
Under review as a conference paper at ICLR 2024

NON-REDUNDANT GRAPH NEURAL NETWORKS WITH
IMPROVED EXPRESSIVENESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Message passing graph neural networks iteratively compute node embeddings
by aggregating messages from all neighbors. This procedure can be viewed as
a neural variant of the Weisfeiler-Leman method, which limits their expressive
power. Moreover, oversmoothing and oversquashing restrict the number of layers
these networks can effectively utilize. The repeated exchange and encoding of
identical information in message passing amplifies oversquashing. We propose
a novel aggregation scheme based on neighborhood trees, which allows for con-
trolling the redundancy by pruning branches of the unfolding trees underlying
standard message passing. We prove that reducing redundancy improves expres-
sivity and experimentally show that it alleviates oversquashing. We investigate
the interaction between redundancy in message passing and redundancy in compu-
tation and propose a compact representation of neighborhood trees, from which
we compute node and graph embeddings via a neural tree canonization technique.
Our method is provably more expressive than the Weisfeiler-Leman method, less
susceptible to oversquashing than message passing neural networks, and provides
high classification accuracy on widely-used benchmark datasets.

1 INTRODUCTION

Graph neural networks have recently emerged as the dominant technique for machine learning with
graphs. The class of message passing neural networks (MPNNs) (Gilmer et al., 2017) is widely-used.
It updates node embeddings layer-wise by combining the current embedding of a node with the
embeddings of its neighbors involving learnable parameters. Suitable neural architectures admit a
parametrization such that each layer represents an injective function encoding its input uniquely by
the new embedding. In this case the MPNN has the same expressive power as the Weisfeiler-Leman
algorithm (Xu et al., 2019). The Weisfeiler-Leman algorithm can distinguish two nodes if and only
if the unfolding trees representing their neighborhoods are non-isomorphic. This unfolding tree
corresponds to the computational tree of MPNNs (Scarselli et al., 2009; Jegelka, 2022). Hence, if two
nodes have isomorphic unfolding trees of height n, they will obtain the same embedding after n layers.
Vice versa, for two nodes with non-isomorphic unfolding trees of height n, there are parameters of the
network such that the node’s embeddings after n layers differ. However, in practice shallow MPNNs
are widely employed. Two phenomena have been identified explaining the poor performance of deep
graph neural networks. First, node representations are observed to converge to the same values for
deep architecture instead of being able to distinguish more vertices, a phenomenon referred to as
oversmoothing (Li et al., 2018; Liu et al., 2020). Second, oversquashing (Alon & Yahav, 2021) refers
to the problem that the neighborhood of a node grows exponentially with the number of layers and
aggregation steps and, therefore, cannot be supposed to be accurately represented by a fixed-sized
embedding.

We argue that oversquashing can be alleviated by removing the encoding of repeated information.
Consider a node u with an edge e = {u, v} in an undirected graph. In a first step, u will send
information to v over the edge e. In the next step, u will receive a message form v via e that
incorporates the information that u has previously sent to v. Clearly, this information is redundant. In
the context of walk-based graph learning this problem is well-known and referred to as tottering (Mahé
et al., 2004). Recently, Chen et al. (2022) made the relation between redundancy and oversquashing
explicit and investigated it using the Jacobian of node representations (Topping et al., 2022). Several
graph neural networks have been proposed replacing the walk-based aggregation with repeated

1

Under review as a conference paper at ICLR 2024

vertices by mechanisms based on simple or shortest paths (Abboud et al., 2022b; Michel et al., 2023;
Jia et al., 2020). Closely related to our work are PathNNs (Michel et al., 2023) and RFGNN (Jia
et al., 2020), which both define path-based trees for nodes and use custom aggregation schemes. Both
approaches suffer from high computational costs and do not exploit the computational redundancy,
which is a major advantage of standard MPNNs.

Our contribution. We systematically investigate the information redundancy in MPNNs and
develop principled techniques to avoid superfluous messages. Fundamental to our consideration is the
tree representation implicitly used by MPNNs and the Weisfeiler-Leman method. First, we develop a
neural tree canonization approach processing trees systematically in a bottom-up fashion and extend
it to operate on directed acyclic graphs (DAGs) representing the union of multiple trees. Our approach
recovers the computational graph of MPNNs for unfolding trees, but allows to avoid redundant
computations in case of symmetries. Second, we apply the canonization technique to neighborhood
trees, which are obtained from unfolding trees by deleting nodes that appear multiple times. We show
that neighborhood trees allows distinguishing nodes and graphs that cannot be distinguished by the
Weisfeiler-Leman method, rendering our technique more expressive than MPNNs. Our approach
removes information redundancy on node level, but the non-regular structure of subtrees leads to
computational challenges. Our DAG representation of neighborhood trees has size at most O(nm)
for input graphs with n nodes and m edges and allows to reuse embeddings of isomorphic subtrees to
increase efficiency. Our method achieves high accuracy on several graph classification tasks.

2 RELATED WORK

The graph isomorphism network (GIN) (Xu et al., 2019) is an MPNN that generalizes the Weisfeiler-
Leman algorithm and reaches its expressive power. The embedding of a vertex v in layer i of GIN is
defined as

xi(v) = MLPi

(1 + ϵi) · xi−1(v) +
∑

u∈N(v)

xi−1(u)

 , (1)

where the initial features x0(v) are usually acquired by applying a multi-layer perceptron (MLP)
to the vertex features. The limited expressiveness of simple message passing neural networks has
lead to an increased interest in researching the expressiveness of GNNs and finding more powerful
architectures, for example, by encoding graph structure as additional features or altering the message
passing procedure. Shortest Path Networks (Abboud et al., 2022a) use multiple aggregation functions
for different shortest path lengths: One for each k for the k-hop neighbors. While this allows the
target node to directly communicate with nodes further away and in turn possibly might help mitigate
oversquashing, some information about the structure of the neighborhood can still not be represented
adequately and the gain in expressiveness is limited. In Distance Encoding GNNs (Li et al., 2020),
the distances of the nodes to a set of target nodes are encoded. While this approach also is provably
more expressive than the standard WL method, it is limited to solving node-level tasks, since the
encoding depends on a fixed set of target nodes, and has not been employed for graph-level tasks.
MixHop (Abu-El-Haija et al., 2019) employs an activation function for each neighborhood and
concatenates their results. However, in contrast to (Abboud et al., 2022a), the aggregation is based on
normalized powers of the adjacency matrix, not shortest paths, which does not solve the problem
of redundant messages. SPAGAN (Yang et al., 2019) proposes a path-based attention mechanism.
Although the idea is very similar, shortest paths are only sampled and the feature aggregation differs.
Only one layer is used and the paths are used as features. This approach has not been investigated
theoretically. Also Sun et al. (2022) uses a method with short-rooted random walks to capture long-
range dependencies between nodes. It has notable limitations due to sample paths instead of exploring
all of them, and the evaluation is solely on node classification datasets and needs an extensive study
of their expressive power. IDGNN (You et al., 2021) keeps track of the identity of the root node in
the unfolding tree, which allows for more expressiveness than 1-WL. Their variant ID-GNN-Fast
works by using cycles lengths as additional node features. Both variants however, do not reduce the
amount of redundant information that is aggregated over multiple layers. PathNNs (Michel et al.,
2023) defines path-based trees and a custom aggregation scheme, but the computational redundancy
is not exploited. In RFGNNs (Chen et al., 2022) the idea of reducing redundancy is similar. The
computational flow is altered to only include each node (except for the root node) at most once in
each path of the computational tree. While this reduces redundancy to some extent, nodes and even

2

Under review as a conference paper at ICLR 2024

Figure 1: Graph G and its unfolding trees F v
2 for all v ∈ V (G).

the same subpaths may repeatedly occur in the computational trees. The redundancy in computation
is not addressed resulting in a highly inefficient preprocessing and computation, which restricts the
method to a maximum of 3 layers in the experiments. See Appendix A for a detailed discussion of
the differences between our approach and RFGNN.

For many of these architectures no thorough investigation on their expressiveness and connections
to other approaches is provided. Moreover, these works do not explicitly investigate both types
of redundancy in message passing neural networks, i.e. they do not address redundancy in the
information flow and in computation.

3 PRELIMINARIES

In this section, we give an overview of the necessary definitions and the notation used throughout the
article and introduce fundamental techniques.

Graph theory. A graph G = (V,E, µ, ν) consists of a set of vertices V , a set of edges E ⊆ V ×V
between them and functions µ : V → X and ν : E → X assigning arbitrary attributes to the vertices
and edges, respectively.1 We refer to an edge from u to v by uv, and in case of undirected graphs
uv = vu. The vertices and edges of a graph G are denoted by V (G) and E(G), respectively, and
the neighbors (or in-neighbors) of a vertex u ∈ V are denoted by N(u) = {v | vu ∈ E}. The
out-neighbors of a vertex u ∈ V are denoted by No(u) = {v | uv ∈ E}. A multigraph is a graph,
where E is a multiset, which means there can be multiple edges between a pair of vertices. Two
graphsG andH are isomorphic, denoted byG ≃ H , if there exists a bijection ϕ : V (G)→ V (H), so
that ∀u, v ∈ V (G) : µ(v) = µ(ϕ(v))∧uv ∈ E(G)⇔ ϕ(u)ϕ(v) ∈ E(H)∧∀uv ∈ E(G) : ν(uv) =
ν(ϕ(u)ϕ(v)). We call ϕ an isomorphism between G and H .

An in-tree T is a connected, directed, acyclic graph with a distinct vertex r ∈ V (T) with no
outgoing edges referred to as root, denoted by r(T), in which ∀v ∈ V (T)\r(T) : |No(v)| = 1. For
v ∈ V (T)\r(T) the parent p(v) is defined as the unique vertex u ∈ No(v), and ∀v ∈ V (T) the
children are defined as chi(v) = N(v). We refer to all vertices with no incoming edges as leaves
denoted by l(T) = {v ∈ V (T) | chi(v) = ∅}. Conceptually it is a directed tree, in which there is a
unique directed path from each vertex to the root (Mehlhorn & Sanders, 2008). In our paper, we only
cover in-trees and will thereby just refer to them as trees. In-trees are generalized by directed, acyclic
graphs (DAGs). The leaves of a DAG D and the children of a vertex are defined as in trees. However,
there can be multiple roots and a vertex may have more than one parent. We refer to all vertices in D
with no outgoing edges as roots denoted by r(D) = {v ∈ V (D) | No(v) = ∅} and define the parents
p(v) of a vertex v as p(v) = No(v). The height hgt of a node v is the length of the longest path from
any leaf to v: hgt(v) = 0, if v ∈ l(D) and hgt(v) = maxc∈chi(v) hgt(c) + 1 otherwise. The height
of a DAG D is defined as hgt(D) = maxv∈V (D) hgt(v). For clarity we refer to the vertices of a
DAG as nodes to distinguish them from the graphs that are the input of a graph neural network.

Weisfeiler-Leman unfolding trees. The 1-dimensional Weisfeiler-Leman (WL) algorithm or color
refinement starts with all vertices having a color representing their label (or a uniform coloring in
case of unlabeled vertices). In each iteration the color of a vertex is updated based on the multiset of
colors of its neighbors according to

c
(i+1)
wl (v) = h

(
c
(i)
wl (v), {{c

(i)
wl (u) | u ∈ N(v)}}

)
∀v ∈ V (G),

where h is an injective function typically representing colors by integers.

1We do not consider edge attributes in the following for clarity of presentation. However, the methods we
propose can be extended to incorporate them.

3

Under review as a conference paper at ICLR 2024

(a) Graph G (b) F v
2 (c) T v

2,0 (d) T v
2,1

Figure 2: Graph G and the unfolding, 0- and 1-redundant neighborhood trees of height 2 of vertex v
(vertex in the upper left of G).

The color of a vertex of G encodes its neighborhood by a tree T that may contain multiple repre-
sentatives of each vertex in G. Let ϕ : V (T) → V (G) be a mapping such that ϕ(n) = v if the
node n in V (T) represents the vertex v in V (G). The unfolding tree F v

i with height i of the vertex
v ∈ V (G) consists of a root nv with ϕ(nv) = v and child subtrees Fu

i−1 for all u ∈ N(v), where
F v
0 = ({nv}, ∅). The attributes of the original graph are preserved, see Figure 1 for an example. The

unfolding trees F v
i and Fw

i of two vertices v and w are isomorphic if and only if c(i)wl (v) = c
(i)
wl (w).

4 NON-REDUNDANT GRAPH NEURAL NETWORKS

We propose to restrict the information flow in message passing to control redundancy using k-
redundant neighborhood trees. We first develop a neural tree canonization technique and obtain an
MPNN via its application to unfolding trees. Then we investigate computational methods on graph
level, reusing information computed for subtrees and derive a customized GNN architecture. Finally,
we prove that 1-redundant neighborhood trees are strictly more expressive than unfolding trees on
both node- and graph-level.

4.1 REMOVING INFORMATION REDUNDANCY

It is well-known that two nodes obtain the same WL color if and only if their unfolding trees are
isomorphic and this concept directly carries over to message passing neural networks and their
computational tree (Scarselli et al., 2009; Jegelka, 2022). However, unfolding trees were mainly
used as a tool in expressivity analysis and as a concept explaining mathematical properties in graph
learning (Kriege et al., 2016; Nikolentzos et al., 2023). We discuss a tree canonization perspective on
MPNNs and derive a novel non-redundant GNN architecture based on neighborhood trees.

Aho, Hopcroft, and Ullman (1974, Section 3.2) describe a linear time isomorphism test for rooted
unordered trees in their classical text book, see Appendix B for details. We give a high-level
description to lay the foundations for our neural variant without focusing on the running time. The
algorithm proceeds in a bottom-up fashion and assigns integers cahu(v) to each node v of the tree. Let
f be a function that assigns a pair consisting of an integer and a multiset of integers injectively to a new
(unused) integer. Initially, all leaves v are assigned integers cahu(v) = f(µ(v), ∅) according to their
label µ(v). Then, the internal nodes are processed level-wise in a bottom-up fashion guaranteeing that
whenever a node is processed all its children have been considered. Hence, the algorithm computes
for all nodes v of the tree

cahu(v) = f(µ(v), {{cahu(u) | u ∈ chi(v)}}). (2)

GNNs via unfolding tree canonization. We combine Eq. (2) with the definition of unfolding trees
and denote the root of an unfolding tree of height i of a vertex v by niv . Then, we obtain

cahu(n
i
v) = f(µ(niv), {{cahu(ni−1

u) | ni−1
u ∈ chi(niv)}}) = f(µ(v), {{cahu(ni−1

u) | u ∈ N(v)}}).
(3)

Realizing f using a suitable neural architecture and replacing its codomain by embeddings in Rd

we immediately obtain a GNN from our canonization approach. The only notable difference to
standard GNNs is that the first component of the pair in Eq. (3) is the initial node feature instead of
the embedding of the previous iteration. We use the technique proposed by Xu et al. (2019) replacing
the first addend in Eq. (1) with the initial embedding to obtain the unfolding tree canonization GNN

xi(v) = MLPi

(1 + ϵi) · x0(v) +
∑

u∈N(v)

xi−1(u)

 . (4)

4

Under review as a conference paper at ICLR 2024

Figure 3: Graph G and its 0-NTs T v
2,0 for all v ∈ V (G).

It is known that MPNNs cannot distinguish two nodes with the same WL color or unfolding tree.
Since the function cahu(n

i
v) uniquely represents the unfolding tree for an injective function f which

can be realized by Eq. (4) (Xu et al., 2019), we conclude the following.
Proposition 1. Unfolding tree canonization GNNs given by Eq. (4) are as expressive as GIN (Eq. (1)).

However, since xi−1(v) represents the whole unfolding tree rooted at v of height i− 1, while using
the initial node features x0(v) is sufficient, the canonization-based approach avoids redundancy. We
proceed by investigating redundancy in unfolding trees themselves.

GNNs via neighborhood tree canonization. We use the concept of neighborhood trees allowing
to control the redundancy in unfolding trees. A k-redundant neighborhood tree (k-NT) T v

i,k can be
constructed from the unfolding tree F v

i by deleting all subtrees with its roots, that already occurred
more than k levels before (seen from root to leaves). Let depth(v) denote the length of the path from
v to the root and ϕ(v) again denote the original vertex in V (G) represented by v in the unfolding or
neighborhood tree.
Definition 1 (k-redundant Neighborhood Tree). For k ≥ 0, the k-redundant neighborhood tree
(k-NT) of a vertex v ∈ V (G) with height i, denoted by T v

i,k, is defined as the subtree of the unfolding
tree F v

i induced by the nodes u ∈ V (F v
i) satisfying

∀w ∈ V (F v
i) : ϕ(u) = ϕ(w)⇒ depth(u) ≤ depth(w) + k.

Figures 2 and 3 show a examples of unfolding and neighborhood trees. Note that for k ≥ i the
k-redundant neighborhood tree is equivalent to the WL unfolding tree.

We can directly apply the neural tree canonization technique to neighborhood trees. However, a
simplifying expression based on the neighbors in the input graph as given by Eq. (3) for unfolding
trees is not possible for neighborhood trees. Therefore, we investigate techniques to systematically
exploit computational redundancy.

4.2 REMOVING COMPUTATIONAL REDUNDANCY

The computation DAG of an MPNN involves the embedding of a set of trees representing the node
neighborhoods of a single or multiple graphs. Results computed for one tree can be reused for others
by identifying isomorphic substructures causing computational redundancy. We first describe, how to
merge trees in general and then discuss the application to unfolding and neighborhood trees.

Merging trees into a DAG. The neural tree canonization approach developed in the last section
can directly be applied to DAGs. Given a DAG D, it computes an embedding for each node n in
D that represents the tree Fn obtained by recursively following its children similar as in unfolding
trees, cf. Section 3. Since D is acyclic the height of Fn is bounded. A detailed description of a neural
architecture is postponed to Section 4.3.

Given a set of trees T = {T1, . . . , Tn}, a merge DAG of T is a pair (D, ξ), where D is a DAG,
ξ : {1, . . . n} → V (D) is a mapping and for all i ∈ {1, . . . , n} we have Ti ≃ Fξ(i). The definition
guarantees that the neural tree canonization approach applied to the merge DAG produces the same
result for the nodes in the DAG as for the nodes in the original trees. A trivial merge DAG is the
disjoint union of the trees with ξ(i) = r(Ti). However, depending on the structure of the given trees,
we can identify the subtrees they have in common and represent them only once, such that two nodes
of different trees share the same child, resulting in a DAG instead of a forest.

We propose an algorithm that builds a merge DAG by successively adding trees to an initially empty
DAG creating new nodes only when necessary. Our approach maintains a canonical labeling for each
node of the DAG and computes a canonical labeling for each node of the tree to be added using the

5

Under review as a conference paper at ICLR 2024

(a) Merged unfolding trees (b) Merged 0-NTs (c) E1 (d) E2

Figure 4: Computation DAGs for unfolding (a) and 0-NTs (b) of height 2 of graph G. And edges in
the different layers of the merge DAG of 0-NTs (c), (d).

AHU algorithm, cf. Appendix B. Then, the tree is processed starting at the root. If the canonical
labeling of the root is present in the DAG, then algorithm terminates. Otherwise the subtrees rooted
at its children are inserted into the DAG by recursive calls. Finally, the root is created and connected
to the representatives of its children in the DAG. We introduce a node labeling L : VT → O used for
tree canonization, where VT =

⋃n
i=1 V (Ti) and O an arbitrary set of labels, refining the original

node attributes, i.e., L(u) = L(v)⇒ µ(u) = µ(v) for all u, v in VT . When O are integers from the
range 1 to |VT |, the algorithm runs in O(|VT |) time, see Appendix D for details. When two siblings
that are the roots of isomorphic subtrees are merged, this leads to parallel edges in the DAG. Parallel
edges can be avoided by using a labeling satisfying L(u) = L(v)⇒ µ(u) = µ(v)∧ p(u) ̸= p(v) for
all u, v in VT .

Unfolding trees and k-NTs can grow exponentially in size with increasing height. However, this
is not case for the merge DAGs obtained by the algorithm described above as we will show below.
Moreover, we can directly generate DAGs of size O(m · (k+ 1)) representing individual k-NTs with
unbounded height in a graph with m edges, see Appendix C for details.

Merging unfolding trees. Merging the unfolding trees of a graph with the labeling L = ϕ leads to
the computation DAG of GNNs. Figure 4a shows the computation DAG for the graph from Figure 1.
The roots in this DAG correspond to the representation of the vertices after aggregating information
from the lower layers. Each node occurs once at every layer of the DAG and the links between any
two consecutive layers are given by the adjacency matrix of the original graph. While this allows
computation based on the adjacency matrix widely-used for MPNNs, it involves the encoding of
redundant information. Our method has the potential to compress the computational DAG further
by using the less restrictive labeling L = µ leading to a DAG, where at layer i all vertices u, v with
c
(i)
wl (u) = c

(i)
wl (v) are represented by the same node. This compression appears particularly promising

for graphs with symmetries.

Merging neighborhood trees. Merging the k-redundant neighborhood trees in the same way using
the labeling L = µ (or L = ϕ if we want to avoid parallel edges), leads to a computation DAG having
a less regular structure, see Figure 4b for an example. First, there might be multiple nodes on the
same level representing the same original vertex. Second, the adjacency matrix of the original graph
cannot be used to propagate the information. A trivial upper bound on the size of the merge DAG of
a graph with n nodes and m edges is O(nmk + nm).

We apply the neural tree canonization approach to the merge DAG in a bottom-up fashion from the
leaves to the roots. Each edge is used exactly once in this computation. Let D = (V, E) be a merge
DAG. The nodes can be partitioned based on their height resulting in Li = {v ∈ V | hgt(v) = i}.
This induces the edge partition Ei = {uv ∈ E | v ∈ Li}, in which all edges with some end node v
are in the same layer and all the incoming edges of children of v are in a previous layer. Note, that
since L0 contains all leaves of the DAG, there is no E0. Figures 4c and 4d show the edge sets E1 and
E2 for the example merge DAG of Figure 4b.

4.3 NON-REDUNDANT NEURAL ARCHITECTURE (DAG-MLP)

We introduce a neural architecture computing embeddings for the nodes in a merge DAG allowing to
retrieve embeddings of the contained trees from its roots. First, a preprocessing step transforms the

6

Under review as a conference paper at ICLR 2024

node labels using MLP0, mapping them to an embedding space of fixed dimensions. Then, an MLPi

is used to process the nodes at each layer Li.

µ′(v) = MLP0 (µ(v)) , ∀v ∈ V
x(v) = µ′(v), ∀v ∈ L0

x(v) = MLPi

(
(1 + ϵi) · µ′(v) +

∑
∀u : uv∈Ei

x(u)

)
, ∀v ∈ Li, i ∈ {1, . . . , n}

The DAG-MLP can be computed through iterated matrix-vector multiplication analogous to standard
GNNs. Let Li be a square matrix with ones on the diagonal at position j if vj ∈ Li, and zeros
elsewhere. Let Ei represent the adjacency matrix of (V, Ei), and let F denote the node features
of V , corresponding to the initial node labels. The transformed features F′ are obtained using the
preprocessing MLP0, and X[i] represents the updated embeddings at layer i of the DAG.

F′ = MLP0 (F) , X[0] = L0F
′,

X[i] = MLPi

(
(1 + ϵi) · LiF

′ +EiX
[i−1]

)
+X[i−1] ,

In the above equation, MLPi is applied to the rows associated with nodes in Li. The embeddings X[i]

are initially set to zero for the inner nodes and are computed level-wise. To preserve the embeddings
from all previous layers, we add X[i−1] during the computation of X[i]. Assume the merge DAG
(D, ξ) contains the trees {T1, . . . , Tn}, then we obtain a node embedding X

[n]
ξ(i) for each tree Ti with

i ∈ {1, . . . , n}. When using a single tree for each vertex of the input graph, this directly yields its
final embedding. If we include trees of different height for each vertex of the input graph, we group
them accordingly. We use NTs of a given fixed height (Fixed Single-Height) or all NTs of size up to a
certain maximum (Combine Heights), see Appendix E for a description of the resulting architecture.

4.4 EXPRESSIVENESS OF 1-NTS

Let φ be an isomorphism between G and H . We call two nodes u and v (or edges uw and vx)
corresponding in an isomorphism φ, if φ(u) = v (for edges φ(u)φ(w) = vx). We denote two nodes
u and v (or edges uw and vx) by u ∼= v (uw ∼= vx, respectively), if there exists an isomorphism in
which u and v (uw and vx) are corresponding.

For isomorphism testing the (multi)sets of unfolding trees of two graphs (and k-redundant neigh-
borhood trees, respectively) can be compared. The sets are denoted with wli(G) and nti,k(G) for
iteration i, and defined as wli(G) = {{F v

i |v ∈ V (G)}} and nti,k(G) = {{T v
i,k|v ∈ V (G)}}. If

two graphs G and H are isomorphic, then by definition of the trees, we can find a bijection ψ
between their tree sets wl∞(G) and wl∞(H) (and nt∞,k(H) and nt∞,k(G), respectively), with
∀T : T ≃ ψ(T), which we denote by wl∞(G) = wl∞(H) (nt∞,k(G) = nt∞,k(H)). However,
wl∞(G) = wl∞(H) ̸⇒ G ≃ H (and also nt∞,k(G) = nt∞,k(H) ̸⇒ G ≃ H). We focus on
1-redundant neighborhood trees from now on.
Theorem 1. The 1-NT isomorphism test is more powerful than the Weisfeiler-Leman isomorphism
test, i.e.,

1. ∀G,H : wl∞(G) ̸= wl∞(H)⇒ nt∞,1(G) ̸= nt∞,1(H)

2. ∃G,H : G ̸≃ H ∧ wl∞(G) = wl∞(H) ∧ nt∞,1(G) ̸= nt∞,1(H).

Proof. 1. We prove the first statement by contradiction. Assume u ∈ V (G), v ∈ V (H), two nodes
with u ≇ v, and let i be the first iteration in which Fu

i ̸≃ F v
i , but Tu

i,1 ≃ T v
i,1. From the definition it

follows that ∀v : F v
0 ≃ T v

0,1, and also ∀v : F v
1 ≃ T v

1,1, so i ≥ 2.

Since i is the first iteration they differed, Fu
i−1 ≃ F v

i−1. Any isomorphism between Fu
i and F v

i can
only be generated from extending an isomorphism between Fu

i−1 and F v
i−1. Let φ be an arbitrary

isomorphism between Fu
i−1 and F v

i−1, then, no matter how we extend it, there exists an edge in the
last layer of Fu

i , that has no corresponding edge in the last layer of F v
i (or vice versa).

If this edge is in Tu
i,1 in the last layer, then (since Tu

i,1 ≃ T v
i,1) there is also a corresponding edge in

T v
i,1, which implies it is also in F v

i . This would imply Fu
i ≃ F v

i , contradicting the assumption.

7

Under review as a conference paper at ICLR 2024

(a) Hexagon (b) Two triangles (c) Unfolding trees (d) 1-NTs

Figure 5: Two graphs (a), (b) that cannot be distinguished by unfolding trees, but by 1-NTs. Figure (c)
shows the unfolding tree F3, which is the same for all vertices of both graphs, while (d) shows the
1-NTs of the vertices in the hexagon (left) and the triangle (right).

Table 1: Average classification accuracy for EXP-Class and CSL across k-folds (4-folds and 5-folds),
and the number of undistinguished pairs of graphs in EXP-Iso. Best results are highlighted in gray,
best results from methods with polynomial time complexity are highlighted in bold.

Model EXP-Class ↑ EXP-Iso ↓ CSL ↑
GIN (Xu et al., 2019) 50.0 ± 0.0 600 10.0 ± 0.0
3WLGNN (Maron et al., 2019) 100.0 ± 0.0 0 97.8 ± 10.9
PathNN-SP+ (Michel et al., 2023) 100.0 ± 0.0 0 100.0 ± 0.0
PathNN-AP (Michel et al., 2023) 100.0 ± 0.0 0 100.0 ± 0.0

DAG-MLP (0-NTs) 100.0 ± 0.0 0 100.0 ± 0.0
DAG-MLP (1-NTs) 100.0 ± 0.0 0 100.0 ± 0.0

If this edge is not in Tu
i,1 in the last layer, the same edge must have already occurred in a previous layer

in Tu
i,1. Let l be the layer that this edge first occurred. Then, l ≤ i−2 must hold (because k = 1), and

this edge must also occur in Fu
i , with a corresponding edge in T v

i,1 and most importantly in F v
i in that

layer (since the trees up to i−1 were the same). But in unfolding trees, an edge from the original graph
will be present in every layer after its first occurrence. If the corresponding edge occurs in F v

i in layer
l, it also has to occur in layer i again (implying Fu

i ≃ F v
i), which implies Tu

i,1 ̸≃ T v
i,1 and thereby

contradicts the initial assumption. So ∀G,H : wl∞(G) ̸= wl∞(H)⇒ nt∞,1(G) ̸= nt∞,1(H).

2. The statement is proven by the example, where G is a hexagon and H consists of two triangles. For
these graphs all nodes have isomorphic unfolding trees, while their 1-NTs differ (see Figure 5).

The 1-NTs can also distinguish the molecules decalin and bicyclopentyl, which WL cannot distinguish.
We investigate the expressiveness of 0-NTs in Appendix G.

5 EXPERIMENTAL EVALUATION

We evaluate DAG-MLP with k-NTs on both synthetic (Abboud et al., 2021; Murphy et al., 2019) and
real-world datasets (Morris et al., 2020). We provide information on the datasets in Appendix H.

Experimental setup. For synthetic datasets, we choose the number of layers in DAG-MLP based
on the average graph diameter. This ensures that most nodes can effectively aggregate information
from all other nodes during message propagation. The embeddings at each layer are extracted using
readouts, concatenated, and then passed to two learnable linear layers for prediction. For evaluation
on the TUDataset, we follow the same splits across 10 folds as proposed by Errica et al. (2020).
This allows conducting a grid search to identify the optimal hyper-parameters for each dataset.
The architecture for combined heights is designed such that each “readouti” is used to extract the
embeddings corresponding to each layer, and the mean of the average-pooled embeddings is passed to
a final MLP layer responsible for prediction (see Appendix E). For the fixed single-height architecture,
only the last readout is used, pooled and passed to the final MLP layer. The hyper-parameters are
detailed in Appendix J.

Results. Table 1 shows the results on the synthetic expressivity datasets. Comparing our approach to
GIN, the results we see are consistent with the theoretical findings: 1-NTs are more expressive than
GIN. Our hypothesis that 0-NTs are more expressive than GIN on a graph-level is experimentally
validated, but a theoretical proof remains future work.

8

Under review as a conference paper at ICLR 2024

Table 2: Average accuracy for DAG-MLP using 4-fold cross-validation on EXP-Class (Abboud et al.,
2021), evaluated with varying number of layers.

k-NTs 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

0-NTs 51.1 ± 1.6 57.5 ± 6.6 91.7 ± 11.6 99.7 ± 0.3 100.0 ± 0.0 100.0 ± 0.0
1-NTs 50.1 ± 0.2 58.9 ± 4.6 59.4 ± 5.7 99.6 ± 0.5 99.9 ± 0.2 100.0 ± 0.0
2-NTs - 52.6 ± 3.4 54.9 ± 5.3 52.4 ± 3.8 97.6 ± 1.9 100.0 ± 0.0
3-NTs - - 56.2 ± 5.7 51.1 ± 1.9 52.4 ± 4.1 87.1 ± 21.4
4-NTs - - - 50.1 ± 0.2 50.6 ± 1.0 50.4 ± 0.7
5-NTs - - - - 50.4 ± 0.7 50.0 ± 0.0
6-NTs - - - - - 53.2 ± 5.2

Table 3: Classification accuracy (± standard deviation) over 10-fold cross-validation on the datasets
from TUDataset, taken from Michel et al. (2023). Best performance is highlighted in gray, best
results from methods with polynomial time complexity are highlighted in bold. “-” denotes not
applicable and “NA” means not available.

Algorithm IMDB-B IMDB-M ENZYMES PROTEINS

L
in

ea
r GIN (Xu et al., 2019) 71.2 ± 3.9 48.5 ± 3.3 59.6 ± 4.5 73.3 ± 4.0

GAT (Veličković et al., 2018) 69.2 ± 4.8 48.2 ± 4.9 49.5 ± 8.9 70.9 ± 2.7
SPN (l = 1) (Abboud et al., 2022b) NA NA 67.5 ± 5.5 71.0 ± 3.7
SPN (l = 5) (Abboud et al., 2022b) NA NA 69.4 ± 6.2 74.2 ± 2.7

E
xp

PathNet (Sun et al., 2022) 70.4 ± 3.8 49.1 ± 3.6 69.3 ± 5.4 70.5 ± 3.9
PathNN-P (Michel et al., 2023) 72.6 ± 3.3 50.8 ± 4.5 73.0 ± 5.2 75.2 ± 3.9
PathNN-SP+ (Michel et al., 2023) - - 70.4 ± 3.1 73.2 ± 3.3

O
ur

s

DAG-MLP (0-NTs) Fixed Single-Height 72.9 ± 5.0 50.2 ± 3.2 67.9 ± 5.3 70.1 ± 1.7
DAG-MLP (1-NTs) Fixed Single-Height 72.4 ± 3.8 48.8 ± 4.3 70.6 ± 5.5 70.2 ± 3.4
DAG-MLP (0-NTs) Combine Heights 72.8 ± 5.6 50.1 ± 3.8 66.7 ± 4.8 69.1 ± 3.6
DAG-MLP (1-NTs) Combine Heights 72.2 ± 4.5 51.3 ± 4.4 69.2 ± 4.5 69.5 ± 3.0

In Table 2, we investigate the impact of the parameter k and the number of layers l on the accuracy
on EXP-Class. Cases with k > l can be disregarded, since the computation for NTs remains the
same when k = l. Empirically, 0- and 1-NTs yield the highest accuracy. This is consistent with our
discussions on expressivity in Section 4.4 and Appendix G. The decrease in accuracy with increasing
k indicates that information redundancy leads to oversquashing.

For TUDataset, we report the accuracy compared to related work in Table 3. Due to the high
standard deviation across all methods, we present a statistical box plot for the accuracy based on
three runs on the testing set of 10-fold cross-validation in Appendix F. We group the methods by
their time complexity. Note that, while PathNN performs well on ENZYMES and PROTEINS, the
time complexity of this method is exponential. Therefore, we also highlight the best method with
polynomial time complexity. For IMDB-B and IMDB-M, which have small diameters, we see that
k-NTs outperform all other methods. For ENZYMES a variant of our approach achieves the best
result among the approaches with non-exponential time complexity and k-NTs lead to a significant
improvement over GIN.

6 CONCLUSION

We propose a neural tree canonization technique and combined it with neighborhood trees, which
are pruned and more expressive versions of unfolding trees used by standard MPNNs. By merging
trees in a DAG, we derive compact representations that form the basis for our neural architecture
DAG-MLP, which learns across DAG levels. It inherits the properties of the GIN architecture, but
is provably more expressive than 1-WL when based on 1-redundant neighborhood trees. In this
effort, we introduced general techniques to derive compact computation DAGs for tree structures
encoding node neighborhoods. This revealed a complex interplay between information redundancy,
computational redundancy and expressivity, the balancing of which is an avenue for future work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The Surprising
Power of Graph Neural Networks with Random Node Initialization. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence, pp. 2112–2118, 2021.

Ralph Abboud, Radoslav Dimitrov, and İsmail İlkan Ceylan. Shortest path networks for graph
property prediction. In LoG 2022, volume 198 of Proceedings of Machine Learning Research,
2022a. URL https://proceedings.mlr.press/v198/abboud22a.html.

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest Path Networks for Graph
Property Prediction. In Proceedings of the 1st Learning on Graphs Conference, 2022b.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML 2019, volume 97 of Proceedings
of Machine Learning Research, 2019. URL http://proceedings.mlr.press/v97/
abu-el-haija19a.html.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. ISBN 0-201-00029-6.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implica-
tions. In ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Rongqin Chen, Shenghui Zhang, Leong Hou U, and Ye Li. Redundancy-free mes-
sage passing for graph neural networks. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 4316–4327. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HygDF6NFPB.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In International Conference on Machine Learning, 2017.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning. CoRR,
abs/2204.07697, 2022.

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-free
computation for graph neural networks. In KDD ’20: The 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 997–
1005. ACM, 2020. doi: 10.1145/3394486.3403142. URL https://doi.org/10.1145/
3394486.3403142.

Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. On valid optimal assignment kernels
and applications to graph classification. In International Conference on Neural Information
Processing Systems, NIPS, 2016.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: De-
sign provably more powerful neural networks for graph representation learning. In
NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
2f73168bf3656f697507752ec592c437-Abstract.html.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16098.

10

https://proceedings.mlr.press/v198/abboud22a.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.neurips.cc/paper_files/paper/2022/file/1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf
https://openreview.net/forum?id=HygDF6NFPB
https://doi.org/10.1145/3394486.3403142
https://doi.org/10.1145/3394486.3403142
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098

Under review as a conference paper at ICLR 2024

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2020. doi:
10.1145/3394486.3403076.

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions
of marginalized graph kernels. In Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004. ISBN 1-58113-838-5. URL http://doi.acm.org/10.
1145/1015330.1015446.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph
Networks. In Advances in Neural Information Processing Systems, 2019.

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Tool-
box. Springer, 2008. ISBN 978-3-540-77977-3. URL https://doi.org/10.1007/
978-3-540-77978-0.

Gaspard Michel, Giannis Nikolentzos, Johannes Lutzeyer, and Michalis Vazirgiannis. Path neural
networks: Expressive and accurate graph neural networks. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond, 2020. URL http://www.
graphlearning.io.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational Pooling for
Graph Representations. In Proceedings of the 36th International Conference on Machine Learning,
pp. 4663–4673, 2019.

Giannis Nikolentzos, Michail Chatzianastasis, and Michalis Vazirgiannis. Weisfeiler and leman go
hyperbolic: Learning distance preserving node representations. In International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
2023. URL https://proceedings.mlr.press/v206/nikolentzos23a.html.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20
(1):81–102, 2009. doi: 10.1109/TNN.2008.2005141.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):
2539–2561, 2011.

Yifei Sun, Haoran Deng, Yang Yang, Chunping Wang, Jiarong Xu, Renhong Huang, Linfeng Cao,
Yang Wang, and Lei Chen. Beyond Homophily: Structure-aware Path Aggregation Graph Neural
Network. In Proceedings of the 31st International Joint Conference on Artificial Intelligence, pp.
2233–2240, 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In In-
ternational Conference on Learning Representations, ICLR. OpenReview.net, 2022. URL
https://openreview.net/forum?id=7UmjRGzp-A.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR, 2019.

Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. SPAGAN: shortest path
graph attention network. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence. IJCAI, 2019. URL https://doi.org/10.24963/ijcai.2019/
569.

11

http://doi.acm.org/10.1145/1015330.1015446
http://doi.acm.org/10.1145/1015330.1015446
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-540-77978-0
http://www.graphlearning.io
http://www.graphlearning.io
https://proceedings.mlr.press/v206/nikolentzos23a.html
https://openreview.net/forum?id=7UmjRGzp-A
https://doi.org/10.24963/ijcai.2019/569
https://doi.org/10.24963/ijcai.2019/569

Under review as a conference paper at ICLR 2024

Jiaxuan You, Jonathan Michael Gomes Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press, 2021.
URL https://ojs.aaai.org/index.php/AAAI/article/view/17283.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17283

Under review as a conference paper at ICLR 2024

A COMPARISON TO RFGNN AND TPTS

In RFGNN (Chen et al., 2022), so called TPTs are used to represent the information flow. The
motivation of the approach is similar to ours, but there are substantial differences between TPTs
and k-redundant neighborhood trees and the computational properties of the techniques. In RFGNN
the focus is solely on reducing redundancy in information flow, not computation. Additionally, the
definition of TPTs allows for much more redundancy than that of k-NTs. We first introduce the
concepts used by Chen et al. (2022), and then discuss differences and disadvantages.

An epath is a path with no repeated vertices, except the starting node is allowed to be the ending node
if the length of the epath is larger than 2.

Definition 2 (Truncated ePath Tree (Chen et al., 2022)). Given graph G and v ∈ V (G), the TPT
TPTh

G,v with height h is an epath search tree obtained by running a BFS from v, where all epaths of
length up to h are accessed.

First of all, the definition of TPTs allows for vertices to appear (redundantly) multiple times in a tree.
If a vertex appeared at depth 1, for example, it can still appear anywhere else in the TPT, but not as its
own descendant. Parts of paths that differ, will be repeated in TPTs, without the ability to compress
them. Neighborhood trees, in contrast, allow compressed representations, see Appendix C. Chen et al.
(2022, Lemma 7) show that TPTs are more expressive than unfolding trees of the same height by
giving two example graphs, which can also be distinguished by the more 1-NTs of the same height,
cf. Theorem 1.

The size and running time complexity of RFGNN is very restrictive. While the term BFS in the
definition suggests a linear running time, the BFS has to be modified leading to an exponential
running time, cf. Appendix C. Compression of the TPTs (or even the forest of TPTs from the vertices
of a graph) is not discussed in the paper, making preprocessing, as well as computation much more
time consuming. In the experimental evaluation, TPTs only up to height 3 are used due to the
resource-intensity, which shows that the full expressivity of TPTs cannot be utilized in practice. This
is also seen in the experimental evaluation in (Chen et al., 2022), where the results using RFGNN are
only marginally better.

With our proposed approach, we investigate not only the redundancy in information flow using the
k-NTs, but also remove redundancy in computation by employing merge DAGs. Our approach is
capable of reaching its full expressive potential in practice with a reasonable running time.

B THE AHU ALGORITHM

Aho, Hopcroft and Ullman describe a linear-time algorithm for deciding whether two rooted unordered
trees are isomorphic (Aho et al., 1974, Section 3.2). The concept of the algorithm inspired our neural
tree canonization algorithm, see Section 4.1, and the algorithm provides a fundamental subroutine of
our method for combining trees into one merge DAG, see Appendix D. Here, we give a complete
description of the original algorithm, its extension to trees with node labels or features and the
required modification for tree canonization.

In its original version, the algorithm solves the subtree isomorphism problem for two rooted unordered
unlabeled trees T1 and T2. Algorithm 1 shows the pseudocode of the algorithm.2 First, the nodes
in the disjoint union of the input trees T1 ∪ T2 are partitioned into levels according to their depth
distinguishing leaves and internal nodes, see Figure 6. Note that the levels are numbered in reverse
order of depth, i.e., for a node v on level i the equality depth(v) = hgt(T)− i holds. The lists L∗

i
and Li contain all leaves and internal nodes, respectively, on level i. The labels cahu of the leaves
are set to 0 and the tree is processed in bottom-up-fashion. In iteration i of the for loop, the labels
of all nodes Lk for all k < i have been computed and Lk is sorted according to them. Note that L∗

i
contains only nodes v with cahu(v) = 0 for all 0 ≤ i ≤ hgt(T). Tuples ĉahu(v) are generated for
the nodes v in Li by iterating over L∗

i−1 and then Li−1 appending the label of the current node to
the tuple of its parent. Each tuple contains an integer label for each child and is in non-decreasing

2For clarity of presentation, we adapted and simplified the textual description of the textbook (Aho et al.,
1974). In contrast to the original description, our algorithm operates on the disjoint union of both trees instead of
applying the same operations to T1 and T2 individually.

13

Under review as a conference paper at ICLR 2024

Algorithm 1 AHU algorithm for tree isomorphism

function RELABEL(nodes L, labels ĉahu, cahu) ▷ Replaces tuple labels ĉahu(v) by integer labels
cahu(v) for the nodes v in the list L = (l1, l2, . . . , lN) sorted according to ĉahu.

prev← ĉahu(l1)
k ← 1
for i← 1 to N do

if ĉahu(li) = prev then
cahu(li)← k

else
k ← k + 1 ▷ Next integer label
cahu(li)← k

prev← ĉahu(li)

return cahu

function TREEISMORPHISM(T1, T2)
T ← T1 ∪ T2
H ← hgt(T)
for i← 0 to H do
L∗
i ← {v ∈ V (T) | depth(v) = H − i ∧ chi(v) = ∅} ▷ Leaves with the same depth
Li ← {v ∈ V (T) | depth(v) = H − i ∧ chi(v) ̸= ∅} ▷ Non-leaves with the same depth

for each leaf v ∈ V (T) do
cahu(v)← 0 ▷ Initialize labels for leaves

for i← 1 to H do
for each l in ordered list L∗

i−1 + Li−1 do ▷ Iterate over concatenated ordered list
Append cahu(l) to the tuple ĉahu(p(l)) ▷ Pass label of previous level upwards

Li ←RADIXSORT(Li, ĉahu) ▷ Sort list according to their tuples
cahu ←RELABEL(Li, cahu, ĉahu)
if {{cahu(v) | (L∗

i ∪ Li) ∩ V (T1)}} ̸= {{cahu(v) | (L∗
i ∪ Li) ∩ V (T2)}} then

return false
return true

order. In the next step, the nodes in Li are sorted according to the tuples using radix sort. Then, the
RELABEL function assigns new integers cahu(v) to all nodes v in Li based on their tuples. Since Li

is sorted, all nodes with the same label form a contiguous sub-list. New integers are computed by
scanning the list assigning 1 to the first entry and increasing the integer whenever the current tuple
differs from the previous one. Using this approach, the RELABEL function computes an injection
between tuples and integers appearing for the nodes in Li. Two trees are isomorphic if and only if
their nodes yield the same multiset of labels on all levels. Figure 6 shows an example of two trees that
are identified as isomorphic. The algorithm can be implemented in linear time applying RADIXSORT
to sort tuples of labels from a bounded range.

As noted by Aho et al. (1974), the algorithm can be extended to trees with initial integer labels from
the range 1 to n with n = O(|V (T)|) by including the label of a node as the first element in its tuple.
In this case, the RELABEL function assigns integers that were not used as initial labels and the leaves
in L∗

i have to be sorted according to their label after initialization. The overall running time remains
linear.3 If the labels are not integers from a bounded range, e.g., continuous values, an initial mapping
to integers is required, which can be realized by comparison-based sorting in O(n log n).

In order to generalize the method to tree canonization, it is no longer sufficient that the relabeling
function is injective for the tuples appearing on each level, but it has to be injective for all possible
tuples that can occur in any tree. We discuss this situation in Section 4.1 and propose a learnable
function with this property.

3A similar technique including level-wise processing, creation of tuples sorted by radix sort and relabeling
has been proposed by Shervashidze et al. (2011, Section 2.1) in the context of the Weisfeiler-Leman kernel to
achieve a linear running time.

14

Under review as a conference paper at ICLR 2024

3

Level

2

1

0

1
(1, 2, 3)

1
(2)

2
(0, 0)

0 0

3
(0, 0, 2)

0 2
(0, 0)

0 0

0

2
(0, 1)

0 1
(0)

0

1
(1, 2, 3)

2
(0, 1)

1
(0)

0

0

3
(0, 0, 2)

2
(0, 0)

0 0

0 0

1
(2)

2
(0, 0)

0 0

Figure 6: Two isomorphic trees T1 (left) and T2 (right) and the labels cahu (inside each node) and
ĉahu (right of each node) computed by the AHU algorithm.

Algorithm 2 Merging trees

function MERGE(set of trees T , labeling L) ▷ merges T into a DAG D
D ← empty DAG ▷ start with empty DAG
initialize D.can_map as an empty map ▷ maps canonization to node in DAG
for each T ∈ T do

compute canonization can(v) for v ∈ V (T) under L
ADD(D, T , r(T), L) ▷ add tree, starting at root

return D

function ADD(DAG D, tree T , vertex v, labeling L) ▷ adds substructure rooted at v ∈ V (T) to D
if can(v) ∈ D.can_map then ▷ node (and substructure) already present in D

return
for each c ∈ chi(v) do ▷ add all children first (if necessary)

ADD(D, T , c, L)
add new node v2 with L(v2) = L(v) to D ▷ add new node
set can(v2) = can(v) and D.can_map(can(v2)) = v2
for each c ∈ chi(v) do

if edge exists from D.can_map(can(c)) to v2 then
increase multiplicity of that edge by 1 ▷ a sibling had the same canonization

else
add edge from D.can_map(can(c)) to v2 ▷ add edges from children to new node

C BUILDING COMPACT TREES

Since unfolding trees can grow exponentially in size and our goal is to avoid redundant computation,
we do not build unfolding trees and k-NTs explicitly. Rather, we build DAGs that represent them,
corresponding to the merge DAG of only that tree using L = ϕ. This way, the size of k-NTs is in
O(|E(G)| · (k + 1)), which means it is linear in the size of the input graph G.

D MERGING TREES – ALGORITHM

Algorithm 2 describes how to merge a set of trees {T1, . . . , Tn} into a DAG under a labeling
function L :

⋃
i∈{1,...,n} V (Ti)→ O, where O is some arbitrary labeling. All substructures that are

isomorphic under L are merged. For that, the canonization of all vertices is computed first. Then each
tree is merged to the DAG separately: Starting at the root r(T) of the tree that is added, if a node with
the same canonization as r(T) exists in the DAG, we do not need to do anything. Otherwise, we add
the subtrees rooted at the children of r(T) first (using the same procedure as for r(T)), and then add
a new node for r(T) along with edges to the nodes in the DAG that have the same canonization as
the children of r(T). Note that, if some children have the same canonization, in this step multiedges

15

Under review as a conference paper at ICLR 2024

MLP0Xinitial DAG-MLP1

E1

X

Pooling

Non-learnable

Learnable

DAG-MLPi

Ei

X

Pooling

DAG-MLPn

En

X

Pooling

X

Pooling

MeanYpredict

Readoutn-1ReadoutiReadout0 Readoutn

MLP

Figure 7: DAG-MLP architecture with n layers for graph-level prediction tasks.

Table 4: Average accuracy of DAG-MLP using 5-fold cross-validation on CSL (Murphy et al., 2019),
evaluated with varying parameters k and l.

k-NTs 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers
0-NTs 10.0± 0.0 20.0± 0.0 40.0± 0.0 70.0± 0.0 84.0± 4.9 100.0 ± 0.0
1-NTs 10.0± 0.0 10.0± 0.0 30.0± 0.0 48.0± 4.0 78.0± 9.8 100.0 ± 0.0
2-NTs - 10.0± 0.0 16.0± 4.9 20.0± 12.6 50.0± 8.9 80.0± 12.6
3-NTs - - 10.0± 0.0 10.0± 0.0 20.0± 12.6 38.0± 14.7
4-NTs - - - 10.0± 0.0 16.0± 8.0 34.0± 12.0
5-NTs - - - - 10.0± 0.0 10.0± 0.0
6-NTs - - - - - 10.0± 0.0

can occur. The algorithm can easily be extended to merge DAGs by iterating over all roots in MERGE
and adding them to the DAG. The running time of the algorithm depends on the canonization, which
can be done in time linear in the numbers of vertices (see Appendix B), and the time needed to add
the trees to the DAG. Since we add each vertex at most once, and can check whether a canonization
is already present in the DAG in constant time, this also only needs time linear in the number of tree
vertices.

E DAG-MLP ARCHITECTURE FOR GRAPH CLASSIFICATION

Figure 7 shows an example of the architecture when using unfolding or neighborhood trees of
height up to n for graph classification requiring n DAG-MLP layers. The node features are initially
transformed into embedding with fixed dimension using MLP0. Messages are then propagated using
the DAG from height 0 to 1 (E1), which corresponds to layer 1. This process is repeated for n layers,
where the ith step computes embeddings for nodes of height i in the DAG. After n layers, all node
embeddings in the DAG (X) have been updated. Using readouts, we extract the embeddings of
each node from k-NTs of different heights within the DAG. These extracted embeddings correspond
to the embeddings of different layers. A pooling operation is then applied to the output of each
layer, and the pooled outputs are averaged. These averaged outputs are passed through a final MLP,
transforming them into probabilities for class prediction.

F ADDITIONAL EXPERIMENTS

Following the same experimental setup as in Table 2, Table 4 shows the accuracy with varying
parameters k and l. Since the expressive capabilities are the same as those of GIN when the number
of layers l equals the redundancy parameter k, all results with l = k are not better than guessing.

Table 5 shows a comparison of 0- or 1-NTs, with combined heights and fixed single-height, for
10-fold cross-validation on MUTAG. The results as well as those shown in Table 3 indicate that using
multiple different tree heights does not improve the generalization capabilities of the model.

Figure 8 shows box plot charts for the accuracy obtained in Table 3. Due to the use of 10-fold
cross-validation and the random initialization of the MLPs, the results tend to have high variance.

16

Under review as a conference paper at ICLR 2024

Table 5: Classification accuracy for 10-folds (± standard deviation) on MUTAG comparing DAG-
MLP that combines layers of different heights to DAG-MLP that only uses layers at a fixed height.

k-NTs Combine Heights Fixed Single-Height
1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

0-NTs 84.6 ± 6.2 86.7 ± 5.3 86.9 ± 6.0 85.3 ± 6.3 89.0 ± 4.7 87.2 ± 5.1
1-NTs 84.9 ± 6.0 83.3 ± 7.3 88.6 ± 6.7 85.8 ± 6.0 88.8 ± 4.4 90.4 ± 5.1

IM
D

B-
B

(0
-N

Ts
)

IM
D

B-
B

(1
-N

Ts
)

IM
D

B-
M

 (
0-

N
Ts

)

IM
D

B-
M

 (
1-

N
Ts

)

EN
ZY

M
ES

 (
0-

N
Ts

)

EN
ZY

M
ES

 (
1-

N
Ts

)

PR
O

TE
IN

 (
0-

N
Ts

)

PR
O

TE
IN

 (
1-

N
Ts

)

Dataset Name

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

(a) Fixed Single-Height
IM

D
B-

B
(0

-N
Ts

)

IM
D

B-
B

(1
-N

Ts
)

IM
D

B-
M

 (
0-

N
Ts

)

IM
D

B-
M

 (
1-

N
Ts

)

EN
ZY

M
ES

 (
0-

N
Ts

)

EN
ZY

M
ES

 (
1-

N
Ts

)

PR
O

TE
IN

 (
0-

N
Ts

)

PR
O

TE
IN

 (
1-

N
Ts

)

Dataset Name

40

50

60

70

80

Ac
cu

ra
cy

 (
%

)

(b) Combine Heights

Figure 8: Graph classification test accuracy box plot over three runs of 10-fold cross-validation of the
DAG-MLP on the datasets from the TUDataset.

For all datasets, the accuracy of DAG-MLP is statistically within the same boundaries as those of the
best related methods reported in Table 3.

G EXPRESSIVENESS OF 0-NTS AS NODE INVARIANTS

Theorem 1 shows that 1-NTs are more expressive as a node invariant (and in turn graph invariant)
than unfolding trees. While the 0-NTs can also distinguish the nodes of the two graphs in the example
of Figure 5 (and the famous example of decalin and bicyclopentyl), as a node invariant, they are
not more expressive than unfolding trees in every case. Figure 9 shows an example, where the
unfolding trees of two (not corresponding) vertices differ, but their 0-NTs do not. Looking at the tree
sets, however, nt∞,0 can also distinguish those two graphs. It remains future work to delineate the
expressivity of nt∞,0 and wl∞.

H DATASETS

We provide information about the datasets used in the experimental evaluation. Table 6 provides an
overview of the datasets, along with their corresponding characteristics.

(a) A triangle (b) A star (c) 0-NT of white node in either
graph.

(d) 0-NTs of gray nodes (triangle
left, star right).

Figure 9: Graphs with vertices, not distinguishable by 0-NTs, but by unfolding trees.

17

Under review as a conference paper at ICLR 2024

Table 6: Summary of characteristics for the synthetic datasets (Murphy et al., 2019; Abboud et al.,
2021) and TUDatasets (Morris et al., 2020). The table provides information on the dataset name,
number of graphs (|G|), average number of nodes (|V |), average number of edges (|E|), and average
diameter (D) for each dataset.

Dataset |G| |V | |E| D

CSL 150 41.0 164.0 6.0
EXP-Class 1200 55.8 139.6 12.6
EXP-Iso 1200 44.4 110.2 8.5

MUTAG 188 17.93 39.59 8.22
IMDB-B 1000 19.8 193.1 1.9
IMDB-M 1500 13.0 131.9 1.5
ENZYMES 600 32.6 124.3 10.9
PROTEINS 1113 39.1 145.6 11.6

Synthetic datasets. (1) EXP-Classification (EXP-Class) and EXP-Isomorphic (EXP-Iso) evaluate
GNN expressivity, featuring graph pairs with varying SAT outcomes and 1-WL distinguishabil-
ity (Abboud et al., 2021). EXP-Class extends EXP-Iso by including 50% “corrupted” data, making
the learning task more challenging. (2) Circulant Skip Links (CSL) graphs (Murphy et al., 2019)
are highly symmetric, 4-regular graphs that consist of a cycle with additional ’skip links.’ Despite
their symmetry, these graphs present a challenge for the WL test and GNNs based on WL, as these
methods fail to distinguish between non-isomorphic instances of such graphs.

Real-world datasets. We examine MUTAG, IMDB-B, IMDB-M, ENZYMES, and PROTEINS
from TUDataset (Morris et al., 2020). IMDB-B and IMDB-M are movie network datasets for
binary and multi-class classification, respectively. ENZYMES has six protein graph classes, while
PROTEINS represents a binary classification task from bioinformatics.

I RUNNING TIME

The running time for generating and merging 0- and 1-NTs with different layers on different datasets
is presented in Figure 10. We employ a parallelized algorithm to construct the NTs, where each graph
is also processed in parallel.

J HYPER-PARAMETERS

The hyper-parameters used for the synthetic datasets can be seen in Table 7. The hyper-parameters for
the TUDataset experiments were chosen as follows: The batch size for training is set to 64. Learning
rate (LR) is set to 0.001. The classifier trained for 500 epochs. The dimension of the embedding is
set to 128. The optimizer used is Adam, and the scheduler is set to StepLR with a step size of 100
and a gamma value of 0.5. The aggregation method (pooling) is defined as mean and a dropout rate
of 0.5 is specified. Early stopping is configured with a patience of 250 epochs and uses accuracy
instead of loss. The number of layers for each dataset is set as in Table 8, and shuffling of the dataset
is enabled.

Table 7: Synthetic dataset hyper-parameter configuration details.

Dataset Task Embedding Target Layers Batch Size Epochs LR

EXP-Class Classification 64 10 15 32 200 10−3

EXP-Iso Isomorphism Test 1 1 6 1 - -
CSL Classification 64 10 6 32 200 10−3

18

Under review as a conference paper at ICLR 2024

1 2 3
Number of Layers

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

ENZYMES
0-NT
1-NT

1 2 3 5
Number of Layers

0

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

IMDB-B
0-NT
1-NT

1 2 3 5
Number of Layers

0

5

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

IMDB-M
0-NT
1-NT

1 2 3 5
Number of Layers

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

PROTEINS
0-NT
1-NT

Figure 10: Running time for building the 0- and 1-redundant NTs.

Table 8: TUDatasets layer configuration details.

Dataset IMDB-B IMDB-M ENZYMES PROTEINS
Layers 5, 3, 2 5, 3, 2 3, 2 5, 3, 2

K HARDWARE

The hardware configuration consists of dual AMD 7252 CPUs, each with 8 cores, and two NVIDIA
A40 GPUs. The system is supplemented with 256 GB of RAM. Each NVIDIA A40 GPU comes with
10,752 CUDA cores and a clock frequency of 1.305 GHz. The GPUs have 48 GB of memory and
a bandwidth of 696 GB/s, operating at a Thermal Design Power (TDP) of 300 Watts. In terms of
performance, the GPUs can deliver 37,400 GFLOPs in single-precision (FP32) and 1,169 GFLOPs in
double-precision (FP64) computations.

19

	Introduction
	Related Work
	Preliminaries
	Non-Redundant Graph Neural Networks
	Removing Information Redundancy
	Removing Computational Redundancy
	Non-Redundant Neural Architecture (DAG-MLP)
	Expressiveness of 1-NTs

	Experimental Evaluation
	Conclusion
	Comparison to RFGNN and TPTs
	The AHU algorithm
	Building Compact Trees
	Merging Trees – Algorithm
	DAG-MLP Architecture for Graph Classification
	Additional Experiments
	Expressiveness of 0-NTs as Node Invariants
	Datasets
	Running Time
	Hyper-Parameters
	Hardware

