark it with a customized
 124 baseline model named RefLayer. Experimental results quantitatively and qualitatively validate
 125 the effectiveness of the dataset, the evaluation protocol, and the trained model.

128 2 RELATED WORK

131 **Image Understanding and Editing.** Novel tasks and benchmarks have consistently driven progress
 132 in computer vision by enabling breakthroughs and providing standardized ways to measure advance-
 133 ment. The proposed Referring Layer Decomposition intersects with a wide range of tasks, including
 134 detection (Ren et al., 2015; Carion et al., 2020; Minderer et al., 2023), segmentation (He et al., 2017;
 135 Cheng et al., 2021; Kirillov et al., 2018; Ozguroglu et al., 2024), image generation (Zhang et al.,
 136 2023b; Rombach et al., 2022; Ramesh et al., 2022), image editing (Brooks et al., 2023; Kawar et al.,
 137 2023; Huang et al., 2024b; Zhang et al., 2024), inpainting (Yu et al., 2018; Lugmayr et al., 2022;
 138 Li et al., 2023), and alpha matting (Xu et al., 2017; Park et al., 2022; Yao et al., 2024b). Notably,
 139 amodal completion (Xu et al., 2024; Zhan et al., 2020) seeks to infer the appearance of occluded
 140 object regions in an image, typically by using amodal segmentation followed by inpainting. While
 141 conceptually related, it cannot decompose and output layers. Referring expression segmentation
 142 (Hu et al., 2016) segments things based on language descriptions, and promptable segmentation
 143 (Kirillov et al., 2023; Ravi et al., 2024) extends it to support a wider variety of prompts to guide
 144 multi-granularity segmentation. These tasks are limited to producing masks and do not reconstruct
 145 occluded content or support RGBA outputs. In contrast, the proposed RLD is a novel task that
 146 unifies and extends these paradigms to generate complete RGBA layers from a single RGB image,
 conditioned on flexible referring prompts.

147 **Compositional Image Representations.** The emerging demand in fine-grained image editing and
 148 generation has spurred increasing attention towards object-centric and composable image repres-
 149 entations. (Schouten et al., 2025; Winter et al., 2024; Mu et al., 2024; Canberk et al., 2024; Wang
 150 et al., 2024; Pan et al., 2024) provide object-centric image datasets that focus on editing tasks such as
 151 object removal, insertion, repositioning, and resizing. However, these datasets predominantly focus
 152 on salient objects and specific editing operations, which offers limited coverage over objects and
 153 spatial relations in real-world images. Recently, several research works have emerged for acquiring
 154 RGBA layers in particular. (Tudosiu et al., 2024; Yang et al., 2024a) adopt top-down approaches that
 155 decompose RGBA layers from images captured in the wild. Despite high fidelity, these approaches
 156 heavily rely on human guidance for both data collection and evaluation, which impairs their scal-
 157 ability. (Zhang et al., 2023c; Zhang & Agrawala, 2024; Sarukkai et al., 2023; Huang et al., 2024a;
 158 2025) attempt bottom-up approaches to synthesize RGBA layers using generative models. However,
 159 these methods typically require high-quality RGBA training data, resulting in a circular dependency
 160 between model training and data availability. These limitations highlight the urgent need for three
 161 unaddressed key building blocks for compositional RGBA layer modeling: a task formulation that
 eliminates human-in-the-loop reliance, and a data engine that scales up RGBA layer data curation.

Figure 2: **Overview of the data engine.** The pipeline decomposes a natural image into multiple prompt-aligned RGBA layers through six automatic stages: pre-filtering, scene understanding, layer completion, post-completion, prompt generation, and post-filtering.

3 THE REFLADE

This section presents the RefLade dataset (Sec. 3.2), the data engine used to construct it (Sec. 3.1), and the automatic evaluation protocol for benchmarking (Sec. 3.3). Together, these components establish RLD as a trainable and benchmarkable task for layer decomposition research.

3.1 DATA ENGINE

Acquiring high-quality RGBA layers with prompt supervision is inherently challenging due to the scarcity of annotated data and the complexity of capturing occluded object appearances. We establish a scalable, modular, and automated data engine designed to get diverse, realistic, and high-fidelity RGBA layers from natural images.

The engine consists of six sequential stages that transform raw natural images into prompt-aligned RGBA layers with complete visual content and semantic grounding, illustrated in Fig. 2: (1) Pre-filter: Screens raw images to ensure they are suitable for decomposition based on quality, content, and object-level structure; (2) Scene Understanding: Detects, segments, and contextualizes salient or “interesting” visual entities that are likely to be user-referenced; (3) Layer Completion: Reconstructs occluded or incomplete object regions to generate visually complete layers; (4) Post-completion: Refines object masks, and predicts alpha mattes; (5) Prompt Generation: Produces diverse referring expressions including spatial, textual, and multimodal prompts that simulate realistic user interactions; (6) Post-filter: Evaluates each RGBA layer’s fidelity, realism, and semantic consistency.

More technical details are provided in the Appendix A.1.

The design of the data engine is partially inspired by MuLAn (Tudosiu et al., 2024), but introduces a series of substantial enhancements to lift its success rate (from reported 36% to 70%) as below:

Efficient Pre-filtering. Before initiating the computationally expensive generation process, images that are low-quality, visually cluttered, or likely to introduce downstream errors are excluded based on predefined rules. These rules are validated on a task-specific, human-annotated test set of 1000 images, and achieve a decent precision-recall trade-off ensuring that 86.1% of the retained images are suitable for the downstreaming process.

Enhanced Scene Understanding. We heavily leverage ensembled strategies in scene understanding. For object detection, the ensemble includes closed-set detection, open-vocabulary detection, and MLLM-based grounding to ensure robustness. For instance segmentation, we ensemble instance segmentation model with panoptic segmentation model to refine instance masks by excluding background masks, which greatly reduces failure in the layer completion stage.

Prompt Generation. To enable prompt-driven decomposition and training, we generate a diverse set of referring expressions for each RGBA layer.

Automated Quality Assurance. The post-filter enforces quality control by evaluating each RGBA layer along three critical dimensions: (1) Preserving: Assesses alignment between the visible region of the object in the RGBA layer and its counterpart in the original image. (2) Visual Quality: Commercial Vision Language Models is used to evaluate the RGBA layer based on structure, edge quality, and visual realism. (3) Semantic Correspondence: similarity is computed between each RGBA layer and its corresponding caption to verify consistency between textual and visual semantics. Together, these evaluations safeguard the perceptual fidelity and referential accuracy of each output.

Figure 3: **Analysis of RefLade dataset.** (a) Image sources: RefLade draws images from Open Images, SA-1B, COCO, and Objects365. (b) Instance distribution: Most training images contain 1–3 instances, covering a wide range of object categories. (c) Size comparison: RefLade includes significantly more small instances (by area ratio) than MuLan.

Table 1: Comparison of RefLade with related existing datasets.

Dataset	Task	# Images	Average Resolutions	# Cls	# Instances	Occlusion Rate	Image Source
SAIL-VOS (Hu et al., 2019)	Amodal	111,654	800×1280	162	1,896,296	56.3%	Synthetic
OVD (Yan et al., 2019)	Amodal	34,100	500×375	196	-	-	Real
WALT (Reddy et al., 2022)	Amodal	15M	-	2	36M	-	Real
AHP (Zhou et al., 2021)	Amodal	56,599	-	1	56,599	-	Real
DYCE (Ehsani et al., 2018)	Amodal	5,500	1000×1000	79	85,975	27.7%	Real
OMLD (Dhamo et al., 2019)	Amodal	13,000	384×512	40	-	-	Synthetic
CSD (Zheng et al., 2021)	Amodal	11,434	512×512	40	129,336	26.3%	Synthetic
MuLan (Tudosiu et al., 2024)	LD	44,860	-	759	101,269	7.7%	Real
RefLade	RLD	430,488	1831×1437	12K	871,829	60.8%	Real

Model Selection. All models used in our pipeline are chosen based on rigorous internal benchmarking to ensure state-of-the-art performance at the time of submission.

3.2 DATASET

To support Referring Layer Decomposition at scale, we construct a large-scale dataset of high-quality RGBA layers paired with diverse prompts, named RefLade. RefLade is generated using the data engine proposed above, and is designed to maximize diversity, realism, and prompt controllability. The statistical comparisons with existing datasets are presented in Tab. 1.

Dataset Composition. RefLade consists of 430K images annotated with RGBA layers, sourced from four large-scale, publicly available datasets: Open Images, SA-1B, COCO, and Objects365. On average, each image contributes 2.1 filter-passed foreground instance layers and 0.57 background layers, yielding a total of approximately 1.11M RGBA layers. To facilitate prompting, each layer is enriched with bounding boxes and descriptive text in addition to the RGBA channels. To support different stage of model development and evaluation, the dataset is divided into three subsets: a 1M training set, a 100K quality tuning set, and a 10K test set. Notably, both the quality tuning and test sets are manually cleaned to ensure quality.

Coverage and Diversity. Images in RefLade are randomly sampled from four public datasets comprising real-world photographs. As shown in Fig. 3a, the final dataset composition reflects a diverse range of image sources. Fig. 3b and Fig. 3c illustrate the long-tailed distribution of categories, instance counts, and instance sizes per image. RefLade spans a wide spectrum of scenes and objects, including indoor and outdoor environments, vehicles, animals, and diverse human activities. The word cloud in Fig. 3b offers an intuitive overview of the most frequent foreground instance categories, which include “person”, “car”, “boat”, “chair”, and “truck” among the top five. Additionally, the dataset is rich in prompt modalities, featuring both sparse spatial cues and detailed textual descriptions.

Human Annotation. To complement automated generation, we perform targeted human annotation for quality verification and benchmarking. We randomly sample 92K images, each with associated layers, and recruited 9 professional human annotators to review the samples in terms of background and foreground layer quality. For both background and foreground layers, inpainting completeness, mask accuracy, edge smoothness, and overall realism are evaluated in a “good/neutral/poor” criteria.

Figure 4: **Comparison of model evaluation metrics.** (a) The HPA score shows strong alignment with Human ELO rankings. (b) In contrast, none of the individual metrics (S_{vis} , S_{fid} , S_{gen}) consistently align with human preferences across models. Model A-I are anonymous for ELO.

For foreground instances, 1) a saliency label, defined as whether an object is sufficiently important to warrant its own layer, and 2) an occlusion label, defined as whether an object is occluded by objects in other layers, are annotated in addition. This process took 43 days to complete, yielding a refined subset of 59K high-quality images and a total of 110K validated layers, including 89K foreground and 21K background layers.

Quality Assessment. Beyond the curated subset, we conduct an independent quality audit to assess the broader training dataset, where we randomly sample data and instruct annotators to classify each as either “neutral” or “poor”. The results show that 74.7% of foreground and 70.2% of background layers meet the quality threshold. These findings validate the effectiveness of our data engine while identifying areas for further improvement.

3.3 EVALUATION PROTOCOL

Human judgment of decomposition quality typically considers three aspects: (1) Preservation: how the visible parts of the referring subject is preserved; (2) Completion: how the occluded part of the referring subject is recovered; (3) Faithfulness: how the joint of original visible parts and recovered occlude part is faithful. We aim to establish an evaluation protocol that reflects this multi-faceted human judgment. To this end, we design three assessments that are suitable to reflect each aspect.

Notation. The testing dataset \mathcal{D} consists of image-layer-prompt triplets. We denote the (original RGB) image as i , the ground-truth RGBA layer as g , and a model’s prediction towards this testing sample as p . A g comprises its RGB channels g_{rgb} , its transparency channel $g_a \in [0, 1]$, and a binary visibility mask $g_v \in \{0, 1\}$ indicating the layer’s visible region in the original image i . For a background layer, g_a is set to all ones by default, indicating full opacity across the entire region. For a foreground layer, we guarantee to provide a high-quality background layer i_{bkgd} in which the foreground layer g has been cleanly removed.

Aspect 1: Preservation. Preserving original visible content is a fundamental requirement in referring layer decomposition (RLD) and is critical for practical use. Before any evaluation, our primary goal is to ensure that the metric focuses on the originally visible regions. Therefore, we first crop g and p using a tight bounding box around the nonzero region of g_a , and then mask out regions not visible in the original image based on g_v . This preprocessing step ensures that the metric evaluates only the visible content that the model is expected to preserve. We then compute the perceptual similarity using the LPIPS metric (Zhang et al., 2018). Formally,

$$S_{\text{vis}} = \mathbb{E}_{(p,g) \sim \mathcal{D}} [\text{LPIPS}(g_{\text{rgb}} \odot g_v, p_{\text{rgb}} \odot g_v)] \quad (1)$$

where \odot denotes element-wise multiplication. The crop operation is neglected for simplicity.

Aspect 2: Completion. Generating reasonable completions is a key feature in RLD. We begin by noting that when a predicted layer successfully completes the occluded regions, the new content should be semantically consistent with that of the ground-truth, even if not pixel-wise identical. To assess this, we introduce *image directional similarity* as a customized metric. Specifically, we extract a CLIP (Radford et al., 2021) feature vector from the visible region of the ground-truth layer $g_{\text{rgb}} \odot g_v$ and compute its directional vector to the (complete) ground-truth layer g_{rgb} . We do the same for the prediction p_{rgb} in terms of the same origin $g_{\text{rgb}} \odot g_v$. The cosine similarity between directional vectors

Figure 5: **RefLayer Model architecture.** The model supports prompt-conditioned layer generation using spatial (box, point, mask) and/or textual inputs.

reflects whether the "action" of completion is similar between ground-truth and prediction. Formally,

$$\mathcal{S}_{\text{gen}} = \mathbb{E}_{(p, g) \sim \mathcal{D}} [\cos(f(g_{\text{rgb}}) - f(g_{\text{rgb}} \odot g_v), f(p_{\text{rgb}}) - f(g_{\text{rgb}} \odot g_v))] \quad (2)$$

Aspect 3: Faithfulness. We adopt FID to evaluate the distributional similarity between predictions and ground-truth layers. For foreground layers, we first perform alpha blending of the predicted RGBA layer onto the corresponding background image i_{bkgd} , then crop the result using a tight box around the non-zero alpha region to focus evaluation on the relevant content. Formally,

$$\hat{p} = p_{\text{rgb}} \odot p_a + i_{\text{bkgd}} \odot (1 - p_a), \quad \hat{g} = g_{\text{rgb}} \odot g_a + i_{\text{bkgd}} \odot (1 - g_a) \quad (3)$$

$$\mathcal{S}_{\text{fid}} = \text{FID}(\{\hat{p} \mid p \in \mathcal{D}\}, \{\hat{g} \mid g \in \mathcal{D}\}) \quad (4)$$

Aggregating a Unified Score (HPA). In practice, a unified score combining all is desirable to ease comparison. A challenge is that \mathcal{S}_{vis} , \mathcal{S}_{gen} , and \mathcal{S}_{fid} differ in both scale and monotonicity. To aggregate meaningfully, we first construct a human-preference ranking using an Elo-based system over 2,000 rounds of pairwise comparisons across 9 models. Guided by the human ranking, we empirically find that applying min-max normalization to each metric and then averaging them yields a score that aligns strongly with human judgments, illustrated in Fig. 4a. We denote the score as the Human Preference Aligned (HPA) score and adopt it as the primary metric for RLD.

4 REFLAYER: A BASELINE MODEL

An RLD model is expected to generate an RGBA layer given an image and a variety of prompts. To establish a baseline, in this work, we formulate RLD as a conditional image generation problem. This formulation enables the direct utilization of advanced pretrained models with minimal modifications.

Our model, RefLayer, is illustrated in Fig. 5. Built upon Stable Diffusion 3 (Esser et al., 2024), it uses a VAE encoder (Kingma & Welling, 2013) to encode both the original image and the positional prompt (described below) into latent representations, concatenated channel-wise with a noisy latent vector. A lightweight convolutional layer is applied to compress channels and to align the expected input dimensions of diffusion transformer. The diffusion transformer, conditioned on both the latent and encoded text tokens, conducts the denoising process. After that, two decoders: a standard RGB decoder and a custom alpha decoder are used to reconstruct the RGB content and the alpha transparency mask from the latent.

Referring Prompts. RefLayer supports both textual prompts and spatial prompts. While texts are natively supported by most diffusion models, various spatial prompts need a new encoding strategy. We propose unifying all types of positional prompts into colored RGB image format. As seen in Fig. 5, a solid blue canvas for background, a green tightly bounded region for box, a red visible region for mask, and a gaussian heatmap centered at a position for point. This RGB prompt image is encoded into a shared latent space by the same VAE encoder as the original image.

Alpha Decoder. The alpha decoder efficiently maps the denoised latent to a transparency mask. Its architecture mirrors that of the VAE decoder, except for the final output channel, whose number is set to one. Functionally, it acts similarly to a matting model but on the latent space, distinguishing it from previous designs (Zhang & Agrawala, 2024; Fontanella et al., 2024; Yang et al., 2024a). This design also isolates the training of the alpha decoder from the overall pipeline, reduces the difficulties of optimization, and keeps the VAE free of change.

378 Table 2: **Pearson and Spearman correlations with human ELO across different metrics**
379
380

	HPA	S_{vis}	S_{gen}	S_{fid}	$S_{vis}+S_{gen}$	$S_{fid}+S_{gen}$	$S_{vis}+S_{fid}$
Pearson correlation	0.96	0.90	0.96	0.94	0.95	0.95	0.94
Spearman correlation	1	0.60	0.98	0.67	0.92	0.97	1

383
384 Table 3: **Benchmarking RefLade with Different Training Set and Scale**. The results are reported
385 on the RefLade testing set, where prompts are given in a multimodal text+box format. RefLadeQ:
386 high-quality tuning set. RefLade+Q: two-stage training of the pretraining plus quality fine-tuning.
387 DIR is the image directional similarity specified in Sec. 3.3.
388

Dataset	#layers	Foreground				Background			
		HPA \uparrow	FID \downarrow	LPIPS \downarrow	DIR \uparrow	HPA \uparrow	FID \downarrow	LPIPS \downarrow	DIR \uparrow
MuLAn	50K	0.3852	22.68	0.1403	0.2031	0.3459	21.84	0.1588	0.6385
RefLade	50K	0.4629	10.98	0.1411	0.2543	0.5932	16.87	0.0520	0.7206
RefLade	100K	0.4621	11.27	0.1428	0.2589	0.5935	16.73	0.0530	0.7213
RefLade	200K	0.4631	10.99	0.1434	0.2547	0.5461	19.84	0.0552	0.6950
RefLade	400K	0.4678	10.66	0.1404	0.2575	0.5792	18.36	0.0493	0.7129
RefLade	1M	0.4685	11.10	0.1377	0.2561	0.5587	17.35	0.0730	0.7190
RefLadeQ	100K	0.4698	10.60	0.1378	0.2531	0.6657	12.99	0.0487	0.7721
RefLade+Q	1.1M	0.4813	10.50	0.1330	0.2652	0.6682	13.14	0.0437	0.7673

400 **Training.** We freeze the original VAE encoder-decoder, and train the diffusion transformer and the
401 alpha decoder independently, while making sure they share the same latent space. Specifically, the
402 input of the diffusion model is the original image and prompt, and its learning objective is to denoise a
403 decomposed layer that corresponds to the prompt. The alpha decoder’s input is the latent embedding
404 of a blended layer, and its learning objective is to decode a mask. After training, the two modules are
405 seamlessly connected. We train the transformer with the standard denoising diffusion loss (Liu et al.,
406 2022; Ho et al., 2020), and the alpha decoder with L1 loss. Check the Appendix A.5 for more details.
407

408 5 EXPERIMENTS

410 5.1 EVALUATING THE HUMAN PREFERENCE ALIGNED SCORE (HPA)

412 Fig. 4a compares the HPA scores against the human ELO scores across 9 models spanning a wide
413 range of performances. We observe a remarkably strong agreement between HPA and human ranking,
414 indicating that the proposed metric captures human preferences faithfully. In contrast, Fig. 4b shows
415 that none of the standalone metrics: LPIPS, FID, or image directional similarity (CLIP) consistently
416 aligns with human judgment, each capturing only a partial aspect of human decision. In Tab. 2, we
417 quantitatively verify it via correlations between HPA scores and ELO scores.

418 To determine the most effective normalization strategy in HPA, we test min-max norm, sigmoid, and
419 log-based scaling. Among these, min-max norm significantly outperforms the alternatives. Because
420 when metrics have large scale gaps, the min-max norm is straightforward that preserves relative
421 differences between models in a linear manner. Particularly, the minimum or maximum bounds
422 of each metric, if uncertain, can be empirically determined from the set of candidate models and
423 reserved for future use, making normalization simple and data-driven.

425 5.2 BENCHMARKING REFERRING LAYER DECOMPOSITION

427 As RefLade provides the first benchmark of layer decomposition, we use RefLayer as a baseline to
428 benchmark it under a variety of training settings. Without otherwise specified, prompts are given in a
429 multimodal text+box format, which offers sufficient guidance. Although a mask prompt could lead to
430 more accurate localization, box prompts are more realistic for user-facing applications.

431 Tab. 3 summarizes the effect of training source and scale. Models trained on RefLade consistently
432 outperform the MuLAn-trained baseline, even when trained on the same number of layers, highlight-

432 Table 4: **Ablation study on Type of Prompts.**

Prompt	HPA _{frgd}	HPA _{occ}
Text	0.2403	0.1704
Point	0.4394	0.3530
Box	0.4719	0.4065
Mask	0.4842	0.4270
Text+Mask	0.4833	0.4403

433 Table 5: **Ablation study on Base Model and**
434 **Background Canvas Color.**

Base Model	Canvas	HPA _{frgd}	HPA _{occ}
SD3	Board	0.4275	0.3692
InstP2P	Board	0.4534	0.4100
UltraEdit	Board	0.4698	0.4187
UltraEdit	Black	0.4607	0.4115

440
441 ing the superior data quality of RefLade. Foreground performance steadily improves as data scales
442 up from 50K to 1M, indicating that decomposition quality benefits most from more data. In contrast,
443 background performance does not follow a monotonic trend. This reflects that background decom-
444 position primarily involves removing foreground objects, which can be done with fewer training
445 samples of higher quality. In summary: **Foreground decomposition is data-hungry, relying on**
446 **large-scale learning. While background decomposition benefits more from data quality, the**
447 **task is more reliant on accurate copy-paste from context than novel generation.**

448 The model trained on RefLadeQ, the high-quality tuning set, shows a significant boost in background
449 performance. The best overall results are achieved by RefLade+Q, which combines large-scale
450 pretraining with high-quality fine-tuning. This configuration yields substantial improvements across
451 all metrics, demonstrating the effectiveness of scaling both data quantity and quality.

452 5.3 REFLAYER ABLATION STUDY

453 In Tab. 4, we compare the foreground performance of RefLayer when using different prompt types.
454 We report results on foreground layer (HPA_{frgd}) and foreground with occlusion (HPA_{occ}). Spatial
455 prompts (point, box, mask) consistently outperform pure textual prompts, indicating that the current
456 model’s weakness on text-based localization. Point prompts yield moderate performance (0.4394 /
457 0.3530). Box prompts achieve a notable improvement (0.4719 / 0.4065), suggesting that coarse spatial
458 localization significantly helps. Mask prompts lead to the highest performance among single-modality
459 inputs (0.4842 / 0.4270), highlighting the advantage of precise spatial constraints. Interestingly, the
460 text+mask prompt achieves a slightly lower HPA_{frgd} (0.4833) compared to mask alone (0.4842), but a
461 significantly higher HPA_{occ} (0.4403 vs. 0.4270). We verified that incorporating text slightly degrades
462 the model’s ability to preserve content within the mask, but enhances its generative capability in
463 occluded regions by providing additional semantic context. We leave this trade-off to future work.

464 In Tab. 5, we validate that initializing with a well-trained image editing model improves perfor-
465 mance compared to using a vanilla text-to-image generation model. Specifically, models based on
466 UltraEdit (Zhao et al., 2024) significantly outperform those based on SD3 (Esser et al., 2024) and
467 InstP2P (Brooks et al., 2023) across all HPAs. Additionally, we conduct an ablation on the selection
468 of background used for blending RGBA layers during training. We find that using a pure color
469 background (e.g., black) can lead the alpha decoder to overfit to trivial cues, resulting in suboptimal
470 performance. In contrast, using a checkerboard-style background with slight color jittering (denoted
471 as "Board") leads to more robust alpha prediction.

472 5.4 HUMAN EVALUATION

473 We further evaluate RefLayer with the Passrate@K metric. For each test sample, the model generates
474 K results. Human annotators then assess whether at least one of the K outputs is satisfactory. Using
475 this metric, the best model trained on RefLade+Q achieves a Passrate@K=1,5,10 of 28%, 65%, 74%
476 for background layers and 45%, 74%, 79% for foreground layers, respectively.

477 6 CONCLUSION

478 In this paper, we introduce the task of Referring Layer Decomposition, challenging the extraction of
479 complete, object-aware RGBA layers based on diverse user prompts. To facilitate research in this
480 area, we build a data engine and present RefLade dataset, alongside an evaluation protocol that aligns
481 with human preference. We also propose RefLayer as a baseline. Our work paves the way for layer
482 decomposition research.

486 REFERENCES
487

488 Adobe Inc. Adobe photoshop, 2023. Available at: <https://www.adobe.com/products/photoshop.html>.

489

490 Bria AI. Bria-2.3-controlnet-inpainting, 2024. Available at: <https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting>.

491

492

493 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
494 editing instructions. In *CVPR*, 2023.

495

496 Alper Canberk, Maksym Bondarenko, Ege Ozguroglu, Ruoshi Liu, and Carl Vondrick. Erasedraw:
497 Learning to draw step-by-step via erasing objects from images. In *Proceedings of the European
498 Conference on Computer Vision (ECCV)*, 2024.

499

500 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
501 Zagoruyko. End-to-end object detection with transformers. *CoRR*, abs/2005.12872, 2020. URL
502 <https://arxiv.org/abs/2005.12872>.

503

504 Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
505 Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip
506 Krishnan. Muse: Text-to-image generation via masked generative transformers. In Andreas
507 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
508 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
509 202 of *Proceedings of Machine Learning Research*, pp. 4055–4075. PMLR, 23–29 Jul 2023. URL
510 <https://proceedings.mlr.press/v202/chang23b.html>.

511

512 Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you
513 need for semantic segmentation. 2021.

514

515 Helisa Dhamo, Nassir Navab, and Federico Tombari. Object-driven multi-layer scene decomposition
516 from a single image. In *Proceedings of the IEEE/CVF International Conference on Computer
517 Vision*, pp. 5369–5378, 2019.

518

519 Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan: Segmenting and generating the invisible.
520 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6144–6153,
521 2018.

522

523 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
524 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
525 Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
526 formers for high-resolution image synthesis, 2024. URL <https://arxiv.org/abs/2403.03206>.

527

528 Alessandro Fontanella, Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, and Sarah Parisot.
529 Generating compositional scenes via text-to-image rgba instance generation. *Advances in Neural
530 Information Processing Systems*, 2024.

531

532 Jianxiong Gao, Xuelin Qian, Yikai Wang, Tianjun Xiao, Tong He, Zheng Zhang, and Yanwei
533 Fu. Coarse-to-fine amodal segmentation with shape prior. In *Proceedings of the IEEE/CVF
534 International Conference on Computer Vision*, pp. 1262–1271, 2023.

535

536 Google. Introducing gemini 2.0: Our new ai model for the agen-
537 tic era. [https://blog.google/technology/google-deepmind/
538 google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/), 2024.

539

540 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *2017 IEEE
541 International Conference on Computer Vision (ICCV)*, pp. 2980–2988, 2017. doi: 10.1109/ICCV.
542 2017.322.

543

544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint
545 arxiv:2006.11239*, 2020.

540 Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Segmentation from natural language expres-
 541 sions. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2016.

542

543 Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang, and Alexander G Schwing. Sail-
 544 vos: Semantic amodal instance level video object segmentation-a synthetic dataset and baselines.
 545 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 546 3105–3115, 2019.

547 Junjia Huang, Pengxiang Yan, Jinhang Cai, Jiyang Liu, Zhao Wang, Yitong Wang, Xinglong Wu, and
 548 Guanbin Li. Dreamlayer: Simultaneous multi-layer generation via diffusion mode, 2025. URL
 549 <https://arxiv.org/abs/2503.12838>.

550 Runhui Huang, Kaixin Cai, Jianhua Han, Xiaodan Liang, Renjing Pei, Guansong Lu, Songcen Xu,
 551 Wei Zhang, and Hang Xu. Layerdiff: Exploring text-guided multi-layered composable image
 552 synthesis via layer-collaborative diffusion model, 2024a. URL <https://arxiv.org/abs/2403.11929>.

553

554 Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao Zhou,
 555 Chao Dong, Rui Huang, Ruimao Zhang, et al. Smartedit: Exploring complex instruction-based
 556 image editing with multimodal large language models. In *Proceedings of the IEEE/CVF Conference
 557 on Computer Vision and Pattern Recognition*, pp. 8362–8371, 2024b.

558

559 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 560 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 561 arXiv:2410.21276*, 2024.

562

563 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 564 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Conference on
 565 Computer Vision and Pattern Recognition 2023*, 2023.

566

567 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 568 arXiv:1312.6114*, 2013.

569

570 Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother, and Piotr Dollár. Panoptic
 571 segmentation. *CoRR*, abs/1801.00868, 2018. URL <https://arxiv.org/abs/1801.00868>.

572

573 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 574 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
 575 Segment anything. *arXiv:2304.02643*, 2023.

576

577 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 578 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. *CVPR*, 2023.

579

580 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 581 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 582 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

583

584 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 585 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

586

587 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van
 588 Gool. Repaint: Inpainting using denoising diffusion probabilistic models, 2022. URL <https://arxiv.org/abs/2201.09865>.

589

590 Wenyu Lv, Yian Zhao, Qinyao Chang, Kui Huang, Guanzhong Wang, and Yi Liu. Rt-detrv2:
 591 Improved baseline with bag-of-freebies for real-time detection transformer, 2024. URL <https://arxiv.org/abs/2407.17140>.

592

593 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection,
 594 2023.

595 Jiteng Mu, Michaël Gharbi, Richard Zhang, Eli Shechtman, Nuno Vasconcelos, Xiaolong Wang, and
 596 Taesung Park. Editable image elements for controllable synthesis. In *Proceedings of the European
 597 Conference on Computer Vision (ECCV)*, 2024.

594 Jiteng Mu, Nuno Vasconcelos, and Xiaolong Wang. Editar: Unified conditional generation with
 595 autoregressive models. *arXiv preprint arXiv:2501.04699*, 2025.

596

597 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

598

599 Ege Ozguroglu, Ruoshi Liu, Dídac Surís, Dian Chen, Achal Dave, Pavel Tokmakov, and Carl Vondrick.
 600 pix2gestalt: Amodal segmentation by synthesizing wholes. In *2024 IEEE/CVF Conference on
 Computer Vision and Pattern Recognition (CVPR)*, pp. 3931–3940. IEEE Computer Society, 2024.

601

602 Qihe Pan, Zhen Zhao, Zicheng Wang, Sifan Long, Yiming Wu, Wei Ji, Haoran Liang, and Ronghua
 603 Liang. Towards small object editing: A benchmark dataset and a training-free approach. In
 604 *Proceedings of the 32nd ACM International Conference on Multimedia*, 2024.

605

606 GyuTae Park, SungJoon Son, JaeYoung Yoo, SeHo Kim, and Nojun Kwak. Matteformer: Transformer-
 607 based image matting via prior-tokens. *arXiv preprint arXiv:2203.15662*, 2022.

608

609 Dustion Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonus Müller, Joe
 610 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 611 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

612

613 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Carlos
 614 Niebles, Caiming Xiong, Silvio Savarese, et al. Unicontrol: A unified diffusion model for
 615 controllable visual generation in the wild. *NeurIPS*, 2023.

616

617 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 618 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 619 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

620

621 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 622 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

623

624 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 625 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 626 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 627 Sam 2: Segment anything in images and videos, 2024. URL <https://arxiv.org/abs/2408.00714>.

628

629 N Dinesh Reddy, Robert Tamburo, and Srinivasa G Narasimhan. Walt: Watch and learn 2d amodal
 630 representation from time-lapse imagery. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 9356–9366, 2022.

631

632 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 633 detection with region proposal networks. *Advances in Neural Information Processing Systems*, 28,
 634 2015.

635

636 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 637 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

638

639 Vishnu Sarukkai, Linden Li, Arden Ma, Christopher Re, and Kayvon Fatahalian. Collage diffusion.
 640 *arXiv preprint arXiv:2303.00262*, 2023.

641

642 Marco Schouten, Mehmet Onurcan Kaya, Serge Belongie, and Dim P. Papadopoulos. Poem: Precise
 643 object-level editing via mllm control. In *Proceedings of the Scandinavian Conference on Image
 Analysis (SCIA)*, 2025.

644

645 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
 646 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. 2023.
 647 URL <https://api.semanticscholar.org/CorpusID:265221391>.

648

649 Minh Tran, Khoa Vo, Kashu Yamazaki, Arthur Fernandes, Michael Kidd, and Ngan Le. Aisformer:
 650 Amodal instance segmentation with transformer. *arXiv preprint arXiv:2210.06323*, 2022.

648 Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh, Gerasimos
 649 Lampouras, Ignacio Iacobacci, and Sarah Parisot. Mulan: A multi layer annotated dataset for
 650 controllable text-to-image generation. In *CVPR*, 2024.

651

652 Yikai Wang, Chenjie Cao, Ke Fan, Qiaole Dong, Yifan Li, Xiangyang Xue, and Yanwei Fu. Reposi-
 653 tioning the subject within image. *arXiv preprint arXiv:2401.16861*, 2024.

654 Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhui Chen. Om-
 655 niedit: Building image editing generalist models through specialist supervision. *arXiv preprint*
 656 *arXiv:2411.07199*, 2024.

657

658 Daniel Winter, Matan Cohen, Shlomi Fruchter, Yael Pritch, Alex Rav-Acha, and Yedid Hoshen.
 659 Objectdrop: Bootstrapping counterfactuals for photorealistic object removal and insertion. In
 660 *Proceedings of the European Conference on Computer Vision (ECCV)*, 2024.

661

662 Yuting Xiao, Yanyu Xu, Ziming Zhong, Weixin Luo, Jiawei Li, and Shenghua Gao. Amodal
 663 segmentation based on visible region segmentation and shape prior. In *Proceedings of the AAAI*
 664 *Conference on Artificial Intelligence*, volume 35, pp. 2995–3003, 2021.

665 Katherine Xu, Lingzhi Zhang, and Jianbo Shi. Amodal completion via progressive mixed context dif-
 666 fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 667 pp. 9099–9109, 2024.

668 Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. Deep image matting, 2017. URL <https://arxiv.org/abs/1703.03872>.

669

670

671 Xiaosheng Yan, Feigege Wang, Wenxi Liu, Yuanlong Yu, Shengfeng He, and Jia Pan. Visualizing
 672 the invisible: Occluded vehicle segmentation and recovery. In *Proceedings of the IEEE/CVF*
 673 *International Conference on Computer Vision*, pp. 7618–7627, 2019.

674

675 Jinrui Yang, Qing Liu, Yijun Li, Soo Ye Kim, Daniil Pakhomov, Mengwei Ren, Jianming Zhang,
 676 Zhe Lin, Cihang Xie, and Yuyin Zhou. Generative image layer decomposition with visual effects.
 677 *arXiv preprint arXiv:2411.17864*, 2024a.

678

679 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 680 Zhao. Depth anything v2. *arXiv:2406.09414*, 2024b.

681

682 Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
 683 matting with pre-trained plain vision transformers. *Information Fusion*, 103:102091, 2024a.

684

685 Jingfeng Yao, Xinggang Wang, Lang Ye, and Wenyu Liu. Matte anything: Interactive natural image
 686 matting with segment anything model. *Image and Vision Computing*, pp. 105067, 2024b.

687

688 Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative image
 689 inpainting with contextual attention. *arXiv preprint arXiv:1801.07892*, 2018.

690

691 Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, and Chen Change Loy. Self-supervised
 692 scene de-occlusion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 693 *recognition*, pp. 3784–3792, 2020.

694

695 Hao Zhang, Feng Li, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianfeng Gao, Jianwei Yang, and Lei
 696 Zhang. A simple framework for open-vocabulary segmentation and detection. *arXiv preprint*
 697 *arXiv:2303.08131*, 2023a.

698

699 Lvmin Zhang and Maneesh Agrawala. Transparent image layer diffusion using latent transparency.
 700 *arXiv preprint arXiv:2402.17113*, 2024.

701

702 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 703 diffusion models, 2023b.

704

705 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 706 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

702 Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan Wang,
 703 Silvio Savarese, Stefano Ermon, Caiming Xiong, and Ran Xu. Hive: Harnessing human feedback
 704 for instructional visual editing. In *CVPR*, 2024.

705 Xinyang Zhang, Wentian Zhao, Xin Lu, and Jeff Chien. Text2layer: Layered image generation using
 706 latent diffusion model. *arXiv preprint arXiv:2307.09781*, 2023c.

708 Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Ruijie Wu, Kaikai An, Peiyu Yu, Minjia Zhang,
 709 Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at scale, 2024.
 710 URL <https://arxiv.org/abs/2407.05282>.

711 Chuanxia Zheng, Duy-Son Dao, Guoxian Song, Tat-Jen Cham, and Jianfei Cai. Visiting the invisible:
 712 Layer-by-layer completed scene decomposition. *International Journal of Computer Vision*, 129:
 713 3195–3215, 2021.

715 Jun Zhou, Jiahao Li, Zunnan Xu, Hanhui Li, Yiji Cheng, Fa-Ting Hong, Qin Lin, Qinglin Lu, and
 716 Xiaodan Liang. Fireedit: Fine-grained instruction-based image editing via region-aware vision
 717 language model, 2025. URL <https://arxiv.org/abs/2503.19839>.

718 Qiang Zhou, Shiyin Wang, Yitong Wang, Zilong Huang, and Xinggang Wang. Human de-occlusion:
 719 Invisible perception and recovery for humans. In *Proceedings of the IEEE/CVF Conference on
 720 Computer Vision and Pattern Recognition*, pp. 3691–3701, 2021.

722 Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr Dollár. Semantic amodal segmentation. In
 723 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1464–1472,
 724 2017.

726 A ADDITIONAL TECHNICAL DETAILS AND REPRODUCIBILITY

728 A.1 DATA ENGINE

730 **Pre-filter.** The pipeline begins with filtering raw image inputs to remove those unlikely to produce
 731 useful decompositions. Low-quality or visually cluttered images can propagate errors downstream, so
 732 we apply four heuristics: (1) Image quality filters out blurry or poorly lit images; (2) Scene filtering
 733 removes inappropriate or meaningless content; (3) Object count restricts samples to images with a
 734 manageable number (1–20) of objects; and (4) Object overlap discards images with excessive object
 735 congestion. These filters are implemented using in-house aesthetic and content classifiers, along
 736 with object detectors RT-DETR (Lv et al., 2024) (closed-set) and OWL-V2 (Minderer et al., 2023)
 737 (open-vocabulary).

738 **Scene Understanding.** After filtering, the pipeline performs semantic and structural analysis of the
 739 scene. Our goal is to extract "interesting" objects that are visually salient and likely to be edited by
 740 users. To achieve this, we construct a detection ensemble consisting of RT-DETR (Lv et al., 2024),
 741 OWL-V2 (Minderer et al., 2023), and a hybrid tagging-grounding system combining GPT-4o (Hurst
 742 et al., 2024) with Grounding-DINO (Liu et al., 2023), and annotate a dedicated test-set to guide the
 743 design of "interesting object detection", where annotators are asked to label those objects that could
 744 potentially raise their attention. Thresholds for detection confidence and bounding box area are tuned
 745 to balance precision and recall. Detected objects are subsequently segmented with SAM-V2 (Ravi
 746 et al., 2024), and low-resolution images are enhanced using a super-resolution model (Rombach
 747 et al., 2022) to preserve detail. In parallel, we extract panoptic segmentation and monocular depth
 748 maps using OpenSeeD (Zhang et al., 2023a) and Depth Anything V2 (Yang et al., 2024b), providing
 749 essential cues for inpainting and mask refinement in later stages.

750 **Layer Completion.** With a structured scene representation established, the next step involves
 751 identifying and recovering visual content that may be partially occluded. Determining whether an
 752 object is visually incomplete is a challenging task, given the complexity of spatial arrangements and
 753 inherent visual ambiguity. To handle this, we employ Gemini-2.0 (Google, 2024) with in-context
 754 learning to evaluate object completeness. For each instance, when occlusion is detected, we create
 755 an inpainting mask and utilize a state-of-the-art generative model (Bria AI, 2024) to reconstruct the
 756 missing regions. Specifically, we utilize depth estimation results to construct inpainting masks: based
 757 on the average depth of the current instance, we determine a depth threshold, and regions with higher

756 depth values (i.e., likely occluders) are identified and masked for inpainting. Additionally, we exclude
 757 background regions (e.g., road, grassland), as identified by panoptic segmentation, to ensure that only
 758 foreground occluders are included in inpainting masks. Finally, the inpainting model is guided using
 759 both the generated mask and the object’s class label to recover the occluded regions. This process
 760 ensures that each RGBA layer represents a complete object, encompassing both visible and hidden
 761 parts.

762 **Post-completion.** After inpainting, we refine the object’s segmentation to accurately reflect both
 763 the original visible regions and the newly reconstructed content. This refinement is performed
 764 using SAM-V2, which ensures that the mask tightly encloses the full extent of the object. Next, a
 765 high-resolution matting model (Yao et al., 2024a) is applied to predict the alpha channel, capturing
 766 fine details along object boundaries and soft transitions.

767 **Prompt Generation.** To enable prompt-driven decomposition and training, we generate a diverse
 768 set of referring expressions for each RGBA layer. These prompts fall into two categories and can be
 769 combined: (1) Spatial prompts: Coordinates, bounding boxes, and segmentation masks derived from
 770 detection and segmentation. (2) Semantic prompts: we generate descriptive text using GPT-4o (Hurst
 771 et al., 2024), which includes, long-form captions that offer comprehensive descriptions, concise
 772 labels suitable for prompt-based referencing, and spatial description that reflect that reflect real-world
 773 referring behavior (e.g., "the red car on the left side").

774 **Post-filter.** The final stage of the pipeline enforces quality control by evaluating each RGBA layer
 775 along three critical dimensions: (1) Preserving: Assesses alignment between the visible region of
 776 the object in the RGBA layer and its counterpart in the original image. Significant discrepancies
 777 indicate a likely failure. (2) Visual Quality: Gemini-2.0 (Google, 2024) is used to evaluate the
 778 RGBA layer (which is rendered on a checkerboard background), scoring it from 1 to 5 based on
 779 structure, edge quality, and visual realism. Layers with scores below the threshold are discarded.
 780 (3) Semantic Correspondence: CLIP similarity is computed between each RGBA layer and its
 781 corresponding caption to verify consistency between textual and visual semantics. Together, these
 782 evaluations safeguard the perceptual fidelity and referential accuracy of each output, ensuring that
 783 only high-quality, semantically meaningful RGBA layers are preserved for downstream use.

784 A.2 SOME EXPERIMENT RESULTS ON DATA ENGINE

785 **Scene understanding.** We use an ensemble of state-of-the-art models (detailed in the paper) to
 786 extract diverse information. The ensembled detector achieves 0.652 precision and 0.659 recall, which
 787 is better than only using OWL-V2 (0.236 / 0.621) or RT-DETR (0.646 / 0.631).

788 **Layer completion.** To avoid over-completion errors, we first use Gemini-2.0 to filter out complete
 789 objects, which are excluded from further processing in this stage. Gemini-2.0 achieves high precision
 790 (0.9) in identifying complete objects, allowing us to eliminate 60% of samples that don’t require
 791 completion, significantly reducing error rates. The remaining 40% proceed to the inpainting stage,
 792 though this does not necessarily result in incorrect completions. For these images, we apply an
 793 inpainting model to restore the occluded regions. A key challenge is generating effective inpainting
 794 masks for occluded areas, which is related to amodal segmentation. To simplify the process, following
 795 MuLAn, we generate inpainting masks with high recall relative to the actual occlusion. Specifically,
 796 our method filters out neighboring regions with high depth (likely occluders) and excludes background
 797 using refined panoptic segmentation. These components form the final inpainting mask. The
 798 inpainting model produces an RGB image—a completed object on a white background—without an
 799 explicit object boundary. The next stage generates the alpha channel to produce the final RGBA layer.

800 A.3 THE ROLES OF MODERN MULTIMODAL LARGE LANGUAGE MODELS

801 Modern multimodal large language models play a critical role in our proposed data engine for layer
 802 decomposition. They serve as both executors and supervisors at key stages of the pipeline. By
 803 leveraging their zero-shot generalization and reasoning abilities, we significantly improve the quality
 804 of data generation.

805 **GPT as a Tagging Model.** In the scene understanding stage, identifying all interesting objects
 806 is crucial for both foreground and background decomposition. We use GPT-4o (OpenAI, 2024)

810 **Prompt:** You are given two image pairs, the first pair is an example, the second pair needs your judge . Each pair has two images placed side by side, where:
 811 1. The left image is the original Image.
 812 2. The right image is the target object segmented from the left image.

813 For example, in the example pair, the object in the right image is a surfboard. In the left image, part of the surfboard is occluded by water and also
 814 occluded by the man standing on it. Thus, the target object (surfboard) is not complete.”

815 Your task is to judge the (second given) testing pair whether the target object has not been occluded by anything in the original image. During the
 816 process, you should

- 817 1. Take a close look at the target object in the right image.
- 818 2. Refer to the left image, verify if there is anything that is in front of the target object and has occluded it,
- 819 3. Also verify whether potential environments (river, glass, snowland, etc) has blocked parts of the object,
- 820 4.Return your answer as Yes or No and reason.

821 **Testing Image:** **w/o zoom in:**

822 **w/ zoom in:**

823 **Answer:** Yes, the bus in the right image is complete and not occluded
 824 by anything in the original image.

825 No, the bus in the right image is occluded by another bus in the
 826 original image on the left.

827 Figure 6: **Prompt engineering with gemini-2.0 for judging completeness.**

828 as a tagging model to detect notable and meaningful objects in the scene. These textual tags are
 829 then grounded into spatial regions using a visual grounding model (Grounding-DINO) to produce
 830 bounding boxes.

831 **GPT for Layer Captioning.** For each RGBA layer, we prompt GPT to generate rich, descriptive
 832 captions. These include both visual attributes (e.g., “a red double-decker bus on the road”) and
 833 positional references (e.g., “the chicken on the left”).

834 **Gemini for Judging Object Completeness.** Determining whether an object is fully visible or
 835 occluded is critical for choosing the appropriate extraction strategy. If an object is occluded, we invoke
 836 the completion stage; otherwise, we directly extract it using a matting-refined segmentation mask,
 837 which avoids potential artifacts from generative completion. However, assessing object completeness
 838 from an image is nontrivial. Depth-based methods have limitations (e.g., sensitivity to viewpoint or
 839 object class). To address this, we leverage Gemini-2.0’s (Google, 2024) in-context visual reasoning
 840 abilities. Prompt engineering is illustrated in Fig. 6. Gemini-2.0 achieves superior performance on
 841 this task compared to GPT-4o, reaching 90.3% precision and 56.1% recall versus GPT-4o’s 66.7%
 842 precision and only 0.08% recall at the time of this submission.

843 **Gemini for Quality Control.** Gemini also plays a key role in dataset quality control. We use
 844 targeted prompts to evaluate both foreground and background layers. For foregrounds, we assess
 845 structural completeness, edge integrity, and realism. For backgrounds, we check object removal
 846 effectiveness, absence of unintended artifacts, and visual plausibility. Through empirical comparison,
 847 we find Gemini-2.0 to be more reliable than GPT-4o in tasks requiring fine-grained inspection of
 848 visual details.

849 A.4 ERROR SOURCE ANALYSIS

850 Given the complexity of the task, our data engine is designed as a six-stage sequential pipeline,
 851 where each stage may consist of multiple foundation models running in parallel or in series. Errors
 852 introduced in earlier stages may be cascaded downstream, either causing failures or being partially
 853 mitigated by later stages. Here, we analyze two primary sources of error observed in the data engine.

864
865
866
867
868
869
870
871

872
873
874
875
876 **Figure 7: Data Engine Inpainting Error Example.** (a) The person is completed with extra length of
877 leg. (b) The person’s identity is not preserved after processing.

876 **Inpainting Errors (~65% of Total Errors).** Inpainting in the layer completion stage is critical
877 to the success of the data engine. It relies on a carefully defined inpainting mask, which should
878 cover occluders in front of the target object, typically inferred from depth cues and objects detected.
879 However, in complex scenes, the mask may include regions that should not be modified. This can
880 lead to undesired hallucinations or visual artifacts (Fig. 7 (a)).

881 Additionally, the inpainting model itself may fail to preserve identity or produce low-quality comple-
882 tions (Fig. 7 (b)). With the rapid progress in generative models, we expect future improvements in
883 inpainting performance to mitigate such issues.

884 **Segmentation Error (~20% of Total Errors).** Segmentation model SAM is employed in both
885 the scene understanding and post-completion stages. Although SAM is generally robust, it can still
886 produce incomplete masks or over-segment regions, occasionally including irrelevant objects or
887 omitting important parts of the target.

888 **Other Error Source.** Beyond the two major sources above, additional errors may arise from missed
889 detections, inaccurate panoptic segmentation, completeness judgment, or matting artifacts.

890 A.5 REFLAYER MODEL TRAINING

891 The training of Transformer follows the standard latent diffusion training: We add Gaussian noise to
892 the target latent at a random timestep to produce a noisy latent, and train to predict the added noise,
893 so the learning objective is to minimize the mean squared error (MSE) between the predicted and
894 actual noise. The target latent is manufactured from the desired RGBA layer: we first alpha-blend
895 the RGBA onto a standard gray-white checkerboard pattern, then encode it by VAE into the target
896 latent (Sec. 7.3). The training uses AdamW with a constant learning rate 5e-5. On RefLade 1M, the
897 training uses 64xA100 GPUs with batch size 1024 for 7k steps, and on the other RefLade splits, we
898 use 8xA100 GPUs with batch size 256 for 3.5k steps. The alpha decoder is trained to predict an alpha
899 mask directly from the target latent. We optimize by minimizing the L1 distance, with learning rate
900 1e-4 for 7k steps on RefLade 1M.

901 B LIMITATION

902 • We ignore the effects of shadows, reflections, rain, dust, and similar factors. While decomposition
903 with these effects could lead to new problems (e.g., a shadow in one scene may not be appropriate
904 when transferred to another with different lighting conditions). Nevertheless, despite its complexity,
905 such side effects should be considered in future work.

906 • Inevitably, our dataset contains some noise that is difficult to eliminate, arising from the accumula-
907 tion of errors across different stages of the data engine. Although models are capable of learning
908 effectively even when trained on noisy data, we hope that the data quality could be improved with
909 the development of better foundation models.

910 • Mutual occlusion could be a problem when composing a scene from multiple decomposed layers;
911 in this case, a visibility mask for each layer should be properly given either by a human or a trained
912 model. Since our proposed task aims to decompose rather than compose, we neglect the problem at
913 this stage.

918

- Our proposed baseline model has not yet been evaluated using more advanced architectures. We
919 anticipate that exploring stronger models could lead to significant performance gains and leave this
920 as an open direction for future research.

921

- The current data generation pipeline operates primarily at the instance level. It does not account
922 for finer-level of granularity, such as parts of object. Extending the pipeline to incorporate parts
923 understanding would further enhance it.

924

925 **C DISCUSSION**

926

927 **C.1 CONCRETE APPLICATIONS IN THE FUTURE**

928

929 The flexibility enabled by multi-modal referring unlocks a broad spectrum of potential applications
930 in real-world products. Here are several representative use cases:

931

- Full-Scene Decomposition Agent: With modern MLLMs exhibiting strong scene understanding,
932 it becomes feasible to prompt them to describe an image and generate bounding boxes for each
933 object. RefLayer can then be applied to decompose each identified region into high-quality RGBA
934 layers.
- Scalable RGBA Image Generation: RefLayer offers a reliable and scalable solution for producing
935 RGBA images from diverse prompts, making it a valuable tool for generating training data at scale.
- Seamless Integration with Existing Tasks: RefLayer naturally complements and enhances a variety
936 of existing tasks, such as amodal segmentation, object completion, foreground removal, and layered
937 image editing.
- The RefLade dataset could potentially support finetuning/data augmentation for a variety of
938 generative models on object removal, insertion, repositioning, resizing, and image editing tasks.

939

940 **C.2 WITH THE DATA ENGINE, DO WE STILL NEED A UNIFIED MODEL?**

941

942 The development of such a data engine naturally leads to an important question: if the engine is
943 capable of performing the Referring Layer Decomposition task, does a unified model still need to be
944 trained? The answer remains yes, for two main reasons.

945

946 First, the data engine is computationally heavy, time-consuming, and expensive. Due to the reliance
947 on multiple pretrained models and commercial MLLMs, each decomposition takes approximately
948 two minutes, making it impractical for real-time or large-scale deployment.

949

950 Second, while the data engine produces noisy outputs, it can generate data at scale with no human
951 supervision. With sufficient training data and robust optimization strategies, a unified model trained on
952 this noisy dataset has the potential to learn generalizable patterns, smooth over noise, and ultimately
953 outperform the data engine that generated its training data.

954

955 **C.3 RATIONALE FOR THE MIN-MAX NORMALIZATION.**

956

957 The purpose of applying normalization is to bring all metrics onto a comparable scale, as they
958 inherently differ in range and magnitude. Specifically, FID (S_{fid}) and LPIPS (S_{vis}) have a known
959 theoretical lower bound of 0 but no fixed upper limit, while CLIP directional similarity (S_{gen}) is
960 bounded above by 1. Given these characteristics, we find min-max normalization to be the most
961 suitable approach compared to other normalization methods for the following reasons:

962

1. Alignment with Theoretical Bounds: Min-max normalization inherently respects the known
963 theoretical bounds of each metric, offering a stable and interpretable frame of reference for future
964 studies. In contrast, methods like z-normalization or MAD normalization disregard these bounds,
965 instead centering the scores around dataset-dependent statistics. This can introduce bias tied to the
966 distribution of ELO-evaluated models rather than the metrics' theoretical properties.
2. Robust Definition of Lower Bound: Min-max normalization only requires selecting a representa-
967 tive "low-performing" model to define the lower end of the scale. Since our ELO model pool is
968 diverse and spans a broad spectrum of performance levels, this selection avoids the outlier issue
969 and ensures a meaningful range.

970

972 3. Interpretability and Practicality: Normalizing within a bounded range assumes a linear relationship
 973 between metric scores and human preferences. While this linearity may not be perfect, it is a
 974 reasonable and interpretable approximation. More complex nonlinear mappings would require
 975 extensive ELO-style human studies, which are impractical at scale.
 976

977 **D ADDITIONAL EXPERIMENTS WITH AMODAL SEGMENTATION &
 978 COMPLETION**

980 **D.1 RLD VS. AMODAL SEGMENTATION & COMPLETION**

982 Previous works on amodal segmentation has focused on predicting the mask of an object, including
 983 its occluded parts. Building on this, amodal completion goes a step further by aiming to infer the
 984 complete appearance of the occluded regions. Our proposed RLD task inherently encompasses both
 985 amodal segmentation and completion capabilities, while it introduces fundamental differences. We
 986 emphasize them as follows.
 987

988 **Input Modality.** Amodal segmentation and completion typically require an input image and a
 989 binary mask indicating the target object. In contrast, RLD is designed to support a broader range of
 990 prompt types, including both spatial prompts and textual prompts, making it a multimodal task that
 991 enables greater flexibility.

992 **Output Representation.** The outputs of amodal segmentation are binary instance masks that extend
 993 beyond the visible regions. Amodal completion focuses on generating de-occluded image content.
 994 Neither task is designed to produce a complete RGBA layer, which is central to RLD. The ability to
 995 generate such composable layers is what fundamentally distinguishes RLD from prior work.
 996

997 **Modeling.** Typical amodal completion approaches, such as Pix2Gestalt (Ozguroglu et al., 2024),
 998 adopt a two-step pipeline: first employ a diffusion model for inpainting or conditional generation,
 999 followed by a separate matting model to obtain the amodal mask. These steps are often handled by
 1000 isolated models. In contrast, RefLayer is an end-to-end, unified model, making it simple and fast.
 1001

1002 **Task Definition and Benchmarking.** To the best of our knowledge, amodal completion lacks a
 1003 standardized task formulation, benchmark, and automatic evaluation. In contrast, RLD is defined
 1004 as a clear, prompt-driven decomposition task. We establish a reliable benchmark for automatic
 1005 quantitative evaluation, grounded in human preference alignment, which will accelerate the research
 1006 in the field.

1007 Since RLD and the trained RefLayer model support amodal segmentation and completion, we present
 1008 additional experiments below to validate their performance in these contexts.
 1009

1010 **D.2 AMODAL SEGMENTATION EXPERIMENTS.**

1012 We use the COCOA dataset (Zhu et al., 2017), a widely used benchmark for amodal segmentation. We
 1013 exam our RefLayer with “text+mask” prompt trained on RefLade, and conduct zero-shot evaluation
 1014 on COCOA. Specifically, given the visible mask and text label of an occluded object as inputs, we
 1015 generate the complete object representation and extract the alpha channel from the output as the
 1016 predicted amodal mask. While the RefLayer is a diffusion model and is able to produce diverse
 1017 outputs, we opt for a single prediction per object to account for the computational cost of diffusion
 1018 models. Following prior works (Gao et al., 2023; Ozguroglu et al., 2024), we use $mIoU_{full}$ and
 1019 $mIoU_{occ}$ to evaluate the quality of the amodal masks, where $mIoU_{full}$ measures the mean IoU of full
 1020 object mask, and $mIoU_{occ}$ measures the mean IoU between occluded regions. As shown in Tab. 6,
 1021 without bells and whistles, RefLayer achieves state-of-the-art result on $mIoU_{occ}$, outperforming the
 1022 other methods by a significant margin, proving its ability in occluded completion. Please note that
 1023 RefLayer is never trained on COCOA, verifying its zero-shot generalization. RefLayer also achieves
 1024 a competitive result on $mIoU_{full}$.

1025 It is worth noting that even a small improvement in HPA on RefLade can lead to a significant gain in
 1026 $mIoU$ on downstream task such as COCOA. As shown in Tab. 6, RefLayer- γ achieves 0.0059 higher

1026 **Table 6: Comparison with amodal segmentation methods on COCOA.** RefLayer- α , β , and γ
 1027 denote our model trained on 100K high-quality set, 1M training set, and both sets, respectively, using
 1028 text+mask prompts. The * denotes that we reproduce the results based on a single inference attempt
 1029 using the official checkpoint provided by the authors.

Methods	HPA _{frgd} \uparrow	Zero-Shot	mIoU _{full}	mIoU _{occ}
PCNet (Zhan et al., 2020)	-	55	76.91	20.34
VRSP (Xiao et al., 2021)	-	55	78.98	22.92
AISformer (Tran et al., 2022)	-	55	72.69	13.75
C2F-Seg (Gao et al., 2023)	-	55	80.28	27.71
Pix2Gestalt* (Ozguroglu et al., 2024)	0.3397	51	70.02	26.79
RefLayer- α	0.4833	51	73.28	32.31
RefLayer- β	0.4829	51	72.70	34.85
RefLayer- γ	0.4892	51	75.04	38.83

1041 **Table 7: Comparison with amodal completion methods on RefLade test subset.** RefLayer- α
 1042 denotes the same model as in Tab. 6.

Method	HPA _{occ} \uparrow	Foreground			
		HPA \uparrow	FID \downarrow	LPIPS \downarrow	DIR \uparrow
Pix2Gestalt (Ozguroglu et al., 2024)	0.2687	0.3397	18.23	0.1671	0.1198
MuLAn (Tudosi et al., 2024)	0.3041	0.3852	22.68	0.1403	0.2031
RefLayer- α	0.4403	0.4833	10.43	0.1298	0.2586

1051 HPA than RefLayer- α , with improvements of 1.76 in mIoU_{full} and 6.52 in mIoU_{occ} on the COCOA
 1052 dataset. This highlights that RLD is a challenging task, and HPA is a strict metric considering three
 1053 aspects of preservation, completion, and faithfulness.

1055 D.3 AMODAL COMPLETION EXPERIMENTS.

1058 To the best of our knowledge, there is no other public benchmark for amodal completion. We evaluate
 1059 amodal completion on the test subset of our RefLade dataset, and select Pix2Gestalt (Ozguroglu et al.,
 1060 2024), which is a recent work on amodal segmentation and completion. Pix2Gestalt is trained on its
 1061 own synthetic data. As shown in Tab. 7, RefLayer outperforms Pix2Gestalt in terms of all metrics.
 1062 This is because of the data quality between the RefLade and Pix2Gestalt’s synthesis data, and the
 1063 model differences between them.

1064 E QUALITATIVE RESULTS OF THE REFLAYER MODEL

1067 E.1 TEXT-ONLY PROMPTING IS MORE CHALLENGING THAN SPATIAL PROMPTING

NEW

1069 As observed in quantitative evaluation, models conditioned solely on textual prompts generally
 1070 achieve lower performance metrics compared to those guided by explicit spatial inputs. This disparity
 1071 arises from the intrinsic challenges text-only prompting introduces to the underlying vision model’s
 1072 localization and reasoning capabilities.

1073 We visualize this challenge in Fig. 8. The text-only prompt inherently requires the model to perform
 1074 an additional reasoning and localization step to correctly identify the target object. For instance, given
 1075 the prompt “two red barns” (top row), the model incorrectly extracts a large portion of the foreground
 1076 ground plane and horses, demonstrating a failure to isolate the target based on the language alone. In
 1077 contrast, a simple Spatial Prompt (e.g., a green box) provides an explicit localization cue, guiding
 1078 the model to accurately decompose the target object(s). The prompt “person standing in the middle”
 1079 (bottom row) similarly yields a poor result without spatial guidance, but a generic box yields a
 high-quality layer extraction.

Figure 8: **The challenge of object localization when the model is conditioned solely on a textual prompt.** Text Prompt (e.g., "two red barns") is easier to cause a poor or incorrect layer extraction due to the model’s inability to precisely locate the target object from semantic information alone. Conversely, providing a simple Spatial Prompt (e.g., a box) instantly resolves the ambiguity, guiding the model to produce a high-fidelity RGBA layer that accurately isolates the target object(s). NEW

A promising approach to bridge this gap could involve applying a grounding model to provide additional spatial prompting cues when running RefLayer in text-only mode. Alternatively, a unified and more powerful initialization, possessing strong localization and reasoning ability, could also significantly improve performance.

E.2 REFLAYER MULTI-GENERATION WITH DIFFERENT SEEDS.

Fig. 9 presents the result from the RefLayer model pretrained with the 1M training set and fine-tuned with 100K quality-tuning set. We verify that RefLayer has strong ability in prompt following, and has achieved a delightful ability in completing occluded region. We also notice that it still suffers from serious occlusion, unclear prompting (like point only), or small object decomposition.

E.3 REFLAYER V.S. NANO BANANA PRO NEW

We further experimented with Nano Banana Pro (Gemini 3). As shown in Fig. 10 Nano Banana Pro fails to perform satisfying layer decomposition. Despite prompting attempts, 1) it fails to preserve the original visible regions, especially for small object layers, but tends to generate new appearances; 2) for the large object layer, the localization is correct, but completing the occluded region remains a challenge; 3) it cannot generate real RGBA images, producing a fake checkerboard background instead. This suggests that current general-purpose generative LMMs do not yet possess the capability required for RLD, emphasizing the need for specialized datasets and models such as ours.

E.4 REFLADE SCENE AND STYLE NEW

The RefLade dataset is constructed to maximize visual diversity, featuring a vast majority of Real Images (95%) and a portion of Stylized Images (5%). A visualization is shown in the Fig. 11.

E.5 REFLAYER TRAINED ON MULAN v.s. ON REFLADE NEW

Besides the quantitative result in Tab. 6, Fig. 12 provides a qualitative comparison of RefLayer trained on MuLAN and on RefLade. The model trained on MuLAN generally produces lower-quality outputs—both in RGB appearance and alpha transparency compared to that trained on our RefLade dataset.

E.6 ADDITIONAL VISUALIZATION RESULT NEW

Fig. 13 provides more qualitative results of the RefLayer model with respect to diverse prompts.

Figure 9: RefLayer model qualitative result. For each testing image (top-left corner of each block), we conduct the RefLayer model eight times. The generated result shows a diversity in completion, while preserving the visible content robustly.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Prompt used for Gemini 3 (Nano Banana Pro)

“You are an image editing expert. Given the input image, please perform the image layer decomposition task, where you need to extract the background and foreground layers as RGBA images. Each layer should either contain the background or one foreground object. When part of the layer is occluded by other layers, you need to complete the occluded area, such that the layer looks like a complete object without occlusion. You need to make sure the non-occluded area of layers are identical to the input image. Do not outpaint any content outside the original image boundary. Now, please generate the flag’s complete layer image.”

Figure 10: **Limitations of existing general-purpose LMMs on the Referring Layer Decomposition (RLD) task.** We observe that Google Gemini 3 (Nano Banana Pro) struggles to preserve object identity, often regenerating the appearance entirely, and fails to produce valid RGBA outputs. **NEW**

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Figure 11: **Comprehensive Visual Diversity and Scene Category Distribution of the RefLade Dataset.** The figure illustrates the dataset's dual composition of 95% Real Images and 5% Stylized Images across nine distinct visual categories. The central pie chart quantifies the distribution of dominant scene types, showing strong coverage of Indoor (25.5%) and City (24.6%) scenes to ensure robust generalization across various photographic contexts. **NEW**

Figure 12: **Comparison between RefLayer trained on the MuLAn dataset and the same model trained on our RefLade dataset.** We observe that the results on the MuLAn dataset are generally worse than those obtained when training on our RefLade dataset, showing lower accuracy in the RGB content and alpha channel along object boundaries. **NEW**

Figure 13: **More qualitative results of our RefLayer model with respect to diverse prompts.**
Each row shows two different prompts and the corresponding results for the same input image. **NEW**

1404 **F LARGE LANGUAGE MODELS ACKNOWLEDGMENTS**
14051406 Besides the utilization of large language models (LLMs) in data engine (Appendix A.3), we acknowl-
1407 edge the use of LLM, specifically OpenAI’s ChatGPT, to aid in improving the clarity the paper. The
1408 model was not used for research ideation, content generation, data analysis, or experimental design.
1409 All intellectual contributions remain those of the listed authors.1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457