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ABSTRACT

We investigate the accuracy of prediction in deterministic learning dynamics of
zero-sum games with random initializations, specifically focusing on observer
uncertainty and its relationship to the evolution of covariances. Zero-sum games
are a prominent field of interest in machine learning due to their various applica-
tions, such as Generative Adversarial Networks. Concurrently, the accuracy of
observation in dynamical systems from mechanics has long been a classic subject
of investigation since the discovery of the Heisenberg Uncertainty Principle. This
principle employs covariance and standard deviation of particle states to measure
observation accuracy. In this study, we bring these two approaches together to ana-
lyze the follow-the-regularized-leader (FTRL) algorithm in two-player zero-sum
games. We provide growth rates of covariance information for continuous-time
FTRL, as well as its two canonical discretization methods (Euler and symplec-
tic). Our analysis and experiments shows that employing symplectic discretization
enhances the accuracy of prediction in learning dynamics.

1 INTRODUCTION

In recent years understanding the behavior of learning algorithms in games has attracted increasing
interests from the machine learning community (Lanctot et al., 2017; Yang & Wang, |[2020). Follow-
the-Regularized-Leader (FTRL) algorithm (Abernethy et al., 2009; Shalev-Shwartz et al.| 2012)
arguably the most well known class of no-regret dynamics, plays a prominent role in analysis
of behavior of learning algorithms. The behavior of such online learning algorithm in zero-sum
games has been a particularly intense object of study as zero-sum games related to numerous recent
applications and advances in Al such as, achieving super-human performance in Go (Silver et al.}
2016), Poker (Brown & Sandholm, [2018) and Generative Adversarial Networks (GANs) (Goodfellow
et al.,[2014) to name a few.

It is well known that in any zero-sum games, the time-average of no-regret dynamics converges to
Nash equilibria. However, if restricted to time-average convergence, one might confront obstacles
in understanding the day-to-day behavior, which is of significance in many of the aforementioned
applications. Unfortunately, FTRL dynamics (both in their standard discrete-time implementation
as well as their continuous-time approximations) do not to converge in zero-sum games with their
behavior being complex and even formally chaotic(Mertikopoulos et al., 2018} |Piliouras & Shamma,
2014;|Cheung & Piliouras| 2019;[2020). This makes predicting their behavior and outcome of the
learning algorithms difficult or even impossible as an infinitesimal small perturbation of the initial
conditions may be very quickly amplified by the learning dynamics. This raises the following two
challenges for us:

How can we qualitatively study the evolution of uncertainty in game dynamics? Could subtle
differences in implementation of well known online learning dynamics result to significant differential
in their performance from an uncertainty perspective?

The most relevant paper in this direction is (Cheung et al.l 2022), which recently introduced a
framework to study the evolution of uncertainty of Multiplicative Weights Updates (MWU) (i.e.
FTRL with negative entropy regularizer) in zero-sum games and variants thereof. The key idea is not
to focus on the evolution of a single initial condition (e.g., whether it converges to equilibrium), but
instead study the behavior of a probability distribution/measure over a set of initial conditions. This

'FTRL is also known as Dual Averaging (Nesterov, 2009).
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“input uncertainty" is well motivated both from a game-theoretic perspective (observer uncertainty
about the agents’ initial beliefs) as well as from a Machine Learning perspective (system initialization
by sampling from a data distribution). Given this formulation they used differential entropy, the
analogue of standard Shannon entropy for continuous variables (Michalowicz et al., 2013), as their
metric of uncertainty and showed that differential entropy grows linearly fast in two players zero-sum
games quantifying the amount of excess information an outsider observed must gather to keep track
of the uncertain system evolution.

In this work, on top of differential entropy, we will be introducing a novel perspective in quantifying
uncertainty, motivated by the classic mechanics formulation of FTRL (Bailey & Piliouras, 2019}
Balduzzi et al,2018) and the uncertainty principle from quantum mechanics. Specifically, given a
random system initialization (in the relevant system state-space) we will be focusing on the evolution
of variances of the related random variables. This perspective is closely related to the well known as
Heisenberg Uncertainty Principle in quantum mechanics, which captures that one cannot measure
the momentum and position of a microscopic particle accurately at the same time, i.e., ApAg > h.
The Hamiltonian formulation of FTRL endows the cumulative strategy and payoff of each agent
the roles of position ¢ and momentum p of each particle. Once the initialization is randomized, the
deterministic learning dynamics still makes the cumulative strategy and payoff random variables
whose mean and covariance matrix is related to that of the initialization. Therefore, it is natural to
ask how the variances of cumulative strategies and payoffs evolve with FTRL dynamics. As what
is implied from Heisenberg Uncertainty, information on standard deviations (variances, covariance
matrices) measures the accuracy of prediction in learning dynamics.

Our contributions. In this paper we study differential entropy and covariances in FTRL for two-
player zero-sum games. We investigate the evolution of observer uncertainty measured by these two
quantities in two popular discretization schemes, Euler and symplectic discretization. We establish
the following results as main contributions.

* Differential entropy remains constant when two players take turns to update their mixed
strategies (Alternating play), see Proposition[4.2}

* We propose covariance matrix as an uncertainty measurement which captures both simul-
tanteous and alternating plays, with rate of increasing calculated concretely in Euclidean
regularized FTRL, see Theorem [5.1}

» For FTRL with general regularizers, a Heisenberg type inequality on variances of cumulative
strategy and payoft is obtained, i.e., AX; Ay; o > positive constant. This inequality
indicates a general uncertainty principle, tradeoff between accuracy in strategy spaces versus
payoff spaces for game dynamics, see Therorem[5.2]

The technological innovations. The techniques used in drawing the above conclusions come from
different areas. The theoretical framework for analyzing the uncertainty evolution is the classic
mechanical formulation of games (Bailey & Piliouras| 2019} [Wibisono et al.} [2022). To demonstrate
that differential entropy is constant in alternating plays, we utilize the volume preservation property
of Symplectic discretization. Furthermore, the intuition in deriving the covariance evolution of
Symplectic discretization is from (Wang, [1994), and the proof combine tools from matrix analysis
such as the Jordan normal form. The uncertainty inequality for general FTRL is a consequence of
a classic result from symplectic geometry known as non-squeezing theorem and variance analysis
methods from multivariate statistics.

Motivation and the place of this paper in the literature. The current paper is situated within the
research on the dynamics of no-regret online learning algorithms and represents a natural extension
of previous works that address this problem from the perspectives of volume or uncertainty evolution,
such as (Cheung & Piliouras, [2019;[2020; [Cheung et al.|[2022). A main motivation for this work is to
address certain drawbacks in these works and further expand upon their results. Volume analysis was
introduced as a tool to study the evolution of a region of initial conditions under the simultaneous
MWU algorithm in (Cheung & Piliouras} 2019 [2020). From this perspective, it was discovered that
the simultaneous MWU algorithm exhibits what is known as Lyapunov chaos behaviors. Similar tools
are also used to study day-to-day behaviors of no-regret learning algorithms in (Flokas et al.} [2020).
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Driven by the need of considering the initial uncertainty of learning in game, (Cheung et al.}[2022)
purposed to use differential entropy as a measurement of uncertainty, and extended volume analysis
to calculate how differential entropy evolve under simultaneous MWU algorithm. On this stage, it
is nature to ask : Is differential entropy a good measure of uncertainty in games dynamics? More
especially, as alternating playing is more common in real word games, can the results in
2022) be extended from simultaneous playing to alternating playing ? Motivated by above
questions, we have found that differential entropy is not a suitable measure for capturing changes
in uncertainty during alternating play. Therefore, the next question is: Which concept is more
appropriate for measuring uncertainty evolution in game dynamics? The idea of using variance as a
measure of uncertainty originates from the Heisenberg uncertainty principle, where covariance and
standard deviation are employed to quantify the uncertainty in the quantum dynamics. Moreover,
since we care about day-to-day behavior and the risk in decision making, variance and covariance
has prominent advantage in quantifying risk (it has been well studied in statistics and finance, data
science), this is why we study uncertainty with variance and covariance.

Further related works. The family of Follow-the-Regularized-Leader algorithms in the continuous
time and several their properties such as volume-preserving and existing Poincaré recurrence are
investigated in (Mertikopoulos et al.| [2018). However, it turns out the behaviors of discrete time
algorithms is quite different from their continuous time counterpart. In the case of simultaneous
gradient descent ascent with constant step size, the strategy orbits will not converge and keep away
form its stationary points with an exponential rate (Mescheder et al., 2018} [Gidel et al.| 2019) and
in the case of simultaneous multiplicative weights updates, the volumes of strategy orbits have fast
growth rate and converge to the boundary of constrains (Bailey & Piliouras| [2018; [Cheung| 2018}
[Cheung & Piliouras| [2020). Alternating gradient-descent-ascent and its several variants are studied in
(Gidel et al.; [2019; Bailey et al.| 2020} [Zhang & Yu,[2020; |[Yang et al., 2020) and (Wibisono et al.|
2022) consider more general alternating mirror descent algorithms in constrained case.There are
several other forms of uncertainties in game theory and min-max optimization. Games with random
payoff matrixes and their applications in mathematical biology are studied in (Gaol 2013} [Duong

et al.,2019bja). Another kind of uncertainty comes from the stochastic algorithms (Chavdarova et al.,

2019; [Luo et al.} 2020} [Yang et al.,[2020), where reducing the variance introduced by the algorithms
is a main focus. Our results are orthogonal to aforementioned ones.

2 PRELIMINARIES

Learning in games. A two agent zero-sum game consists of two agent ' = {1, 2}, where agent 4
selects a strategy from the strategy space (or primal space) X; C R™¢ and n; represents the number of
actions available to agent . Typically, & is chosen to be R™¢, which we called the unconstrained zero
sum game, or it is chosen to be the simplex A; = {z | Y2, z; = 1,2, > 0}. Utilities of both agents
are determined via payoff matrix A7) € R™*" and in a zero-sum game, the pay off matrix satisfy
A = — AUD | For convenience, we will also use A to refer to A12), and thus A®D = —AT,
Given that agent ¢ selects strategy x; € X; C R™, agent 1 receives utility uj (z1, 22) = (21, Axa),
and agent 2 receives utility us(z2,21) = — (22, AT x1). Naturally agents want to maximize their
utility resulting the following max-min problem:

max min xlTsz. (Zero-Sum Game)
T1E€EX] T2EX2

Follow-the-Regularized-Leader. Follow-the-Regularized-Leader algorithm (FTRL) is a widely
used class of no-regret online learning algorithms. In continuous time FTRL, at time ¢, agent ¢
updates strategies x;(t) based on the cumulative payoff vector y;(t),

t

yi(t) = y:(0) + / A g (s)ds (Continuous FTRL)
0

zi(t) = argg{ax{(mi, i (1)) — hi(zi)}

where h; is a strongly convex function, which is called the regularizer. It is also well known that
x;(t) = Vh! (yi(t)), where h!(y;) = maxy,cx, {{zi,y;) — hi(z;)} is the convex conjugate of h;
(Shalev-Shwartz & Singer|[2006). Gradient descent ascent (GDA) and multiplicative weights updates
(MWU) are two of the most well known special cases of FTRL algorithms. For unconstrained GDA,
the regularizers are chosen to be the Euclidean norm, i.e., h;(z;) = ||=;]|?> and X; = R™. For
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MWU, the regularizers are chosen to be negative entropy, i.e., h(z;) = 3_; e[n] Ti.j In(zi;) and
Xy ={x;; | 2721 x;; = 1,2; ; > 0}. In the following, we will use GDA to refer to unconstrained
GDA and omit the word unconstrained.

In discrete time, FTRL has two kinds of implementations : simultaneous and alternating. In the case
of GDA and MWU, the update rules with step size 7 are :

t t—1 t—1 ¢ t—1 T t-1
x] =]  +nAxy T, zy =z —nA z] ", (GDA)
rh = 95571 — nAT:rﬁ*l, i = xﬁfl + nAzh, (AItGDA)
and
. 2t ten(Aey ) " . gl len(=ATai™hs "
T = ny l t—1 TI(A%;il)j » Tg = no : t—1 n(—ATxifl)j ) MWU)
Zj:l L1 € s=1 ijl T2 € s=1
: ( AlenATH T\ pilen(anh).  \™
S yS
rh = d — ot = d : (AItMWDU)
no t—1_p ATty ’ 1 ni t_'1 n(Axt);
>i2 w e v s=1 2jmary et J

Dynamical system. A system of ordinary differential equations & = f(x) where f : R* — R”
is a differentiable dynamical system. f(z) is called the vector field of the dynamical system. If f
is Lipschitz continuous, there exists a continuous map (¢, zg) : R x R™ — R™ such that for all
xo € R™, ¢(t, x0) is the unique solution of the initial condition problem {& = f(z),z(0) = xo}.
The solution (¢, x¢) is called a trajectory or orbit of the dynamical system.

Hamiltonian systems. A Hamiltonian system is a class of differential equations describing the
evolution of momentums and positions of particles by a scalar function H(X,Y,t) (H(X,Y) for
time-independent case) called Hamiltonian function. The state of the system, the momentum
Y = (y1,...,yn) " and position X = (x1,...,2,) " evolves according to the following Hamilton’s
equations:

@ oy At on for i€ [n]. (N
The solution (¢, -) of a Hamiltonian system is called a symplectic map which is a special case of
volume-preserving maps, thus the absolute value of determinant of the Jacobian matrix equals to 1.

Linear ordinary differential equation. Let P be an n x n matrix. Then for a given zy € R"™, the
initial value problem

d
— =Pz, 2(0) =2 @)
has a unique solution given by z(t) = e

Pt A oo PRk
€ =2 k=0 "R -

Pt2o, where the exponential operator e”’* is defined as

Remark 2.1. In general, one cannot expect for a shortcut to understand linear systems only from the
formal expression z(t) = e'’tzy. Matrix exponential function is fundamentally different from usual
exponential function is several aspects. For example, in general e e> # e2e™ and this makes
direct calculation of e*’t impossible. In practice even computing matrix exponential numerically for
large matrices is a challenging task (Moler & Van Loan, |2003)|).

2.1 MEASURE OF OBSERVER UNCERTAINTY

Differential Entropy. The concept of differential entropy was introduced by Shannon (Shannon)|
1948) as a measure of the uncertainty associated with a continuous probability distribution. It has
now found applications in many fields (Neeser & Massey, 1993} |Garbaczewski, [2006).

For a random vector X € R™ with probability density function g(z) supported on X C R™, the
differential entropy of X is defined as

S(X)=- /X g(x)log g(z)dz. (Differential Entropy)
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Covariances of random vectors. Given a random vector X = (z1, ..., xm)T such that every z; is a
random variable with finite variance and expected value, the covariance matrix P(X) € R™*™ of X
is a symmetric and positive semi-definite square matrix whose (4, j) entry is the covariance, i.e.,

Cov (i, z;) = El(zi — E(x:))(z; — E(z;))].
Note that the diagonal elements of P(x) are variances of {1, ..., z,,}. Moreover, for a matrix
M € R™*™ wehave P(MX) = MP(X)M'.

In general, the differential entropy of a random variable provides a lower bound on the determinant
of its covariance matrix. Precisely, if a random vector X € R™ has zero mean and covariance
matrix P(X), then S(X) < % log((2me)" det P(X)), and equality holds if and only if X has a
joint Gaussian distribution.

3 SETUP

In this section we leverage the power of the classic mechanic formulation of game dynamics (Balduzzi
et al., 2018} Bailey & Piliouras| |2019). To study the strategy-payoff evolution from the perspective of
each agent, it is convenient to apply the Hamiltonian formulation of the continuous time FTRL. In
this subsection, we will establish the equivalence between discretization of the Hamiltonian system
induced by continuous time FTRL and direct discretization of FTRL, where the latter leads to the
Gradient Descent-Ascent (with Euclidean regularizer) or Multiplicative Weights Update (with entropy
regularizer) in the strategy space X; . We will make this correspondence clear in the sequel.

Euler discretization. Given an ordinary differential equation & = f(z) with initial condition x(t() at
time ¢, the Euler discretization begin the process by setting 2o = x(tg), next choose a step size 1 and
set t,, = to + nn), then the Euler discretization ¢, (-) is defined by 2,11 = ¢y (2s) = zn + nf(z5).
The value 2,11 is an approximation of the solution of & = f(x) at time ¢,, 4.

Symplectic discretization. Given a Hamiltonian system as in H a numerical method ¢, (-) is called
a symplectic discretization if when applied to a Hamiltonian system, the discrete flow ¢, : @ — ¢, (2)
is a symplectic map for sufficient small step sizes. In this paper we focus on the following symplectic
discretizations: for X = (x1,....,2,) ", Y = (Y1, .., Yn) ' »

Yl =yt gV H(X, Y, X = X 4 pVy H(XE YT, (Type I method)
or

X = X pVy H(XT YY), VI =Y -V H(XTL Y. (Type I method)
Both methods are symplectic methods, i.e., they make the map (X*,Y?) — (X' Y1) (o be
symplectic. More details of symplectic method can be found in (Haier et al., 2006).

Cumulative strategies. In this paper will focus on the dynamics of cumulative strategy and
cumulative payoff. The cumulative strategy X;(¢) of agent i is defined as follows :

Xi(t):/o x;(s)ds. 3)

It is also convenient to write X;(t) = X;(to) + f; 2;(8)ds so the randomness can be introduced into
the system at any moment ¢y > 0 even X;(0) = 0 in (3).

Primal-dual correspondence via discretization. Since we use Euler and Symplectic discretization
on the Hamiltonian system, which is not obviously equivalent to the conventionally natural update
rules in the strategy spaces &;, we next establish formally that the Euler or Symplectic discretization
of continuous time FTRL with Euclidean norm / negative entropy regularizer implies GDA/MWU or
AItGDA/AItMWU respectively. This correspondence can be stated in the following proposition.

Proposition 3.1. For each agent i € [2], let X; denote the strategy spaces, and let
H(Xi,y5) = b (yi(1) + 15 (y;(0) + AVDX,(1)) )
for j # i be the Hamiltonian function of (Continuous FTRL), so that the X;(t) and y;(t) evolve
according to the following Hamiltonian system
dX; OH(Xi;,y) dyi  OH(X;, )

a oy dt ox; ®)

Then the following statements holds:
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* If both players use Euclidean regularizers and X; = R"™, then the Euler discretization of
is equivalent to Gradient Descent-Ascent (GDA) on the strategy spaces; and the Symplectic
discretization of (9)) is equivalent to Alternating Gradient Descent-Ascent (AltGDA) on the
strategy spaces.

* If both players use entropy regularizers and X; = A; be the simplex, then the Euler
discretization of (9) is equivalent to Multiplicative Weights Update (MWU) on the strategy
spaces; and the Symplectic discretization of ([5) is equivalent to Alternating Multiplicative
Weights Update (AltMWU) on the strategy spaces.

Here equivalent means the variables (X!, y!) getting from the discretizations is the same as the
cumulative strategy and payoff of the game dynamics. The Hamiltonian function in the proposition
comes from (Bailey & Piliouras, 2019). To prove the correspondence between (AltGDA)/(AItMWU)
and Symplectic discretization, we introduce a novel method of discretizing the continuous Hamilto-
nian system (5)) by a combination of two types Symplectic methods, while still keep the symplectic
structures on the dynamics of each agents. We believe this method is of independent interests, see
Lemmal[A.2)in Appendix. The detailed proofs of Proposition [3.T]are deferred to Appendix[A.

Random initialization. We consider the case when noise is introduced to (X; (o), yi(to)) at time
moment ¢y > 0 in continuous FTRL or (X}°,4!°) in discrete time settings. The main objective of
this paper is to study the evolution of observer uncertainty given the covariance matrix Py of the
initialization (X;(to),y:(to)) or (X}° ; y!°). Take discrete time FTRL for example the covariance
matrix Py consists of variances Var(X ) Var(yz ° ), and covariances Cov(X° Y ﬂ) forall o, B €
[n;] . Tracing the evolution of Var( { o) and Var(y; ) in iterations, we are able to quantify how
accurate the prediction will be in FTRL dynamics. Espec:1ally we will see in next sections that
covariance is a finer measure of observer uncertainty compared to differential entropy.

Remark 3.1. Note that neither the concrete expression nor an approximation of the initial distribution
of (X?,4?) is necessary if the historic data is provided (which holds in repeated games), since we
can use empirical means and variances as the unbiased estimate of the actual means and variances.

4 DEFICIENCY OF DIFFERENTIAL ENTROPY

Differential entropy, as a measure of observer uncertainty, was used in studying the predictability
of MWU in zero-sum games (Cheung et al.,2022). In this section we investigate the evolution of
differential entropy in FTRL with differential discretization methods, which correspond to MWU and
AItMWU. The main motivation of considering covariance and variance as an alternate measure of
observer uncertainty is due to Proposition[4.2, which claims that the differential entropy in alternating
update remains constant. In other words, differential entropy might be insufficient in capturing the
uncertainty evolution for alternating plays.

Proposition 4.1. When two players use (MWU) with step sizes 1 < min{1,1/||A||3}, the differential
entropy of their cumulative strategy and payoff has linear growth rate, i.e.,

S(Xi,yi) > S(X{°,y;°) +ct ©)
where A is the payoff matrix of the game, and ¢ > 0 is a constant determined by A.

Proposition 4.2. When two players use (AItMWU) with arbitrary step size, the differential entropy of
their cumulative strategy and payoff keeps constant, i.e.,

S(X{,y7) = S(X{°,y;°) @)
foranyt >ty >0andi=1,2.

The proof of Proposition M.2]is heavily dependent on the relationship between Symplectic method
and (AItMWU), as state in Proposition[3.1. In fact, the evolution of differential entrop Py is determined
by the determinant of the Jacobin matrix of the update rule from (X!, y!) to (X, y!™), and in
each update, the differential entropy is invariant if and only if the absolute value of this determinant
equals to 1. As shown in Proposition the update rule of (X}, y!) in (AtMWU) constitutes a
symplectic map, and the absolute value of the determinant of Jacobin matrix for every symplectic
map must equal to 1, therefore we can conclude that the differential entropy in (AItMWU) keeps a
constant. The detailed proofs of Propositions[4.1 and are deferred to Appendix |B} where we also

provide numerical examples for these two propositions.
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5 COVARIANCE IN FTRL

In this section, we are presenting formally the evolution of covariances of cumulative strategies
and payoffs. We start with continuous time FTRL with Euclidean regularizers, and proceed in
considering Euler and symplectic discretization of continuous time FTRL. In the end, for general
FTRL, covariance evolution follows an inequality derived by using techniques of symplectic geometry.

Covariance evolution in FTRL with Euclidean regularizer. The evolution of covariance matrix
with continuous time FTRL can be deduced from the Hamiltonian formulation of learning dynamics.
The Euler discretization of each agent’s continuous time FTRL exponentially amplifies the covariance
in the learning process. In contrast, symplectic discretization, which has been proven equivalent to
alternating update in strategies, amplify covariance of cumulative strategies polynomially and keep
that of cumulative payoffs bounded. In this section we will focus on the view point of agent 1, and
the same results also hold for agent 2 as they are symmetry.

Theorem 5.1. In two-player zero-sum games, suppose both players use FTRL with Euclidean
norm regularizers and unconstrained strategy sets X; = R™. Suppose at time tog > 0 the random
cumulative strategy and payoff form a random vector (X fo , yfo) with covariance matrix P(tg) # 0.
Then for all t > to and a, 3 € {1,...,n1}, the covariance of (X}, y!) evolves in continuous and
discrete FTRL according to the following :

1. In Euler discretization, for all o, 3 € [ny], it holds that Cov(X{ ,, X{ 5), Cov(yi 4, U1 5)
and Cov(X{ ,,yi 5) are all of O(|u|*") for some number || > 1.

2. In continuous time and symplectic discretization, for all o, B € [n1], it holds that

* if AAT is non-singular, then Cov(X{ ,, X1 5), Cov(yi o, 4t 5) and Cov(X{ ., 4} 5)
are of O(1).

« if AAT is singular, Cov(X1| ,, X1 3) is of ©(t?), Cov(yi ., v} 3) is of O(1), and
Cov(X{ 4, Y1 5) is of O(1).

Note that the singular conditions on AAT can be satisfied by different games in real life, e.g., the
payoff matrix of the Rock-Paper-Scissors game makes AA " singular, but that of meta-payoff matrix
of AlphaStar is non-singular(Czarnecki et al., 2020). Especially, if A is not square, then there must
be one player whose AAT is singular.

The proof of Theorem|[5.1|relies on a detailed analysis on the matrix exponential map associated to
solutions of continuous FTRL and matrix powers map associated to solutions of Euler / Symplectic
discretize equations, especially in counting the geometric and algebraic multiplicities of 1 as an eigen-
value of the iterative matrices associated to these linear systems. Proofs and additional backgrounds
are deferred to Appendix [C]

Covariance Evolution in General FTRL. Analysis of covariance evolution in FTRL with general
regularizer differs from Euclidean regularizer fundamentally. The complexity is mainly caused by
the non-linearity of Hamiltonian system induced by continuous time FTRL. Thus, it is inevitable to
introduce a localization or linearization scheme of discretization.

So far we have left the evolution of covariance in continuous time FTRL with general regularizers un-
addressed. The challenge comes from the non-linearity of Hamiltonian system induced by continuous
time FTRL algorithm. Suppose the integral flow of Hamiltonian system is ¢:(X;(to), v:(to)). In the
most general setting, we are able to provide a lower bound for the product of standard deviation of
Xio(t) and y; o (1), i.e., AX; o(t)Ay; o (t) > constant. We state the conditions and results formally
in the following proposition.

Theorem 5.2. Let vector X;(t) and y;(t) be cumulative strategy and payoff, for i € [2] and o € [n;).
Assume that the higher order differentials of ¢+(-) are bounded by some constant K, and the standard
deviations AX; . (to) and Ay; o (to) at initial time ty are sufficient small,E] then for t > tq it holds
that

(AXia(t)Ayia(1)® = (Cov(Xia(t), yialt)* > %@

2"Sufficietly small" for entries of covariance matrix follows the convention in statistical modeling, (e.g. p166
in (Benaroya et al., [2005)).), see Appendix [D.3 for more details.
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Figure 1: The appearance time of the local minima of A(y;,1(¢)) coincide with the local maxima of
A(X1,1(t)), and vice versa. This implies that A(X1,1(¢)) and A(y1,1(¢)) can’t be small at the same time.

where wr,(P(ty)) is the linear Gromov width of the ellipsoid defined by the initial covariance matrix
P(to).

The definition of Gromov width can be found in Appendix[D.2] Note that the inequality holds trivially
when there is no uncertainty, i.e., P(ty) = 0, since in this case w? (P(tg)) = 0. The necessary
background and details of proof are left in Appendix |D| Similar to the Heisenberg Uncertainty
Principle in quantum mechanics, Theorem indicates that AX; ,(¢) and Ay; (t) cannot be
small at the same time. An example of FTRL with Euclidean norm regularizers demonstrating this
phenomenon is presented in Figure (T)).

6 EXPERIMENTS

In this section we provide numerical experiments illustrating the covariance evolution results proved
for Euclidean norm regularized FTRL in Theorem We provide experimental results on the
evolution of Var(Xj 1), Var(y1,1), the first components of X7 and y;, where (X1, 1) evolve as
continuous FTRL equation, Symplectic discretization, or Euler discretization. In all experiments,
we assume that the payoff matrix is in R?*2, thus X1, y; € R2, and at initial time the covariance
matrix Cov(y;, X1) is [[8,2,1,3],[2,13,7,9],[1,7,9,2],[3,9,2,10]] € R***. More numerical
experiments on the non-singular cases are presented in Appendix [El Note that the the y-axis is
represented on a logarithmic scale in Figure 2 (a), Figure 3 (a) and Figure 4.

Continuous time FTRL. We illustrate how Var(X;1(¢)) and Var(y; 1(¢)) evolve with con-
tinuous time FTRL with payoff matrices A4, = [[1,—1],[-1,1]], 42 = [[1.2,-1.2],[-1,1]],
As = [[1.5,—1.5],[—1,1]], see Figure |Z In (a), the Var(X; 1(¢)) has a quadratic growth rate,
and in (b) Var(y1,1(¢)) is bounded, which support results of continuous time part in Theorem|5.1

il
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Figure 2: Variance evolution of continuous FTRL, singular cases.
Symplectic discretization. We illustrate how Var(X7] ;) and Var(yf ;) evolves with symplec-

tic discretization, the payoff matrices are given as follows: By = [[1,—1],[-1,1]], Bs =
[[1.2,-1.2],[-1,1]], By = [[1,—1.3],[~1, 1.3]], see Figure[3. From the experimental results, we
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can see the variance behavior of symplectic discretization is same as continuous case, which support
results of symplectic discretization part of Theorem 5.1}

0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Var(X7 1) (b) Var(yi 1)
Figure 3: Variance evolution of Symplectic discretization, singular cases.

Euler discretization. We show experimental results on Var(X{ ), Var(y} ;) where (X{, y}) evolve
as Euler discretization and payoff matrices are given as follows:
« Cy = [[1,-1.31],[-1,1.31]] is singular, see (a) of Figure ]

« (o = [[2,-1.7],[—1.7, 1.5]] is non-singular, see (b) of Figure 4]

— Cov(X_1.1)
— Cov(y_1.1)

— Cov(X_1.1)
— Cov(y_1.1)

o 4 N w & o o N

0 2000 4000 6000 8000 10000 12000 0 500 1000 1500 2000 2500 3000 3500 4000

(a) C4, singular (b) C>, non-singular
Figure 4: Variance evolution of Euler discretization.

In FigureEwe can see that the behavior of Var(X7 ;) and Var(yj ;) is independent of whether the
payoff matrix is singular or not, and they exhibit an exponential growth rate which support the result
of Euler discretization part in Theorem[5.1} Our theoretical results can explain the high frequency
oscillations in experimental results. As we shown in Appendix [5.1] the function of the covariance
evolution process contains polynomials combinations of trigonometric functions, which cause the
oscillations.

7 CONCLUSION

In this paper we investigate the evolution of observer uncertainty in learning dynamics from a
covariance perspective. We focus on different variants of Follow-the-Regularized-Leader dynamics in
zero-sum games and prove concrete rates of covariance evolution for different discretization schemes.
Although all such discretization schemes have low regret, alternating discretizations are shown to be
far superior from an uncertainty perspective providing a new axis along which to compare learning
dynamics in games. In our analysis, we leverage the techniques from symplectic geometry for
analyzing the evolution of uncertainty, which to the best of our knowledge is the first of its kind. An
interesting direction for future work is to extend this type of analysis for different classes of games
(e.g. potential games, mixed motive games, a.o. (Cheung & Tao| 2021} [Candogan et al.,[2011)) and
dynamics.




Under review as a conference paper at ICLR 2024

REFERENCES

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. 2009.

James Bailey and Georgios Piliouras. Muti-agent learning in network zero-sum games is a hamiltonian
system. In AAMAS, 2019.

James P Bailey and Georgios Piliouras. Multiplicative weights update in zero-sum games. In
Proceedings of the 2018 ACM Conference on Economics and Computation, pp. 321-338, 2018.

James P Bailey, Gauthier Gidel, and Georgios Piliouras. Finite regret and cycles with fixed step-size
via alternating gradient descent-ascent. In Conference on Learning Theory, pp. 391-407. PMLR,
2020.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. In ICML, 2018.

Haym Benaroya and Sean Mi Han. Probability Models in Engineering and Science. Taylor and
Francis, 2005.

Haym Benaroya, Seon Mi Han, and Mark Nagurka. Probability models in engineering and science,
volume 192. CRC press, 2005.

Richard Bronson. Matrix methods: An introduction. Gulf Professional Publishing, 1991.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418-424, 2018.

Ozan Candogan, Ishai Menache, Asuman E. Ozdaglar, and Pablo A. Parrilo. Flows and decomposition
of games: Harmonic and potential games. Math. Oper. Res., 36(3):474-503, 2011.

Tatjana Chavdarova, Gauthier Gidel, Franc¢ois Fleuret, and Simon Lacoste-Julien. Reducing noise
in gan training with variance reduced extragradient. Advances in Neural Information Processing
Systems, 32, 2019.

Run Kuen Cheung, Georgios Piliouras, and Yixin Tao. The evolution of uncertainty of learning in
games. In ICLR, 2022.

Yun Kuen Cheung. Multiplicative weights updates with constant step-size in graphical constant-sum
games. Advances in Neural Information Processing Systems, 31, 2018.

Yun Kuen Cheung and Georgios Piliouras. Vortices instead of equilibria in minmax optimization:
Chaos and butterfly effects of online learning in zero-sum games. In Conference on Learning
Theory, pp. 807-834. PMLR, 2019.

Yun Kuen Cheung and Georgios Piliouras. Chaos, extremism and optimism: Volume analysis of
learning in games. In NeurIPS 2020, 2020.

Yun Kuen Cheung and Yixin Tao. Chaos of learning beyond zero-sum and coordination via game
decompositions. In International Conference on Learning Representations, 2021.

Fritz Colonius and Wolfgang Kliemann. Dynamical systems and linear algebra, volume 158.
American Mathematical Society, 2014.

Brian Conrad. Higher derivatives and taylor’s formula via multilinear maps. In
http://math.stanford.edu/ conrad/diffgeomPage/handouts/taylor.pdf.

Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
Balduzzi, and Max Jaderberg. Real world games look like spinning tops. Advances in Neural
Information Processing Systems, 33:17443-17454, 2020.

Manh Hong Duong, Hoang Minh Tran, and The Anh Han. On the distribution of the number of
internal equilibria in random evolutionary games. Journal of Mathematical Biology, 78:331-371,
2019a.

10



Under review as a conference paper at ICLR 2024

Manh Hong Duong, Hoang Minh Tran, et al. On the expected number of internal equilibria in
random evolutionary games with correlated payoff matrix. Dynamic Games and Applications, 9
(2):458-485, 2019b.

Andrew Feutrill and Matthew Roughan. A review of shannon and differential entropy rate estimation.
Entropy, 23(8):1046, 2021.

Lampros Flokas, Emmanouil Vasileios Vlatakis-Gkaragkounis, Thanasis Lianeas, Panayotis Mer-
tikopoulos, and Georgios Piliouras. No-regret learning and mixed nash equilibria: They do not
mix. Advances in neural information processing systems, 2020.

Jinwu Gao. Uncertain bimatrix game with applications. Fuzzy Optimization and Decision Making,
12(1):65-78, 2013.

Piotr Garbaczewski. Differential entropy and dynamics of uncertainty. Journal of Statistical Physics,
123:315-355, 2006.

Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A
variational inequality perspective on generative adversarial networks. /CLR, 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’ 14, pp.

2672-2680, Cambridge, MA, USA, 2014. MIT Press.

Misha Gromov. Pseudo holomorphic curves in symplectic manifolds. Inventiones Mathematicae,
82,307-347, 1985.

Ernst Haier, Christian Lubich, and Gerhard Wanner. Geometric Numerical integration: structure-
preserving algorithms for ordinary differential equations. Springer, 2006.

Yoopyo Hong and Roger A Horn. The jordan cononical form of a product of a hermitian and a
positive semidefinite matrix. Linear Algebra and its Applications, 147:373-386, 1991.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Fu-Yuen Hsiao and Daniel J Scheeres. Fundamental constraints on uncertainty evolution in hamilto-
nian systems. In 2006 American Control Conference, pp. 6-—pp. IEEE, 2006.

Aapo Hyvirinen. New approximations of differential entropy for independent component analysis
and projection pursuit. Advances in neural information processing systems, 10, 1997.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing systems, 30, 2017.

Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradient descent ascent
for stochastic nonconvex-strongly-concave minimax problems. Advances in Neural Information
Processing Systems, 33:20566-20577, 2020.

Panayotis Mertikopoulos and William H. Sandholm. Riemannian game dynamics. Journal of
Economic Theory, 177:315-364, 2018.

Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras. Cycles in adversarial
regularized learning. In SODA, 2018.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? In International conference on machine learning, pp. 3481-3490. PMLR,
2018.

Joseph Victor Michalowicz, Jonathan M Nichols, and Frank Bucholtz. Handbook of differential
entropy. Crc Press, 2013.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM review, 45(1):3—49, 2003.

11



Under review as a conference paper at ICLR 2024

Fredy D Neeser and James L Massey. Proper complex random processes with applications to
information theory. IEEE transactions on information theory, 39(4):1293-1302, 1993.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221-259, 2009.

Georgios Piliouras and Jeff S Shamma. Optimization despite chaos: Convex relaxations to complex
limit sets via poincaré recurrence. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pp. 861-873. SIAM, 2014.

Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and fenchel duality. Advances in
neural information processing systems, 19, 2006.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107-194, 2012.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 277
(3):379-423, 1948.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Daoliu Wang. Some aspects of hamiltonian systems and symplectic algorithms. Physica D: Nonlinear
Phenomena, 73(1-2):1-16, 1994.

Andre Wibisono, Molei Tao, and Georgios Piliouras. Alternating mirror descent for constrained
min-max games. Advances in Neural Information Processing Systems, 35:35201-35212, 2022.

Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance reduction for a class of
nonconvex-nonconcave minimax problems. Advances in Neural Information Processing Systems,
33:1153-1165, 2020.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583, 2020.

Guojun Zhang and Yaoliang Yu. Convergence of gradient methods on bilinear zero-sum games.
ICLR, 2020.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

12



	Introduction
	Preliminaries
	Measure of Observer Uncertainty

	Setup
	Deficiency of Differential Entropy
	Covariance in FTRL
	Experiments
	Conclusion
	Proof of Proposition 3.1
	Euler and Symplectic discretization of FTRL
	Proof of Entropy regularizers
	Proof of Euclidean norm regularizers

	Proof of Section 4
	Evolution of differential entropy under diffeomorphism
	Technical lemmas for Proposition 4.1
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Numerical examples of Proposition Propositions 4.1 and 4.2

	Proof of Theorem 5.1
	Additional Backgrounds 
	Complex Jordan normal form
	Real Jordan normal form
	Solution formula for linear differential equation
	Solution formula for linear difference equation

	Proof of Theorem 5.1
	Covariance evolution of continuous equation
	Covariance evolution of Euler discretization
	Covariance evolution of Symplectic discretization


	Details of Section "last"
	Riemannian Game Dynamics
	Symplectic Geometry
	Proof of Theorem 5.2

	Experiments for non-singular cases.

