
Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes:
On the Importance of Learning Activations

Marcin Sendera*1,2 Amin Sorkhei Tomasz Kuśmierczyk*1

1Jagiellonian University
2Mila, Université de Montréal

Abstract

Gaussian Processes (GPs) provide a convenient
framework for specifying function-space priors,
making them a natural choice for modeling un-
certainty. In contrast, Bayesian Neural Networks
(BNNs) offer greater scalability and extendability
but lack the advantageous properties of GPs. This
motivates the development of BNNs capable of
replicating GP-like behavior. However, existing so-
lutions are either limited to specific GP kernels or
rely on heuristics.
We demonstrate that trainable activations are cru-
cial for effective mapping of GP priors to wide
BNNs. Specifically, we leverage the closed-form
2-Wasserstein distance for efficient gradient-based
optimization of reparameterized priors and acti-
vations. Beyond learned activations, we also in-
troduce trainable periodic activations that ensure
global stationarity by design, and functional pri-
ors conditioned on GP hyperparameters to allow
efficient model selection.
Empirically, our method consistently outperforms
existing approaches or matches performance of the
heuristic methods, while offering stronger theoreti-
cal foundations.

1 INTRODUCTION

Function-space priors for BNNs offer a better way of speci-
fying beliefs on data modeled by the model. Unlike priors on
model parameters (i.e. weights), which lack interpretability
and are hard to specify, they ultimately lead to more intu-
itive and meaningful representation of prior knowledge [Sun
et al., 2019]. Function-space priors can be conveniently
specified in terms of GPs. Instead of specifying complex
distributions over model parameters, GPs allow for defining

*Equal contribution to implementation.

priors over entire functions, through the choice of kernel
capturing requirements such as smoothness or periodicity.

Finding a GP that matches a wide BNN is straightforward.
A classic result by Neal [1996], Williams [1996], later
extended to deep neural networks by Lee et al. [2017],
Matthews et al. [2018], shows that wide layers in neural
networks behave a priori like GPs. This is achieved by iden-
tifying GP kernels matching the covariances of (B)NNs.

In contrast, finding BNNs that exhibit the desired behavior
of GPs is a notoriously difficult problem, with solutions
or approximations existing for only a few GP kernels. For
example, Meronen et al. [2020] recently found a solution for
the popular Matérn kernel using the Wiener-Khinchin theo-
rem. However, the proposed BNN activation assumes binary
white noise priors on the model weights, which severely hin-
ders posterior learning. Consequently, an approximate solu-
tion with Gaussian priors must be used, ultimately leading
to suboptimal performance, as we demonstrate in Sec. 4.3.

The challenge of imposing function-space a priori behavior
on BNNs previously has been addressed using gradient-
based optimization. In particular, Flam-Shepherd et al.
[2017], Flam-Shepherd et al. [2018], and especially Tran
et al. [2022] attempted to solve this by learning priors on pa-
rameters. However, to achieve sufficient fidelity with simple
priors (Gaussian or hierarchical), their approach requires
deep networks, which presents a challenge for posterior
learning due to the lack of effective algorithms for learning
posteriors in deep and wide BNNs. On the other hand, by us-
ing normalizing flows to model weight priors they often can
match target GP prior (see Sec. 4.2). Nevertheless, imposing
different priors for each weight invalidates the theoretical
assumptions regarding BNN convergence, rendering this
approach merely a heuristic.

Fitting only weight (and biases) priors is insufficient for
matching BNN and GP priors. Hence, we propose learning
parametric activations as well. We draw inspiration from pre-
vious work demonstrating that function-space priors can be
adjusted by altering activations [Neal, 1996] and also from

mailto:<t.kusmierczyk@uj.edu.pl>?Subject=Your UAI 2025 paper

research utilizing activations for improved uncertainty esti-
mation [Morales-Alvarez et al., 2020, Postels et al., 2020].
In fact, the same GP-like behavior can often be realized
by different combinations of parameter priors and activa-
tions, as seen in the BNN covariance formulation (Eq. 1)
and learning both jointly offers a greater flexibility. In par-
ticular, our method (see Fig. 1) transfers priors from GPs to
BNNs by matching their function-space distributions using
the closed-form 2-Wasserstein loss and by learning activa-
tions in addition to priors on weights. It achieves faithful
function-space priors using just shallow BNNs. In contrast
to Tran et al. [2022], it is backed by theoretical results ensur-
ing that the learned BNNs asymptotically converge to GPs,
and compared to Meronen et al. [2020], it can work with
arbitrary kernels. Finally, it relies on simple weight priors,
enabling efficient posterior inference.

Within the proposed framework, we propose two novel ex-
tensions. First, by conditioning the BNN’s functional priors
(weights and activation) on GP hyperparameters – imple-
mented via hypernetworks – we facilitate efficient model
selection, e.g., allow prior hyperparameters optimization.
Second, building on the result of Meronen et al. [2021] that
periodic activations induce stationarity, we propose train-
able periodic activations and show how such activations can
be learned in practice, ensuring global stationarity in BNNs.

Our contributions extend the existing literature on BNN–GP
equivalence in several ways: (1) we introduce a practical
approach for imposing GP-like function-space priors on
BNNs; (2) we employ hypernetworks to condition these
priors on GP hyperparameters; (3) we introduce trainable
periodic activations; and (4) we empirically demonstrate
that even shallow BNNs can achieve the desired properties,
offering an alternative to baselines using deep models. Note
that although parametric activations and hypernetworks have
been used previously, we are the first to employ and combine
them for this particular task. Moreover, although our design
of trainable periodic activations builds on the previous re-
sult that periodic activations induce stationarity, it is novel.
Finally, despite our focus on the specification of priors, we
also validate our pre-trained priors by learning posteriors,
employing both Hamiltonian Monte Carlo (HMC) and scal-
able Stochastic Variational Inference (SVI) to demonstrate
empirical improvements in predictive performance and un-
certainty quantification.

In the Appendix, the results presented in the paper are sup-
plemented with a description of related work, a discussion
of computational advantages of our approach, a detailed
overview of the experimental settings, and additional plots
and numerical data.

Our code we made publicly available 1.

1https://github.com/gmum/bnn-functional-priors

Data

Prior mapping

GP prior

Update 𝞴

Posterior learning

BNN prior
O

ptim
al 𝞴*

Posterior algorithm
(HMC / VI / SVGD)

Divergence
D

BNN posterior

Pre-trained
priors

X ~ pX

pnn(f
l (X | 𝞴))

pgp(f (X))

p (w | D)

Figure 1: Schematic view of our approach.

2 PRELIMINARIES

Behavior akin to GPs has been identified in wide neural net-
works with a single hidden layer by Neal [1996], Williams
[1996] and later generalized for deep architectures by Lee
et al. [2017], Matthews et al. [2018] who considered stack-
ing multiple such the wide layers.
Let’s consider a network defined as:

f0i (x) =

I∑
j

w0
ijxj + b0i , i = 1, . . . ,H0;

f l(x) =

H0∑
j

wlijϕ(f
0
j (x)) + bl

where x denotes an I-dimensional input, and f l(x) rep-
resents output at the l-th layer. In a BNN, zij(x) =
wlijϕ(f

0
j (x)) is a random variable. Assuming that the

weights wij share a common prior and also the biases bi
have independent but common prior, the output f l(x) be-
comes a sum of independent and identically distributed
(i.i.d.) random variables. By the Central Limit Theorem,
this results in f l(x) converging to a Gaussian distribution,
implying that the BNN converges to a GP in the limit of
infinite width.

The covariance between two inputs, x and x′, for the BNN
at the (output) layer l is given by:

Cov(f l(x), f l(x′)) = σlb
2
+ σlw

2Ef0
j
[ϕ(f0j (x))ϕ(f

0
j (x

′))],

(1)

where σlb and σlw are respectively the variances of the bi-
ases and weights at layer l and the expectation is taken
over distributions for w0 and b0. Hence, the BNN func-
tional prior corresponds to a GP with kernel κlf (x, x

′) =

Cov(f l(x), f l(x′)).

In this work, we assume zero-centered GPs. Therefore, for
the distributions on weights and biases, we take E[w] = 0
and E[b] = 0. To ensure that the variance remains stable as

the layer width increases we scale Var[wlij] =
σl
w

2

H0
.

https://github.com/gmum/bnn-functional-priors

3 METHOD

3.1 TRANSFER OF PRIORS FROM GP TO BNN

Finding a GP equivalent to a pre-specified BNN can be
easily done by a Monte Carlo estimate of Eq. 1. However, we
focus on the significantly more challenging inverse problem
of imposing behavior akin to a GP on a BNN. The task
is to identify appropriate priors on wl, bl, w0, b0, and the
activation ϕ in Eq. 1 so that the covariance induced by the
BNN aligns with the desired GP kernel κ. Ideally, we aim to
have f l ∼ GP(0, κ)|X , meaning that the distribution of the
BNN outputs (pre-likelihood) would closely match that of
the GP across the input space X , i.e., pnn(f l) = pgp(f

l).

In practice, however, we settle for approximate matching
over finite index sets [Shi et al., 2018, Sun et al., 2019],
where the densities over BNN and GP outputs should ap-
proximately align as pnn(f l(X)) ≈ pgp(f

l(X)). X ∼ pX
(X ∈ X) can be understood as sampling sets of inputs {x}
at which we observe the functions.

The matching between BNN and GP, we formulate as an
optimization task:

p∗nn = argminpnn

1

S

∑
X∼pX

D(pnn(f
l(X)), pgp(f

l(X))),

where D is an arbitrary, differentiable divergence measure,
and S is a number of samples. In practice, we perform
gradient-based optimization with S = 1 sample used for
each step.

3.2 DIFFERENTIABLE PRIORS AND
ACTIVATIONS

The results presented in Sec. 2 hold for distributions with fi-
nite variances and light tails. We use the basic zero-centered
factorized Gaussians with learned variances, e.g., p(w|σ2

w)
and p(b|σ2

b), as prior distributions on model weights and
biases. To enable gradient-based optimization, such as gra-
dient propagation through weight and bias samples, we
reparameterize the distributions using the reparameteriza-
tion trick [Kingma and Welling, 2014]. Additionally, we
propose to employ parametric and differentiable activations
ϕ(·|η) to enhance the network’s flexibility. This previously
overlooked idea allows us to model complex functional pri-
ors within a single hidden layer of a BNN, even with simple
prior distributions on weights and biases.

Given the reparameterized distributions on weights and bi-
ases, as well as the parametric activation, pnn prior is fully
characterized by the parameters λ = {σ0

b , σ
0
w, σ

l
b, σ

l
w, η}.

The optimization objective can be then expressed as:

λ∗ = argminλ

1

S

∑
X∼pX

D
(
pnn

(
f l(X|λ)

)
, pgp

(
f l(X)

))
,

(2)

where S denotes the number of input samples. Eq. 2 is
solved through gradient-based optimization w.r.t. λ.

Eq. 2 requires deciding on the divergence measure D and a
model for the activation function ϕ. The problem of learning
activations for neural networks involves designing functions
that enable networks to capture complex and non-linear
relationships effectively. In principle, any function ϕ : R →
R can serve as an activation, but the choice of ϕ significantly
impacts both the network’s expressiveness and its training
dynamics.

We explore several models for ϕ, including Rational (Pade)
activations [Molina et al., 2019], Piecewise Linear (PWL)
activations2, and activations implemented as a neural net-
work with a single narrow (with only 5 neurons) hidden
layer, using ReLU/SiLU own activations. These functions
are computationally efficient and introduce desirable non-
linear properties, striking a balance between efficiency and
the capacity to model intricate patterns.

Our choice of a NN-based activation with a single hidden
layer consisting of 5-10 neurons and using ReLU/SiLU
activations was informed by empirical studies (see Fig. 2 and
Tables 3 and 4 in Section B) comparing various learnable
functions. These experiments, including ablations on the
number of layers and width of the NN activations, show
that this configuration offers a good balance of flexibility,
fast convergence, and quality of prior fit. While deeper or
wider NN activations can marginally improve fidelity in
some cases, they also increase convergence times and can
make optimization harder.

3.3 PERIODIC ACTIVATIONS FOR
STATIONARY GPS

The optimization in Eq. 2 acts on range of inputs X , where
the BNN’s behavior increasingly resembles the GP as train-
ing progresses. However, there are no guarantees about the
BNN’s behavior outside this subset, particularly far from it.
This limitation is exacerbated by local stationarity in BNNs:
although GPs with stationary kernels are globally station-
ary, BNNs usually only exhibit stationarity within a limited
input range. Outside this range, the covariance induced by
the BNN may diverge from the desired GP behavior. This
localized training can cause uncertainty quantification is-
sues. In regions far from the data, a BNN may either become
overly confident or overly uncertain, depending on the pri-
ors and the mismatch between the BNN’s architecture and
the GP’s true behavior. It is challenging to enforce global
properties, like stationarity or smoothness, across the entire
input space, as the BNN’s learned covariance structure is
overly dependent on the inputs’ range.

We address the local stationarity challenge by introducing
trainable activations designed to exhibit periodic behavior.

2https://pypi.org/project/torchpwl/

https://pypi.org/project/torchpwl/

This approach is motivated by the result of Meronen et al.
[2021], who showed that periodic activation functions in-
duce stationarity in BNNs. Based on this theoretical result,
we propose a practical solution. Our proposed activations

ϕ(x|ψ,A) =
K∑
i=1

Ai cos(2πψix) +

K∑
j=1

Aj sin(2πψjx)

are inspired by Fourier analysis and can be trained to fit a
desired functional prior. They rely on the variational parame-
ters η = {ψi, Ai, ψj , Aj} steering respectively frequencies
and amplitudes. For experiments, we used K = 5 compo-
nents.

3.4 CONDITIONAL PRIORS AND ACTIVATIONS

Researchers previously, when fitting BNN priors, were
limited to upfront fixing hyperparameters (such as length-
scale) of target GPs or alternatively, they would employ
workarounds like hierarchical kernels with hyperparameters
sampled from hyperpriors (see, e.g., Tran et al. [2022]). In-
stead, we propose to condition the priors on weights, biases,
and activations in BNNs on the hyperparameters of a GP
kernel. By incorporating GP hyperparameters directly into
BNNs, we bridge the equivalence gap between GPs and
BNNs, finally enabling BNNs to fully replicate the behavior
of GPs. In particular, integrating hyperparameters directly
within BNNs allows for their optimization, for example, us-
ing marginal likelihood (evidence). This facilitates effective
model selection, which is a significant novelty compared to
previous approaches.

Although our work focuses on conditioning on GP hyperpa-
rameters, the proposed conditioning framework is however
more general and could be extended to priors dependent
on other factors. For example, conditioning on input data
could enhance model robustness against input range shifts
by allowing the BNN to adapt its priors to the input range.
This adaptation could alleviate issues with the locality of
the matching BNN to a GP, as discussed in Section3.3.

The conditioning we implemented using hypernetworks [Ha
et al., 2017, Chauhan et al., 2024], as [σ, η] := hnet(γ|θ),
where σ and η are the sets of parameters for the priors on
weights and activations, respectively. Here, γ represents the
set of conditioning hyperparameters, which are transformed
by the hypernetwork hnet. The hypernetwork has its own
parameters θ, which are now optimized in Eq. 2 as λ = {θ}
instead of {σ, η}. For a fixed architecture of hnet, σ and η
are now fully determined by γ along with θ.

We are the first to test hypernetworks for generating ac-
tivation parameters and using them for conditioning with
hyperparameters. This poses a technical challenge in net-
work design. For example, no architectures other than those
based on RBFs showed promising results. Ultimately, we
employed an MLP with three hidden layers, each using RBF

activations. On top of that, we applied separate linear layers
to map to the appropriate outputs: one for each of the prior
variances σ and one for the parameters η of the trainable
activation.

3.5 LOSS

The loss D measures the divergence between two distribu-
tions over functions. While pgp can be sampled and evalu-
ated (for fixed inputs GPs act like Gaussians), pnn is implic-
itly defined by a BNN, meaning it can be sampled from, but
not evaluated directly. Due to the implicit nature of pnn, D
must be specified for samples {f l} and approximated using
Monte Carlo.

We discovered that the standard losses fail for our
task. For example, estimating the empirical entropy term
(
∫
pnn(f) log (pnn(f)) df) for KL presents a numerical

challenge. Consequently, we followed Tran et al. [2022]
and relied on the Wasserstein distance instead (see Tran
et al. [2022] for details):

D =

(
inf

ς∈Γ(pnn,pgp)

∫
F×F

d(f, f ′)pς(f, f ′)dfdf ′
)1/p

= sup
|Ψ|L≤1

Epnn [Ψ(f)]− Epgp [Ψ(f)] (3)

However, unlike Tran et al. [2022], we propose to use the
2-Wasserstein metric, which for Multivariate Gaussians (ap-
plicable in the case of GPs and wide BNNs – at least approx-
imately) has a closed-form solution [Mallasto and Feragen,
2017]:

D = ||µ1 − µ2||22 + Tr
(
Σ1 +Σ2 − 2

√√
Σ1Σ2

√
Σ1

)
,

where µ1/2, Σ1/2 are respectively expectations and covari-
ance matrices estimated for pnn and pgp from samples
{f l(X)} (we used 512 or 1024 reparameterized samples)
evaluated for inputs X . Not only we avoid the internal opti-
misation due to sup|ψ|, but additionally D can be efficiently
computed based on results by Buzuti and Thomaz [2023].
For experiments, we report numerical values of D normal-
ized by number of elements in X .

3.6 OUTPUT STRUCTURE

The optimization objective in Eq. 2 is defined over functions
f . The functions are passed through likelihoods to form
model outputs y. For regression tasks, a Gaussian likelihood
is typically used; for binary classification, Bernoulli; and
for multiclass classification, a Categorical likelihood with
multivariate f transformed via softmax. Note that the prior
transfer is independent of a likelihood, meaning it does not
rely on how the latent functions f relate to the outputs y.
Then, as explained in Sec. 3.5, the optimization can be per-
formed efficiently between Gaussians. If these assumptions

were not satisfied—e.g., if the desired priors are not express-
ible via a GP – we can revert to the nested optimization for
|Ψ|L as implied by Eq. 3. Overall, we explain our method
in terms of GPs and for brevity, we denote the target func-
tional priors by pgp. However, it is important to note that
the method is applicable to arbitrarily specified functional
priors.

For completeness, we follow to briefly discuss also the trans-
fer of priors from GPs to BNNs for multivariate/multi-class-
output settings; however, such extensions fall outside of
the scope of this paper. In particular, the multivariate mod-
els [Rasmussen and Williams, 2005, Alvarez et al., 2012]
can be approached using various architectural strategies,
depending on the nature of the dependencies among the out-
put dimensions. One approach is to construct independent
BNNs for each output dimension, stacking them side-by-
side, where each BNN is pretrained separately with pri-
ors obtained from independent single-output GPs. This ap-
proach is appropriate when output dimensions are assumed
to be independent, leading to an ensemble of independently
trained BNNs. Alternatively, shared hidden layer BNN can
be used, where a common hidden representation is shared
across all output dimensions, thereby capturing potential
dependencies between outputs. The shared hidden layer
structure reflects the idea of a multi-output or multi-task GP,
where dependencies among outputs can be modeled explic-
itly using coregionalization techniques [Goovaerts, 1997,
Bonilla et al., 2008]. The shared hidden layer BNN can thus
be endowed with priors derived from these multi-output
GPs, ensuring that both spatial and output correlations are
incorporated into the BNN model.

3.7 OPTIMISATION CHALLENGES

The problem of finding BNNs behaving like GPs (e.g. in-
verting covariance equation) in unidenfiable. There exist
multiple solutions assuring similar quality of the final match.
Activations ϕ solving Eq.(2) are not unique. For example:

• The solutions are symmetric w.r.t activity values (y-
axis), i.e., for ϕ′(f) = −ϕ(f), values of covari-
ance given by Eq.(1) are not changed, simply because
(−1)2 = 1.

• For p(f0i (x)) symmetric around 0 (for example, Gaus-
sians), activations with flipped arguments ϕ′(f) =
ϕ(−f) result in the same covariances.

• Scaling activations ϕ′(f) = αϕ(f) leads to the same
covariances as scaling variances of the output weights
as (σlw)

′ = α · σlw

Given a sufficiently flexible model (like a neural network
itself), one can learn to approximate any target activation
function to an arbitrary degree of accuracy on a compact
domain. This is in line with the universal approximation
theorem. However, in practice, there are multiple limitations

input space dimensionality = 1

10 2 10 1 100

loss (divergence)

a+w: NN
a+w: PWL(5)

a+w: Rational(5,4,B)
a: NN

a: PWL(5)
a: Rational(5,4,B)

w: Matern(5/2,0.5)
w: Matern(5/2,1)

w: ReLU
w: TanH

input space dimensionality = 16

1004 × 10 1 6 × 10 1 2 × 100

loss/divergence

a+w: NN
a+w: PWL(5)

a+w: Rational(5,4,B)
a: NN

a: PWL(5)
a: Rational(5,4,B)
w: Matern(5/2,1)

w: ReLU

Figure 2: Quality of matching BNNs to the prior of a GP
with a Matérn kernel (ν = 5/2, ℓ = 1) for 1D (top) and 16D
inputs (bottom). We evaluate models with trained parameter
priors (denoted by w), activations (denoted by a), and both
(denoted by a+w). Each label specifies whether a fixed
activation (e.g., ReLU) or a specific activation model (e.g.,
Rational) was employed. Gaussian parameter priors were
used by default. If not trained, we set variances to 1., and for
the hidden layer, we normalized the variance by its width.
The label w: Matérn refers to a BNN with the closed-form
(fixed) activation as derived by Meronen et al. [2020].

and challenges. A model may require an impractically large
number of parameters to approximate certain complex func-
tions to a desired level of accuracy. More complex models
may be harder to fit and require more training data. Some
functions might require high numerical precision to be ap-
proximated effectively, and even if a model can fit a target
activation function on a compact set, it might not generalize
well outside the training domain. Overall, multiple factors
may lead gradient-based optimization to fail for our task.
However, such the poor outcomes will be reflected in low
values of the final loss (Eq. 3). A practical remedy is to rerun
optimization, once poorly performing outliers are noticed.

4 FINDINGS

4.1 DOES LEARNING ACTIVATIONS IMPROVE
LEARNING OF FUNCTION-SPACE PRIORS?

To map GP function-space priors to a BNN, we can: 1) train
its priors on parameters, 2) train both priors and activation,
or 3) learn just the activation function. We empirically show
that learning activations in addition to priors provide better
solutions to the considered problem.

Fig. 2 illustrates the results of an extensive study in which
we compare the quality of the GP prior fit for various mod-

Table 1: Results for UCI regression task (Boston dataset) with prior transferred from a GP; comparison between the baseline
(using a deep BNN; [Tran et al., 2022]) and ours (single hidden layer BNN with varying widths). Periodic activation
(Sec. 3.3) and an activation realized by a NN with SiLU own activation (default) were used.

Method → our (width = 128, Periodic act.) our (width = 128) our (width = 1000) Baseline

Metric ↓ - regularization + regularization - regularization + regularization - regularization + regularization —

RMSE 2.9067±0.8257 2.8967±0.8258 2.8643±0.8386 2.8348±0.8371 2.9189±0.8408 3.0059±0.9068 2.8402±0.8986

NLL 2.5057±0.1870 2.5072±0.1904 2.4937±0.1798 2.4862±0.1763 2.5122±0.1871 2.5971±0.1206 2.4778±0.1481

Figure 3: Prior (a) and posterior (b) predictive distributions
for a BNN with trained parameters priors and activations
(ours; 4th column), and for Tran et al. [2022] approach with
different prior realizations (Gaussian (3 hidden layers; 3rd
column) and NF (2 hidden layers; 2nd). The first column
illustrates the ground truth (GP). Numerical results comple-
menting the figures we provide in the Appendix.

els of parameter priors and activations. The target was
GP(0,Matérn(ν = 5/2, l = 1)). For each configuration,
we conducted several training iterations and measured the
final (converged) loss multiple times. We observe that learn-
ing activations alone is not sufficient for good fits, but when
combined with learning priors, it significantly improves the
results.

Fig. 11 in the Appendix presents the results of a similar
experiment conducted for a GP with the Periodic kernel
(ℓ = 1, p = 1). The best performance is observed for the
activation introduced in Sec. 3.3, however, increasing the
number of layers or neurons can also improve the fit for the
activation modeled by an MLP.

We supplement the figure with additional plots showing
samples from runs where poor convergence was observed.
As explained in Sec. 3.7, due to unfortunate initialization
or the insufficient modeling capacity of ϕ, gradient-based
optimization may fail to capture a GP functional prior. In
such cases, the optimization gets stuck in a local optimum,
and the observed final loss differs significantly from the
values obtained in other scenarios.

4.2 DO EXPRESSIVE FUNCTION-SPACE PRIORS
REQUIRE NETWORKS TO BE DEEP?

Function-space priors require expressive models, which can
be achieved either through a multi-layer neural network ar-
chitecture or with a shallow BNN with more flexible (e.g.,
learnable) activations. [Tran et al., 2022] explored the for-
mer, focusing on multi-layer networks. Instead of consider-
ing BNNs with wide layers – where the theoretical results
in Sec. 2 apply – they postulated that a deep network can
model a functional prior after tuning the network’s parame-
ter priors to match a target functional prior.

[Tran et al., 2022] investigated several types of priors for
BNN weights, including Gaussian, hierarchical, and Nor-
malizing Flow (NF)-based priors. They argue that only the
NF prior is flexible enough to capture complex distributions.
While NFs [Rezende and Mohamed, 2015] can model intri-
cate priors across all weights, by assigning a distinct prior
to each weight they violate the assumptions of the Central
Limit Theorem (CLT), preventing the BNN from converging
to a GP (see Sec. 2). Although [Tran et al., 2022] achieved
their best results using this heuristic NF prior, among the
considered priors, the theoretical guarantees hold only for
the Gaussian and hierarchical priors, and only in the context
of wide BNNs.

Beyond the lack of theoretical justification, using complex
priors such as NFs or requiring deep networks introduces
additional challenges in posterior inference. MCMC-based
methods [Chen et al., 2014, Del Moral et al., 2006] become
computationally expensive, while approximate inference
techniques [Hoffman et al., 2013, Ritter et al., 2018] may
lack expressiveness.

In Fig. 4 we compare our approach against the behavior of
their methods for varying numbers of layers and activations.
Specifically, we evaluate posterior in a 1D regression task
(Fig. 3), both on training data and in out-of-distribution
(OOD) regions. The results show that multiple hidden layers
are required for the Gaussian prior. In contrast, for the NF
priors, increasing depth leads to worse performance in OOD
regions – illustrating an example of the heuristic’s failure.
For both methods, we note high sensitivity to activation
change. NFs perform best for one or two layers, but only
with RBF activation. For Swish/ReLU they fail to capture
the data (high RMSE/NLL). Please see also Sec. E.

1 3 5
Layers

4

6

8

10

D
iv

er
ge

nc
e

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

1 2 3 4 5
Layers

4

6

8

10

D
iv

er
ge

nc
e

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

0.2

0.4

0.6

0.8

1.0

R
M

S
E

Figure 4: Comparison of posterior predictive quality across
the methods from [Tran et al., 2022] for the problem from
Fig. 3, considering different priors, activation functions,
and numbers of hidden layers. We evaluate both out-of-
distribution (in-between region) performance (left, Wasser-
stein divergence) and in-distribution performance (right,
RMSE). For the Gaussian prior (top), the results align with
the assumption by the authors – adding more layers im-
proves the GP approximation. Contrary, for the Normalizing
Flow prior (bottom), the best performance is observed with
one or two hidden layers, while deeper networks suffer from
instability, highlighting failure of the heuristic. Our method
(black line) consistently outperforms the baselines.

For further evaluation, we compare our approach with Tran
et al. [2022] on a range of regression tasks, including both
synthetic and real-world datasets (e.g., the Boston dataset).
The results are shown in Fig.3 and Tab.1, respectively. Ad-
ditional discussion and results for several other regression
tasks are provided in the Appendix. We closely follow the
settings picked by Tran et al. [2022] and still observe that
our method performs comparably or better than the baseline,
while requiring only a single-hidden-layer BNN.

Additionally, we checked the findings from [Wu et al.,
2024] that moment matching helps biasing optimisation
towards better solutions. For the UCI regression task, we
included an additional moment matching regularization
term: R(pnn, pgp) =

(
Epnn [var(f)]− Epgp [var(f)]

)2
+(

Epnn [kurtosis(f)]− Epgp [kurtosis(f)]
)2
+(

Epnn [skeweness(f)]− Epgp [skeweness(f)]
)2 . How-

ever, we have not observed any significant improvements.

4.3 CAN LEARNED ACTIVATIONS MATCH
PERFORMANCE OF CLOSED-FORM ONES?

Deriving suitable neural activations to match BNNs to GPs
is a formidable challenge. For example, Meronen et al.
[2020] derived recently an analytical activation function
for the popular Matérn kernel. However, their solution re-
lies on the assumption that the priors on the BNN weights
follow binary white noise. Such the prior hinders existing
posterior learning algorithms, making the proposed solution

GP (ground truth)

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

GP Model fitted [NOTE: THERE IS NO REAL MC SAMPLING HERE!]

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

GP model fitted (1000 MC samples)

Ours (trained parameters priors and activations)

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

BNN: 1000 MCMC posterior samples

Meronen et al. (2020) + HMC posterior

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

BNN: 1000 MCMC posterior samples

Figure 5: Posterior predictive distributions for a BNN with
trained parameter priors and activations (ours; 2nd row) and
for a BNN with analytically derived activations (3rd row).
The first column illustrates class probabilities, the second
column shows the total variance in class predictions, and the
last column depicts the epistemic uncertainty component of
the total uncertainty. Here, we show posteriors obtained us-
ing HMC, while in Sec. D.4 of the Appendix, we provide an
extended version of the figure that includes results obtained
using the original code from Meronen et al. [2020] (which
uses MC-Dropout instead of MCMC), along with additional
numerical results.

impractical. Nevertheless, Meronen et al. [2020] shows that
their solution can work with more convenient Gaussian pri-
ors, albeit as a suboptimal approximation. In this work, we
propose a general gradient-based alternative that can also be
applied to the GPs with the Matérn kernel and we demon-
strate that our black-box approach can match or even surpass
the performance of the aforementioned approximation.

The empirical evaluation we performed for the 2D data
classification problem following the setting of Meronen
et al. [2020]. For our method, we used a BNN with Gaussian
priors with trained variances, where the activation function
was modeled by an NN with a single hidden layer consisting
of 5 neurons using SiLU activation. For the baseline, we
trained just variances and used the fixed activation. Posterior
distributions were generally obtained using a HMC sampler.

The results presented in Fig. 5 (and extended results pro-
vided in Sec. D.4 in the Appendix) demonstrate that our
method enhances the match between the posteriors of a
BNN and the desired target GP. Note that Meronen et al.
[2020] originally used MC Dropout to obtain the poste-
riors, achieving much worse results than those obtained
with HMC. For fairness in comparison, we tested both MC
Dropout and HMC. In terms of performance, our model
not only captures class probabilities accurately but also

Activation = NN(1 × 5, SiLU)

50 0 50
input shift

0

1000

2000

di
ve

rg
en

ce

2 0 2
input (=training range)

18 20 22
input (remote region)

Activation = Sec. 3.3

50 0 50
input shift

0.0075

0.0100

0.0125

di
ve

rg
en

ce

mean+/-std for
training range

2 0 2
input (=training range)

18 20 22
input (remote region)

samples
BNN
GP

Figure 6: Sensitivity of priors transferred from a GP to a
BNN with respect to shifts in the input range for learned
activations: (top) activation realized by a NN with a single
hidden layer containing 5 neurons and SiLU own activation;
(bottom) periodic activation introduced in Sec. 3.3, which is
robust to input range shifts. Priors were trained on random
inputs X ∈ [−3, 3]. The first column shows the mismatch
between the desired target GP and the trained BNN prior
for shifted input ranges, measured by the 2-Wasserstein loss
(lower is better). The remaining columns present samples
from the priors for two ranges: one matching the training
range and one far from it.

adeptly handles the total variance in class predictions and
the epistemic uncertainty component, which are crucial for
robust decision-making under uncertainty.

4.4 CAN STATIONARITY BE INDUCED WITH
LEARNED PERIODIC ACTIVATIONS?

Trained priors for BNNs are inherently local, effectively
mimicking GP behavior only within the range of training in-
puts X . As illustrated in Fig. 6 (top), outside this range, the
BNN’s learned prior may diverge from the desired behavior,
and properties such as stationarity or smoothness may not
be preserved beyond the observed input domain. We how-
ever can not only detect this issue by noting high values of
the divergence D, but also mitigate it by using activations
with appropriate structural biases. Specifically, the periodic
activation introduced in Sec. 3.3 proves to be robust to input
domain translations, as demonstrated in Fig. 6 (bottom).

4.5 IS MODEL SELECTION FOR BNNS WITH
TRANSFERRED PRIORS POSSIBLE?

A BNN with a functional prior learned from a GP essentially
inherits the properties dictated by the GP, including those
determined by specific values of the GP’s hyperparameters.
While the hyperparameters of the source GP can be tuned
and optimized, the BNN does not inherently possess this
capability, requiring researchers to either pre-optimize the
hyperparameters or look for suitable workarounds [Tran

6.0 5.5 5.0

2.5

0.0

2.5

le
ng

th
sc

al
e=

0.
01

GP (ground truth)

6.0 5.5 5.0

2.5

0.0

2.5

Trained BNN

10 11 12
4
2
0
2

le
ng

th
sc

al
e=

0.
1

10 11 12
4
2
0
2

20 25 30

2

0

2

le
ng

th
sc

al
e=

1.
0

20 25 30

2

0

2

0 5 10
2

0

2

le
ng

th
sc

al
e=

2.
5

0 5 10
2

0

2
Figure 7: Comparison of samples from a GP (left) and a
trained BNN (right) using priors and activations (periodic
activation as in Sec. 3.3) conditioned on the GP’s hyperpa-
rameter (e.g., lengthscale). The BNN was trained on random
inputs X ∈ [−3, 3]. Regardless of input range and the hy-
perparameter’s value, samples from both models appear
indistinguishable, i.e., the BNN imitates the GP perfectly.

et al., 2022]. Conditioning the priors on weights, biases,
and activation, as explained in Sec. 3.4, addresses this lim-
itation, ultimately closing the BNN-GP equivalence gap.
Fig. 7 shows results for a prior trained to adapt to a varying
lengthscale of a Matérn kernel. The prior closely follows
the behavior of the ground truth model.

To validate the usefulness of this method, we performed
marginal likelihood maximization on the data from Fig. 3,
using gradient-based optimization for both the GP with the
Matérn kernel and our BNN. The optimal lengthscale found
for the BNN (ℓ = 1.65) closely matches the one found for
the GP (ℓ = 1.84).

4.6 DOES IT SCALE?

Learning posteriors for Gaussian Processes (GPs) is chal-
lenging, as exact inference scales cubically with the number
of data points Rasmussen and Williams [2005]. To address
this, scalable approximations such as Stochastic Variational
Gaussian Processes (SVGP) [Hensman et al., 2015] have
been proposed for practical applications. SVGP employs
stochastic variational gradients to optimize a fixed set of
inducing points, typically (and also here) 1024.

On the other hand, there exist a number of posterior in-
ference methods for BNNs. For the experiments presented
in the previous sections, we utilized HMC. However, Vari-
ational Inference (VI) with Normalizing Flows [Rezende
and Mohamed, 2015] offers a scalable alternative, albeit
with challenges related to both the accuracy of posterior
approximation and selection of hyperparameters. However,
the former limitation can be mitigated by employing Real-
NVPs [Dinh et al., 2016] with appropriate capacity for ap-
proximating posteriors. Agrawal and Domke [2024] showed

Table 2: Mean test-set NLL and RMSE for the HouseElectric dataset. The optimal prior lengthscale ℓ∗ and additive Gaussian
noise were learned by maximizing L with β = 1. Results for ℓ = 10ℓ∗ and ℓ = 0.1ℓ∗ highlight the importance of prior
hyperparameter selection. Additionally, using a model of activation function with more neurons improves performance. The
best results are achieved by combining these modifications with β = 0.4.

Ours with β = 1 Ours with β = 0.4 ± SVGP Exact GP

learned ℓ = 0.1× ℓ∗ ℓ = 10× ℓ∗ ℓ = ℓ∗ & improved activation ℓ = ℓ∗ ℓ = ℓ∗ & improved activation std. (baseline) (BBMM)

↓ Test RMSE 0.0549 0.0550 0.0560 0.0550 0.0537 0.0535 ≤ 0.0007 0.0566 0.055
↓ Test NLL −1.4925 −1.4850 −1.4550 −1.4980 −1.5107 -1.5155 ≤ 0.0064 −1.4600 −0.152†

† Due to lack of available implementation, we failed to reproduce results from Wang et al. [2019] and provide here values copied directly from the paper.

that RealNVPs can exhibit sufficient fidelity to match poste-
riors for models with complex priors.

For VI learning is performed using gradients of

L = Eq(w|ζ) [log p(D|w)]− β · KL [q(w|ζ) ∥ p(w)]

≈ 1

S

∑
w∼q(w|ζ)

(
|D|
|B| log p(B|w) + β · (p(w)− q(w|ζ))

)
where we estimate the Evidence Lower Bound (ELBO) ob-

jective for Stochastic Variational Inference (SVI) [Hoffman
et al., 2013] using minibatches B ⊂ D with |B| = 10,240.
The expectation is approximated with S = 128 reparame-
terized Monte Carlo samples, where q(w|ζ) is the posterior
approximation modeled by a RealNVP.

Tab. 2 summarizes the test set performance on the UCI
Household Power Consumption (HouseElectric) regression
dataset. This dataset contains approximately 2M rows, split
into training (7/9) and test (2/9) subsets, and is the largest
dataset used to evaluate GPs [Wang et al., 2019].

The regression model for the data has two hyperparameters:
the prior lengthscale ℓ of the Matérn (ν = 3/2) kernel and
the additive observation noise scale in the Gaussian likeli-
hood. We selected these hyperparameters by maximizing the
ELBO L, which for β = 1 provides a proper lower bound
for the evidence. This was possible thanks to employing the
conditional priors introduced in Sec. 3.4.

Variational Inference (VI) often performs better with β <
1 [Higgins et al., 2017], which also holds in our case - set-
ting β = 0.4 (a typical value) improved both RMSE and
NLL. However, as indicated by discrepancies with the Exact
GP results, this improvement is likely due to the reduced
influence of the learned GP prior, which may be suboptimal
for this particular dataset.

To analyze the importance of prior selection, we also com-
puted posteriors for lengthscales reduced by a factor of ten
(ℓ = 0.1 × ℓ∗) and increased tenfold (ℓ = 10 × ℓ∗). In
both cases, we observed a drop in NLL, highlighting the
sensitivity of performance to choice of the prior.

We further tested a learned prior with slightly improved
activation model. We used a neural network with two hid-
den layers of width 10, instead of the default single layer

4 8 16 32
Layers

0.055
0.06

0.065
0.07

Te
st

 R
M

SE

4 8 16 32
Layers

1.50

1.45

1.40

Te
st

 N
LL

layer width = 128
layer width = 384
layer width = 768

Figure 8: Impact of the architecture of q(w|ζ) parameterized
by RealNVP [Dinh et al., 2016]: (1) although adding more
layers improves performance, the gains become marginal
for > 16 layers; (2) wider flows require fewer layers to
achieve performance saturation.

with five neurons. This resulted in a 0.15% improvement
in the 2-Wasserstein loss. Although this represents a mi-
nor enhancement in prior fidelity, it still led to noticeable
improvements in posterior quality.

Finally, we investigated the capacity of the RealNVP used
for posterior approximation. Fig. 8 compares test set perfor-
mance for varying the number of flow layers and the width
of each layer. We observed that increasing the number of lay-
ers improves performance, but the gains become marginal
beyond 16 layers, and that wider flows require fewer layers
to achieve performance saturation.

5 CONCLUSION

In this paper, we addressed the problem of transferring func-
tional priors for wide Bayesian Neural Networks to replicate
desired a priori properties of Gaussian Processes. Previous
approaches typically focused on learning distributions over
weights and biases, often requiring deep BNNs for suffi-
cient flexibility. We proposed an alternative approach by
also learning activations, providing greater adaptability for
shallow models and eradicating the need for task-specific ar-
chitectural designs. To the best of our knowledge, we are the
first to explore learning activations in this context. Moreover,
to further enhance adaptability of these transferred priors,
we came up with the idea of conditioning them with hy-
pernetworks, which opens a new interesting future research
direction. To demonstrate the flexibility and effectiveness
of the proposed methods, we conducted a comprehensive
experimental study validating our ideas.

Author Contributions

Marcin Sendera actively participated in shaping the project across
all its stages, contributing both during discussions and through
hands-on development. He explored and assessed multiple variants
of the Wasserstein loss, as well as a range of learnable activation
functions proposed in the literature, including piecewise linear
(PWL), Padé, and others. He proposed to use the closed-form solu-
tion for the Wasserstein metric. He was primarily responsible for
implementing and executing the experiments reported in Figures 3
and 4, and in Table 1, ensuring the reproducibility and robust-
ness of the results. He contributed to writing of the manuscript,
particularly in sections related to empirical results.

Amin Sorkhei participated in discussions at the initial stage of
the project. He implemented and conducted the initial experiments
involving the mapping of Gaussian Process priors to Bayesian
Neural Networks using the Kullback-Leibler divergence and a
learnable activation parameterized by a neural network.

Tomasz Kuśmierczyk conceived the project and supervised its
development across all stages, including the core theoretical contri-
butions and experimental design. He introduced the idea of learning
activations and proposed the use of Wasserstein-based loss and reg-
ularizations. He proposed to use neural networks to parameterize
learnable activations. He developed and implemented the periodic
(Section 3.3) and conditioned activations (Section 3.4). He was
responsible for implementing and executing the experiments pre-
sented in Figures 2, 5, 6, 7, 8, and Table 2. He was responsible for
the majority of the manuscript writing as well as for shaping its
final form.

Acknowledgements

We thank Nikolay Malkin and Jacek Tabor for helpful discussions
at early stages of this project and revising the manuscript.

This research is part of the project No. 2022/45/P/ST6/02969
co-funded by the National Science Centre and the European
Union Framework Programme for Research and Innovation
Horizon 2020 under the Marie Skłodowska-Curie grant agreement
No. 945339. For the purpose of Open Access, the author has
applied a CC-BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

This research was in part funded by National Science Cen-
tre, Poland, 2022/45/N/ST6/03374.

We gratefully acknowledge Polish high-performance com-
puting infrastructure PLGrid (HPC Center: ACK Cyfronet AGH)
for providing computer facilities and support within computational
grant no. PLG/2023/016302.

References

Abhinav Agrawal and Justin Domke. Disentangling impact
of capacity, objective, batchsize, estimators, and step-size
on flow VI. arXiv preprint arXiv:2412.08824, 2024.

Mauricio A Alvarez, Lorenzo Rosasco, and Neil D
Lawrence. Kernels for vector-valued functions: A re-
view. Foundations and Trends® in Machine Learning, 4
(3):195–266, 2012. doi: 10.1561/2200000036.

Edwin V Bonilla, Ying Chai, and Christopher K Williams.
Multi-task Gaussian Process prediction. In Advances in
Neural Information Processing Systems, pages 153–160,
2008.

David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and
Mark van der Wilk. Understanding variational inference
in function-space. Third Symposium on Advances in
Approximate Bayesian Inference, 2020.

Lucas F Buzuti and Carlos E Thomaz. Fréchet autoencoder
distance: a new approach for evaluation of generative
adversarial networks. Computer Vision and Image Un-
derstanding, 235:103768, 2023.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila
Molaei, and David A Clifton. A brief review of hypernet-
works in deep learning. Artificial Intelligence Review, 57
(9):1–29, 2024.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic
gradient hamiltonian monte carlo. In International Con-
ference on Machine Learning, pages 1683–1691. PMLR,
2014.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Se-
quential Monte Carlo Samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68
(3):411–436, 05 2006. ISSN 1369-7412. doi: 10.1111/j.
1467-9868.2006.00553.x.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using Real NVP. arXiv preprint
arXiv:1605.08803, 2016.

Daniel Flam-Shepherd, James Requeima, and David Du-
venaud. Mapping Gaussian Process priors to Bayesian
Neural Networks. In NIPS Bayesian deep learning work-
shop, volume 3, 2017.

Daniel Flam-Shepherd, James Requeima, and David Du-
venaud. Characterizing and warping the function space
of Bayesian Neural Networks. In NeurIPS Workshop on
Bayesian Deep Learning, page 18, 2018.

Vincent Fortuin. Priors in bayesian deep learning: A review.
International Statistical Review, 90(3):563–591, 2022.
doi: https://doi.org/10.1111/insr.12502.

Pierre Goovaerts. Geostatistics for natural resources evalu-
ation. Oxford University Press on Demand, 1997. ISBN
978-0195115383.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In
ICLR. International Conference on Representation Learn-
ing, 2017.

James Hensman, Alexander Matthews, and Zoubin Ghahra-
mani. Scalable Variational Gaussian Process Classifica-
tion. In Guy Lebanon and S. V. N. Vishwanathan, editors,
Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, volume 38 of Pro-
ceedings of Machine Learning Research, pages 351–360,
San Diego, California, USA, 09–12 May 2015. PMLR.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learn-
ing basic visual concepts with a constrained variational
framework. In 5th International Conference on Learning
Representations, ICLR2017, Conference Track Proceed-
ings, 2017.

Matthew D. Hoffman, David M. Blei, Chong Wang, and
John William Paisley. Stochastic variational inference.
Journal of Machine Learning Research (JMLR), 14:1303–
1347, 2013.

Jiri Hron, Yasaman Bahri, Roman Novak, Jeffrey Penning-
ton, and Jascha Sohl-Dickstein. Exact posterior distribu-
tions of wide Bayesian Neural Networks. arXiv preprint
arXiv:2006.10541, 2020.

Jiri Hron, Roman Novak, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Wide Bayesian neural networks have
a simple weight posterior: theory and accelerated sam-
pling. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 8926–8945. PMLR, 17–23 Jul
2022.

Theofanis Karaletsos and Thang D Bui. Hierarchical Gaus-
sian Process priors for Bayesian Neural Network weights.
Advances in Neural Information Processing Systems, 33:
17141–17152, 2020.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. stat, 1050:1, 2014.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S
Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as Gaussian Processes.
arXiv preprint arXiv:1711.00165, 2017.

Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania
Bedrax-Weiss, and Balaji Lakshminarayanan. Simple and

principled uncertainty estimation with deterministic deep
learning via distance awareness. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Anton Mallasto and Aasa Feragen. Learning from uncertain
curves: The 2-Wasserstein metric for Gaussian Processes.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

Takuo Matsubara, Chris J Oates, and François-Xavier Briol.
The ridgelet prior: A covariance function approach to
prior specification for Bayesian Neural Networks. The
Journal of Machine Learning Research, 22(1):7045–7101,
2021.

Alexander G de G Matthews, Mark Rowland, Jiri Hron,
Richard E Turner, and Zoubin Ghahramani. Gaussian
Process behaviour in wide deep Neural Networks. ICLR,
2018.

Lassi Meronen, Christabella Irwanto, and Arno Solin. Sta-
tionary activations for uncertainty calibration in deep
learning. Advances in Neural Information Processing
Systems, 33:2338–2350, 2020.

Lassi Meronen, Martin Trapp, and Arno Solin. Periodic ac-
tivation functions induce stationarity. Advances in Neural
Information Processing Systems, 34:1673–1685, 2021.

Alejandro Molina, Patrick Schramowski, and Kristian Kerst-
ing. Padé activation units: End-to-end learning of flexible
activation functions in deep networks. In International
Conference on Learning Representations, 2019.

Pablo Morales-Alvarez, Daniel Hernández-Lobato, Rafael
Molina, and José Miguel Hernández-Lobato. Activation-
level uncertainty in deep neural networks. In Interna-
tional Conference on Learning Representations, 2020.

Radford M. Neal. Bayesian Learning for Neural Net-
works. Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra
Brintrup, and Andy Neely. Expressive priors in Bayesian
Neural Networks: Kernel combinations and periodic func-
tions. In Uncertainty in Artificial Intelligence, pages
134–144. PMLR, 2020.

Janis Postels, Hermann Blum, Yannick Strümpler, Cesar
Cadena, Roland Siegwart, Luc Van Gool, and Federico
Tombari. The hidden uncertainty in a neural network’s ac-
tivations. In Proceedings of the Bayesian Deep Learning
Workshop at the 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), 2020.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press,
2005. ISBN 026218253X.

Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Confer-
ence on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1530–1538, 2015.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A
scalable laplace approximation for neural networks. In
6th international conference on learning representations,
ICLR 2018-conference track proceedings, volume 6. Inter-
national Conference on Representation Learning, 2018.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral ap-
proach to gradient estimation for implicit distributions.
In International Conference on Machine Learning, pages
4644–4653. PMLR, 2018.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger
Grosse. Functional Variational Bayesian Neural Net-
works. In Advances in Neural Information Processing
Systems, volume 32, pages 5690–5701, 2019.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Mau-
rizio Filippone. All you need is a good functional prior
for bayesian deep learning. Journal of Machine Learning
Research, 23(74):1–56, 2022.

Russell Tsuchida, Fred Roosta, and Marcus Gallagher.
Richer priors for infinitely wide multi-layer perceptrons.
arXiv preprint arXiv:1911.12927, 2019.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kil-
ian Q Weinberger, and Andrew Gordon Wilson. Exact
Gaussian Processes on a million data points. Advances in
Neural Information Processing Systems, 32, 2019.

Veit David Wild, Robert Hu, and Dino Sejdinovic. Gen-
eralized variational inference in function spaces: Gaus-
sian measures meet bayesian deep learning. Advances in
Neural Information Processing Systems, 35:3716–3730,
2022.

Christopher Williams. Computing with infinite networks. In
M.C. Mozer, M. Jordan, and T. Petsche, editors, Advances
in Neural Information Processing Systems, volume 9.
MIT Press, 1996.

Mengjing Wu, Junyu Xuan, and Jie Lu. Functional wasser-
stein bridge inference for bayesian deep learning. In The
40th Conference on Uncertainty in Artificial Intelligence,
2024.

Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes:
On the Importance of Learning Activations

(Supplementary Material)

Marcin Sendera*1,2 Amin Sorkhei Tomasz Kuśmierczyk*1

1Jagiellonian University
2Mila, Université de Montréal

We supplement the main text here with a description of the related work, a discussion of computational costs, and additional
details of the experimental setup, followed by additional numerical results. Our code we made publicly available 1.

A RELATED WORK

The relationship between (B)NNs and GPs has been a subject of significant research interest. Much of this work has been
motivated by the desire to better understand NNs through their connection to GPs. A seminal result by Neal [1996], Williams
[1996], later extended to deep NNs by Lee et al. [2017], Matthews et al. [2018], shows that infinitely wide layers in NNs
exhibit behavior akin to GPs. While we explore a similar setting, our focus is the inverse: implementing function-space
priors, specifically GP-like, within BNNs.

This problem was previously addressed by Meronen et al. [2020], who proposed an activation function for BNNs that
corresponds to the popular Matérn kernel. Due to the complexity of deriving analytical solutions, other works, such as
Flam-Shepherd et al. [2017, 2018], Tran et al. [2022], have explored gradient-based optimization to learn priors on weights
and biases. However, their approach requires deep networks with complex distributions and additionally, presents a challenge
in learning posterior. In contrast, we achieve high-fidelity functional priors in shallow BNNs by matching both priors on
parameters and activations.

Finding accurate posteriors for deep and complex models such as BNNs is notoriously challenging due to their high-
dimensional parameter spaces and complex likelihood surfaces. However, for single-hidden-layer wide BNNs, it has been
recently shown that posterior sampling via Markov Chain Monte Carlo can be performed efficiently [Hron et al., 2022].
Moreover, research has demonstrated that the exact posterior of a wide BNN weakly converges to the posterior corresponding
to the GP that matches the BNN’s prior [Hron et al., 2020]. This allows BNNs to inherit GP-like properties while preserving
their advantages.

An alternative line of work touching efficient learning for BNNs in function space has explored variational inference.
Sun et al. [2019] introduced functional variational BNNs (fBNNs) that maximize an Evidence Lower Bound defined
over functions. However, Burt et al. [2020] highlighted issues with using the Kullback-Leibler divergence in function
space, leading to ill-defined objectives. To overcome this, methods like Gaussian Wasserstein inference [Wild et al., 2022]
and Functional Wasserstein Bridge Inference [Wu et al., 2024] leverage the Wasserstein distance to define well-behaved
variational objectives. These approaches try to incorporate functional priors into variational objective for deep networks.
In contrast, in our method transfer of priors to shallow BNNs remains independent and fully separated from an inference
method.

Finally, other works worth mentioning include Meronen et al. [2021], who explored periodic activation functions in BNNs to
connect network weight priors with translation-invariant GP priors. Pearce et al. [2020] derived BNN architectures to mirror
GP kernel combinations, showcasing how BNNs can produce periodic kernels. Karaletsos and Bui [2020] introduced a
hierarchical model using GP for weights to encode correlated weight structures and input-dependent weight priors, aimed at

1https://github.com/gmum/bnn-functional-priors

mailto:<t.kusmierczyk@uj.edu.pl>?Subject=Your UAI 2025 paper
https://github.com/gmum/bnn-functional-priors

Figure 9: Prior matching quality: fixed width. Figure 10: Prior matching quality: fixed depth.

regularizing the function space. Matsubara et al. [2021] proposed using ridgelet transforms to approximate GP function-space
distributions with BNN weight-space distributions, providing a non-asymptotic analysis with finite sample-size error bounds.
Finally, Tsuchida et al. [2019] extended the convergence of NN function distributions to GPs under broader conditions,
including partially exchangeable priors. A more detailed discussion of related topics can be found for example, in Sections
2.3 and 4.2 of [Fortuin, 2022].

B COMPUTATIONAL AND ARCHITECTURAL ADVANTAGES

Our method involves an initial prior fitting step, which precedes the posterior inference step. The prior fitting step takes
approximately one hour for the HouseElectric dataset (Section 4.6); however, one can alternatively use a prior from a library
of pre-trained priors, thereby amortizing the cost of this step.

Our experiments show that substituting fixed activations (ReLU/TanH, ∼ 0.5s/iteration) with learnable NN activations
(single hidden layer, 5 neurons, ∼ 2.3s/iteration) or periodic activations (∼ 2.7s/iteration) increases the time per iteration by
approximately a factor of 4 on our 16-core CPU setup. On the other hand, learning parameter priors alongside activations
has only a marginal effect on computation time compared to fixing priors and only learning activations.

Additionally, we conducted a study measuring both the quality of prior fit and the runtime for a prior modeled by a neural
network with varying numbers of layers and widths. The respective results can be found in Figures 9, 10 and Tables 3, 4.
These results suggest that increasing the number of layers up to a certain depth (e.g., 4 layers in this case) may marginally
improve the fidelity of the solutions, whereas increasing the network width tends to make convergence harder. In either case,
using a larger neural network consistently leads to longer convergence times.

Table 3: Prior matching time
(activation=NN, width=5)

#layers iteration time [s]
1 2.34
2 3.10
4 4.57
8 7.38
16 15.03

Table 4: Prior matching time
(activation=NN, single hidden layer)

#neurons iteration time [s]
5 2.34

10 2.59
20 3.95
40 7.59

Once the prior is established (or a pre-trained one is used), posterior inference can be performed. Our approach offers here
computational advantages, particularly for large datasets where exact GP inference is prohibitive. For example, RealNVP-
based variational inference (Section 4.6) converges in about 2 hours on a single GPU for HouseElectric, while exact GP

inference can take over three days on a single GPU, or 1.5 hours when parallelized on 8 GPUs using methods such as
BBMM [Wang et al., 2019]. Furthermore, during posterior inference using HMC for the data in Fig. 3, we observed no
significant differences in step time (∼ 1s) between fixed and learnable activations, though this may vary with implementation
and hardware.

Finally, beyond computational performance, BNNs provide greater modularity and extensibility. Single-layer BNNs can
serve as components in larger neural architectures, for example, as Bayesian last layers (with remaining layers trained point-
wise). This enables leveraging architectural innovations from deep learning in ways that GPs cannot easily accommodate.
Our method could replace existing approaches in models like SNGP [Liu et al., 2020], potentially offering improved prior
control (as random Fourier feature GPs are limited to specific stationary kernels), more off-the-shelf end-to-end training
options (e.g., SVGD), and potentially enhanced performance, as suggested by our comparisons against SVGP in Section 4.6.

C LEARNED GP KERNELS

In this paper, we show that our approach allows for inducing a GP-like behavior onto single-layer BNNs without being
restricted to a family of GP kernels. In particular, we induced the following GP kernel behavior, while performing the
mentioned experiments:

• Matérn (3/2) - house electric regression;

• Matérn (5/2) - inducing stationarity, ablation on learning activations and priors, 2d classification;

• RBF - 1d regression;

• RBF + ARD - UCI regression;

• Periodic - ablation on learning activations and priors.

D EXPERIMENTAL DETAILS

D.1 CAN LEARNED ACTIVATIONS ACHIEVE MORE FAITHFUL FUNCTION-SPACE PRIORS? –
ADDITIONAL FIGURES

0.35 0.40 0.45 0.50
loss (divergence)

w: ReLU

a+w: Section 3.3

a+w: NN(4 x 10)

a+w: NN(1 x 20)

GP samples BNN samples

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

0

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

1

0

1

Various failure modes:

1.5 1.0 0.5 0.0 0.5 1.0 1.5
3

2

1

0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1

0

1

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

0

2

Figure 11: Quality of matching BNNs to the prior of a GP with the Periodic kernel (ℓ = 1, p = 1). (Left): Evaluation
of models with trained parameter priors (denoted by w) and with trained both weights priors and activations (denoted by
a+w). (Right): Samples from the ground truth GP, a well-fitted BNN and BNN outliers with poor final loss. As explained
in Sec. 3.7, or because of the insufficient modeling capacity of ϕ, gradient-based optimization may fail to capture a GP
functional prior.

D.2 1-DIMENSIONAL REGRESSION - COMPARISON WITH Tran et al. [2022]

In order to illustrate the abilities of our approach on a standard regression task and for a fair comparison with another method
optimizing the Wasserstein distance, we followed the exact experimental setting presented in Tran et al. [2022]. We used a
GP with an RBF kernel (length scale ℓ=0.6, amplitude=1.0) and a Gaussian likelihood (noise variance=0.1) as the ground
truth.

For a baseline, we utilized the approach by Tran et al. [2022], consisting of a BNN with 3 layers and 50 neurons each,
using TanH activation function. We considered all three prior realizations presented in that work: a simple Gaussian prior, a
hierarchical prior, and a prior given by a Normalizing Flow. On the other hand, our model configuration consisted of a BNN
with Gaussian priors centered at 0 and trained variances, where the activation function was modeled by a neural network
with a single hidden layer with 5 neurons and SiLU activation. Posterior distributions were obtained using an HMC sampler.

We found that our approach allows for achieving the same or better results than the baseline by Tran et al. [2022], both in
visual and numerical comparisons. We obtained better results in terms of distributional metrics as presented in Tab. 5 and
Tab. 6 and getting better (visually) posterior distributions (see Fig. 3) without utilizing any computationally heavy prior
realization (like, e.g., Normalizing Flow).

Table 5: Comparison of trained (function-space) priors in a 1D regression task: [Tran et al., 2022] vs. our method. Whereas
Tran et al. [2022] considered three different priors on parameters (including Gaussian, Hierarchical, and Normalizing Flow)
for deep BNNs, our implementation consists of a single-hidden-layer BNN with standard Gaussian priors with learned
variances and trained activation. The methods were compared using a set of distributional metrics against the ground truth
provided by a GP. We compared prior distributions of functions over a range of X covering regions with and without data
(to account also for overconfidence far from data). The lower, the better.

Setting 1-
W

as
se

rs
te

in

2-
W

as
se

rs
te

in

L
in

ea
r-

M
M

D

Po
ly

-M
M

D
×
10

3

R
B

F-
M

M
D

M
ea

n-
M

SE

M
ea

n-
L

2

M
ea

n-
L

1

M
ed

ia
n-

M
SE

M
ed

ia
n-

L
2

M
ed

ia
n-

L
1

Priors:
Gaussian prior 7.52 7.77 -6.08 1.158 0.036 0.003 0.058 0.045 0.004 0.063 0.052
Hierarchical prior 8.14 8.37 0.22 1.421 0.027 0.004 0.064 0.059 0.008 0.090 0.074
Normalizing Flow prior 7.61 8.09 -8.192 0.393 0.019 0.004 0.061 0.051 0.004 0.066 0.052
ours 6.86 7.06 -9.40 -0.016 0.008 0.001 0.032 0.027 0.002 0.048 0.041

Table 6: Comparison of trained (function-space) posteriors in a 1D regression task: [Tran et al., 2022] vs. our method. Whereas
Tran et al. [2022] considered three different priors on parameters (including Gaussian, Hierarchical, and Normalizing Flow)
for deep BNNs, our implementation consists of a single-hidden-layer BNN with standard Gaussian priors with learned
variances and trained activation. The methods were compared on RMSE and NLL of test data.

Setting RMSE NLL

Posteriors:
Gaussian prior 0.2559 0.2456
Hierarchical prior 0.2461 0.2613
Normalizing Flow prior 0.2534 0.2550
ours 0.2045 0.3044

D.3 UCI REGRESSION - COMPARISON WITH Tran et al. [2022]

In addition, we compare against Tran et al. [2022] also on UCI regression tasks, which have more input dimensions d –
between 8 and 12, while having 1-dimensional output. We use 10-split of training datasets as in typical in this direction of
research.

For the baseline, we followed the exact experimental setting presented in Tran et al. [2022]. We used a GP with an RBF
kernel (length scale ℓ =

√
2.0 ∗ input_dim and amplitude=1.0, ARD) and a Gaussian likelihood as the ground truth. We

set the noise variance value and architectures for the specific datasets as in the mentioned baseline paper.

On the other hand, our model configuration consisted of a BNN with Gaussian priors centered at 0 and trained variances,
where the activation function was modeled by a neural network with a single hidden layer with 5 neurons and SiLU activation.
Posterior distributions were obtained using an HMC sampler.

We found that our approach allows for achieving the same or better results than the baseline, in terms of numerical values
(RMSE and NLL) as presented in Tab. 7.

Table 7: Extended results for a set of UCI regression tasks (various input dimensionality d) with prior transferred from a
GP; comparison between the baseline (using a deep BNN; [Tran et al., 2022]) and ours (single hidden layer BNN with 128
neurons; w/o regularization) and an activation realized by a NN with SiLU own activation were used.

Dataset → Boston (d = 12) Concrete (d = 8) Energy (d = 8) Protein (d = 9) Wine (d = 11)

Method ↓ Metric → RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL

baseline 2.8402±0.8986 2.4778±0.1481 4.4628±0.7511 2.9728±0.0876 0.3431±0.0613 0.3482±0.1607 0.5038±0.0093 0.7447±0.0142 0.4736±0.0420 0.8725±0.0285

ours 2.8643±0.8386 2.4937±0.1798 4.9143±0.7528 3.0201±0.1011 0.3692±0.0566 0.4064±0.1347 0.4957±0.0058 0.7251±0.0094 0.4833±0.0398 0.8673±0.0255

D.4 CAN LEARNED ACTIVATIONS MATCH PERFORMANCE OF CLOSED-FORM ONES? –
COMPARISON WITH Meronen et al. [2020]

For the comparison against Meronen et al. [2020], we closely followed their experimental setting and used a GP with a
Matérn kernel (ν = 5/2, ℓ=1) as the ground truth. For a baseline, we utilized the approach by Meronen et al. [2020], where
the authors derived analytical activations to match the Matérn kernel. Our model configuration consists of a BNN with
Gaussian priors and trained variances, where the activation function was modeled by a neural network with a single hidden
layer consisting of 5 neurons using SiLU activation. Posterior distributions were generally obtained using an HMC sampler,
except in the case of Meronen et al. [2020], where the original implementation employed MC Dropout to approximate the
posterior. However, for completeness and fairness in comparison, we also generated results using an HMC-derived posterior
for the model by Meronen et al. [2020]. Additional tests (see Tab. 8) were conducted on BNNs with fixed parameter priors
(Default=Gaussian priors with a variance of 1, and Normal=Gaussian priors normalized by the hidden layer width) and with
activation functions including ReLU and TanH.

GP (ground truth)

x

y

Predictive E[y] (=E[p])

x
y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y
Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

GP Model fitted [NOTE: THERE IS NO REAL MC SAMPLING HERE!]

x

y

Predictive E[y] (=E[p])

x
y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

GP model fitted (1000 MC samples)

Ours (trained parameters priors and activations)

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)
0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

BNN: 1000 MCMC posterior samples

Meronen et al. (2020)

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

Dropout MC: Mean and Std from 1000 MC samples

Meronen et al. (2020) + HMC posterior

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt(E[Var[y|p]] + Var[E[y|p]]))

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5
St

d[
p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

BNN: 1000 MCMC posterior samples

Figure 12: Posterior predictive distributions for a BNN with trained parameters priors and activations (ours; 2nd row), and
for a BNN with analytically derived activation (3rd and 4th row). The first column illustrates class probabilities, the second
column shows the total variance in class predictions, and the last column depicts the epistemic uncertainty component of the
total uncertainty.

Table 8: Similarity of the posterior predictive distributions of BNNs with a single wide hidden layer to the posterior of a GP,
considered as the ground truth. Calculations were performed for a 2D test grid X (100× 100) spanning the area visible in
Fig. 12, which includes regions both with and without training data to account for overconfidence far from the data. The
posteriors were obtained using the HMC sampler in all cases, except for [Meronen et al., 2020], where the original code was
used (however, results for this model with an HMC-derived posterior are also included below). Lower values indicate better
performance. For our method, we present results using weights and priors pretrained for 1D inputs, as well as those trained
on functional priors for 1D/2D inputs matched to the task on X .

Weights and activation 1-
W

as
se

rs
te

in

2-
W

as
se

rs
te

in

L
in

ea
r-

M
M

D

M
ea

n-
L

1

M
ea

n-
L

2

M
ea

n-
M

SE

M
ed

ia
n-

L
1

M
ed

ia
n-

L
2

M
ed

ia
n-

M
SE

Po
ly

-M
M

D
×
10

3

R
B

F-
M

M
D

Default with ReLU 39 39 667 0.23 0.26 0.067 0.3 0.33 0.11 4518 0.16
Default with TanH 38 38 595 0.22 0.24 0.058 0.3 0.32 0.11 4181 0.15
Normal with ReLU 31 32 603 0.21 0.25 0.061 0.22 0.26 0.069 3093 0.47
Normal with TanH 25 25 314 0.14 0.18 0.031 0.15 0.18 0.034 1721 0.55

[Meronen et al., 2020] 36 36 777 0.24 0.28 0.078 0.28 0.32 0.1 7311 0.24
Normal + HMC 21 21 72 0.07 0.09 0.007 0.071 0.094 0.009 435 0.24
Default + HMC 42 42 284 0.14 0.16 0.026 0.32 0.34 0.12 1867 0.11

Ours: pretrained 1D 25 25 73 0.06 0.09 0.008 0.076 0.1 0.011 771 0.07
Ours: trained 1D 23 23 6 0.03 0.03 0.001 0.029 0.035 0.001 45 0.03
Ours: trained 2D 23 23 13 0.03 0.03 0.001 0.028 0.035 0.001 74 0.02

D.5 PERIODIC AND CONDITIONAL ACTIVATIONS

BNNs with periodic activations were trained on functions sampled from a GP with a Matérn kernel with ν = 5
2 and

lengthscales ℓ of values ranging from 0.01 to 10.0. The inputs were randomly sampled from the interval [−3ℓ, 3ℓ]. Each
input batch comprised 8 sets X , each containing 512 values x. For each set, 128 functions were sampled. Adam optimizer,
with a learning rate of 0.01, was employed over 4000 iterations.

For the conditioning of priors and activations, a MLP hypernetwork was utilized. This hypernetwork consisted of 3 hidden
layers with respective widths of 128, 32, and 8, and RBF activations. On top of the hidden layers, separate dense heads were
deployed for each output—a 4-dimensional head for producing variances and two 10-dimensional heads for generating {ψ}
and {A}. Each head projected the output of the last hidden layer to the requested dimensions.

E EXTENSIVE COMPARISON AGAINST Tran et al. [2022]

As is well known, a single-hidden-layer BNN with infinite width approximates a Gaussian Process (GP). We leverage this
fundamental result in the context of optimal transport (minimizing the Wasserstein metric) to induce a GP with a desired
kernel behavior onto a BNN.

A related approach, formulated as the dual problem of optimal transport, was explored in [Tran et al., 2022]. However,
their method utilizes the complex Normalizing Flow priors as default, and as such, does not incorporate any mathematical
property that guarantees the resulting model is a GP. From this perspective, the approach in [Tran et al., 2022] can be seen as
a heuristic that yields favorable performance – measured by RMSE and NLL – within the training data range, but without
any formal assurance that the model ultimately corresponds to a GP. Their method relies on a multiple-layer BNN with
narrow layers, where the number of layers is chosen empirically based on the specific problem. Although employing a
Gaussian prior may encourage GP-like behavior, this property does not necessarily hold when using Normalizing Flow
priors.

In the following experiments, we empirically demonstrate that this approach generally fails to converge to a GP or satisfy
the theoretical requirements due to the use of narrow layers and Normalizing Flow priors.

E.1 USAGE OF WIDER BNNS

First, we investigated the effect of increasing the width of a single-hidden-layer BNN from 50 neurons – following the
typical choice in [Tran et al., 2022] – to 1024 neurons. Specifically, we compared two types of priors: Gaussian priors
and Normalizing Flow priors. Additionally, we examined four different activation functions commonly used in BNNs and
evaluated these settings on a 1D regression task.

Numerical results for RMSE, NLL, and the 1-Wasserstein (W1
1) and 2-Wasserstein (W2

2) metrics are presented in Tab.9
and Tab.10 for Gaussian and Normalizing Flow priors, respectively. We observe that increasing the layer width generally
improves the Wasserstein metrics while maintaining similar or slightly worse RMSE and NLL when using Gaussian priors.
This improvement is likely due to better adherence to theoretical assumptions (see Tab. 9). However, even with a wider layer
and a fixed activation function, achieving true GP behavior remains elusive.

In contrast, using wider layers with Normalizing Flow priors significantly degrades performance across all considered
metrics (see Tab.10). We hypothesize that this is due to the lack of theoretical foundations for such priors. Furthermore, we
visualize the posterior distributions of narrow and wide BNN layers for two activation functions: ReLU, which performs
poorly even with a Gaussian prior, and TanH (see Fig.13). These results indicate that Normalizing Flow priors – despite
being uniquely assigned to each neuron – fail to capture the increased capacity of wider networks, regardless of the activation
function used. This serves as a clear example of where the heuristic proposed by [Tran et al., 2022] collapses.

Table 9: Comparison of Tran et al. [2022] using a narrow and a wide hidden layer in a BNN with a set Gaussian prior. We
observe that the wider hidden layer usually helps in achieving better Wasserstein metrics and similar or slightly worse
RMSE and NLL when using Gaussian priors.

width→ 50 1024

activation ↓metric→ RMSE NLL W1
1 W2

2 RMSE NLL W1
1 W2

2

TanH 0.36 0.42 7.57 7.83 0.53 0.86 8.04 8.26
RBF 0.25 0.24 7.27 7.61 0.24 0.25 6.96 7.16
ReLU 1.16 4.10 13.67 13.82 1.19 4.35 12.45 12.62
Swish 1.21 4.52 13.18 13.34 1.22 4.59 12.61 12.78

Table 10: Comparison of Tran et al. [2022] using a narrow and a wide hidden layer in a BNN with a set Normalizing
Flow prior. We notice that using wider layers with Normalizing Flow priors significantly lowers the result on each of the
considered metrics.

width→ 50 1024

activation ↓metric→ RMSE NLL W1
1 W2

2 RMSE NLL W1
1 W2

2

TanH 0.28 0.27 6.22 6.53 0.89 2.32 10.41 10.52
RBF 0.25 0.24 5.48 5.75 0.35 0.41 6.00 6.20
ReLU 0.89 2.34 9.53 9.67 1.10 3.67 12.29 12.44
Swish 1.11 3.64 13.67 13.82 1.18 4.19 13.71 13.86

width=1024

GP BNN (TanH)BNN (ReLU)

Figure 13: Comparison of Normalizing Flow prior with a one-layer BNN having a varying number of neurons and ReLU
(middle column) or TanH (3rd rcolumn) activation function. We provide a BNN with a narrow hidden layer (50 neurons)
as the baseline and compare it against a BNN with a wider hidden layer (1024 neurons). We observe that even wider hidden
layer does not provide a better GP approximation due to the lack of theoretical guarantees when using non-Gaussian priors.

E.2 INFLUENCE OF NUMBER OF HIDDEN LAYERS IN BNNS

Next, we examine whether deeper BNNs within the [Tran et al., 2022] framework lead to improved results.

Specifically, we compare BNNs with multiple hidden layers (i.e., {2, 3, 4, 5}) against single-hidden-layer baselines, evaluat-
ing four distinct activation functions – ReLU, TanH, Swish, and RBF – on RMSE and NLL, as shown in Fig. 14.

Additionally, in Fig. 15, we visualize the posterior distributions for two activation functions, ReLU and TanH, under the
Normalizing Flow prior to provide further qualitative insights.

1 3 5
Layers

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

1

2

3

4

N
LL

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 2 3 4 5
Layers

0.2

0.4

0.6

0.8

1.0

R
M

S
E

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
LL

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

Figure 14: Comparison of different priors, activation functions and BNNs depth in Tran et al. [2022] method in terms of
RMSE (left column) and NLL right column on test data. We observe that this method with Gaussian prior (top row)
usually get better results with a larger number of hidden layers. Contrary, using Normalizing Flow prior get better results
only for some (worse) activations. The largest increase of quality might be observed for the worst activation functions. We
find that our approach (dashed black line) has better, or similar results in terms of both NLL and RMSE.

2 layers

3 layers

4 layers

5 layers

GP BNN (TanH)BNN (ReLU)

Figure 15: Comparison of Normalizing Flow prior with a BNN having a varying number of hidden layers and ReLU (middle
column) or TanH (3rd column) activation function. We select a single hidden layer (50 neurons) BNN as a baseline (top
row), which we compare against a multiple hidden layers BNNs (2, 3, 4, or 5 layers). We notice that using a larger number
of hidden layers destroys the posteriors for a BNN with TanH activation function, but for some limit helps when using poor
ReLU activation.

E.3 OUT OF DISTRIBUTION EVALUATION

Finally, we evaluate the [Tran et al., 2022] method with different priors and varying numbers of hidden layers on an
out-of-distribution (OOD) task. Since the true data distribution in OOD regions is unknown, we rely on optimal transport
metrics—1-Wasserstein (W1

1) and 2-Wasserstein (W2
2). Additionally, we compare all these configurations against our

single-hidden-layer method.

To ensure a comprehensive comparison across various OOD scenarios, we define multiple distinct regions of x, where
different methods may exhibit different behaviors. These regions are illustrated in Fig. 16.

The results, presented in Fig. 17, 18, 19, and 20, lead to several key observations regarding the performance on OOD tasks:

• Gaussian prior: A greater number of hidden layers generally improves performance when using appropriate activation
functions (TanH, RBF) but degrades it for others (ReLU, Swish).

• Normalizing Flow prior: In many cases, the best results are achieved with single- or two-hidden-layer BNNs, while
deeper architectures significantly degrade performance.

• Sensitivity to depth: The Normalizing Flow prior is highly sensitive to the number of hidden layers, providing clear
evidence of the heuristic’s instability.

• Our method: Due to its grounding in theoretical properties, our approach consistently outperforms all configurations
of the [Tran et al., 2022] method.

These findings highlight the limitations of heuristic-based approaches and reinforce the importance of theoretical guarantees
in achieving robust generalization.

20 10 0 10 20

3

2

1

0

1

2
R0
R1
R2
R3
R4
R5

Figure 16: We compare our method with Tran et al. [2022] on the out of distribution data. For this aim, we provide a wide
experimental setting comparing both methods on a few different ranges of data (x). We present these ranges as different
colour lines in this plot. Firstly, we consider the original test range (R0), then we focus on the data between the given blobs
of points (R3). Finally, we consider the out of distribution ranges – ones being closer to the train data (R2, R4, and R2

⋃
R4) or further (R1, R5, and R1

⋃
R5). The densities of evaluation points meets the density of the original data on each

range despite R0.

1 3 5
Layers

4

6

8

10

1-
W

as
se

rs
te

in

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

10

11

12

13

1-
W

as
se

rs
te

in

1 3 5
Layers

6

7

8

9

10

11

12

13

1-
W

as
se

rs
te

in

1 3 5
Layers

4

6

8

10

2-
W

as
se

rs
te

in

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5
2-

W
as

se
rs

te
in

1 3 5
Layers

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

2-
W

as
se

rs
te

in

Figure 17: Comparison of Tran et al. [2022] method with a Gaussian prior and different number of hidden layers. In this
plot, we present W1

1 (top row) and W2
2 (bottom row) for the regions R3, R4

⋃
R2, and R1

⋃
R5 from left to right side.

The appropriate regions might be found in Fig. 16.

1 3 5
Layers

4

5

6

7

8

9

1-
W

as
se

rs
te

in

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

3

4

5

6

7

8

9

1-
W

as
se

rs
te

in

1 3 5
Layers

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

1-
W

as
se

rs
te

in

1 3 5
Layers

4

6

8

10

12

1-
W

as
se

rs
te

in

1 3 5
Layers

4

5

6

7

8

9

2-
W

as
se

rs
te

in

ours (1 layer)
Gaussian:relu
Gaussian:swish
Gaussian:tanh
Gaussian:rbf

1 3 5
Layers

3

4

5

6

7

8

9

10

2-
W

as
se

rs
te

in

1 3 5
Layers

8.6

8.8

9.0

9.2

9.4

9.6

2-
W

as
se

rs
te

in

1 3 5
Layers

4

6

8

10

12

2-
W

as
se

rs
te

in

Figure 18: Comparison of Tran et al. [2022] method with a Gaussian prior and different number of hidden layers. In this plot,
we present W1

1 (top row) and W2
2 (bottom row) for the regions R1, R2, R4, and R5 from left to right side. The appropriate

regions might be found in Fig. 16.

1 2 3 4 5
Layers

4

6

8

10

1-
W

as
se

rs
te

in

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

9.5

10.0

10.5

11.0

11.5

12.0

12.5

1-
W

as
se

rs
te

in

1 2 3 4 5
Layers

6

8

10

12

14

1-
W

as
se

rs
te

in

1 2 3 4 5
Layers

4

6

8

10

2-
W

as
se

rs
te

in

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

10.0

10.5

11.0

11.5

12.0

12.5

13.0
2-

W
as

se
rs

te
in

1 2 3 4 5
Layers

10.0

10.5

11.0

11.5

12.0

12.5

13.0

2-
W

as
se

rs
te

in

Figure 19: Comparison of Tran et al. [2022] method with a Normalizing Flow prior and different number of hidden layers.
In this plot, we present W1

1 (top row) and W2
2 (bottom row) for the regions R3, R4

⋃
R2, and R1

⋃
R5 from left to right

side. The appropriate regions might be found in Fig. 16.

1 2 3 4 5
Layers

4

5

6

7

8

1-
W

as
se

rs
te

in

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

3

4

5

6

7

8

1-
W

as
se

rs
te

in

1 2 3 4 5
Layers

7.5

8.0

8.5

9.0

9.5

1-
W

as
se

rs
te

in

1 2 3 4 5
Layers

4

6

8

10

12

1-
W

as
se

rs
te

in

1 2 3 4 5
Layers

4

5

6

7

8

9

2-
W

as
se

rs
te

in

ours (1 layer)
NF:relu
NF:swish
NF:tanh
NF:rbf

1 2 3 4 5
Layers

4

5

6

7

8

9

2-
W

as
se

rs
te

in

1 2 3 4 5
Layers

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

2-
W

as
se

rs
te

in

1 2 3 4 5
Layers

4

6

8

10

12

2-
W

as
se

rs
te

in

Figure 20: Comparison of Tran et al. [2022] method with a Normalizing Flow prior and different number of hidden layers.
In this plot, we present W1

1 (top row) and W2
2 (bottom row) for the regions R1, R2, R4, and R5 from left to right side. The

appropriate regions might be found in Fig. 16.

	Introduction
	Preliminaries
	Method
	Transfer of Priors from GP to BNN
	Differentiable Priors and Activations
	Periodic Activations For Stationary GPs
	Conditional Priors and Activations
	Loss
	Output Structure
	Optimisation Challenges

	Findings
	Does Learning Activations Improve Learning of Function-space Priors?
	Do Expressive Function-space Priors Require Networks to be Deep?
	Can Learned Activations Match Performance of Closed-form Ones?
	Can Stationarity be Induced with Learned Periodic Activations?
	Is Model Selection for BNNs with Transferred Priors Possible?
	Does It Scale?

	Conclusion
	Related Work
	Computational and Architectural Advantages
	Learned GP Kernels
	Experimental Details
	Can Learned Activations Achieve More Faithful Function-space Priors? – Additional Figures
	1-dimensional Regression - Comparison with tran2022all
	UCI Regression - Comparison with tran2022all
	Can Learned Activations Match Performance of Closed-form Ones? – Comparison with meronen2020stationary
	Periodic and Conditional Activations

	Extensive Comparison Against tran2022all
	Usage of Wider BNNs
	Influence of Number of Hidden Layers in BNNs
	Out of Distribution Evaluation

